
STA257 (Probability and Statistics I) Lecture Notes, Fall 2025

by Jeffrey S. Rosenthal, University of Toronto, www.probability.ca

(Last updated: September 10, 2025)

Note: I will update these notes regularly, posting them on the course web page each
evening after lectures (though without annotations). However, they are just rough,
point-form notes, with no guarantee of completeness or accuracy. They should in
no way be regarded as a substitute for attending and learning from all the lectures,
studying the course textbook, and doing the suggested homework exercises.

Introduction

• Course Information: See the course web page at: probability.ca/sta257

• Register for PollEverywhere: probability.ca/sta257/pollinfo.html

→ USE YOUR REGULAR UofT EMAIL!

• Who here is doing a specialist or major program involving: Statistics / Data Sci-

ence? Mathematics? Actuarial Science? Computer Science? Economics/Commerce?

Physics/Chemistry/Biology? Education? Psychology/Sociology? Engineering? Other?

• Who here has seen probabilities in elementary school? high school? STA130?

→ Don’t worry, we will start from scratch. (Just need math and logic.)

• Life is full of randomness and uncertainty: lotteries, card games, computer games,

gambling, weather, TTC, airplanes, friends, jobs, classes, science, finance, elections,

diseases, safety/risk, demographics, internet routing, legal cases, . . . whenever we’re

not sure of the outcome or what will happen next.

• Lots of interesting probability questions to solve! Such as . . .

→ What’s the probability you’ll win the Lotto Max jackpot, i.e. that you will

choose the correct 7 distinct numbers between 1 and 50?

→ If 200 students each flip a fair coin, then how many Heads is the most likely?

How likely? What’s the probability of more than 150 Heads?

→ If you repeatedly roll a fair 6-sided die [show], then how many rolls will there

be on average before the first time you roll a 3?

→ At a party of 40 people, what is the probability that some pair of them have

the same birthday?

→ If a disease affects one person in a thousand, and a test for the disease has 99%

accuracy, and you test positive, then what is the probability you have the disease?

→ If you pick a number uniformly at random between 0 and 1, then what is the

probability that you pick exactly the number 3/4?

→ Three-Card Challenge. [demonstration] What are the probabilities of the initial

(front) colour? Then, what are the probabilities of the back colour?

• History of Mathematical Probability Theory (in brief):
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→ Mathematics is very precise and certain. For thousands of years, it simply

ignored the uncertainty of probabilities.

→ Then, in 1654, the French writer Antoine Gombaud (the “Chevalier de Méré”)

asked the mathematician Pierre de Fermat some gambling questions:

→ Which is more likely (or are they the same) (and are they more than 50%):

(a) Get at least one six when rolling a fair six-sided die 4 times; or

(b) Get at least one pair of sixes when rolling two fair six-sided dice 24 times?

→ He thought (a) was 4× (1/6) = 2/3, and (b) was 24× (1/36) = 2/3. Correct?

→ Also: (c) Suppose a gambler is playing a best-of-seven match, where whoever

wins 4 (fair) games first in the winner, and so far they have won 3 times and lost 1,

but then the match gets interrupted. What is the probability that they would have

won the match, if it had been allowed to continue?

→ Fermat then corresponded with the mathematician Blaise Pascal to find solu-

tions to these questions (later!), and mathematical probability theory was born!

POLL: If you have independent probability 1/2 of winning each game, and you are

up 3 games to 1, what do you think is the probability that you will win 4 games first?

(A) 1/2. (B) 2/3. (C) 3/4. (D) 7/8. (E) No idea. [Best guess only – later.]

• So, can probabilities be studied mathematically?

→ Can we use certain mathematics to study the uncertainty of probabilities?

→ Yes! That’s why we’re here! To be certain about our uncertainty!

→ But we have to define our terms carefully . . .

Sample Space (§1.2) (i.e. Section 1.2 of the textbook)

• The first part of any probability model is the sample space, written S, which is

the set of all possible outcomes.

→ e.g. flip a coin: S = {Heads, Tails}, or S = {H,T}.
→ e.g. flip a coin three times in a row:

S = {HHH,HHT,HTH,HTT , THH, THT, TTH, TTT}.
→ Or, if we only care about the number of Heads: S = {0, 1, 2, 3}.
→ e.g. tonight’s dinner: S = {Beef, Chicken, Fish}. (Assume one.)

→ e.g. the number of bees I will see on my walk home: S = {0, 1, 2, 3, . . .}.
→ e.g. the price of IBM stock next month: S = [0,∞).

→ e.g. the height (in cm) of the next student I meet: S = (0,∞).

→ e.g. your grade in this class: S = {0, 1, 2, 3, . . . , 100}.
→ e.g. roll one six-sided die: S = {1, 2, 3, 4, 5, 6}.
→ e.g. roll two six-sided dice: S = {1, 2, 3, 4, 5, 6}2, i.e.

S = {11, 12, 13, 14, 15, 16, 21, 22, 23, 24, 25, 26,

31, 32, 33, 34, 35, 36, 41, 42, 43, 44, 45, 46,

51, 52, 53, 54, 55, 56, 61, 62, 63, 64, 65, 66}.
→Or, if we only care about the sum, instead maybe take S = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.
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→ e.g. “Pick any integer between 1 and 10”: S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.
→ e.g. “Pick any number between 0 and 1”: S = [0, 1]. (important case!)

• Summary: The sample space S can be any non-empty set which contains all of

the possible outcomes. Simple!

• But it gets more interesting when we also have . . .

Probabilities and Events (§1.2)

• An event A is “any” subset A ⊆ S.

• For any event A, we can define the probability P(A) that it will occur.

→ e.g. flip a “fair” coin: P(H) = P(T ) = 1/2.

→ (Note: We often use e.g. “P(H)” as shorthand for “P({H})”, etc.)
→ e.g. roll a fair six-sided die: P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6.

→ e.g. tonight’s dinner: maybe P(Beef)=0.40, P(Chicken)=0.15, and P(Fish)=0.45.

→ (Note: We could also write P(Fish) = 45%, etc. Usually percentages are good

for intuition, but pure probabilities (not percentages) are better for calculation.)

→ e.g. flip three fair coins: P(HHH) = P(HHT ) = . . . = P(TTT ) = 1/8.

→ e.g. roll two fair dice: P(11) = P(12) = . . . = P(65) = P(66) = 1/36.

→ e.g. Pick any integer between 1 and 10. [Try it!]

Could be “uniform”, i.e. P(1) = P(2) = . . . = P(10) = 1/10. Or instead, maybe . . .

P(3)=P(6)=P(7)=0.2, and P(5)=0.1, and P(1)=P(2)=P(4)=P(8)=P(9)=P(10)=0.05.

→ e.g. Pick any number between 0 and 1, “uniformly” (“Uniform[0,1]”):

P([0, 1/2]) = 1/2, P([1/2, 1]) = 1/2, P([0, 1/3]) = 1/3, P([1/3, 2/3]) = 1/3,

and in general P([a, b]) = b− a whenever 0 ≤ a ≤ b ≤ 1. Diagram:

• Or maybe instead P([a, b]) = b2 − a2 whenever 0 ≤ a ≤ b ≤ 1. Valid?

• Or maybe instead P([a, b]) = (b− a)2 whenever 0 ≤ a ≤ b ≤ 1. Valid?

Basic Properties of Probabilities (§1.2)

• Let’s begin with a specific example (and then we will generalise):

• e.g. tonight’s dinner, with P(Beef)=0.40, P(Chicken)=0.15, and P(Fish)=0.45.

→ Probability of Beef or Chicken = P({Beef, Chicken}) = P({Beef}) + P({Chicken})
= 0.40 + 0.15 = 0.55.

→ Probability of any dinner = Probability of Beef or Chicken or Fish = P({Beef,
Chicken, Fish}) = P({Beef}) + P({Chicken}) + P({Fish}) = 0.40+ 0.15+ 0.45 = 1.

→ Probability dinner is not Beef nor Chicken nor Fish = P(∅) = 0.

• In general, certain properties must hold for any probability model (“axioms”):
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• If A is an event, then 0 ≤ P(A) ≤ 1.

• If A = S is the event corresponding to all outcomes, then P(A) = P(S) = 1.

• Or, if A = ∅ is the event corresponding to no outcomes, then P(A) = P(∅) = 0.

• Additivity: If A and B are disjoint events (i.e. A ∩B = ∅), e.g. A = {Beef} and

B = {Chicken}, then P(A ∪B) = P(A) + P(B).

• More generally, if A1, A2, A3, . . . are any sequence (finite or infinite) of disjoint

events (i.e. Ai ∩ Aj = ∅ whenever i ̸= j), then P
(⋃

i Ai

)
=

∑
i P(Ai).

→ So, in particular, since P(S) = 1, all of the probabilities have to add up to 1.

→ e.g. P(Heads) + P(Tails) = 0.5 + 0.5 = 1.

→ e.g. P(Beef) + P(Chicken) + P(Fish) = 0.40 + 0.15 + 0.45 = 1.

Suggested Homework: 1.2.1, 1.2.2, 1.2.3, 1.2.4, 1.2.8, 1.2.9, 1.2.10, 1.2.11, 1.2.12,

1.2.13, 1.2.14, 1.2.15.

————————— END WEDNESDAY #1 —————————

Derived Properties of Probabilities (§1.3)

• Once we know the above properties, then we can use them to prove others too:

• Fact: If AC is the complement of A, i.e. the set of all outcomes which are not in

A, then P(AC) = 1− P(A). (Important! Remember this! Use this!)

→ Proof: Note that A and AC are disjoint, so P(A ∪ AC) = P(A) + P(AC). But

P(A ∪ AC) = P(S) = 1, so 1 = P(A) + P(AC), i.e. P(AC) = 1− P(A).

→ e.g. P(Fish) = P(not Beef or Chicken) = 1− P(Beef or Chicken) = 1− 0.55 =

0.45.

• Fact: For any events A and B, P(A) = P(A ∩B) + P(A ∩BC). (∗)
Diagram:

→ Proof: The events A∩B and A∩BC are disjoint, and (A∩B)∪ (A∩BC) = A,

so by additivity, P(A ∩B) + P(A ∩BC) = P(A).

→ e.g. integer between 1 and 10: P(even) = P(even and ≤ 4) + P(even and ≥ 5)

= P({2, 4}) + P({6, 8, 10}).

• Re-arranging (∗) also gives that: P(A ∩BC) = P(A)− P(A ∩B). (∗∗)

• Fact: If A ⊇ B, then P(A) = P(B) + P(A ∩BC). (∗∗∗)
→ Proof: This follows from (∗), since if A ⊇ B, then A ∩B = B.

→ e.g. integer between 1 and 10: P(≤ 7) = P(≤ 4) + P(≤ 7 but ≥ 5).

• Monotonicity: If A ⊇ B, then P(A) ≥ P(B). (Remember this!)

p.4



→ Proof: We must have P(A ∩BC) ≥ 0, so from (∗∗∗),
P(A) = P(B) + P(A ∩BC) ≥ P(B) + 0 = P(B).

→ e.g. P({Beef, Chicken}) = 0.55 ≥ 0.40 = P({Beef}).

• Law of Total Probability – Unconditioned Version: Suppose A1, A2, . . . are a

sequence (finite or infinite) of events which form a partition of S, i.e. they are disjoint

(Ai∩Aj = ∅ for all i ̸= j) and their union equals the entire sample space (
⋃

i Ai = S),

and let B be any event. Diagram:

Then P(B) =
∑

i P(Ai ∩B). That is: P(B) = P(A1 ∩B) + P(A2 ∩B) + . . ..

→ Proof: Since the {Ai} are disjoint, and Ai ∩ B ⊆ Ai, therefore the {Ai ∩ B}
are also disjoint. Furthermore, since

⋃
iAi = S, therefore

⋃
i(Ai ∩ B) = S ∩ B = B.

Hence, P(B) = P
(⋃

i(Ai ∩B)
)
=

∑
i P(Ai ∩B).

→ e.g. integer between 1 and 10: Suppose A1 = {≤ 4} = {1, 2, 3, 4}, and A2 =

{≥ 5} = {5, 6, 7, 8, 9, 10}, and B = {even} = {2, 4, 6, 8, 10}. Then P(even) = P(even

and ≤ 4) + P(even and ≥ 5), i.e. P({2, 4, 6, 8, 10}) = P({2, 4}) + P({6, 8, 10}).

• Principle of Inclusion-Exclusion: P(A ∪B) = P(A) + P(B)− P(A ∩B).

→ (Of course, if they’re disjoint (A ∩B = ∅), then P(A ∪B) = P(A) + P(B).)

→ Intuition: P(A) + P(B) counts each element of A ∩ B twice, so we have to

subtract one of them off.

→ Proof: The events A ∩B, and A ∩BC , and AC ∩B, are all disjoint, and their

union is A ∪B. Diagram:

Hence, P(A ∪B) = P(A ∩B) + P(A ∩BC) + P(AC ∩B).

But from (∗∗), P(A∩BC) = P(A)−P(A∩B) and P(AC∩B) = P(B)−P(A∩B).

Hence, P(A ∪B) = P(A ∩B) +
[
P(A)− P(A ∩B)

]
+
[
P(B)− P(A ∩B)

]
= P(A) + P(B)− P(A ∩B).

→ e.g. integer between 1 and 10: P(even or ≤ 4) = P(even) + P(≤ 4) − P(even

and ≤ 4) = P({2, 4, 6, 8, 10}) + P({1, 2, 3, 4})− P({2, 4}).
→ Or, P(even or perfect square) = P(even) + P(perfect square) − P(even and

perfect square) = P({2, 4, 6, 8, 10}) + P({1, 4, 9})− P({4}).

• Optional: A more general Inclusion-Exclusion formula is in Challenge 1.3.10.

• Now, P(A∩B) ≥ 0, so P(A∪B) = P(A)+P(B)−P(A∩B) ≤ P(A)+P(B). (!)

• Subadditivity: For any sequence of events A1, A2, . . ., not necessarily disjoint, we

still always have P(A1 ∪ A2 ∪ . . .) ≤ P(A1) + P(A2) + . . ..

→ (Of course, it would be equal if they are disjoint.)
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→ Proof (§1.7): Let B1 = A1, and B2 = A2 ∩ (A1)
C , and B3 = A3 ∩ (A1 ∪ A2)

C ,

and B4 = A4 ∩ (A1 ∪ A2 ∪ A3)
C , and so on. (That is, each new Bn is the part of An

which is not already part of A1, . . . , An−1.) Diagram:

Then the {Bi} are disjoint by construction, and
⋃

i Bi =
⋃

i Ai.

[Formally, the above construction ensures that
⋃n

i=1 Bi =
⋃n

i=1Ai for each finite n.

Then, in the infinite case,
⋃∞

i=1 Bi =
⋃∞

n=1 (
⋃n

i=1 Bi) =
⋃∞

n=1 (
⋃n

i=1Ai) =
⋃∞

i=1 Ai.]

Also Bi ⊆ Ai so P(Bi) ≤ P(Ai). Hence, P(A1 ∪ A2 ∪ . . .) = P(B1 ∪ B2 ∪ . . .) =

P(B1) + P(B2) + . . . ≤ P(A1) + P(A2) + . . ..

→ Alternative proof (for a finite number of events): Use induction! For n = 2

events, this follows from Inclusion-Exclusion. Then for n ≥ 3 events, P(A1∪. . .∪An) =

P
(
(A1∪. . .∪An−1)∪An

)
, which by Inclusion-Exclusion is≤ P

(
A1∪. . .∪An−1

)
+P(An),

which by induction is ≤
(
P(A1) + . . .+ P(An−1)

)
+ P(An).

→ e.g. integer between 1 and 10: P(even or ≤ 4) ≤ P(even) + P(≤ 4), i.e.

P({1, 2, 3, 4, 6, 8, 10}) ≤ P({2, 4, 6, 8, 10}) + P({1, 2, 3, 4}).

[Note that we do not have “uncountable” subadditivity, e.g. for uniform on S = [0, 1],

if Ax = {x} for each x ∈ S, then P(
⋃

x∈S Ax) = P(S) = P([0, 1]) = 1, even though

P(Ax) = P({x}) = 0 for each individual x ∈ S, so also
∑

x∈S P(Ax) =
∑

x∈S(0) = 0.]

Suggested Homework: 1.3.1, 1.3.2, 1.3.3, 1.3.4, 1.3.5, 1.3.7, 1.3.8, 1.3.9.

Uniform Probabilities on Finite Spaces (§1.4)

• Suppose S = {s1, s2, . . . , sn} is some finite sample space, of finite size |S| = n,

and each element is equally likely.

→ Then P(s1) = P(s2) = . . . = P(sn) = 1/n. (“discrete uniform distribution”)

→ And for any event A = {a1, a2, . . . , ak}, by additivity we have

P(A) = P(a1) + P(a2) + . . .+ P(ak) =
1

n
+

1

n
+ . . .+

1

n
=

k

n
=

|A|
|S|

.

→ So, in this case, we just need to count the number of elements in A, and divide

that by the number of elements in S. Easy!?! Sometimes!

• e.g. Roll a fair six-sided die. What is P(≥ 5)?

→ Here S = {1, 2, 3, 4, 5, 6} so |S| = 6. All equally likely.

→ Also A = {5, 6} so |A| = 2.

→ So, P(≥ 5) = P(A) = |A|
/
|S| = 2/6 = 1/3. Easy!

• Flip two fair coins. What is P(# Heads = 1)?
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POLL: (A) 1/4. (B) 1/3. (C) 1/2. (D) 3/4. (E) 1. (F) No idea.

→ Here S = {HH,HT, TH, TT}, all equally likely. So, |S| = 4.

→ And, A = {HT, TH}. So, |A| = 2.

→ Hence, P(A) = |A| / |S| = 2/4 = 1/2. Easy!

• e.g. Roll one fair six-sided die, and flip two fair coins.

What is P(# Heads = Number Showing On The Die)? (Best guess?)

POLL: (A) 1/6. (B) 1/8. (C) 1/12. (D) 1/16. (E) 1/24. (F) No idea.

→ Here S = {1HH, 1HT, 1TH, 1TT, 2HH, . . . , 6TT}. All equally likely.

→ But what is |S|?
→ Multiplication Principle: If S is made up by choosing one element of each of

the subsets S1, S2, . . . , Sk, i.e. if S = S1 × S2 × . . .× Sk, then what is |S|? Well, . . .

|S| = |S1| |S2| . . . |Sk|.
→ In our example, S1 = {1, 2, 3, 4, 5, 6}, and S2 = {H,T}, and S3 = {H,T}, so

|S| = |S1| |S2| |S3| = 6 · 2 · 2 = 24.

→ And what about A? Well, think about the possibilities . . .

A = {1HT, 1TH, 2HH}. (No other combination works. Why?) So, |A| = 3.

→ Hence, P(# Heads = Number Showing On The Die) = |A|
/
|S| = 3/24 = 1/8.

→ [Alternatively (later): (1/6)(1/2)+(1/6)(1/4) = (1/12)+(1/24) = 3/24 = 1/8.]

• e.g. Roll three fair six-sided dice. What is P(sum ≥ 17)?

→ Here S = {1, 2, 3, 4, 5, 6}3 so |S| = 63 = 216. All equally likely.

→ But what is A? Think about it . . .

Here A = {666, 566, 656, 665} (why?), so |A| = 4.

→ So, P(sum ≥ 17) = P(A) = |A|
/
|S| = 4/216 = 1/54.

→ Exercise: What about P(sum ≥ 16)? P(sum ≥ 15)?

• Chevalier de Méré’s historical 1654 questions:

• (a) What is P(get at least one six when rolling a fair six-sided die 4 times)?

→ Here S = {1, 2, 3, 4, 5, 6}4, so |S| = 64 = 1296. All equally likely.

→ And what is |A|? Tricky. Easier to consider . . .

→ AC = {no sixes in four rolls} = {1, 2, 3, 4, 5}4, so |AC | = 54 = 625.

→ So, P(AC) = |AC |
/
|S| = 54 / 64 = 625 / 1296

.
= 0.482.

→ So, P(A) = 1− P(AC)
.
= 1− 0.482 = 0.518. More than 50%.

→ (Alternatively: By “independence” [later], P(A) = 1− (5/6)4
.
= 0.518.)

• (b) What is P(get at least one pair of sixes when rolling a pair of fair six-sided

dice 24 times)?

→ Here S =
(
{1, 2, 3, 4, 5, 6}2

)24

, so |S| = (62)24 = 648 (>1037). All equally likely.

→ And what is |A|? Tricky. Again, easier to consider . . .

→ AC = {no pair of sixes in 24 rolls} = {11, 12, 13, . . . , 64, 65}24, so |AC | = 3524.
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→ So, P(AC) = |AC |
/
|S| = 3524/648

.
= 0.509.

→ So, P(A) = 1− P(AC)
.
= 1− 0.509 = 0.491. Less than 50%.

→ (Again, alternatively by independence [later], P(A) = 1− (35/36)24
.
= 0.491.)

Suggested Homework: 1.4.1, 1.4.9, 1.4.10, 1.4.11, 1.4.12, 1.4.13.

—————————— END MONDAY #1 ——————————

• (c) In a best-of-seven match with fair (50%) games, if a player has won 3 games

and lost 1, then what is the probability they will win the match?

→ Various paths to victory: win right away, lose then win, etc. Tricky.

→One solution: Pretend 3 more games will always be played. (Result unchanged.)

→ Then S = {Win, Lose}3, so |S| = 23 = 8, all equally likely.

→ What about A? Well, here AC = {Lose, Lose, Lose}, so |AC | = 1.

→ Hence, P(AC) = |AC |/|S| = 1/8, and so P(A) = 1− P(AC) = 7/8.

→ Exercise: What if the player has won just 2 games and lost 1? (Trickier.)

Warning about Non-Uniform Probabilities

• e.g. Roll two fair dice. What is P(sum is ≤ 3)?

→ POSSIBLE SOLUTION: The sum is in S = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. So,
|S| = 11. And, the event “≤ 3” corresponds to A = {2, 3}, so |A| = 2. Hence,

P(sum is ≤ 3) = |A|/|S| = 2/11. Right?

→ WRONG! These sums are not all equally likely, i.e. it is not uniform! So,

P(A) ̸= |A|/|S|. That formula is only when all outcomes are equally likely. Important!

→ INSTEAD: Let S = {all ordered pairs of two dice}, i.e. S = {11, 12, 13, . . . , 65, 66}.
Then |S| = 36. Now each outcome in S is equally likely. And, now A = {11, 12, 21}.
So, P(A) = |A|/|S| = 3/36 = 1/12. Correct!

• Also, note that sometimes the sample space S is a discrete infinite set:

→ e.g. S = N := {1, 2, 3, . . .}, with P(i) = 2−i for each i ∈ S.

→ Valid? Yes, since 2−i ≥ 0, and
∑∞

i=1 2
−i = 2−1

1−2−1 = 1. (Geometric series.)

→ Then e.g. P(Even Number) =
∑

i=2,4,6,... 2
−i = 1

4
+ 1

16
+ 1

64
+ . . . = 1/4

1−(1/4)
= 1/3.

→ And, P(≤ 10) =
∑10

i=1 2
−i = 2−1−2−11

1−2−1 = (1/2)−(1/2048)
1−(1/2)

= 1023/1024. Close to 1.

→ But on a discrete infinite space, cannot ever have a uniform distribution!

• Summary: Don’t assume it’s uniform when it isn’t!

More Finite Uniform Probabilities (§1.4)

• Distinct, in order: e.g. Suppose there are ten people at a party, and you randomly

pick three of the people, in order (1-2-3). What is the probability that your choices

will also be the three richest people at the party, in the same order?

→ S is the set of all ways of picking three people, in order. All equally likely.
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→ But what is |S|?
→ The first person can be picked in 10 different ways.

→ Then, the second person can be picked in 9 different ways.

→ Then, the third person can be picked in 8 different ways.

→ So, |S| = 10 · 9 · 8 = 720.

→ Also, |A| = 1 since there is only one matching choice.

→ So, P(you picked the three richest, in order) = |A|/|S| = 1/720.

• More generally, the number of ways of picking k distinct items, in order, out of n

items total, is equal to n(n−1)(n−2) . . . (n−k+1) = n!/(n−k)!. (“permutations”)

→ In particular, if k = n, then the number of ways of picking all n items in order

is equal to n(n− 1)(n− 2) . . . (1) = n!. (“n factorial”)

• “The Birthday Problem”: Suppose 40 (say) people at a party are each equally

likely to be born on any one of 365 days of the year. Then what is the probability

that at least one pair of them have the same birthday? (Any guesses?)

→ Here, S is the set of all 40-tuples of possible birthdays. All equally likely.

→ (List their birthdays in order, since they might not all be distinct.)

→ So, by the Multiplication Principle, |S| = 36540.

→ What about |A|? Not easy . . .

→ Instead, consider AC . (Then can use that P(A) = 1− P(AC).)

→ AC is the set of all ways of picking 40 distinct birthdays, in order.

→ So, |AC | = 365 · 364 · 363 · . . . · 326 = 365!
/
325!.

→ So, P(AC) =
(
365!

/
325!

) /
36540

.
= 0.109.

→ So, P(A) = 1− P(AC)
.
= 0.891. Over 89%. Very likely! (Make a bet?)

→ Intuition: Even with just 40 people, have
(
40
2

)
= 780 pairs of people – lots!

→ Or, if 23 people, P(AC) =
(
365!

/
342!

) /
36523

.
= 0.493, so P(A)

.
= 0.507 > 50%.

POLL: With 60 people, what is P(some pair have same birthday)? (guess)

(A) 92.8%. (B) 95.1%. (C) 99.4%. (D) 99.86%. (E) 99.993%.

→ With 60 people: P(AC) =
(
365!

/
305!

) /
36560

.
= 0.059; P(A)

.
= 0.994 = 99.4%.

→ (For discussion with “C” people, see the textbook’s Challenge 1.4.21.)

• Distinct, unordered: Suppose we are still picking k distinct objects, but now we

don’t care about the order. Then, we have to divide by the number of different

orderings of k items, which is: k! = k(k − 1)(k − 2) . . . (2)(1).

→ So, the number of ways of picking k distinct items out of n items total, ignoring

order, is equal to n(n−1)(n−2) . . . (n−k+1)
/
k! = n!/(n−k)! k!. (“combinations”;

“choose formula”, or “binomial coefficient”) Also written as:
(
n
k

)
.

p.9



POLL: Suppose there are ten people at a party, and you randomly pick a collection

of three of the people, but ignoring order. What is the probability that your choices

will also be the three richest people at the party (in any order)?

(A) 1/60. (B) 1/120. (C) 1/240. (D) 1/360. (E) 1/720. (F) No idea.

→ Here S is all ways of picking three people (ignoring order). All equally likely.

→ But what is |S|?
→ Here |S| =

(
10
3

)
= 10!

7! 3!
= 120.

→ And, again |A| = 1 since there is only one matching choice.

→ So, P(you picked the three richest, ignoring order) = |A|/|S| = 1/120.

→ Six times as large as before! Makes sense since 3! = 6.

• e.g. Lotto Max jackpot:

→ Here S = {all choices of 7 distinct numbers between 1 and 50}.
→ All equally likely. And, we do not care about the order.

→ So, |S| = 50!
43! 7!

= 99, 884, 400
.
= 100 million.

→ Also, A is the one correct choice. So, |A| = 1.

→ So, P(jackpot) = P(choose the correct 7 distinct numbers between 1 and 50)

= |A|
/
|S| = 1/99, 884, 400

.
= 1/100, 000, 000 = 0.000001%. Very small!

→ (For $5, you get three separate choices of 7 numbers, which increases P(jackpot)

to 3 / 99,884,400 = 1 /33,294,800 . . . still very small . . . )

• Recall that a standard deck of playing cards has four suits (Clubs, Spades, Hearts,

Diamonds), and each suit has 13 ranks (A,2,3,4,5,6,7,8,9,10,J,Q,K), so 52 cards total:

• A card’s value is its number, counting A as 1, J as 11, Q as 12, and K as 13.

• Suppose we pick one playing card from a standard deck, uniformly at random.

→ So S is the set of all cards in the deck, with |S| = 52, all equally likely.

→ Then what is P(Club or 7)? Can solve this directly, or . . .

→ Here P(Club) = 13/52 = 1/4, and P(7) = 4/52 = 1/13.

→ Also, P(Club and 7) = P(7-of-Clubs) = 1/52.
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→ So, by Inclusion-Exclusion, P(Club or 7) = P(Club) + P(7) − P(Club and 7)

= 1/4 + 1/13 − 1/52 = 16/52 = 4/13.

Suggested Homework: 1.3.6, 1.4.4, 1.4.6, 1.4.7, 1.4.8. Trickier: 1.4.5.

POLL: Suppose we draw a pair of distinct cards uniformly from a standard deck.

What is P(both are Face Cards), i.e. P(both are J/Q/K)?

(A) (3/52)2. (B) (12/52)2. (C) 12/
(
52
2

)
. (D)

(
12
2

)/(
52
2

)
. (E) No idea.

————————— END WEDNESDAY #2 —————————
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