STA 2111 (Graduate Probability I), Fall 2025

Homework #1 Assignment: worth 10% of final course grade.

Due: Thursday Sept 25, either: (a) Hardcopy in class by 2:10 PM <u>sharp</u>, or (b) electronic submission (link to be posted on course web page) by 1:45 PM <u>sharp</u>, both in <u>Toronto time</u>.

AT THE TOP:

• Please include your <u>full name</u> and <u>usual nickname</u> (if you have one) and <u>student number</u> and <u>department</u> and <u>program</u> and <u>year</u>.

GENERAL NOTES:

- Homework assignments are to be solved by each student <u>individually</u>. You may discuss questions in general terms with other students, and look up general topics in books and internet. But you must solve the problems on your <u>own</u>, and do all of your <u>own</u> writing, <u>without</u> any assistance from other students nor from any AI/chatbot/chatGPT/etc software.
- You should provide very <u>complete</u> solutions, <u>EXPLAINING ALL REASONING</u> very clearly. Make your homework <u>neat</u> and readable, e.g. typeset in latex or printed clearly.
- Late penalty: 1–5 minutes late is -5%; 5–15 minutes late is -10%; otherwise if x days late then $-20\% \times \text{ceiling}(x)$. So, please don't be late!

THE ACTUAL ASSIGNMENT:

- 1. Let $\Omega = \{1, 2, 3, 4\}$, and let $\mathcal{J} = \{\emptyset, \{1\}, \{2\}, \{3, 4\}, \Omega\}$. Define $\mathbf{P} : \mathcal{J} \to [0, 1]$ by $\mathbf{P}(\emptyset) = 0$, $\mathbf{P}\{1\} = 1/7$, $\mathbf{P}\{2\} = 2/7$, $\mathbf{P}\{3, 4\} = 4/7$, and $\mathbf{P}(\Omega) = 1$.
- (a) [3] Prove that \mathcal{J} is a semi-algebra.
- (b) [4] Find $\mathbf{P}^*(A)$ and $\mathbf{P}^*(A^C)$, where $A = \{2,3\} \subseteq \Omega$ and \mathbf{P}^* is outer measure.
- (c) [4] Determine whether or not $A \in \mathcal{M}$, where \mathcal{M} is the σ -algebra constructed in the proof of the Extension Theorem. [Hint: Perhaps consider the case $E = \Omega$.]
- **2.** [5] Prove that the extension $(\Omega, \mathcal{M}, \mathbf{P}^*)$ constructed in the proof of the Extension Theorem must be "complete", i.e. if $A \in \mathcal{M}$ with $\mathbf{P}^*(A) = 0$, and $B \subseteq A$, then $B \in \mathcal{M}$.
- **3.** Let $\Omega = \{1, 2, 3, 4\}$, and $\mathcal{F} = 2^{\Omega}$ the collection of all subsets of Ω , and

$$\mathcal{C} \ = \ \left\{\emptyset, \{1,2\}, \{2,3\}, \{3,4\}, \Omega\right\}.$$

Define functions $\mu, \nu : \mathcal{F} \to [0, 1]$ by $\mu(A) = \frac{1}{2} \mathbf{1}_A(1) + \frac{1}{2} \mathbf{1}_A(3)$ and $\nu(A) = \frac{1}{2} \mathbf{1}_A(2) + \frac{1}{2} \mathbf{1}_A(4)$, where e.g. $\mathbf{1}_A(3) = 1$ if $3 \in A$ or $\mathbf{1}_A(3) = 0$ if $3 \notin A$.

(a) [5] Prove that $(\Omega, \mathcal{F}, \mu)$ is a valid probability triple. (It then follows similarly that $(\Omega, \mathcal{F}, \nu)$ is also a valid probability triple.)

1

(b) [3] Determine whether C is an algebra.

- (c) [3] Determine whether C is a semi-algebra.
- (d) [5] Find $\sigma(\mathcal{C})$, the smallest σ -algebra containing all elements of \mathcal{C} .
- (e) [3] Determine whether $\mu(A) = \nu(A)$ for all $A \in \mathcal{C}$.
- (f) [3] Determine whether $\mu(A) = \nu(A)$ for all $A \in \mathcal{F}$.
- (g) [3] Explain why these facts do not contradict our theorem about uniqueness of extensions of probability measures.
- **4.** For any interval $I \subseteq [0,1]$, let $\mathbf{P}(I)$ be the <u>length</u> of I.
- (a) [5] Prove that if I_1, I_2, \ldots, I_n is a <u>finite</u> collection of intervals, and if $\bigcup_{j=1}^n I_j \supseteq I_*$ for some interval I_* , then $\sum_{j=1}^n \mathbf{P}(I_j) \ge \mathbf{P}(I_*)$. [Hint: Suppose I_j has left endpoint a_j and right endpoint b_j , and first re-order the intervals so $a_1 \le a_2 \le \ldots \le a_n$.]
- (b) [5] Prove that if $I_1, I_2, ...$ is a countable collection of <u>open</u> intervals, and if $\bigcup_{j=1}^{\infty} I_j \supseteq I_*$ for some <u>closed</u> interval I_* , then $\sum_{j=1}^{\infty} \mathbf{P}(I_j) \ge \mathbf{P}(I_*)$. [Hint: You may use the <u>Heine-Borel Theorem</u>, which says that if a collection of open intervals contain a closed interval, then some <u>finite sub-collection</u> of the open intervals also contains the closed interval.]
- (c) [5] Prove that if $I_1, I_2, ...$ is any countable collection of intervals, and if $\bigcup_{j=1}^{\infty} I_j \supseteq I_*$ for any interval I_* , then $\sum_{j=1}^{\infty} \mathbf{P}(I_j) \ge \mathbf{P}(I_*)$. [Hint: Extend the interval I_j by $\epsilon \, 2^{-j}$ at each end, and decrease I_* by ϵ at each end, while making I_j open and I_* closed. Then use part (b).] (Note: This is the "countable monotonicity" property needed to apply the Extension Theorem for the Uniform[0,1] distribution, to guarantee that $\mathbf{P}^*(I) \ge \mathbf{P}(I)$.)
- (d) [4] Suppose we instead defined P(I) to be the <u>square</u> of the length of I. Show that in that case, the conclusion of part (c) would <u>not</u> hold.

[END; total points = 60]