
STA257 (Probability and Statistics I) Lecture Notes, Fall 2024

by Jeffrey S. Rosenthal, University of Toronto, www.probability.ca

(Last updated: November 27, 2024)

Note: I will update these notes regularly, posting them on the course web page each
evening after lectures (though without annotations). However, they are just rough,
point-form notes, with no guarantee of completeness or accuracy. They should in
no way be regarded as a substitute for attending and learning from all the lectures,
studying the course textbook, and doing the suggested homework exercises.

Introduction

• Course Information: See the course web page at: probability.ca/sta257

• Register for PollEverywhere: probability.ca/sta257/pollinfo.html USE UofT EMAIL!

• Who here is doing a specialist or major program involving: Statistics / Data Sci-

ence? Mathematics? Actuarial Science? Computer Science? Economics/Commerce?

Physics/Chemistry/Biology? Education? Psychology/Sociology? Engineering? Other?

• Who here has seen probabilities in elementary school? high school? STA130?

→ Don’t worry, we will start from scratch. (Just need math.)

• Life is full of randomness and uncertainty: lotteries, card games, computer games,

gambling, weather, TTC, airplanes, friends, jobs, classes, science, finance, elections,

diseases, safety/risk, demographics, internet routing, legal cases, . . . whenever we’re

not sure of the outcome or what will happen next.

• Lots of interesting probability questions to solve! Such as . . .

→ What’s the probability you’ll win the Lotto Max jackpot, i.e. that you will

choose the correct 7 distinct numbers between 1 and 50?

→ If 200 students each flip a fair coin, then how many Heads is the most likely?

How likely? What’s the probability of more than 150 Heads?

→ If you repeatedly roll a fair 6-sided die [show], then how many rolls will there

be on average before the first time you roll a 5?

→ At a party of 40 people, what is the probability that some pair of them have

the same birthday?

→ If a disease affects one person in a thousand, and a test for the disease has 99%

accuracy, and you test positive, then what is the probability you have the disease?

→ If you pick a number uniformly at random between 0 and 1, then what is the

probability that you pick exactly the number 3/4?

→ Three-Card Challenge. [demonstration] What are the probabilities of the initial

(front) colour? Then, what are the probabilities of the back colour?

• History of Mathematical Probability Theory (in brief):

→ Mathematics is very precise and certain. For thousands of years, it simply

ignored the uncertainty of probabilities.
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→ Then, in 1654, the French writer Antoine Gombaud (the “Chevalier de Méré”)

asked the mathematician Pierre de Fermat some gambling questions:

→ Which is more likely (or are they the same) (and are they more than 50%):

(a) Get at least one six when rolling a fair six-sided die 4 times; or

(b) Get at least one pair of sixes when rolling two fair six-sided dice 24 times?

→ He thought (a) was 4× (1/6) = 2/3, and (b) was 24× (1/36) = 2/3. Correct?

→ Also: (c) Suppose a gambler is playing a best-of-seven match, where whoever

wins 4 (fair) games first in the winner, and so far they have won 3 times and lost 1,

but then the match gets interrupted. What is the probability that they would have

won the match, if it had been allowed to continue?

→ Fermat then corresponded with the mathematician Blaise Pascal to find solu-

tions to these questions (later!), and mathematical probability theory was born!

POLL: If you have independent probability 1/2 of winning each game, and you are

up 3 games to 1, what do you think is the probability that you will win 4 games first?

(A) 1/2. (B) 2/3. (C) 3/4. (D) 7/8. (E) No idea. [Best guess only – later.]

• So, can probabilities be studied mathematically?

→ Can we use certain mathematics to study the uncertainty of probabilities?

→ Yes! That’s why we’re here! To be certain about our uncertainty!

→ But we have to define our terms carefully . . .

Sample Space (§1.2) (i.e. Section 1.2 of the textbook)

• The first part of any probability model is the sample space, written S, which is

the set of all possible outcomes.

→ e.g. flip a coin: S = {Heads, Tails}, or S = {H,T}.
→ e.g. flip a coin three times in a row:

S = {HHH,HHT,HTH,HTT , THH, THT, TTH, TTT}.
→ Or, if we only care about the number of Heads: S = {0, 1, 2, 3}.
→ e.g. tonight’s dinner: S = {Beef, Chicken, Fish}.
→ e.g. Canada’s next Olympic medal: S = {Gold, Silver, Bronze}.
→ e.g. the number of bees I will see on my walk home: S = {0, 1, 2, 3, . . .}.
→ e.g. the price of IBM stock next month: S = [0,∞).

→ e.g. the height (in cm) of the next student I meet: S = (0,∞).

→ e.g. your grade in this class: S = {0, 1, 2, 3, . . . , 100}.
→ e.g. roll one six-sided die: S = {1, 2, 3, 4, 5, 6}.
→ e.g. roll two six-sided dice: S = {1, 2, 3, 4, 5, 6}2, i.e.

S = {11, 12, 13, 14, 15, 16, 21, 22, 23, 24, 25, 26,

31, 32, 33, 34, 35, 36, 41, 42, 43, 44, 45, 46,

51, 52, 53, 54, 55, 56, 61, 62, 63, 64, 65, 66}.
→Or, if we only care about the sum, instead maybe take S = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.
→ e.g. “Pick any integer between 1 and 10”: S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.
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→ e.g. “Pick any number between 0 and 1”: S = [0, 1]. (important case!)

• Summary: The sample space S can be any non-empty set which contains all of

the possible outcomes. Simple!

• But it gets more interesting when we also have . . .

Probabilities and Events (§1.2)

• An event A is “any” subset A ⊆ S.

• For any event A, we can define the probability P(A) that it will occur.

→ e.g. flip a “fair” coin: P(H) = P(T ) = 1/2.

→ (Note: We often use e.g. “P(H)” as shorthand for “P({H})”, etc.)

→ e.g. roll a fair six-sided die: P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6.

→ e.g. Olympic medal: maybe P(Gold)=0.40, P(Silver)=0.15, and P(Bronze)=0.45.

→ (Note: We could also write P(Bronze) = 45%, etc. Usually percentages are

good for intuition, but pure probabilities (not percentages) are better for calculation.)

→ e.g. flip three fair coins: P(HHH) = P(HHT ) = . . . = P(TTT ) = 1/8.

→ e.g. roll two fair dice: P(11) = P(12) = . . . = P(65) = P(66) = 1/36.

→ e.g. Pick any integer between 1 and 10. [Try it!]

Could be “uniform”, i.e. P(1) = P(2) = . . . = P(10) = 1/10. Or instead, maybe . . .

P(3)=P(6)=P(7)=0.2, and P(5)=0.1, and P(1)=P(2)=P(4)=P(8)=P(9)=P(10)=0.05.

→ e.g. Pick any number between 0 and 1, “uniformly” (“Uniform[0,1]”):

P([0, 1/2]) = 1/2, P([1/2, 1]) = 1/2, P([0, 1/3]) = 1/3, P([1/3, 2/3]) = 1/3,

and in general P([a, b]) = b− a whenever 0 ≤ a ≤ b ≤ 1. Diagram:

Basic Properties of Probabilities (§1.2)

• Let’s begin with a specific example (and then we will generalise):

• e.g. Olympic medal, with P(Gold)=0.40, P(Silver)=0.15, and P(Bronze)=0.45.

→ Probability of Gold or Silver = P({Gold, Silver}) = P({Gold}) + P({Silver})
= 0.40 + 0.15 = 0.55.

→ Probability of any medal = Probability of Gold or Silver or Bronze = P({Gold,

Silver, Bronze}) = P({Gold}) + P({Silver}) + P({Bronze}) = 0.40+0.15+0.45 = 1.

→ Probability next medal not Gold nor Silver nor Bronze = P(∅) = 0.

• In general, certain properties must hold for any probability model (“axioms”):

• If A is an event, then 0 ≤ P(A) ≤ 1.

• If A = S is the event corresponding to all outcomes, then P(A) = P(S) = 1.

• Or, if A = ∅ is the event corresponding to no outcomes, then P(A) = P(∅) = 0.
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• Additivity: If A and B are disjoint events (i.e. A∩B = ∅), e.g. A = {Gold} and

B = {Silver}, then P(A ∪B) = P(A) + P(B).

• More generally, if A1, A2, A3, . . . are any sequence (finite or infinite) of disjoint

events (i.e. Ai ∩ Aj = ∅ whenever i 6= j), then P
(⋃

iAi

)
=
∑

i P(Ai).

→ So, in particular, since P(S) = 1, all of the probabilities have to add up to 1.

→ e.g. P(Heads) + P(Tails) = 0.5 + 0.5 = 1.

→ e.g. P(Gold) + P(Silver) + P(Bronze) = 0.40 + 0.15 + 0.45 = 1.

Suggested Homework: 1.2.1, 1.2.2, 1.2.3, 1.2.4, 1.2.8, 1.2.9, 1.2.10, 1.2.11, 1.2.12,

1.2.13, 1.2.14, 1.2.15.

————————— END WEDNESDAY #1 —————————

Derived Properties of Probabilities (§1.3)

• Once we know the above properties, then we can use them to prove others too:

• Fact: If AC is the complement of A, i.e. the set of all outcomes which are not in

A, then P(AC) = 1− P(A). (Important! Remember this! Use this!)

→ Proof: Note that A and AC are disjoint, so P(A ∪ AC) = P(A) + P(AC). But

P(A ∪ AC) = P(S) = 1, so 1 = P(A) + P(AC), i.e. P(AC) = 1− P(A).

→ e.g. P(Bronze) = P(not Gold or Silver) = 1−P(Gold or Silver) = 1−0.55 = 0.45.

• Fact: For any events A and B, P(A) = P(A ∩B) + P(A ∩BC). (∗)
Diagram:

→ Proof: The events A∩B and A∩BC are disjoint, and (A∩B)∪ (A∩BC) = A,

so by additivity, P(A ∩B) + P(A ∩BC) = P(A).

→ e.g. integer between 1 and 10: P(even) = P(even and ≤ 4) + P(even and ≥ 5)

= P({2, 4}) + P({6, 8, 10}).

• Re-arranging (∗) also gives that: P(A ∩BC) = P(A)− P(A ∩B). (∗∗)

• Fact: If A ⊇ B, then P(A) = P(B) + P(A ∩BC). (∗∗∗)
→ Proof: This follows from (∗), since if A ⊇ B, then A ∩B = B.

→ e.g. integer between 1 and 10: P(≤ 7) = P(≤ 4) + P(≤ 7 but ≥ 5).

• Monotonicity: If A ⊇ B, then P(A) ≥ P(B). (Remember this!)

→ Proof: We must have P(A ∩BC) ≥ 0, so from (∗∗∗),
P(A) = P(B) + P(A ∩BC) ≥ P(B) + 0 = P(B).

→ e.g. P({Gold, Silver}) = 0.55 ≥ 0.40 = P({Gold}).

• Law of Total Probability – Unconditioned Version: Suppose A1, A2, . . . are a

sequence (finite or infinite) of events which form a partition of S, i.e. they are disjoint
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(Ai∩Aj = ∅ for all i 6= j) and their union equals the entire sample space (
⋃
iAi = S),

and let B be any event. Diagram:

Then P(B) =
∑

i P(Ai ∩B). That is: P(B) = P(A1 ∩B) + P(A2 ∩B) + . . ..

→ Proof: Since the {Ai} are disjoint, and Ai ∩ B ⊆ Ai, therefore the {Ai ∩ B}
are also disjoint. Furthermore, since

⋃
iAi = S, therefore

⋃
i(Ai ∩ B) = S ∩ B = B.

Hence, P(B) = P
(⋃

i(Ai ∩B)
)

=
∑

i P(Ai ∩B).

→ e.g. integer between 1 and 10: Suppose A1 = {≤ 4} = {1, 2, 3, 4}, and A2 =

{≥ 5} = {5, 6, 7, 8, 9, 10}, and B = {even} = {2, 4, 6, 8, 10}. Then P(even) = P(even

and ≤ 4) + P(even and ≥ 5), i.e. P({2, 4, 6, 8, 10}) = P({2, 4}) + P({6, 8, 10}).

• Principle of Inclusion-Exclusion: P(A ∪B) = P(A) + P(B)− P(A ∩B).

→ (Of course, if they’re disjoint (A ∩B = ∅), then P(A ∪B) = P(A) + P(B).)

→ Intuition: P(A) + P(B) counts each element of A ∩ B twice, so we have to

subtract one of them off.

→ Proof: The events A ∩B, and A ∩BC , and AC ∩B, are all disjoint, and their

union is A ∪B. Diagram:

Hence, P(A ∪B) = P(A ∩B) + P(A ∩BC) + P(AC ∩B).

But from (∗∗), P(A∩BC) = P(A)−P(A∩B) and P(AC∩B) = P(B)−P(A∩B).

Hence, P(A ∪B) = P(A ∩B) +
[
P(A)− P(A ∩B)

]
+
[
P(B)− P(A ∩B)

]
= P(A) + P(B)− P(A ∩B).

→ e.g. integer between 1 and 10: P(even or ≤ 4) = P(even) + P(≤ 4) − P(even

and ≤ 4) = P({2, 4, 6, 8, 10}) + P({1, 2, 3, 4})− P({2, 4}).
→ Or, P(even or perfect square) = P(even) + P(perfect square) − P(even and

perfect square) = P({2, 4, 6, 8, 10}) + P({1, 4, 9})− P({4}).

• Optional: A more general Inclusion-Exclusion formula is in Challenge 1.3.10.

• Now, P(A∩B) ≥ 0, so P(A∪B) = P(A) + P(B)−P(A∩B) ≤ P(A) + P(B). (!)

• Subadditivity: For any sequence of events A1, A2, . . ., not necessarily disjoint, we

still always have P(A1 ∪ A2 ∪ . . .) ≤ P(A1) + P(A2) + . . ..

→ (Of course, it would be equal if they are disjoint.)

→ Proof (§1.7): Let B1 = A1, and B2 = A2 ∩ (A1)C , and B3 = A3 ∩ (A1 ∪ A2)C ,

and B4 = A4 ∩ (A1 ∪ A2 ∪ A3)C , and so on. (That is, each new Bn is the part of An
which is not already part of A1, . . . , An−1.) Diagram:
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Then the {Bi} are disjoint by construction, and
⋃
iBi =

⋃
iAi.

[Formally, the above construction ensures that
⋃n
i=1 Bi =

⋃n
i=1Ai for each finite n.

Then, in the infinite case,
⋃∞
i=1 Bi =

⋃∞
n=1 (

⋃n
i=1 Bi) =

⋃∞
n=1 (

⋃n
i=1Ai) =

⋃∞
i=1 Ai.]

Also Bi ⊆ Ai so P(Bi) ≤ P(Ai). Hence, P(A1 ∪ A2 ∪ . . .) = P(B1 ∪ B2 ∪ . . .) =

P(B1) + P(B2) + . . . ≤ P(A1) + P(A2) + . . ..

→ Alternative proof (for a finite number of events): Use induction! For n = 2

events, this follows from Inclusion-Exclusion. Then for n ≥ 3 events, P(A1∪. . .∪An) =

P
(
(A1∪. . .∪An−1)∪An

)
, which by Inclusion-Exclusion is≤ P

(
A1∪. . .∪An−1

)
+P(An),

which by induction is ≤
(
P(A1) + . . .+ P(An−1)

)
+ P(An).

→ e.g. integer between 1 and 10: P(even or ≤ 4) ≤ P(even) + P(≤ 4), i.e.

P({1, 2, 3, 4, 6, 8, 10}) ≤ P({2, 4, 6, 8, 10}) + P({1, 2, 3, 4}).

[Note that we do not have “uncountable” subadditivity, e.g. for uniform on S = [0, 1],

if Ax = {x} for each x ∈ S, then P(
⋃
x∈S Ax) = P(S) = P([0, 1]) = 1, even though

P(Ax) = P({x}) = 0 for each individual x ∈ S, so also
∑

x∈S P(Ax) =
∑

x∈S(0) = 0.]

Suggested Homework: 1.3.1, 1.3.2, 1.3.3, 1.3.4, 1.3.5, 1.3.7, 1.3.8, 1.3.9.

Uniform Probabilities on Finite Spaces (§1.4)

• Suppose S = {s1, s2, . . . , sn} is some finite sample space, of finite size |S| = n,

and each element is equally likely.

→ Then P(s1) = P(s2) = . . . = P(sn) = 1/n. (“discrete uniform distribution”)

→ And for any event A = {a1, a2, . . . , ak}, by additivity we have

P(A) = P(a1) + P(a2) + . . .+ P(ak) =
1

n
+

1

n
+ . . .+

1

n
=

k

n
=
|A|
|S|

.

→ So, in this case, we just need to count the number of elements in A, and divide

that by the number of elements in S. Easy!?! Sometimes!

• e.g. Roll a fair six-sided die. What is P(≥ 5)?

→ Here S = {1, 2, 3, 4, 5, 6} so |S| = 6. All equally likely.

→ Also A = {5, 6} so |A| = 2.

→ So, P(≥ 5) = P(A) = |A|
/
|S| = 2/6 = 1/3. Easy!

• Flip two fair coins. What is P(# Heads = 1)?

POLL: (A) 1/4. (B) 1/3. (C) 1/2. (D) 3/4. (E) 1. (F) No idea.

→ Here S = {HH,HT, TH, TT}, all equally likely. So, |S| = 4.

→ And, A = {HT, TH}. So, |A| = 2.

→ Hence, P(A) = |A| / |S| = 2/4 = 1/2. Easy!

• e.g. Roll one fair six-sided die, and flip two fair coins.

What is P(# Heads = Number Showing On The Die)? (Best guess?)
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POLL: (A) 1/6. (B) 1/8. (C) 1/12. (D) 1/16. (E) 1/24. (F) No idea.

→ Here S = {1HH, 1HT, 1TH, 1TT, 2HH, . . . , 6TT}. All equally likely.

→ But what is |S|?
→ Multiplication Principle: If S is made up by choosing one element of each of

the subsets S1, S2, . . . , Sk, i.e. if S = S1 × S2 × . . .× Sk, then what is |S|? Well, . . .

|S| = |S1| |S2| . . . |Sk|.
→ In our example, S1 = {1, 2, 3, 4, 5, 6}, and S2 = {H,T}, and S3 = {H,T}, so

|S| = |S1| |S2| |S3| = 6 · 2 · 2 = 24.

→ And what about A? Well, think about the possibilities . . .

A = {1HT, 1TH, 2HH}. (No other combination works. Why?) So, |A| = 3.

→ Hence, P(# Heads = Number Showing On The Die) = |A|
/
|S| = 3/24 = 1/8.

→ [Alternatively (later): (1/6)(1/2)+(1/6)(1/4) = (1/12)+(1/24) = 3/24 = 1/8.]

• e.g. Roll three fair six-sided dice. What is P(sum ≥ 17)?

→ Here S = {1, 2, 3, 4, 5, 6}3 so |S| = 63 = 216. All equally likely.

→ But what is A? Think about it . . .

Here A = {666, 566, 656, 665} (why?), so |A| = 4.

→ So, P(sum ≥ 17) = P(A) = |A|
/
|S| = 4/216 = 1/54.

→ Exercise: What about P(sum ≥ 16)? P(sum ≥ 15)?

• Chevalier de Méré’s historical 1654 questions:

• (a) What is P(get at least one six when rolling a fair six-sided die 4 times)?

→ Here S = {1, 2, 3, 4, 5, 6}4, so |S| = 64 = 1296. All equally likely.

→ And what is |A|? Tricky. Easier to consider . . .

→ AC = {no sixes in four rolls} = {1, 2, 3, 4, 5}4, so |AC | = 54 = 625.

→ So, P(AC) = |AC |
/
|S| = 54 / 64 = 625 / 1296

.
= 0.482.

→ So, P(A) = 1− P(AC)
.
= 1− 0.482 = 0.518. More than 50%.

→ (Alternatively: By “independence” [later], P(A) = 1− (5/6)4 .
= 0.518.)

• (b) What is P(get at least one pair of sixes when rolling a pair of fair six-sided

dice 24 times)?

→ Here S =
(
{1, 2, 3, 4, 5, 6}2

)24

, so |S| = (62)24 = 648 (>1037). All equally likely.

→ And what is |A|? Tricky. Again, easier to consider . . .

→ AC = {no pair of sixes in 24 rolls} = {11, 12, 13, . . . , 64, 65}24, so |AC | = 3524.

→ So, P(AC) = |AC |
/
|S| = 3524/648 .

= 0.509.

→ So, P(A) = 1− P(AC)
.
= 1− 0.509 = 0.491. Less than 50%.

→ (Again, alternatively by independence [later], P(A) = 1− (35/36)24 .
= 0.491.)

Suggested Homework: 1.4.1, 1.4.9, 1.4.10, 1.4.11, 1.4.12, 1.4.13.

—————————— END MONDAY #1 ——————————
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• (c) In a best-of-seven match with fair (50%) games, if a player has won 3 games

and lost 1, then what is the probability they will win the match?

→ Various paths to victory: win right away, lose then win, etc. Tricky.

→One solution: Pretend 3 more games will always be played. (Result unchanged.)

→ Then S = {Win, Lose}3, so |S| = 23 = 8, all equally likely.

→ What about A? Well, here AC = {Lose, Lose, Lose}, so |AC | = 1.

→ Hence, P(AC) = |AC |/|S| = 1/8, and so P(A) = 1− P(AC) = 7/8.

→ Exercise: What if the player has won just 2 games and lost 1? (Trickier.)

Warning about Non-Uniform Probabilities

• e.g. Roll two fair dice. What is P(sum is ≤ 3)?

→ POSSIBLE SOLUTION: The sum is in S = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. So,

|S| = 11. And, the event “≤ 3” corresponds to A = {2, 3}, so |A| = 2. Hence,

P(sum is ≤ 3) = |A|/|S| = 2/11. Right?

→ WRONG! These sums are not all equally likely, i.e. it is not uniform! So,

P(A) 6= |A|/|S|. That formula is only when all outcomes are equally likely. Important!

→ INSTEAD: Let S = {all ordered pairs of two dice}, i.e. S = {11, 12, 13, . . . , 65, 66}.
Then |S| = 36. Now each outcome in S is equally likely. And, now A = {11, 12, 21}.
So, P(A) = |A|/|S| = 3/36 = 1/12. Correct!

• Also, note that sometimes the sample space S is a discrete infinite set:

→ e.g. S = N := {1, 2, 3, . . .}, with P(i) = 2−i for each i ∈ S.

→ Valid? Yes, since 2−i ≥ 0, and
∑∞

i=1 2−i = 2−1

1−2−1 = 1. (Geometric series.)

→ Then e.g. P(Even Number) =
∑

i=2,4,6,... 2
−i = 1

4
+ 1

16
+ 1

64
+ . . . = 1/4

1−(1/4)
= 1/3.

→ And, P(≤ 10) =
∑10

i=1 2−i = 2−1−2−11

1−2−1 = (1/2)−(1/2048)
1−(1/2)

= 1023/1024. Close to 1.

→ But on a discrete infinite space, cannot ever have a uniform distribution!

• Summary: Don’t assume it’s uniform when it isn’t!

More Finite Uniform Probabilities (§1.4)

• Distinct, in order: e.g. Suppose there are ten people at a party, and you randomly

pick three of the people, in order (1-2-3). What is the probability that your choices

will also be the three richest people at the party, in the same order?

→ S is the set of all ways of picking three people, in order. All equally likely.

→ But what is |S|?
→ The first person can be picked in 10 different ways.

→ Then, the second person can be picked in 9 different ways.

→ Then, the third person can be picked in 8 different ways.

→ So, |S| = 10 · 9 · 8 = 720.

→ Also, |A| = 1 since there is only one matching choice.
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→ So, P(you picked the three richest, in order) = |A|/|S| = 1/720.

• More generally, the number of ways of picking k distinct items, in order, out of n

items total, is equal to n(n−1)(n−2) . . . (n−k+ 1) = n!/(n−k)!. (“permutations”)

→ In particular, if k = n, then the number of ways of picking all n items in order

is equal to n(n− 1)(n− 2) . . . (1) = n!. (“n factorial”)

• “The Birthday Problem”: Suppose 40 (say) people at a party are each equally

likely to be born on any one of 365 days of the year. Then what is the probability

that at least one pair of them have the same birthday? (Any guesses?)

→ Here, S is the set of all 40-tuples of possible birthdays. All equally likely.

→ (List their birthdays in order, since they might not all be distinct.)

→ So, by the Multiplication Principle, |S| = 36540.

→ What about |A|? Not easy . . .

→ Instead, consider AC . (Then can use that P(A) = 1− P(AC).)

→ AC is the set of all ways of picking 40 distinct birthdays, in order.

→ So, |AC | = 365 · 364 · 363 · . . . · 326 = 365!
/

325!.

→ So, P(AC) =
(
365!

/
325!

) /
36540 .

= 0.109.

→ So, P(A) = 1− P(AC)
.
= 0.891. Over 89%. Very likely! (Make a bet?)

→ Intuition: Even with just 40 people, have
(

40
2

)
= 780 pairs of people – lots!

→ Or, if 23 people, P(AC) =
(
365!

/
342!

) /
36523 .

= 0.493, so P(A)
.
= 0.507 > 50%.

POLL: With 60 people, what is P(some pair have same birthday)? (guess)

(A) 92.8%. (B) 95.1%. (C) 99.4%. (D) 99.86%. (E) 99.993%.

→ With 60 people: P(AC) =
(
365!

/
305!

) /
36560 .

= 0.059; P(A)
.
= 0.994 = 99.4%.

→ (For discussion with “C” people, see the textbook’s Challenge 1.4.21.)

• Distinct, unordered: Suppose we are still picking k distinct objects, but now we

don’t care about the order. Then, we have to divide by the number of different

orderings of k items, which is: k! = k(k − 1)(k − 2) . . . (2)(1).

→ So, the number of ways of picking k distinct items out of n items total, ignoring

order, is equal to n(n−1)(n−2) . . . (n−k+1)
/
k! = n!/(n−k)! k!. (“combinations”;

“choose formula”, or “binomial coefficient”) Also written as:
(
n
k

)
.

POLL: Suppose there are ten people at a party, and you randomly pick a collection

of three of the people, but ignoring order. What is the probability that your choices

will also be the three richest people at the party (in any order)?

(A) 1/60. (B) 1/120. (C) 1/240. (D) 1/360. (E) 1/720. (F) No idea.

→ Here S is all ways of picking three people (ignoring order). All equally likely.

→ But what is |S|?
→ Here |S| =

(
10
3

)
= 10!

7! 3!
= 120.

→ And, again |A| = 1 since there is only one matching choice.
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→ So, P(you picked the three richest, ignoring order) = |A|/|S| = 1/120.

→ Six times as large as before! Makes sense since 3! = 6.

• e.g. Lotto Max jackpot:

→ Here S = {all choices of 7 distinct numbers between 1 and 50}.
→ All equally likely. And, we do not care about the order.

→ So, |S| = 50!
43! 7!

= 99, 884, 400
.
= 100 million.

→ Also, A is the one correct choice. So, |A| = 1.

→ So, P(jackpot) = P(choose the correct 7 distinct numbers between 1 and 50)

= |A|
/
|S| = 1/99, 884, 400

.
= 1/100, 000, 000 = 0.000001%. Very small!

→ (For $5, you get three separate choices of 7 numbers, which increases P(jackpot)

to 3 / 99,884,400 = 1 /33,294,800 . . . still very small . . . )

• Recall that a standard deck of playing cards has four suits (Clubs, Spades, Hearts,

Diamonds), and each suit has 13 ranks (A,2,3,4,5,6,7,8,9,10,J,Q,K), so 52 cards total:

• A card’s value is its number, counting A as 1, J as 11, Q as 12, and K as 13.

• Suppose we pick one playing card from a standard deck, uniformly at random.

→ So S is the set of all cards in the deck, with |S| = 52, all equally likely.

→ Then what is P(Club or 7)? Can solve this directly, or . . .

→ Here P(Club) = 13/52 = 1/4, and P(7) = 4/52 = 1/13.

→ Also, P(Club and 7) = P(7-of-Clubs) = 1/52.

→ So, by Inclusion-Exclusion, P(Club or 7) = P(Club) + P(7) − P(Club and 7)

= 1/4 + 1/13 − 1/52 = 16/52 = 4/13.

POLL: Suppose we draw a pair of distinct cards uniformly from a standard deck.

What is P(both are Face Cards), i.e. P(both are J/Q/K)?

(A) (3/52)2. (B) (12/52)2. (C) 12/
(

52
2

)
. (D)

(
12
2

)/(
52
2

)
. (E) No idea.

→ Here S = {all distinct pairs of cards, ignoring order}.
→ So, |S| =

(
52
2

)
= 52 · 51/2 = 1326.

→ And A = {all distinct pairs of Face Cards}, so |A| =
(

12
2

)
= 12 · 11/2 = 66.
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→ So, P(A) = |A|/|S| =
(

12
2

)/(
52
2

)
= 66/1326

.
= 0.0498

.
= 1/20.

→ Alternatively, could let S = {all distinct pairs of cards in order}. Then |S| =
52 · 51 = 2652, and |A| = 12 · 11 = 132. So, P(A) = |A|/|S| = 132/2652, which gives

the same answer as before.

→ (Or, conditional probability [next]: P(A) = (12/52) · (11/51) = 132/2652.)

Suggested Homework: 1.3.6, 1.4.4, 1.4.6, 1.4.7, 1.4.8. Trickier: 1.4.5.

————————— END WEDNESDAY #2 —————————

Simulating Using the Computer Software “R”

• There is lots of computer software available for statistical computation. (Even

spreadsheets etc.) One package used by most statisticians (and STA courses) is “R”.

→ Free and easy to install on any computer, e.g. on your laptop!

→ For some basic info and links, see: probability.ca/Rinfo.html

→ Also discussed in Appendix B of the textbook.

→ In this course, you do not need to learn it.

→ But I will use it for occasional demonstrations.

→ It is interesting, and insightful, and used in other courses. [Try it!]

• For now, just a few simulation commands to get us started:

→ sample(c(”H”,”T”), 1) [one random sample from {H,T}]
→ sample(1:6, 1) [one random sample from {1, 2, 3, 4, 5, 6}]
→ sample(1:6, 3) [three random samples, without replacement]

→ sample(1:6, 3, replace=TRUE) [three samples, with replacement]

→ sample(c(”Gold”,”Silver”,”Bronze”), 1, prob=c(0.40,0.15,0.45)) [with probs]

→ rgeom(1, 1/2) + 1 [sample where P (i) = 2−i]

A Bit More Finite Uniform Probabilities (§1.4)

POLL: Suppose we flip 4 fair coins. What is P(exactly 2 Heads)?

(A) 1/2. (B) 1/4. (C) 1/8. (D) 3/8. (E) 5/8. (F) No idea.

→ Here S = all 4-tuples of H and T (in order). |S| = 24 = 16. All equally likely.

→ And A = all 4-tuples with two H and two T. What is |A|?
→ Can write them all out [let’s do it now]:

→ So |A| = 6, and P (A) = |A|/|S| = 6/16 = 3/8. Simpler way? (More coins?)

→ Each element of A can be specified by choosing which 2 of the 4 coins were H

(without caring about the order).
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→ So, |A| = number of choices of 2 coins out of 4 =
(

4
2

)
= 4!

/
((4 − 2)! 2!) =

24/(2 · 2) = 6, and P (A) = |A|/|S| = 6/16.

→ Same answer as before, but more systematic, and easier to use when we have

lots of coins. Clear?

• e.g. Suppose we flip ten fair coins. What is P(exactly six Heads)?

→ S is the set of all “10-tuples” of H and T, i.e. length-10 sequences (in order) of

H and T.

→ All equally likely. But what is |S|? Well, by the Multiplication Principle,

|S| = 2 · 2 · . . . · 2 = 210 = 1024.

→ What about |A|? Well, A = {HHHHHHTTTT,HHHHHTHTTT, . . . ,
TTTTHHHHHH}. But how many elements does it include?

→ Well, an element of A is specified by “choosing” which 6 of the 10 coins are

Heads. So, the size of A is equal to the corresponding binomial coefficient:

|A| =

(
10

6

)
=

10!

6! (10− 6)!
=

10!

6! 4!
=

10 · 9 · 8 · 7
4 · 3 · 2 · 1

=
5040

24
= 210 .

→ So, P(exactly six Heads) = |A|
/
|S| = 210/1024 = 105/512

.
= 0.205 = 20.5%.

• In general, if flip n fair coins, then P(exactly k Heads) =
(
n
k

)/
2n, for 0 ≤ k ≤ n.

→ (Special case of the “Binomial Distribution” – more later.)

Suggested Homework: 1.4.2, 1.4.3, 1.4.15, 1.4.16, 1.4.19, 1.4.21.

Conditional Probability (§1.5)

• e.g. Flip three fair coins.

→ Then S = {HHH,HHT,HTH,HTT, THH, THT, TTH, TTT}.
→ All equally likely. So, P(first coin Heads) = 4/8 = 1/2.

→ Suppose we are told that exactly 2 coins were Heads.

POLL: Now what is the probability that the first coin was Heads?

(B) 1/2. (C) 2/3. (D) 3/4. (E) No idea.

→ Well, the outcome must be in {HHT,HTH, THH}. Still all equally likely.

→ And, two of these three outcomes have the first coin Heads.

→ So, now the probability that the first coin was Heads is equal to 2/3.

→ That is: The probability that the first coin was Heads, given that 2 coins were

Heads, is equal to 2/3.

→ In symbols: P(first coin Heads | 2 coins were Heads) = 2/3.

• In general, if A and B are two events, then the conditional probability of A given

B is written as P(A |B), and represents the fraction of the times when B occurs, in

which A also occurs. [Diagram.] So, it is equal to:

P(A |B) =
P(A ∩B)

P(B)
.
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• Note: If P(B) = 0, then P(A |B) is . . .

undefined! It only makes sense if P(B) > 0.

→ (Reasonable since if P(B) = 0, then B will “never” happen.)

• In the above example, A = {first coin Heads}, and B = {2 coins Heads}.
→ Then, B = {HHT,HTH, THH}, so P(B) = |B|

/
|S| = 3/8.

→ Also, A ∩B = {HHT,HTH}, so P(A ∩B) = |A ∩B|
/
|S| = 2/8.

→ Hence, P(A |B) = P(A ∩B)
/

P(B) = (2/8)
/

(3/8) = 2/3, same as before.

POLL: Roll three fair six-sided dice. What is P(first die is 3 | at least one 3)? (guess)

(A) Less than 1/6. (B) 1/6. (C) Between 1/6 and 1/3. (D) More than 1/3.

→ Here S = {111, 112, . . . , 665, 666}. So, |S| = 6 · 6 · 6 = 63 = 216.

→ Here A = {first die is 3}, and B = {at least one 3}. What is P(B)?

→ Well, BC = {no 3}, i.e. each die in {1, 2, 4, 5, 6}. (So, 5 choices.)

→ So, |BC | = 53, and P(BC) = |BC |/|S| = 53/63 = 125/216.

→ Then, P(B) = 1− P(BC) = 1− 125/216 = 91/216. What about P(A)?

→ Well, A = {311, 312, . . . , 366}, so |A| = 62 = 36, and P(A) = 36/216 = 1/6.

(Of course – “independence” – coming soon.) But what we really need is . . .

→ P(A ∩B). But A ⊆ B, so A ∩B = A, so P(A ∩B) = P(A) = 36/216 = 1/6.

→ Hence, P(A |B) = P(A ∩ B)/P(B) = (1/6)/(91/216) = (36/216)/(91/216) =

36/91
.
= 0.396. Much more than 1/6

.
= 0.167, or even 1/3

.
= 0.333. Surprising?

POLL: Roll three fair six-sided dice. What is P(first die is 3 | sum is ≤ 5)? (guess)

(A) Less than 1/6. (B) 1/6. (C) Between 1/6 and 1/3. (D) More than 1/3.

→ Here S = {111, 112, . . . , 665, 666}. So, |S| = 6 · 6 · 6 = 216.

→ Here A = {first die is 3}, and B = {sum is ≤ 5}. What is |B|?
→ Well, B = {111, 112, 113, 121, 122, 131, 211, 212, 221, 311}.
→ So, |B| = 10, and P(B) = |B|

/
|S| = 10/216.

→ What about A ∩B? Here A ∩B = {311}, so P (A ∩B) = 1/216.

→ Then P(A |B) = P(A ∩B)
/

P(B) = (1/216) / (10/216) = 1/10 = 10% < 1/6.

• Or, what is P(at least one 3 | sum is ≤ 5)?

→ Here A = {at least one 3}, and B = {sum is ≤ 5}. So, |B| = 10 as above.

→ What about A? Well, A = {311, 312, 313, . . .}. Tricky? Use AC !

→ Here |AC | = 53 = 125, so P(AC) = 125/216
.
= 0.579, so P(A)

.
= 0.421.

→ But wait, here we don’t need to know A, we only need A ∩B!

→ By looking at B, we see that A ∩B = {113, 131, 311}.
→ So, |A ∩B| = 3, and P(A ∩B) = |A ∩B|

/
|S| = 3/216.

→ Then P(A |B) = P(A ∩B)
/

P(B) = (3/216) / (10/216) = 3/10 = 30%.

• Conditional Multiplication Formula: Since P(A |B) = P(A ∩ B)
/

P(B), therefore

P(A ∩B) = P(B) P(A |B). Similarly, P(A ∩B) = P(A) P(B |A). Useful!
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• e.g. Suppose we are dealt two cards, in order, from a standard deck.

→ What is P(both are Face Cards)? Can instead use conditional prob . . .

→ Let A = {first card is Face Card}, and B = {second card is Face Card}.
→ Then P (A) = 12/52. What about P(B |A)?

→ Well, once we know that the first card is a Face Card, then there are 11 Face

Cards remaining, out of 51 total remaining cards. So, P(B |A) = 11/51.

→ Then P(A ∩B) = P(A) P(B |A) = (12/52) (11/51). Same as before. Easier?

• Combining this Conditional Multiplication Formula with our previous Law of

Total Probability gives a new version:

• Law of Total Probability – Conditioned Version: Suppose A1, A2, . . . are a se-

quence (finite or infinite) of events which form a partition of S, i.e. they are dis-

joint (Ai ∩ Aj = ∅ for all i 6= j) and their union equals the entire sample space

(
⋃
iAi = S), and let B be any event. Then P(B) =

∑
i P(Ai) P(B |Ai), or equiva-

lently P(B) = P(A1) P(B |A1) + P(A2) P(B |A2) + . . ..

• e.g. Flip one fair coin. If Heads, roll one die; if Tails, roll two dice. What is P(get

at least one 5)?

→ Here B = {at least one 5}, and A1 = {Heads}, and A2 = {Tails}.
→ Then A1, A2 form a partition. And P(A1) = P(A2) = 1/2. Need P(B |Ai).
→ Well, P(B |A1) = P(get at least one 5 when you roll one die) = 1/6.

→ Also, P(B |A2) = P(get at least one 5 when you roll two dice) = ??

→ Well, its complement is P(get no 5 when you roll two dice) = 52/62 = 25/36.

→ So, P(B |A2) = 1− (25/36) = 11/36.

→ Then, from the above Law of Total Probability,

P(B) =
∑
i

P(Ai) P(B |Ai) = P(A1) P(B |A1) + P(A2) P(B |A2)

= (1/2)(1/6) + (1/2)(11/36) = 17/72
.
= 0.236 .

• Three-Card Challenge: Have three cards: C1=Blue-Blue, C2=Yellow-Yellow,

C3=Blue-Yellow. Pick a card uniformly at random. Then pick one side of that

card, uniformly at random. What is P(the card is C2 | the side is Yellow)?

→ Let B = {the side is Yellow}. First of all, what is P(B)?

→ Use Law of Total Probability! Since we pick one of the three cards, the three

cards C1,C2,C3 form a partition.

→ So, P(B) = P(C1) P(B |C1) + P(C2) P(B |C2) + P(C3) P(B |C3)

= (1/3)(0) + (1/3)(1) + (1/3)(1/2) = 1/3 + 1/6 = 1/2. (Of course.)

→ Now, let A = {the card is C2}. Then what is P(A ∩B)?

→ Well, A ∩B = {choose C2, then Yellow} = {choose C2, then either side}.
→ So, P(A ∩B) = P(A) P(B |A) = P(C2) P(Yellow Side |C2) = (1/3) (1) = 1/3.

→ Hence, P(the card is C2 | the side is Yellow) = P(A |B) = P(A ∩ B)/P(B) =

(1/3)/(1/2) = 2/3. Surprising? (Try it!)
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→ Intuition: We picked one of the three Yellow sides, of which two are on C2.

• Related question: The Monty Hall Problem!

See Challenge 1.5.18, and/or my article at probability.ca/monty.

• In the above “two Face Cards” question, suppose we ignore the first card. Then

what is P(second card is Face Card)?

→ Well, if B = {second card is Face Card}, and A1 = {first card is Face Card}
and A2 = {first card is NOT Face Card} then {A1, A2} is a partition, so P(B) =

P(A1)P(B |A1)+P(A2)P(B |A2) = (12/52)(11/51)+(40/52)(12/51) = 12/52 = 3/13,

exactly the same as if it was the only card picked.

→ Makes sense, since ignoring the first card is the same as not picking it at all.

• e.g. Suppose a disease affects one person in a thousand, and a test for the disease

has 99% accuracy.

→ This means that P(test positive | have disease) = 0.99, P(test negative | have

disease) = 0.01, P(test positive | do NOT have disease) = 0.01, and P(test negative | do

NOT have disease) = 0.99.

→ Suppose someone is selected at random, and is tested for the disease.

POLL: (i) What is P(they test positive)? (A) 1/1000. (B) (1/1000) (0.99).

(C) (1/1000) (0.99) + (999/1000) (0.01). (D) (999/1000) (0.99) + (1/1000) (0.01).

→ Use the Law of Total Probability! Here B = {test positive}. And, partition is

A1 = {have disease} and A2 = {do not have disease}.
→ So, P(B) = P(A1) P(B |A1) + P(A2) P(B |A2)

= (1/1000)(0.99) + (999/1000)(0.01) = 0.01098.

POLL: (ii) What is P(they test positive and have the disease)?

(A) 1/1000. (B) (1/1000) (0.99). (C) (1/1000) (0.99) + (999/1000) (0.01).

(D) (999/1000) (0.99) + (1/1000) (0.01).

→Use the Conditional Multiplication Formula! Here P(A1∩B) = P(A1) P(B |A1) =

(1/1000)(0.99) = 0.00099.

POLL: (iii) Given that they tested positive (i.e., conditional on them testing posi-

tive), what is the conditional probability that they have the disease?

(A) (0.00099) / (0.01098). (B) (0.01098) / (0.00099).

(C) (0.00099) / (0.00099 +0.01098). (D) (0.01098) / (0.00099 +0.01098).

→ This is P(A1 |B) = P(A1 ∩B)/P(B). And we know these!

→ So, P(A1 |B) = P(A1 ∩ B)/P(B) = (0.00099)/(0.01098) = 0.0901639
.
= 9%

.
=

1/11. Small! Why?

→ Intuition: So many more people do not have the disease, that even their false

positives (1%) are more than the number of people who have the disease (0.1%).

• In the above example, we knew P(B |A1) (it was 99%), but we wanted P(A1 |B).
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→ What is the connection between them?

• In general, P(B |A) = P(A ∩B)
/

P(A), and P(A |B) = P(A ∩B)
/

P(B).

→ So . . . P(A |B) = P(A)
P(B)

P(B |A). (“Bayes Theorem”, or “Bayes Rule”)

→ (Aside: This formula is the inspiration for “Bayesian Statistics” . . . )

→ In particular, if P(A) 6= P(B), then P(A |B) 6= P(B |A). Different!

Suggested Homework: 1.5.1, 1.5.2, 1.5.3, 1.5.4, 1.5.6, 1.5.7, 1.5.8, 1.5.10, 1.5.11,

1.5.12, 1.5.13, 1.5.16, 1.5.17.

Independence (§1.5)

• Recall: If we roll three fair six-sided dice, then P(first die shows 5) = . . .

1/6. Of course! Why? Because the first die doesn’t “care” about the other dice!

→ And, P(first die shows 5 | second die shows 4) = 1/6, too. Doesn’t care!

→ More formally, we say the first die is “independent” of the other dice.

• If A and B are any two events, then saying they are independent means that they

do not affect each others’ probabilities, i.e. that P(A |B) =

P(A), and P(B |A) = P(B).

→ But P(A |B) = P(A ∩B) /P(B), so P(A |B) = P(A) if and only if . . .

P(A∩B) = P(A) P(B). This is the official definition of independence. (Better, since

it is symmetric in A and B, and it is valid even if P(A) = 0 or P(B) = 0.)

→ If A and B are independent, and P(B) > 0, then P(A |B) = P(A).

—————————— END MONDAY #2 ——————————

• If two parts of an experiment are physically completely unrelated, like two different

coins, or a coin and a die, or multiple dice, then they must be independent.

→ We already implicitly used this fact, e.g. if you flip two coins, then P(both

Heads) = P(first is Heads) P(second is Heads) = (1/2)(1/2) = 1/4, and so on.

→ But now we know why it was okay to multiply!

• e.g. Roll two dice. Are the two results independent?

→ Yes of course, since they are physically unrelated.

• Can two events be independent even if they are not physically separated, i.e. they

deal with the same objects? Maybe!

• Flip two fair coins. So, S = {HH,HT, TH, TT}, |S| = 4, all equally likely.

→ Let A = {first coin Heads}, B = {second coin Heads}, and

C = {both coins are the same}.
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POLL: Which pairs of these events are independent?

(A) A and B, only. (B) A and C, only. (C) B and C, only. (D) All three pairs

(A and B, A and C, and B and C). (E) None of the pairs are independent.

→ Well, let’s see . . .

→ Are A and B independent? Yes, of course! (physically unrelated)

→ Check: P(A) = |{HH,HT}| / 4 = 2/4 = 1/2, and P(B) = |{HH,TH}| / 4 =

2/4 = 1/2, and P(A ∩B) = |{HH}| / 4 = 1/4 = (1/2)(1/2) = P(A) P(B).

→ What about A and C? Well, P(C) = |{HH,TT}| / 4 = 2/4 = 1/2, and

P(A ∩ C) = |{HH}| / 4 = 1/4, So, P(A ∩ C) = 1/4 = (1/2)(1/2) = P(A) P(C).

→ So, A and C are independent! And similarly, B and C are independent.

→ So, A and B and C are all pairwise independent, i.e. each pair is independent.

→ Hence, P(A |C) = P(A) = 1/2, and P(C |A) = P(C) = 1/2, etc. Surprising?

→ But are they all truly independent? Well, suppose we know A and also know

B. Then we would know that C is true, too!

→ That is, P(C |A ∩B) = 1 6= 1/2 = P(C).

→ Why? Since P(A ∩B ∩ C) = |{HH}| / 4 = 1/4 6= (1/2)(1/2)(1/2).

→ For A and B and C to be truly independent, we also need P(A ∩ B ∩ C) =

P(A) P(B) P(C). That would guarantee that e.g. P(C |A ∩B) = P(C), etc.

• In general, a collection A1, A2, A3, . . . of events are called independent if P(Ai1 ∩
Ai2 ∩ . . .∩Aik) = P(Ai1) P(Ai2) . . . P(Aik) for any finite subcollection of the events.

→ If truly independent, then we can always multiply all the probabilities.

• e.g. Flip 5 fair coins: P(all Heads) = (1/2)(1/2)(1/2)(1/2)(1/2) = 1/32.

• e.g. Flip 3 fair coins. Let A = {first coin Heads}, B = {second coin Heads},
and C = {HHH,THH, THT, TTH}. Then P(A ∩ B ∩ C) = P(HHH) = 1/8 =

P(A) P(B) P(C), but P(A ∩ C) = P(HHH) = 1/8 6= P(A) P(C).

→ So, A,B,C are not independent, although P(A ∩B ∩ C) = P(A) P(B) P(C).

POLL: Suppose A and B are independent. Does this necessarily imply that A and

BC are independent? (A) Yes, always. (B) Yes, but only if P(B) > 0. (C) No,

not necessarily. (D) No idea.

→ Well, let’s see . . .

→ We know from (∗∗) before, that P(A ∩BC) = P(A)− P(A ∩B).

→ If A and B are independent, then P(A ∩B) = P(A) P(B).

→ So, P(A ∩BC) = P(A)− P(A ∩B)

= P(A)− P(A) P(B) = P(A)[1− P(B)] = P(A) P(BC).

→ So, yes, A and BC must be independent, always!

• Can A and B be both independent and disjoint?

→ Well, yes, but if so, then A∩B = ∅, so P(A∩B) = P(∅) = 0, but P(A∩B) =

P(A) P(B), so P(A) P(B) = 0, so either P(A) = 0 or P(B) = 0 (or both).
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→ If P(A) > 0 and P(B) > 0, then A and B not both independent and disjoint.

Suggested Homework: 1.5.9, 1.5.14, 1.5.15, 1.5.20.

• Does it matter? Ask Sally Clark! Solicitor in Cheshire, Eng-

land. Had two sons; each suffocated and died in infancy.

→ Sudden Infant Death Syndrome (SIDS)? Or murder!?!

→ 1999 testimony by paediatrician Sir Roy Meadow: “the odds

against two [SIDS] in the same family are 73 million to one”.

→ Sally Clark was arrested, jailed, and vilified, and her third

son was temporarily taken away. Was this justified?

→ How did Meadow compute that “73 million to one”?

→ He said the probability of one child dying of SIDS was one

in 8,543, so for two children dying, we multiply:

(1/8, 543)× (1/8, 543) = 1/72, 982, 849 ≈ 1/73, 000, 000. Was this valid?

→ No! We can’t just multiply, since SIDS tends to run in families, i.e. not inde-

pendent. Given one SIDS death, a second one is about 10 times more likely!

→ (Also, even the figure “one in 8,543” was misleading, since he included factors

which lower the SIDS probability, but neglected other factors which raise it.)

→ (Separate point: Even if two SIDS deaths are quite unlikely, two murders are

also unlikely! So, how to compare and evaluate? Even unlikely things will happen

sometime to someone. Statistical inference! Interesting, but not part of this course.)

→ So what happened? Convicted! Jailed for three years! Then overturned.

→ More info in my article: probability.ca/justice

Continuity of Probabilities (§1.6)

POLL: Suppose we have any probablities P defined on S = N = {1, 2, 3, . . .}.
Does there necessarily exist some finite number n ∈ N with P{1, 2, . . . , n} = 1?

(C) Yes. (D) No. (E) Not sure.

→No! e.g. in above example with P(i) = 2−i, we have P{1, 2, . . . , n} =
∑n

i=1 2−i =
2−1−2−n−1

1−2−1 = 1− 2−n, which is always < 1. (e.g. if n = 10, it equals 1023/1024 < 1.)

POLL: For any probabilities P on S = {1, 2, 3, . . .}, does there necessarily exist

some finite n ∈ N with P{1, 2, . . . , n} > 0.99? (C) Yes. (D) No. (E) Not sure.

→ Let’s see . . .

• Recall: For a function f : R → R, “continuity” means if lim
n→∞

xn = x, then

lim
n→∞

f(xn) = f(x). Is there something similar for probabilities P(An)? Sort of . . .

• e.g. S = N := {1, 2, 3, . . .}, with P(i) = 2−i for each i ∈ S.

→ Let An = {1, 2, 3, . . . , n}. Does An “converge” to S?

→ If so, then does P(An) converge to P(S) = 1?

p.18
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• Definition: Write that {An} ↗ A if
⋃
nAn = A, and they are “nested increasing”,

i.e. An ⊆ An+1 for all n, i.e. A1 ⊆ A2 ⊆ A3 ⊆ . . .. Like lim
n→∞

An = A. Diagram:

→ e.g. if An = {1, 2, . . . , n}, then {An} ↗ N. [Check!] And therefore?

• Continuity Of Probabilities Theorem: If {An} ↗ A, then lim
n→∞

P(An) = P(A).

————————— END WEDNESDAY #3 —————————

→ Proof (§1.7): Let B1 = A1, and Bn = An ∩ ACn−1 for n ≥ 2.

→ Then A is the disjoint union of all of the Bn. [Diagram.]

→ Hence, by additivity, P(A) =
∑∞

i=1 P(Bi) ≡ limn→∞
∑n

i=1 P(Bi).

→ But also, An is the disjoint union of just B1, B2, . . . , Bn.

→ So, by additivity, P(An) =
∑n

i=1 P(Bi).

→ Combining these two, P(A) = limn→∞
∑n

i=1 P(Bi) = limn→∞ P(An).

• Similarly, write that {An} ↘ A if
⋂
nAn = A, and they are nested decreasing,

i.e. An ⊇ An+1 for all n, i.e. A1 ⊇ A2 ⊇ A3 ⊇ . . .. Diagram:

POLL: If {An} ↘ A, does it necessarily follow that limn→∞ P(An) = P(A)?

(C) Yes. (E) No. (F) Not sure.

→ Well, {An} ↘ A if and only if {ACn } ↗ AC . [Exercise!]

→ Hence, if {An} ↘ A, then {ACn } ↗ AC , so limn→∞ P(ACn ) = P(AC), i.e.

limn→∞[1− P(An)] = 1− P(A), so limn→∞ P(An) = P(A), just like before.

• e.g. Suppose we have any probablities P defined on S = N = {1, 2, 3, . . .}.
→ Does there necessarily exist some finite number n ∈ N with P{1, 2, . . . , n} = 1?

→ No! e.g. above example with P(i) = 2−i: always have P{1, 2, . . . , n} < 1.

→ Is it necessarily true that limn→∞ P{1, 2, . . . , n} = 1?

→ Yes! Since {1, 2, . . . , n} ↗ N = S, by Continuity Of Probabilities, we must

have limn→∞ P{1, 2, . . . , n} = P(S) = 1.

→ Does there necessarily exist some finite n ∈ N with P{1, 2, . . . , n} > 0.99?

→ Yes! Since limn→∞ P{1, 2, . . . , n} = 1, therefore P{1, 2, . . . , n} > 0.99 for all

sufficiently large n.

• e.g. Suppose we flip an infinite number of (independent) fair coins. (!)
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POLL: What is P(all the coins are all Heads)?

(A) 1/2. (B) 0. (C) Undefined. (D) Not sure.

→ How to even think about this?

→ Let A = {all the coins are Heads}, and An = {the first n coins are Heads}.
→ Then An ⊇ An+1. Also

⋂∞
n=1An = A. So, {An} ↘ A.

→ Hence, P(all coins Heads) = limn→∞ P(An) = limn→∞(1/2)n = 0.

→ So, {all coins Heads} is “possible”, but has probability 0; will never happen.

• e.g. Suppose we pick a number between 0 and 1.

→ Suppose we only know that P
(
[a, b]

)
= b − a whenever 0 ≤ a < b ≤ 1.

Diagram:

POLL: Which fact follows logically from this?

(A) P({x}) = 0 for each individual x ∈ [0, 1].

(B) P((a, b)) = b− a whenever 0 ≤ a < b ≤ 1.

(C) P([a, b)) = b− a whenever 0 ≤ a < b ≤ 1.

(D) P((a, b]) = b− a whenever 0 ≤ a < b ≤ 1.

(E) All of the above.

(F) None of the above.

• Start with an example. Know that e.g. P
(
[1
2
, 2

3
]
)

= 2
3
− 1

2
= 1

6
.

→ What about the open interval P
(
(1

2
, 2

3
)
)
? Is it necessarily the same?

→ Use Continuity Of Probabilities!

→ Let A = (1
2
, 2

3
), and An =

[
1
2

+ 1
n
, 2

3
− 1

n

]
(for sufficiently large n). Diagram:

→ Then An+1 ⊇ An, and
⋃∞
n=1 An = A, so {An} ↗ A.

→ Also, we know that P
([

1
2

+ 1
n
, 2

3
− 1

n

])
= [2

3
− 1

n
]− [1

2
+ 1

n
] = 1

6
− 2

n
.

→ Hence, by Continuity Of Probabilities, P(A) = limn→∞ P(An),

i.e. P
(
(1

2
, 2

3
)
)

= limn→∞[1
6
− 2

n
] = 1

6
.

• Similarly, using An = [a+ 1
n
, b− 1

n
] shows P

(
(a, b)

)
= b− a for 0 ≤ a < b ≤ 1.

→ Or, for e.g. [a, b), use An = [a, b− 1
n
] instead, then have {An} ↗ A := [a, b).

• What about P({x}), for x ∈ R? Zero? Let An = [x− 1
n
, x+ 1

n
]. Then . . .

→ Here {An} ↘ A := {x}. Hence, by Continuity of Probabilities,

P({x}) = limn→∞ P([x− 1
n
, x+ 1

n
]) = limn→∞((x+ 1

n
)− (x− 1

n
)) = limn→∞

2
n

= 0.

→ So, yes, it’s (E) All of the above!
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Suggested Homework: 1.6.1, 1.6.2, 1.6.3, 1.6.4, 1.6.5, 1.6.6, 1.6.7, 1.6.8, 1.6.9,

1.6.10. Optional: 1.6.11.

[END OF TEXTBOOK CHAPTER #1]

Random Variables (§2.1)

• A random variable is “any” function from S to R.

→ Intuitively, it represents some random quantity in an experiment.

• e.g. Roll 3 dice: X = number showing on the first die.

→ X could be 1,2,3,4,5,6, depending on result: X(265) = 2, X(513) = 5, etc.

→ Or, Y = sum of the three numbers showing, so Y (265) = 13, Y (513) = 9, etc.

→ Or, Z = first number divided by third number: Z(265) = 2/5, Z(513) = 5/3.

• Or: Roll three fair dice, X(s) = number of 5’s, Y (s) = number of 3’s, Z = X−Y .

→ Then X(335) = 1, Y (335) = 2, Z(335) = −1, etc. Values can be negative, too!

• e.g. Flip 10 coins: X = # of Heads, or Y = (# of Heads)2, or

Z = 1 if first coin Heads otherwise Z = 0, etc.

→ So X(HHHTTTHTTT ) = 4, X(TTHHHHHHHT ) = 7, etc.

→ In this example, can also write Y = X2 (function of another random variable).

• e.g. X(s) = 5 for all s ∈ S: “constant random variable”. (Or any constant.)

• Special case: IA(s) = 1 if s ∈ A otherwise IA(s) = 0. “indicator function”

• e.g. S = N := {1, 2, 3, . . .}, with P(i) = 2−i for each i ∈ S.

→ Maybe X(s) = s, and Y (s) = s2. What are their largest possible values?

→ None! They can be arbitrarily large. “unbounded random variables”

→ Also, for all s ∈ S we have s ≤ s2, i.e. X(s) ≤ Y (s) for all s ∈ S, so “X ≤ Y ”.

• Fun Fact: 1950s Doob/Feller argument, “random variable” or “chance variable”?

Suggested Homework: 2.1.1, 2.1.2, 2.1.4, 2.1.5, 2.1.6, 2.1.10, 2.1.11, 2.1.12, 2.1.15.

Distributions of Random Variables (§2.2)

• The distribution of a random variable is the collection of all of the probabilities

of the variable being in every possible subset of R.

• e.g. Olympic medal, with S = {Gold, Silver, Bronze}, and P(Gold)=0.40, P(Silver)=0.15,

and P(Bronze)=0.45. Let X(Gold) = 1, X(Silver) = 2, X(Bronze) = 5.
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POLL: What is P(X ≤ 3)? (A) 0.40. (B) 0.15. (C) 0.45. (D) 0.55. (E) 1.

→ Probabilities for X? Here P(X = 1) = P{Gold} = 0.40, and P(X = 2) =

P{Silver} = 0.15, and P(X = 5) = P{Bronze} = 0.45. What about P(X ≤ 3)?

→ Well, P(X ≤ 3) = P{Gold, Silver} = 0.40 + 0.15 = 0.55. And P(X = 7) = 0.

→ And P(X < 20) = P{Gold, Silver, Bronze} = 0.40 + 0.15 + 0.45 = 1.

→ And P(1 < X < 6) = P{Silver, Bronze} = 0.15 + 0.45 = 0.60. And so on.

• In general, “P(X ∈ B)” means P(X−1(B)) := P{s ∈ S : X(s) ∈ B}.
→ e.g. If B is the event “≤ 3”, then B = {x ∈ R : x ≤ 3}, so P(X ∈ B) = P(X ≤

3) = P
(
X ∈ (−∞, 3]

)
= P

(
X−1(−∞, 3]

)
, which equals 0.55 in this case.

• Can also write in this example that for “any” subset B ⊆ R, we have (using

“indicator functions”) that P(X ∈ B) = 0.40 IB(1) + 0.15 IB(2) + 0.45 IB(5).

→ e.g. If B is the event “≤ 3”, then IB(1) = 1, IB(2) = 1, and IB(5) = 0, so

P(X ∈ B) = 0.40 (1) + 0.15 (1) + 0.45 (0) = 0.55, like before.

Suggested Homework: 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.6, 2.2.8, 2.2.9, 2.2.10.

Discrete Random Variables (§2.3)

• A random variable is called discrete if
∑

x∈R P(X = x) = 1.

→ i.e., all of its probability is on individual values.

→ Not always true! e.g. if we “pick a number uniformly between 0 and 1”, then

we know that P(X = x) = 0 for all values of x, so
∑

x∈R P(X = x) = 0 < 1.

• If it’s true, there’s a distinct sequence x1, x2, x3, . . . ∈ R, and corresponding

probabilities p1, p2, p3, . . . ≥ 0, with
∑

i pi = 1, such that P(X = xi) = pi for each i.

→ In above example, x1 = 1, x2 = 2, x3 = 5, with p1 = 0.40, p2 = 0.15, p3 = 0.45.

• Can also define the “probability function” as pX(x) := P(X = x).

→ So, pX(xi) = pi for all i, with pX(x) = 0 for all x 6∈ {x1, x2, . . .}.
→ In above example, pX(1)=0.40, pX(2)=0.15, pX(3)=0.45, otherwise pX(x)=0.

• e.g. Flip one fair coin, and let X = # Heads.

→ Then P(X = 0) = 1/2, and P(X = 1) = 1/2.

→ So, here x1 = 0, and x2 = 1, and p1 = p2 = 1/2.

→ Also, pX(0) = 1/2 and pX(1) = 1/2, with pX(x) = 0 for all x 6= 0, 1.

• e.g. Flip two fair coins, and let X = # Heads.

POLL: The probability function pX(x) for this X is given by:

(A) pX(1) = pX(2) = 1/2, otherwise pX(x) = 0.

(B) pX(0) = pX(1) = pX(2) = 1/3, otherwise pX(x) = 0.

(C) pX(0) = 1/4 and pX(1) = 1/2 and pX(2) = 1/4, otherwise pX(x) = 0.

(D) pX(0) = 1/4 and pX(1) = 3/4 and pX(2) = 1/4, otherwise pX(x) = 0.

(E) pX(0) = 1/4 and pX(1) = 2/3 and pX(2) = 1/4, otherwise pX(x) = 0.
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• We know that P(X = k) =
(
n
k

)
/2n =

(
2
k

)
/4. So, P(X = 0) =

(
2
0

)
/22 = 1/4, and

P(X = 1) =
(

2
1

)
/22 = 2/4 = 1/2, and P(X = 2) =

(
2
2

)
/22 = 1/4.

→ So x1 = 0, and x2 = 1, and x3 = 2, and p1 = 1/4, and p2 = 1/2, and p3 = 1/4.

→ Also, pX(0) = 1/4 and pX(1) = 1/2 and pX(2) = 1/4, otherwise pX(x) = 0.

Suggested Homework: 2.3.1, 2.3.2, 2.3.3, 2.3.4, 2.3.5.

Some First Discrete Distributions (§2.3.1)

• e.g. Shoot one “free throw” in basketball, with

probability “θ” of scoring (for some value of θ with

0 < θ < 1, e.g. θ = 0.5, or θ = 1/3, or . . . ).

→ Let X = 1 if you score, or X = 0 if you

miss. Probabilities for X?

→ Here P(X = 1) = P{score} = θ, and

P(X = 0) = P{miss} = 1− θ.
→ This is the “Bernoulli(θ) distribution”.

→ Can also write X ∼ Bernoulli(θ).

→ Then pX(0) = 1− θ and pX(1) = θ, with pX(x) = 0 for all x 6= 0, 1.

→ e.g. Bernoulli(0.5), or Bernoulli(1/3), or . . .

→ (Of course, it doesn’t have to be free throws! This distribution applies to any

situation involving any “attempt” or “trial” having probability θ of “success” and

probability 1− θ of “failure”. And similarly for the below, too.)

• e.g. Shoot 2 free throws, each independent with probability θ of scoring (for some

value of θ with 0 < θ < 1 like 0.5 or 1/3).

→ Let X = # Successes. Probabilities for X?

→ Here P(X = 0) = P{miss-miss} = (1− θ)(1− θ) = (1− θ)2.

(We can multiply because they are independent.)

→ And, P(X = 2) = P{score-score} = (θ)(θ) = θ2.

POLL: What is P(X = 1)?

(A) θ(1− θ). (B) 2θ(1− θ). (C) θ + (1− θ). (D) θ − 2(1− θ). (E) Not sure.

→ Here P(X = 1) = P{score-miss, miss-score} = (θ)(1−θ)+(1−θ)(θ) = 2θ(1−θ).
→ So, pX(0) = (1− θ)2, pX(1) = 2θ(1− θ), pX(2) = θ2, otherwise pX(x) = 0.

→ This is the “Binomial(2, θ) distribution”.

• e.g. Shoot “n” free throws, each independent with probability θ of scoring (for

some value of θ with 0 < θ < 1, and some value of n ∈ N like 2 or 10 or 286).

p.23



POLL: Let X = # Successes. What is the probability function for X?

(A) pX(k) = θk, for any k ∈ {0, 1, 2, . . . , n}, otherwise 0.

(B) pX(k) = θk(1− θ)n−k, for any k ∈ {0, 1, 2, . . . , n}, otherwise 0.

(C) pX(k) =
(
n
k

)
θk, for any k ∈ {0, 1, 2, . . . , n}, otherwise 0.

(D) pX(k) =
(
n
k

)
θk (1− θ)n−k, for any k ∈ {0, 1, 2, . . . , n}, otherwise 0.

(E) No idea.

→ Here P(X = 0) = P{miss-miss-. . . -miss} = (1− θ)n.

→ And, P(X = n) = P{score-score-. . . -score} = θn.

→ And, P(X = 1) = P{score-miss-. . . -miss, miss-score-miss-. . . -miss, . . . } = ??

→ Well, each such sequence has probability θ(1− θ) . . . (1− θ) = θ(1− θ)n−1.

→ And, there are n such sequences (one for each shot which could score).

→ So, P(X = 1) = nθ(1− θ)n−1.

→ What about P(X = k) for any integer k ∈ {0, 1, 2, . . . , n}?
→ Well, P(X = k) = P{all sequences of k scores and n− k misses}.
→ Each such sequence has probability θk(1− θ)n−k.
→ And, the number of such sequences is

(
n
k

)
. (“Choose” which k shots scored.)

→ So, pX(k) := P(X = k) =
(
n
k

)
θk (1− θ)n−k, for any k ∈ {0, 1, 2, . . . , n}.

→ This is the “Binomial(n, θ) distribution”. Can write X ∼ Binomial(n, θ).

• Check: k = 0: P(X = 0) =
(
n
0

)
θ0(1− θ)n−0 = (1− θ)n. Yep!

→ Check: k = n: P(X = n) =
(
n
n

)
θn(1− θ)n−n = θn. Yep!

→ Check: k = 1: P(X = 1) =
(
n
1

)
θ1(1− θ)n−1 = nθ(1− θ)n−1. Yep!

→ Check: P(X = k) ≥ 0. Yep!

• Check:
n∑
k=0

P(X = k) =
n∑
k=0

(
n
k

)
θk(1− θ)n−k = ??

→ Well, recall the “Binomial Theorem”: (a+ b)n =
∑n

k=0

(
n
k

)
akbn−k.

→ Set a = θ and b = 1− θ:
n∑
k=0

(
n
k

)
θk(1− θ)n−k = [θ + (1− θ)]n = 1n = 1. Yep!

• Special case: If θ = 1/2, then the Binomial(n, 1/2) distribution has

P(X = k) =
(
n
k

)
(1/2)k(1− (1/2))n−k =

(
n
k

)
(1/2)n =

(
n
k

) /
2n, same as coins before.

• Special case: Binomial(1, θ) is the same as Bernoulli(θ).

• Suppose X1, X2, . . . , Xn ∼ Bernoulli(θ), for independent trials.

→ Let Y = X1 +X2 + . . .+Xn. What is the distribution of Y ?

→ Here Y represents the number of successes in n independent attempts, each

with probability θ of success, so Y ∼ Binomial(n, θ).
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POLL: e.g. Suppose 1/4 of students have long hair. You pick four students at

random, with replacement. What is P(exactly 2 of them have long hair)?

(A) (1/4)2. (B) (3/4)2. (C) (1/4)2(3/4)2. (D) 3(1/4)2(3/4)2. (E) 6(1/4)2(3/4)2.

→ Let Y = # students with long hair. Then Y ∼ Binomial(4, 1/4). So,

P(Y = 2) =
(

4
2

)
(1/4)2

(
1− (1/4)

)4−2

= 6(1/4)2(3/4)2 = 54/256 = 27/128
.
= 0.21.

Suggested Homework: 2.3.7, 2.3.11, 2.3.14, 2.3.24.

—————————— END MONDAY #3 ——————————

Geometric Distribution (§2.3.1)

POLL: e.g. Repeatedly shoot free throws, each independent with probability θ of

scoring. What is P(miss exactly 3 times before first score)?

(A) θ/4. (B) θ3. (C) (1− θ)3. (D) θ3(1− θ). (E) (1− θ)3θ. (F) No idea.

• In this example, let Z = # misses before the first score. Probabilities for Z?

→ Here P(Z = 0) = P(score first time) = θ.

→ And, P(Z = 1) = P(miss-score) = (1− θ)θ.
→ And, P(Z = 2) = P(miss-miss-score) = (1− θ)2θ.

→ And, P(Z = 3) = P(miss-miss-miss-score) = (1− θ)3θ. (E)

→ In general, P(Z = k) = P(miss-miss-. . . -miss-score) = (1 − θ)kθ, valid for all

k = 0, 1, 2, 3, . . ..

→ This is the “Geometric(θ) distribution”. Can write Z ∼ Geometric(θ).

• Check: P(Z = k) ≥ 0 for all k. Yep!

→ Check:
∑∞

k=0(1− θ)kθ = θ[1 + (1− θ) + (1− θ)2 + (1− θ)3 + . . .]

= θ[ 1
1−(1−θ) ] = θ[1

θ
] = 1. (Geometric series.) Yep!

• [Some books count # attempts up to and including first success: one more.]

POLL: e.g. Suppose 1/4 of students have long hair. You repeatedly pick students at

random, with replacement. What is P(the sixth student is the first with long hair)?

(A) (1/4)(3/4). (B) (1/4)5(3/4). (C) (1/4)(3/4)5. (D) (1/4)6(3/4).

(E) (1/4)(3/4)6.

→ Let X = # students before first one with long hair. Then we want to find

P(X = 5). And, here X ∼ Geometric(1/4).

→ So, P(X = 5) = (1/4)
(
1− (1/4)

)5
= (1/4)(3/4)5 = 243/4096

.
= 0.059.

• Suppose again that X ∼ Geometric(1/4). What is P(X =∞)?

→ Well, P(X < m) =
∑m−1

k=0 P(X = k) =
∑m−1

k=0 (1/4)(3/4)k = (1/4)[1 + (3/4) +

(3/4)2 + . . .+ (3/4)m−1] = (1/4)1−(3/4)m

1−(3/4)
= 1− (3/4)m. This is < 1.

→ So, P(X ≥ m) = 1− P(X < m) = 1− [1− (3/4)m] = (3/4)m.
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→ So, P(X ≥ m) = (3/4)m > 0 for any m ∈ N. (“unbounded random variable”)

→ But also, {X ≥ m} ↘ {X =∞}. [check!]

→ Hence, by Continuity of Probabilities,

P(X =∞) = limm→∞ P(X ≥ m) = limm→∞(3/4)m = 0. Phew!

• If X ∼ Geometric(θ) for any 0 < θ < 1, and any m ∈ N, then we still have

P(X ≥ m) = (1− θ)m > 0, unbounded, but still P(X =∞) = 0.

Suggested Homework: 2.3.6, 2.3.10, 2.3.15, 2.3.16(a,b), 2.3.23, 2.3.27.

• Suppose X ∼ Geometric(θ), and a, b ∈ N. Then what is P(X ≥ a+ b |X ≥ a)?

→ P(X ≥ a+ b |X ≥ a) = P(X≥a+b and X≥a)
P(X≥a)

= P(X≥a+b)
P(X≥a)

= (1−θ)a+b
(1−θ)a = (1− θ)b.

→ So what? Well, this is equal to P(X ≥ b).

→ Suppose your waiting time (for a bus, or an elevator, or . . . ) is Geometric(θ).

→ Suppose you’ve already waited for a minutes.

→ Then the probabilities for how long you still have to wait, are the same as they

were when you started waiting!

→ This is the “memoryless” or “forgetfulness” property of Geometric(θ).

Poisson Distribution (§2.3.1)

• e.g. Suppose Toronto has an average of λ = 5 house fires per day.

→ Intuitively, this is caused by a very large number n of buildings, each of which

has a very small probability θ of having a fire.

→ Let λ = nθ, i.e. θ = λ/n. (Then λ is the “average” number of fires – later.)

→ Then the number of fires has the distribution Binomial(n, λ/n), so

P(#fires = k) =

(
n

k

)
θk(1− θ)n−k

=
n(n− 1)(n− 2) . . . (n− k + 1)

k!
(λ/n)k [1− (λ/n)]n−k .

→ Now, what happens as n→∞, for a fixed value of k?

→ Well, since k � n, we have n
n

= 1, n−1
n
→ 1, n−2

n
→ 1, . . . n−k+1

n
→ 1.

→ Hence, n(n−1)(n−2)...(n−k+1)
nk

→ 1.

→ Also, from calculus, ex = 1 + x+ x2

2!
+ . . ., so for small x ∈ R, ex ≈ 1 + x.

→ So, [1− (λ/n)]n−k ≈ [1− (λ/n)]n ≈ [e−λ/n]n = e−λ.

→ Hence, as n→∞, we have P(#fires = k) → 1
k!
λke−λ = e−λ λ

k

k!
.

→ This is the Poisson(λ) distribution: P(k) = e−λ λk

k!
, for k = 0, 1, 2, 3, . . ..

• Check:
∑∞

k=0 e
−λ λk

k!
= e−λ [1 + λ+ λ2

2!
+ λ3

3!
+ . . .] = e−λ [eλ] = 1. Yep!

• In general, if n is very large, and θ is very small, then Binomial(n, θ) is well

approximated by Poisson(λ) where λ = nθ. “Poisson approximation”

• e.g. Suppose Y ∼ Poisson(3). What is P(Y = 4)?

→ Well, P(Y = 4) = e−λ λk

k!
= e−3 34

4!
= e−3 81

24

.
= 0.168.
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POLL: e.g. Suppose Y ∼ Binomial(20000, 0.0001). Then the actual value

of P(Y = 4), and the Poisson approximation value of P(Y = 4), are:

(A) 20000 (0.0001)4, and e−20000 (20000)4

4!
.

(B)
(

20000
4

)
(0.0001)4, and e−20000 (2)4

4!
.

(C)
(

20000
4

)
(0.0001)4(0.9999)19996, and e−2 (2)4

4!
.

(D)
(

20000
4

)
(0.0001)4(0.9999)19996, and e−20000 (2)4

4!
.

• Here Y ∼ Binomial(n, θ) where n = 20000 and θ = 0.0001.

→ So, P(Y = 4) =
(
n
4

)
θ4(1− θ)n−4 =

(
20000

4

)
(0.0001)4(0.9999)19996

• Poisson Approximation: Here λ = nθ = 20000 · 0.0001 = 2.

→ So, P(Y = 4) ≈ e−λ λ
4

4!
= e−2 (2)4

4!

POLL: To how many decimal points do these two values agree? (Don’t compute it,

just guess.) (A) 3. (B) 4. (C) 5. (D) 6. (E) 7. (F) 8.

→ Here P(Y = 4) =
(

20000
4

)
(0.0001)4(0.9999)19996 .

= 0.09022352216.

→ And, the approximation is P(Y = 4) ≈ e−2 (2)4

4!

.
= 0.09022352178.

→ (Agree to 8 decimal places! Or even 9, with rounding!)

• Or, if Y ∼ Binomial(200, 0.01), then still λ = 200 · 0.01 = 2, so Poisson approxi-

mation is the same, but how close is it now?

POLL: Same question as above, but now for Binomial(200, 0.01).

→ Now P(Y = 4) =
(

200
4

)
(0.01)4(0.99)200−4 .

= 0.0902197.

→ Still pretty close: 4 decimals! (Or 5 with rounding!) But not as close.

→ Binomial(20,0.1): P(Y=4)
.
= 0.0897788. (3 decimals with rounding)

→ Binomial(10,0.2): P(Y=4)
.
= 0.0881; Binomial(5,0.4):

.
= 0.0768; worse.

Suggested Homework: 2.3.8, 2.3.12, 2.3.19, 2.3.27. Optional: 2.3.18, 2.3.30.

• We’ll omit some other common discrete distributions (save for next year!).

→ e.g. Negative-Binomial(r, θ) and Hypergeometric(N,M, n).

Law of Total Probability (again) (§2.3)

• If X is a discrete variable which always equals one of the values x1, x2, . . ., then

the events {X = xi} form a partition. So, we get that . . .

• [Law of Total Probability – Discrete Random Variable Version]

If X is a discrete random variable, with possible values x1, x2, . . ., and corresponding

probabilities p1, p2, . . ., and B is any event, then

P(B) =
∑

i P(X = xi) P(B |X = xi) =
∑

i pi P(B |X = xi).

→ In fact, since P(X = x) = 0 for all other x, we can also write this as:

P(B) =
∑

x∈R P(X = x) P(B |X = x).

————————— END WEDNESDAY #4 —————————
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POLL: Suppose we roll one fair six-sided die, and then flip a number of coins equal

to the number showing on the die. Let X = # Heads. Then P(X = 3) equals:

(A)
∑6

y=3(1/6) [
(
y
3

)/
2y]. (B)

(
6
3

)/
2y. (C) 6!

3!

/
23. (D)

∑6
y=3(1/6) [y(y − 1)(y −

2)
/

2y]. (E)
∑6

y=1(1/6) [y(y − 1)(y − 2)
/

6(2y)]. (F) No idea.

• Let Y = number on die. Then Y is discrete, with possible values {1, 2, 3, 4, 5, 6}.
→ Use the values of Y as a partition! Then . . .

P(X = 3) =
∑

y∈R P(Y = y) P(X = 3 |Y = y) =
6∑
y=1

P(Y = y) P(X = 3 |Y = y)

=
∑6

y=3(1/6) [
(
y
3

) /
2y]. (A)

→ This equals 1
6

(
1
8

+ 4
16

+ 10
32

+ 20
64

)
= 1

6
(1) = 1

6
. (Why? Coincidence!)

→ And, P(X = 4) =
∑

y∈R P(Y = y) P(X = 4 |Y = y) =
∑6

y=1 P(Y = y) P(X =

4 |Y = y) =
∑6

y=4(1/6) [
(
y
4

) /
2y] = 1

6

(
1
16

+ 5
32

+ 15
64

)
= 29/384

.
= 0.0755.

• e.g. Suppose we roll one fair six-sided die, and then attempt a number of free

throws equal to the number showing on the die. Assume we have independent prob-

ability 1/3 of scoring on each free throw. Let X = # Scores. Compute P(X = 3).

→ Let Y = number on die. Then by the Law of Total Probability,

P(X = 3) =
∑

y∈R P(Y = y) P(X = 3 |Y = y) =
∑6

y=1 P(Y = y) P(X = 3 |Y =

y) =
∑6

y=3(1/6)
[(

y
3

)
(1/3)3(2/3)y−3

]
= (1/6)

[
(1)(1/3)3(2/3)0 + (4)(1/3)3(2/3)1 +

(10)(1/3)3(2/3)2 + (20)(1/3)3(2/3)3
]

= . . . = (1/6) [379/729]
.
= 0.087.

Understanding Distributions Using the Computer Software “R”

• Recall – basic info and links at: probability.ca/Rinfo.html

→ Also discussed in Appendix B of the textbook.

• Can use “R” to simulate from probability distributions!

→ e.g. “rbinom(1,10,1/2)”, “rgeom(1,0.2)”, “rpois(1,5)”.

→ Can get more info with e.g. “?rbinom”, etc.

• Can also plot probabilities, e.g. “plot(dbinom(0:10,10,1/2))”, “plot(dgeom(0:10,0.2))”

→ [Also: other parameter values, and different options like “type=’b’ ”, etc.]

Continuous Random Variables (§2.4)

• A random variable X is continuous if P(X = x) = 0 for all x.

→ Then
∑

x∈R P(X = x) =
∑

x∈R 0 = 0. The “opposite” of discrete!

• e.g. The Uniform[0,1] distribution (already mentioned):

→ X ∼ Uniform[0, 1] if P(a ≤ X ≤ b) = b− a whenever 0 ≤ a ≤ b ≤ 1.

→ Then e.g. P(X ∈ [0, 1]) = P(0 ≤ X ≤ 1) = 1− 0 = 1,

P(1/3 ≤ X ≤ 3/4) = (3/4)− (1/3) = 5/12,

P(X ≥ 2/3) = P(2/3 ≤ X ≤ 1) = 1− (2/3) = 1/3, etc.
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→ Also, P(X > 1) = 0, and P(X < 0) = 0, so e.g. P(1/3 ≤ X ≤ 5) = P(1/3 ≤
X ≤ 1) = 1− (1/3) = 2/3, etc.

→ And, we previously showed (using Continuity Of Probabilities) that we can

always replace “≤” with “<”, or “>” by “≥”, etc. (Also true since P(X = x) = 0.)
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• Alternative representation: Let

f(x) =


0, x < 0

1, 0 ≤ x ≤ 1

0, x > 1

→ Then for any a ≤ b,

P(a ≤ X ≤ b) =

∫ b

a

f(x) dx .

→ And as a check, f(x) ≥ 0, and
∫∞
−∞ f(x) dx = 1. More complicated, but . . .

• A density function is “any” f : R→ R with f(x) ≥ 0 and
∫∞
−∞ f(x) dx = 1.

→ Given any density function, can define P(a ≤ X ≤ b) =
∫ b
a
f(x) dx for a ≤ b.

→ This defines a new distribution! Very general! (“absolutely continuous”)

• Follows that P(X = a) = P(a ≤ X ≤ a) =
∫ a
a
f(x) dx = 0, i.e. X is continuous.

• If f(x) is the density function for a random variable X, write it as fX(x).

Some First Continuous Distributions (§2.4.1)

• e.g. the Uniform[5,12] distribution has density: fX(x) =


0, x < 5

1/7, 5 ≤ x ≤ 12

0, x > 12
Diagram:

→ Then fX(x) ≥ 0, and
∫∞
−∞ fX(x) dx =

∫ 5

−∞(0) dx +
∫ 12

5
(1/7) dx +

∫∞
12

(0) dx =

0 + (1/7)(7) + 0 = 1. Good.

POLL: Then for any 5 ≤ a ≤ b ≤ 12, the probability P (a ≤ X ≤ b) is equal to:

(A) b− a. (B) 1
7

(b− a). (C) 2
7

(12− a). (D) 2
7

(b− 5). (E) 1
7

(b− a− 5).

(F) No idea.

• For any L < R, the Uniform[L,R] density is: fX(x) =


0, x < L

1/(R− L), L ≤ x ≤ R

0, x > R

→ Then fX(x) ≥ 0, and
∫∞
−∞ fX(x) dx =

∫ L
−∞(0) dx +

∫ R
L

1
R−L dx +

∫∞
R

(0) dx =

0 + 1
R−L (R− L) + 0 = 1. Good.

→ And then whenever L ≤ a ≤ b ≤ R, then P (a ≤ X ≤ b) = b−a
R−L .
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→ e.g. if L = 5 and R = 12, then P (a ≤ X ≤ b) = b−a
R−L = 1

7
(b− a). (Of course.)

• If X ∼ Uniform[L,R], then P(L ≤ X ≤ R) = 1. (Bounded distribution.)

• e.g. Let f(x) = e−x for x ≥ 0, otherwise f(x) = 0. Diagram:

→ Then f(x) ≥ 0, and
∫∞
−∞ f(x) dx =

∫ 0

−∞(0) dx+
∫∞

0
e−x dx = (0)+(−e−x)

∣∣∣x=∞

x=0
=

(−0)− (−1) = 1.

→ If X has this density f , for 0 ≤ a ≤ b, P(a ≤ X ≤ b) =
∫ b
a
e−x dx = e−a − e−b.

→ Also P(X ≥ a) = e−a. This is the Exponential(1) distribution.

• More generally, for any λ > 0, let f(x) = λ e−λx for x ≥ 0, otherwise f(x) = 0.

→ Then f(x) ≥ 0, and
∫∞
−∞ f(x) dx =

∫ 0

−∞(0) dx+
∫∞

0
(λ e−λx) dx = −e−λx

∣∣∣x=∞

x=0
=

(−0)− (−1) = 1.

→ If X has this density f , for 0 ≤ a ≤ b, P(a ≤ X ≤ b) = e−λa − e−λb.
→ Also P(X ≥ a) = e−λa. This is the Exponential(λ) distribution.

→ Many useful properties. Good model of e.g. how long a lightbulb will last.

POLL: What property does Exponential(λ) have, just like a previous distribution?

(A) It gives probabilities for coin flips, just like Binomial(n, θ).

(B) It’s a bounded distribution, just like Uniform[L,R].

(C) It has the memoryless property, just like Geometric(θ).

(D) It is a limit of Binomials, just like Poisson(λ).

(E) All of the above.

(F) Exactly two of the above.

• Suppose X ∼ Exponential(λ), and a, b > 0. Then what is P(X ≥ a+ b |X ≥ a)?

→ P(X ≥ a+ b |X ≥ a) = P(X≥a+b and X≥a)
P(X≥a)

= P(X≥a+b)
P(X≥a)

= e−λ(a+b)

e−λa
= e−λb.

→ So what? Well, this is equal to P(X ≥ b).

→ If your waiting time is Exponential(λ), and you’ve already waited for a minutes,

then the probabilities for how long you still have to wait are the same as they were

when you started waiting. Just like for Geometric(θ).

→ This is the “memoryless” or “forgetfulness” property of Exponential(λ).

Suggested Homework: 2.4.1, 2.4.2, 2.4.3, 2.4.4, 2.4.5, 2.4.6, 2.4.7, 2.4.8, 2.4.9,

2.4.10, 2.4.11, 2.4.12, 2.4.14.

The Normal Distribution (§2.4.1)
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• Let φ(x) = 1√
2π
e−x

2/2 for x ∈ R.

→ “Standard normal density”

→ “bell curve”, “Gaussian”
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→ Clearly φ(x) ≥ 0.

→ Fact:
∫∞
−∞ φ(x) dx = 1.

→ (Proof uses polar coordinates: p. 126.)

→ So, it’s a density. Important! Amazing!

• If X has density φ, then we say that X has the Normal(0,1) or N(0,1) distribution.

→ Then P(a ≤ X ≤ b) =
∫ b
a
φ(x) dx =

∫ b
a

1√
2π
e−x

2/2 dx for all a ≤ b.

→ Cannot be computed analytically. (No exact anti-derivative function.)

→ But can be computed using software, or using tables like Appendix D.2.

• More generally, for any µ ∈ R and σ > 0, let f(x) = 1
σ
√

2π
e−(x−µ)2/2σ2

.

→ Then f(x) ≥ 0. By change-of-variable theorem,
∫∞
−∞ f(x) dx =

∫∞
−∞ φ(x) dx = 1.

→ This is the density of the Normal(µ, σ2) or N(µ, σ2) distribution.

→ Previous case was: µ = 0, σ = 1. (“Standard normal distribution”)

→ Curve is centered at µ, so changing µ “shifts” it.

→ Increasing σ makes it “fatter”; decreasing σ makes it “thinner”.

→ [Plot in R: e.g. “plot(\(x) dnorm(x,2,3), xlim=c(-4,4), ylim=c(0,1))”]

• In fact, if Z ∼ Normal(0, 1), and W = µ + σ Z, then by the change-of-variable

formula (coming soon), W ∼ Normal(µ, σ2).

• So, there is a normal density for every “location” µ and “scale” σ.

• Good model for e.g. human heights, weights of eggs, etc.

→ See e.g. https://www.statology.org/example-of-normal-distribution/

• The key distribution for the Central Limit Theorem and more! (Later.)

→ Arises naturally when there are lots of small influences.

→ See e.g. https://www.mathsisfun.com/data/quincunx.html

Suggested Homework: 2.4.13, 2.4.26.

• We’ll omit some other common continuous distributions, e.g. Gamma(α, λ).

Cumulative Distribution Functions (cdf) (§2.5)

• For any random variable X, the cumulative distribution function (cdf) is the

function FX defined by FX(x) = P(X ≤ x) for all x ∈ R.

→ If X is discrete, then FX(x) =
∑

u≤x P(X = u) =
∑

u≤x pX(u).

→ Or, if X is absolutely continuous, then FX(x) =
∫ x
−∞ fX(u) du.

POLL: If a < b, the expression FX(b)− FX(a) is equal to:

(A) P[X ≤ min(a, b)]. (B) P[X ≥ max(a, b)]. (C) P[a < X < b].

(D) P[a < X ≤ b]. (E) P[a ≤ X < b]. (F) P[a ≤ X ≤ b].

• Well, for any a < b, let A = {X ≤ a} and B = {X ≤ b}.
→ Then A ∩B = A = {X ≤ a}.
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→ Then, {a < X ≤ b} = {X ≤ b} ∩ {X > a} = {X ≤ b} ∩ {X ≤ a}C = B ∩ AC .

→ Hence, P(a < X ≤ b) = P(B ∩ AC) = P(B)− P(A ∩B)

= P(B)− P(A) = P(X ≤ b)− P(X ≤ a) = FX(b)− FX(a). So: (D).

POLL: If X has cdf FX , then P(a ≤ X ≤ b) must always be equal to:

(A) FX(b)− FX(a).

(B) FX(b)− limn→∞ FX(a− 1
n
).

(C) FX(b)− limn→∞ FX(a+ 1
n
).

(D) limn→∞ FX(b− 1
n
)− FX(a).

(E) limn→∞ FX(b+ 1
n
)− FX(a).

(F) limn→∞ FX(b− 1
n
)− limn→∞ FX(a− 1

n
).

• Indeed, by Continuity Of Probabilities, P(a ≤ X ≤ b) = P(X ≤ b)−P(X < a) =

P(X ≤ b)− limn→∞ P(X ≤ a− 1
n
) = FX(b)− limn→∞ FX(a− 1

n
). (B)

→ If FX is a continuous function, then P(a ≤ X ≤ b) = FX(b)− FX(a).

• Special case: P(X = a) = P(a ≤ X ≤ a) = FX(a)− limn→∞ FX(a− 1
n
).

→ Might equal 0, but might be positive!

→ If FX is continuous, then P(X = a) = P(a ≤ X ≤ a)

= FX(a)− limn→∞ FX(a− 1
n
) = FX(a)−FX(a) = 0.

• And, e.g. P(3 < X ≤ 5 or 6 < X ≤ 9) = [FX(5)−FX(3)] + [FX(9)−FX(6)], etc.

• So, all probabilites for X can be found from FX . (“distribution function”)

POLL: The cumulative distribution function (cdf) FX of any real-valued random

variable X must always satisfy the following property:

(A) 0 ≤ FX(x) ≤ 1 for all x ∈ R.

(B) If x ≤ y, then FX(x) ≤ FX(y), i.e. FX is a non-decreasing function.

(C) limx→−∞ FX(x) = 0.

(D) limx→∞ FX(x) = 1.

(E) All of the above.

(F) Exactly two of the above.

—————————— END MONDAY #4 ——————————

• Well, let’s see . . .

→ FX(x) = P(X ≤ x) is a probability, so 0 ≤ FX(x) ≤ 1 for all x ∈ R.

→ If x ≤ y, and we set A = {X ≤ x} and B = {X ≤ y}, then A ⊆ B. Hence,

P(A) ≤ P(B), i.e. FX(x) ≤ FX(y). (non-decreasing)

→ If An = {X ≤ −n}, then {An} ↘ {X = −∞} = ∅, so by Continuity of

Probabilities, limn→∞ P(An) = P(
⋂
nAn) = P(∅) = 0.

→ Similarly, if An = {X ≤ +n}, then {An} ↗ {X < ∞} = S, so by Continuity

of Probabilities, limn→∞ P(An) = P(
⋃
nAn) = P(S) = 1.

→ So: (E) All of the above!
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POLL: Are cumulative distribution functions (cdfs) continuous functions?

(A) Yes, they must always be continuous functions.

(B) They must be left-continuous, but might not be right-continuous.

(C) They must be right-continuous, but might not be left-continuous.

(D) They might be neither left- nor right-continuous.

(E) No idea.

• Well, if A = (−∞, x] and An = (−∞, x+ 1
n
], then:

{An} ↘ A, so P(An)→ P(A), i.e. FX(x+ 1
n
)→ FX(x). “right-continuous”

• If A = (−∞, x] and An = (−∞, x− 1
n
], does {An} ↗ A?

→ No! {An} ↗ (−∞, x). [Since x 6∈ An for any n.]

→ So, P(An)→ P((−∞, x)) = P(X < x). [Not P(X ≤ x).]

→ i.e. FX(x− 1
n
)→ P(X < x) = P(X ≤ x)− P(X = x) = FX(x)− P(X = x).

• If P(X = x) > 0, then FX(x) is discontinuous at x. Just right-continuous. (C)

• If P(X = x) = 0, then FX(x− 1
n
)→ FX(x), so FX is also “left-continuous”.

→ Then, since it’s right-continuous and left-continuous, then it is continuous!

→ So, if X is a continuous random variable, i.e. P(X = x) = 0 for all x, then FX
is a continuous function for all x. (This is actually “if and only if”.)

• In general, the jump-size of FX at x is equal to P(X = x).

• e.g. Flip 3 coins, X = # Heads.

POLL: In this example, what is the cdf value FX(2.5)?

(A) 1/8. (B) 3/8. (C) 1/2. (D) 5/8. (E) 7/8. (F) 1.

→ Know P(X = 0) = 1/8, P(X = 1) = 3/8, P(X = 2) = 3/8, P(X = 3) = 1/8.

→ So, for x < 0, FX(x) = P(X ≤ x) = 0.

→ And, for 0 ≤ x < 1, FX(x) = P(X ≤ x) = P(X = 0) = 1/8.
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→ And, for 1 ≤ x < 2, FX(x) =

P(X ≤ x) = P(X = 0) + P(X = 1) =

1/8 + 3/8 = 4/8 = 1/2.

→ And, for 2 ≤ x < 3, FX(x) =

P(X ≤ x) = P(X = 0) + P(X = 1) +

P(X = 2) = 1/8 + 3/8 + 3/8 = 7/8. (E)

→ And, for x ≥ 3, FX(x) = P(X ≤ x) = P(X = 0) + P(X = 1) + P(X =

2) + P(X = 3) = 1/8 + 3/8 + 3/8 + 1/8 = 1.

→ [Graph.] All properties satisfied!

POLL: In this example, what is the value of FX(1)− limn→∞ FX(1− 1
n
)?

(A) 1/8. (B) 3/8. (C) 1/2. (D) 5/8. (E) 7/8. (F) 1.

→ FX(1)− limn→∞ FX(1− 1
n
) = P(X ≤ 1)−P(X < 1) = P(X = 1) = 3/8. (B)

• All discrete distributions have somewhat similar cdfs. (piecewise-constant)
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• e.g. Y = roll of one fair six-sided die. Check that all properties of FY are satisfied!
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FY (y) =



0, y < 1

1/6, 1 ≤ y < 2

2/6, 2 ≤ y < 3

3/6, 3 ≤ y < 4

4/6, 4 ≤ y < 5

5/6, 5 ≤ y < 6

1, y ≥ 6

• Continuous? e.g.X ∼ Uniform[0, 1].

→ Then P(X ≤ x) = 0 for x < 0.

→ And, P(X ≤ x) = 1 for x > 1.

→ For 0 ≤ x ≤ 1, P(X ≤ x) =

P(0 ≤ X ≤ x) = x− 0 = x.
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→Hence, FX(x) =


0, x < 0

x, 0 ≤ x < 1

1, x ≥ 1

• e.g. Z ∼ Uniform[L,R] for some L < R. Then, similarly, FZ(z) =


0, z < L
z−L
R−L , L ≤ z < R

1, z ≥ R

→ So e.g. if L = 2 and R = 5, then FZ(z) = z−2
3

for 2 ≤ z ≤ 5.
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• e.g. X ∼ Exponential(1).

→ Then P(X < 0) = 0.

→ So, for x < 0, FX(x) = 0.

→ For x ≥ 0, FX(x) = P(X ≤
x) =

∫ x
−∞ fX(u) du =

∫ x
0
e−u du = 1 −

e−x. [Graph.] All properties satisfied!

• e.g. Y ∼ Exponential(5).

→ Then P(Y < 0) = 0. So, for y < 0, FY (y) = 0.

→ For y ≥ 0, FY (y) = P(Y ≤ y) =
∫ y
−∞ fY (u) du =

∫ y
0

5 e−5u du = 1− e−5y.

• In general, if W ∼ Exponential(λ) for some λ > 0, then FW (w) = 0 for w < 0,

otherwise FW (w) = 1− e−λw.

• e.g. Suppose X ∼ Exponential(3). What is P(X ≥ 2.6)?

→ Can use previous knowledge that P(X ≥ a) = e−λa. Or . . .

→ Here FX is continuous, so P(X ≥ 2.6) = 1− P(X < 2.6) = 1− P(X ≤ 2.6) =

1− FX(2.6) = 1− [1− e−3(2.6)] = e−3(2.6) = e−7.8 .
= 0.00041.

Suggested Homework: 2.5.2, 2.5.3, 2.5.7, 2.5.8, 2.5.9, 2.5.12.
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)• e.g. Z ∼ Normal(0, 1).

→ Then FZ(x) = P(Z ≤ x) =∫ x
−∞ φ(u) du =

∫ x
−∞

1√
2π
e−u

2/2 du.

→ [Graph.] All properties satisfied!

→ Formula for this FZ(x)?

→ There isn’t one!

→ But it is so important that it has its own symbol: Φ(x).

→ It can be computed using software (R: “pnorm”), or tables like Appendix D.2.

• Furthermore, the bell curve is symmetric, i.e. φ(−u) = φ(u) for all u.

→ This implies that P(Z ≤ x) = P(Z ≥ −x), i.e. P(Z ≤ x) = 1− P(Z ≤ −x).

→ So, Φ(x) = 1− Φ(−x) for all x ∈ R, i.e. Φ(x) + Φ(−x) = 1.

→ It then also follows that Φ(0) = 1/2.

————————— END WEDNESDAY #5 —————————

POLL: e.g. Suppose Z ∼ Normal(0, 1). What is P(Z ≤ 1.43)?

(A) Φ(1.43). (B) 1 − Φ(−1.43). (C)
∫ 1.43

−∞ φ(x) dx. (D) (1/2) +
∫ 1.43

0
φ(x) dx.

(E) 1−
∫∞

1.43
φ(x) dx. (F) All of the above.

→ Well, P(Z ≤ 1.43) = Φ(1.43) = 1− Φ(−1.43).

→ From the table in Appendix D.2, this is
.
= 1− (0.0764) = 0.9236.

→ And, since Φ(x) =
∫ x
−∞ φ(x) dx and

∫∞
−∞ φ(x) dx = 1 and

∫ 0

−∞ φ(x) dx = 1/2,

the other expressions all equal this, too! So, (F)!

POLL: e.g. Suppose W ∼ Normal(5, 42). What is P(6 ≤ W ≤ 8)? (A) Φ(1/4).

(B) Φ(3/4). (C) Φ(3/4) + Φ(1/4). (D) Φ(3/4)−Φ(1/4). (E) Φ(7/8)−Φ(1/8).

→ Well, here W = 5 + 4Z where Z ∼ Normal(0, 1).

→ So, P(6 ≤ W ≤ 8) = P(6 ≤ 5 + 4Z ≤ 8) = P(1/4 ≤ Z ≤ 3/4).

→ By definition of Φ, this is P(Z ≤ 3/4)−P(Z ≤ 1/4) = Φ(3/4)−Φ(1/4). (D)

→ Then, this also equals

[1− Φ(−3/4)]− [1− Φ(−1/4)] = Φ(−1/4)− Φ(−3/4) = Φ(−0.25)− Φ(−0.75).

→ From the Appendix D.2 table, this is
.
= 0.4013− 0.2266 = 0.1747.

→ So, here P(6 ≤ W ≤ 8)
.
= 0.1747.

Suggested Homework: 2.5.4, 2.5.5.

• Suppose that X is absolutely continuous, with density function fX(x), and cumu-

lative distribution function FX(x). What is the relationship between fX and FX?

→ Well, we know that FX(x) := P(X ≤ x) =
∫ x
−∞ fX(u) du.

→ So, by the Fundamental Theorem of Calculus,

the derivative F ′X(x) := d
dx
FX(x) equals fX(x), at least if fX is continuous at x.

→ That is, the derivative of the cdf is the density!
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• e.g. Suppose X ∼ Exponential(1). Then we know FX(x) = 1− e−x for x ≥ 0.

→ Then for x > 0, F ′X(x) = d
dx

[1− e−x] = −(−e−x) = e−x = fX(x). Yep!

• e.g. Similarly, for any λ > 0, if Y ∼ Exponential(λ), then for y > 0, FY (y) =

1− e−λy, and F ′Y (y) = d
dy

[1− e−λy] = (−λ)(−e−λy) = λe−λy = fY (y). Yep!

• If Z ∼ Normal(0, 1), then we know Φ′(z) = φ(z) = 1√
2π
e−z

2/2.

→ Even though we don’t really know exactly what Φ(z) is!

• e.g. Suppose a r.v. X has cdf FX(x) =


0, x < 5

(x− 5)4, 5 ≤ x < 6

1, x ≥ 6

→ Valid cdf? (Yes! Increases from 0 to 1, right-continuous . . . )

→ Then e.g. P(3 < X ≤ 5.5) = FX(5.5)− FX(3) = (5.5− 5)4 − 0 = 0.0625.

→ e.g. Also, X has density function fX(x) = F ′X(x) =


0, x < 5

4(x− 5)3, 5 < x < 6

0, x > 6

• Mixture Distributions (§2.5.4): e.g. Consider the following random variables:

→ Y is the result of rolling one fair six-sided die, with cdf FY (y) as above.

→ Z ∼ Uniform[2, 5], with cdf FZ(z) = z−2
3

for 2 ≤ z ≤ 5 as above.

→ W ∼ Bernoulli(1/3) (indep.), so P(W = 1) = 1/3 and P(W = 0) = 2/3.

→ Then, we let X =

{
Y, W = 1

Z, W = 0

→ Intuitively, X is equal either to the result of the die (with probability 1/3), or

to a Uniform[2,5] variable (with probability 2/3).

POLL: Then what is, say, FX(4.4)? (A) FY (4.4) + FZ(4.4). (B) [FY (4.4) +

FZ(4.4)]/2. (C) (1/3)FY (4.4) + (1/3)FZ(4.4). (D) (1/3)FY (4.4) + (2/3)FZ(4.4).

→ Well, by the Law of Total Probability, FX(4.4) := P(X ≤ 4.4)

= P(X ≤ 4.4, W = 1) + P(X ≤ 4.4, W = 0)

= P(Y ≤ 4.4, W = 1) + P(Z ≤ 4.4, W = 0)

= P(Y ≤ 4.4) P(W = 1) + P(Z ≤ 4.4) P(W = 0)

= FY (4.4) (1/3) + FZ(4.4) (2/3) = (4/6) (1/3) + (2.4/3) (2/3). (D)

→ More generally, FX(x) = (1/3)FY (x) + (2/3)FZ(x), for all x ∈ R.

→ (Can then plug in FY (x) and FZ(x) to compute FX(x).)

→ The distribution of X is a mixture of the distributions of Y and of Z.

• In this example, is X continuous?

→ No! By independence, we have that e.g. P(X = 2) = P(W = 1, Y = 2) =

P(W = 1) P(Y = 2) = (1/3)(1/6) = 1/18 > 0. Not zero, like for the continuous case.

• Ah, so then is X discrete?

→ No! Here
∑

x∈R P(X = x) =
∑6

x=1 P(X = x) =
∑6

x=1 P(W = 1, Y = x) =∑6
x=1 P(W = 1) P(Y = x) =

∑6
x=1(1/3)(1/6) = 1/3 < 1. Not one, like for the
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discrete case.

• Here X is has a mixture distribution. Neither discrete nor continuous!

→ (In this course we’ll usually stick with either discrete or absolutely continuous.

But there are other kinds of random variables too. Even “singular”, beyond mixtures!)

Suggested Homework: 2.5.6, 2.5.13, 2.5.14, 2.5.15, 2.5.17, 2.5.18.

Change of Variable Formula (one-dimensional) (§2.6)

• Suppose X is a random variable, and h : R→ R is some function.

→ Then we can define Y = h(X), i.e. Y (s) = h(X(s)) for all s ∈ S. (e.g. Y = X2)

→ Then Y is another random variable. (“function of a random variable”)

→ So, Y has its own distribution. What is it??

• Discrete Case: Suppose X discrete: P(X = xi) = pi where pi ≥ 0 and
∑

i pi = 1.

→ Then, Y is discrete too, with P(Y = y) = P(h(X) = y) =
∑
{pi : h(xi) = y}.

→ That is, P(Y = y) = P(X ∈ {x : h(x) = y}).
→ Or, in terms of probability functions, pY (y) =

∑
x :h(x)=y pX(x).

→ Discrete Change-of-Variable Theorem.

POLL: e.g. X = roll of fair die, and Y = (X − 3)2. What is P(Y = 4)?

(A) 0. (B) 1/6. (C) 1/3. (D) 1/2. (E) 2/3. (F) 5/6.

→Well, P(Y = 4) = P(X ∈ {x : (x−3)2 = 4}) = P(X ∈ {1, 5}) = (1/6)+(1/6) =

2/6 = 1/3.

→ Also, P(Y = 1) = P(X ∈ {x : (x−3)2 = 1}) = P(X ∈ {2, 4}) = (1/6)+(1/6) =

2/6 = 1/3.

→ And, P(Y = 9) = P(X ∈ {x : (x− 3)2 = 9}) = P(X ∈ {6}) = (1/6). More?

→ Yes! Also P(Y = 0) = P(X ∈ {x : (x− 3)2 = 0}) = P(X ∈ {3}) = (1/6).

→ That is, pY (y) = 1/3 for y = 1, 4; pY (y) = 1/6 for y = 0, 9; otherwise 0.

• Easy! But what if X is continuous? Trickier!

• Absolutely Continuous Case: Suppose X has density fX(x), and Y = h(X).

→ Then what is the density function fY (y) for Y ?

POLL: Will Y necessarily be absolutely continuous at all?

(A) Yes, Y must be absolutely continuous (i.e., have a density).

(B) Well, Y must be continuous (i.e. P(Y=y) = 0 for all y), but not necessarily

absolutely continuous.

(C) Well, Y might not be continuous, but cannot be a discrete random variable.

(D) Actually, Y could even be a discrete random variable.

(E) No idea.

• Well, let’s consider an example . . .
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• e.g. X ∼ Uniform[0, 1], and h(x) =

{
2, x ≤ 1/3

4, x > 1/3

→ Then if Y = h(X), then P(Y = 2) = P(X ≤ 1/3) = 1/3, and P(Y = 4) =

P(X > 1/3) = 1− (1/3) = 2/3. That is, pY (2) = 1/3, and pY (4) = 2/3.

→ So, Y is discrete! Not continuous at all!

• But what if h satisfies certain conditions?

→ Then must Y be absolutely continuous, i.e. have a density fY (y)?

→ And if yes, then what must fY (y) equal?

[Reminder: MIDTERM #1, Wednesday Oct 9, at regular lecture time, in

Exam Centre (EX) room 320 or 100. Bring TCard, basic calculator.]

[Reminder: Monday Oct 14 is THANKSGIVING – no classes.]

—————————— END MONDAY #5 ——————————

(Midterm #1.)

————————— END WEDNESDAY #6 —————————

(Thanksgiving – no class.)

—————————— END MONDAY #6 ——————————

POLL: Suppose X is absolutely continuous, with density function fX(x), and Y =

h(X). Then Y must also be absolutely continuous, i.e. also have a density function,

provided that h is: (A) Continuous. (B) Non-decreasing. (C) Strictly increasing.

(D) Constant. (E) None of the above. (F) No idea.

• Absolutely Continuous Change-of-Variable Theorem: Suppose X has density

fX(x), and Y = h(X), where h : R → R is differentiable and strictly increasing

or decreasing (at least on {x : fX(x) > 0}), with inverse function h−1(y). Then Y is

also absolutely continuous, with density function fY (y) = fX
(
h−1(y)

) / ∣∣h′(h−1(y)
)∣∣.

→ That is, fY (y) = fX(x)
/
|h′(x)|, where y = h(x) so x = h−1(y).

• Proof: Assume h is strictly increasing.

→ Then it has an inverse function, h−1(y), with X = h−1(Y ).

→ By the Inverse Function Theorem, d
dy
h−1(y) :=

(
h−1
)′

(y) = 1
/
h′(h−1(y)).

• Method #1:

→ Here P(a ≤ Y ≤ b) = P(h−1(a) ≤ X ≤ h−1(b)) =
∫ h−1(b)

h−1(a)
fX(x) dx.

→ Now make the “substitution” x = h−1(y).

→ Then by “integration by subsitution” or the “chain rule” from calculus, we

have dx = d
(
h−1(y)

)
=
(
h−1
)′

(y) dy = [1
/
h′(h−1(y))] dy.

→ Hence, from above, P(a ≤ Y ≤ b) =
∫ b
a

[
fX
(
h−1(y)

)/
h′(h−1(y))

]
dy, ∀a ≤ b.
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→ But this equals
∫ b
a
fY (y) dy, so we must have fY (y) = fX

(
h−1(y)

)/
h′
(
h−1(y)

)
.

→ (The first part fX
(
h−1(y)

)
is intuitive. The rest is from the chain rule.)

• Method #2:

→ Here FY (y) = P(Y ≤ y) = P(h(X) ≤ y) = P(X ≤ h−1(y)) = FX
(
h−1(y)

)
.

→ So, fY (y) = d
dy
FY (y) = d

dy
FX
(
h−1(y)

)
= fX

(
h−1(y)

)
d
dy
h−1(y)

= fX
(
h−1(y)

)
[1/ h′

(
h−1(y)

)
] = fX

(
h−1(y)

)
/ h′
(
h−1(y)

)
.

• Note: We need h to be increasing only where fX(x) > 0; other x don’t matter.

• If instead h is strictly decreasing, then everything is still the same, except that h′

and (h−1)′ are negative, so we need to put an absolute value sign on it.

→ Or, in Method #2, P(Y ≤ y) = P(X ≥ h−1(y)) = 1 − P(X ≤ h−1(y)) =

1− FX(h−1(y)) which gives a negative.

• e.g. Suppose X ∼ Uniform[0, 1], and Y = 5X + 4.

POLL: Will Y be absolutely continuous? (C) Yes. (D) No. (E) No idea.

POLL: What distribution do you think Y will have?

(A) Uniform[0,1]. (B) Uniform[0,5]. (C) Uniform[0,9]. (D) Uniform[4,9].

(E) Some other Uniform distribution. (F) Some non-Uniform distribution.

→ Then fX(x) = 1 for 0 ≤ x ≤ 1, otherwise 0.

→ Also h(x) = 5x+ 4, strictly increasing, h′(x) = 5.

→ And, if y = 5x+ 4, then x = (y − 4)/5, so h−1(y) = (y − 4)/5.

→ So, fX(h−1(y)) = fX
(
(y − 4)/5

)
, which = 1 for 4 ≤ y ≤ 9 otherwise 0.

→ And, h′
(
h−1(y)

)
= h′

(
(y − 4)/5

)
= 5.

→ So, fY (y) = fX
(
h−1(y)

) / ∣∣h′(h−1(y)
)∣∣ = 1

/
5 for 4 ≤ y ≤ 9 otherwise 0.

→ That is, Y ∼ Uniform[4, 9], a familiar distribution! (Makes sense.) (D)

• Alternatively, use cdfs!

→ In above example, for 4 ≤ y ≤ 9:

→ FY (y) = P(Y ≤ y) = P(5X + 4 ≤ y) = P(X ≤ (y − 4)/5) = (y − 4)/5.

→ Hence, for 4 ≤ y ≤ 9, fY (y) = d
dy
FY (y) = d

dy
(y − 4)/5 = 1/5. Same as before!

• e.g. Suppose X ∼ Uniform[0, 1], and Y = X2.

POLL: Will Y be absolutely continuous? (C) Yes. (D) No. (E) No idea.

POLL: What distribution do you think Y will have?

(A) Uniform[0,1]. (B) Uniform[0,2]. (C) Uniform[0,4]. (D) Uniform[1,4].

(E) Some other Uniform distribution. (F) Some non-Uniform distribution.

→ Then fX(x) = 1 for 0 ≤ x ≤ 1, otherwise 0.

→ Also h(x) = x2, strictly increasing for x ≥ 0, and h′(x) = 2x.

→ And, h−1(y) =
√
y for y ≥ 0, so fX(h−1(y)) is 1 for 0 < y ≤ 1 otherwise 0.
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→ Therefore, h′(h−1(y)) = 2h−1(y) = 2
√
y for y > 0, otherwise 0.

→ So, fY (y) = fX
(
h−1(y)

) / ∣∣h′(h−1(y)
)∣∣ = 1

/
(2
√
y) for 0 < y ≤ 1 otherwise 0.

→ Is that really correct? Check:
∫∞
−∞ fY (y) dy =

∫ 1

0
[1/(2

√
y)] dy = 1

2

∫ 1

0
y−1/2 dy =

1
2

(
2y1/2

)∣∣∣y=1

y=0
= 1

2

(
2[11/2 − 01/2]

)
= 1

2
· 2 · 1 = 1. Phew! [And Y is not uniform: (F).]

→ Alternatively: For 0 ≤ y ≤ 1, Fy(y) = P(Y ≤ y) = P(X2 ≤ y) = P(X ≤
√
y) =

√
y, so fY (y) = d

dy
FY (y) = d

dy

√
y = d

dy
y1/2 = (1/2)y−1/2 = 1/(2

√
y).

Suggested Homework: 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.6.5, 2.6.6, 2.6.7, 2.6.9, 2.6.10,

2.6.12, 2.6.14, 2.6.15.

• e.g. Suppose X ∼ Exponential(5), and Y = X2.

POLL: Will Y be absolutely continuous? (C) Yes. (D) No. (E) No idea.

POLL: What distribution do you think Y will have?

(A) Uniform[0,1]. (B) Uniform[0,5]. (C) Exponential(10). (D) Exponential(25).

(E) Some other Uniform or Exponential distribution. (F) Some non-Uniform nor

Exponential distribution.

→ Here for y > 0, FY (y) = P(Y ≤ y) = P(X2 ≤ y) = P(X ≤ √y) = 1− e−5
√
y.

→ So, for y > 0, fY (y) = d
dy
FY (y) = d

dy
[1 − e−5

√
y] = −e−5

√
y (−5y−1/2/2)) =

(5/2)e−5
√
y/
√
y. (Otherwise fY (y) = 0.) Crazy, but true! [Check: Integrates to 1.]

→ Or, use the Theorem: Again h(x) = x2, strictly increasing for x ≥ 0, h′(x) =

2x, h−1(y) =
√
y for y ≥ 0, and here fX(x) = 5e−5x for x ≥ 0, so for y ≥ 0,

fY (y) = fX
(
h−1(y)

) / ∣∣h′(h−1(y)
)∣∣ = 5e−5

√
y
/

2
√
y. Same! (F)

• e.g. Suppose Z ∼ Normal(0, 1), and Y = 6 + 3Z.

POLL: Will Y be absolutely continuous? (C) Yes. (D) No. (E) No idea.

POLL: What distribution do you think Y will have?

(A) Normal(0,1). (B) Normal(0,9). (C) Normal(3, 62). (D) Normal(6, 32).

(E) Some other Normal distribution. (F) Some non-Normal distribution.

————————— END WEDNESDAY #7 —————————

• Here fZ(z) = φ(z) = 1√
2π
e−z

2/2.

→ Also h(z) = 6+3z, strictly increasing, with h′(z) = 3. And, h−1(y) = (y−6)/3.

→ So, fY (y) = fZ
(
h−1(y)

) / ∣∣h′(h−1(y)
)∣∣ = φ

(
(y − 6)/3

) /
3

= 1√
2π
e−[(y−6)/3]2/2

/
3 = 1

3
√

2π
e−(y−6)2/(2·32).

→ This is the same as 1
σ
√

2π
e−(y−µ)2/(2σ2) where µ = 6 and σ = 3.

→ Hence, Y ∼ Normal(6, 32), as might be expected. (D)

→ (Similarly for any µ besides 6, and σ besides 3.)

→ This demonstrates that if Z ∼ Normal(0, 1), and Y = µ + σZ, then Y ∼
Normal(µ, σ2), as we claimed before. (Phew.)
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Joint Distributions (§2.7)

• Suppose X and Y are two random variables.

→ Suppose we know the distribution of X and also know the distribution of Y .

→ Does that tell us the whole story? Maybe not!

• e.g. Suppose we flip two fair (independent) coins.

→ Let X = Ifirst coin Heads, i.e. X = 1 if first coin Heads, otherwise X = 0.

→ Then X ∼ Bernoulli(1/2), i.e. P(X = 0) = P(X = 1) = 1/2.

→ Let Y1 = X, Y2 = 1−X, and Y3 = Isecond coin Heads.

POLL: What are the distributions of Y1 and Y2 and Y3?

(A) Y1 ∼ Bernoulli(1/2); Y2 ∼ Bernoulli(1/2); Y3 ∼ Bernoulli(1/2).

(B) Y1 ∼ Bernoulli(1/2); Y2 ∼ Bernoulli(−1/2); Y3 ∼ Bernoulli(3/2).

(C) Y1 ∼ Bernoulli(1/2); Y2 ∼ Bernoulli(0); Y3 ∼ Bernoulli(1).

(D) Y1 ∼ Bernoulli(1/2); Y2 ∼ Bernoulli(1); Y3 ∼ Bernoulli(1/2).

(E) Some other Bernoulli distributions.

(F) Some other non-Bernoulli distributions.

• Here each of the Yi is equally likely to equal 0 or 1.

→ So Y1 ∼ Bernoulli(1/2), Y2 ∼ Bernoulli(1/2), and Y3 ∼ Bernoulli(1/2). (A)

→ But what about their relationships to X? e.g. P(X = 1 and Yi = 1)?

POLL: What are P(X=1, Y1=1); and P(X=1, Y2=1); and P(X=1, Y3=1)?

(A) 1/4; 1/4; 1/4. (B) 1/2; 1/2; 1/2. (C) 1/2; 1/2; 0. (D) 1/2; 0; 1/2.

(E) 1/2; 0; 1/4. (F) 1/4; 0; 1/2.

→ Here P(X=1, Y1=1) = 1/2 [since Y1 = X, same], and P(X=1, Y2=1) = 0

[since Y2 = 1−X, opposite], and P(X=1, Y3=1) = 1/4 [since Y3, X indep.]. (E)

→ All different! Despite same individual distributions!

• To really understand multiple variables, we need their joint distribution.

→ How to keep track? Joint probability functions (discrete case), joint density

functions (absolutely continuous case), joint cdfs (most general; first).

Joint Cumulative Distribution Functions (§2.7.1)

• Given random variables X and Y , their joint cumulative distribution function or

joint cdf is the function FX,Y : R2 → [0, 1] given by FX,Y (x, y) = P(X ≤ x, Y ≤ y) ≡
P(X ≤ x and Y ≤ y).

→ Like before, cdf’s provide all information about all joint probabilities, e.g.

P(a < X ≤ b, c < Y ≤ d) = FX,Y (b, d)−FX,Y (a, d)−FX,Y (b, c) +FX,Y (a, c). [Why?]

→ However, joint cdf’s can be quite tricky, and difficult to work with.

→ So, we will omit them here. (But feel free to ask about them!)
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Joint Probability Functions (§2.7.3)

• If X and Y are discrete, then we can keep track of their relationship by the joint

probability function pX,Y (x, y) := P(X = x, Y = y).

• Above example: X = Ifirst coin Heads, Y1 = X, Y2 = 1−X, and Y3 = Isecond coin Heads.

POLL: What is pX,Yi(x, y) with i = 1?

(A) pX,Yi(1, 1) = 1/2 and pX,Yi(0, 0) = 1/2 (otherwise pX,Yi(x, y) = 0).

(B) pX,Yi(1, 0) = 1/2 and pX,Yi(0, 1) = 1/2 (otherwise pX,Yi(x, y) = 0).

(C) pX,Yi(1, 0) = 1/2 and pX,Yi(0, 1) = pX,Yi(1, 1) = 1/4 (otherwise pX,Yi(x, y) = 0).

(D) pX,Yi(1, 0) = pX,Yi(0, 1) = pX,Yi(1, 1) = 1/3 (otherwise pX,Yi(x, y) = 0).

(E) pX,Yi(1, 0) = pX,Yi(0, 1) = pX,Yi(1, 1) = pX,Yi(0, 0) = 1/4 (o.w. pX,Yi(x, y) = 0).

(F) Other.

POLL: Same question (and answers), except with i = 2.

POLL: Same question (and answers), except with i = 3.

• If we know pX,Y (x, y), can we find pX(x) and pY (y)?

→ Yes! From the Law of Total Probability (Unconditioned Version), pX(x) =

P(X = x) =
∑

y P(X = x, Y = y) =
∑

y pX,Y (x, y) for all x. Similarly pY (y) =∑
x pX,Y (x, y) for all y. (“marginals”) So, pX,Y (x, y) has all the information.

• e.g. In above example, pX(1) = pX,Y3(1, 0) + pX,Y3(1, 1) = 1/4 + 1/4 = 1/2, etc.

→ Can also write e.g. pX,Y3(x, y) in a table, with pX(x) and pY3(y) at the right

and bottom margins, which is why they are called the “marginals”:

Y3 = 0 Y3 = 1 pX(x)

X = 0 1/4 1/4 1/2
X = 1 1/4 1/4 1/2

pY3(y) 1/2 1/2

POLL: If we switch from Y3 to Y1, which entries in the above table will change?

(A) The blue ones, only. (B) The green ones, only. (C) The red ones, only.

(D) The blue and green but not red ones. (E) The blue and red but not green ones.

(F) The green and red but not blue ones.

• Well, the marginal distribution of X (green) will not change.

→ And, the marginal distribution of the Yi (red) are all Bernoulli(1/2) so they

will not change.

→ But the joint (blue) probabilities will change, as discussed above. (A)

• Can we find other joint probabilities from pX,Y (x, y)?

→ e.g. can we find P(a ≤ X ≤ b, c ≤ Y ≤ d), for any a < b and c < d?

→ Yes! P(a ≤ X ≤ b, c ≤ Y ≤ d) =
∑

a≤x≤b
∑

c≤y≤d pX,Y (x, y), etc.

Suggested Homework: 2.7.3, 2.7.6.
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Joint Density Functions (§2.7.4)

• Random variables X and Y are jointly absolutely continuous if there is a joint

density function fX,Y : R2 → R, which is ≥ 0, with
∫∞
−∞

∫∞
−∞ fX,Y (x, y) dx dy = 1,

such that P(a ≤ X ≤ b, c ≤ Y ≤ d) =
∫ d
c

∫ b
a
fX,Y (x, y) dx dy for all a ≤ b and c ≤ d.

• Two-dimensional (“iterated”) integral! (e.g. Appendix A.6.) [MAT237 . . . ]

→ Compute the “inner” integral first, treating the outer variable as constant.

→ Then, integrate the resulting expression as the outer integral.

→ Trickiest part: specify the inner limits of integration correctly, to ensure that

the point (x, y) is always within the correct region (see examples below).

→ Can integrate in either order (“Fubini’s Thm”), provided you do it correctly!

• Marginals? Similar to discrete case – “add up” the other variable.

→ P(a ≤ Y ≤ b) = P(a ≤ Y ≤ b, −∞ < X <∞) =
∫ b
a

( ∫∞
−∞ fX,Y (x, y) dx

)
dy.

→ But P(a ≤ Y ≤ b) =
∫ b
a
fY (y) dy, for all a ≤ b.

→ So, fY (y) =
∫∞
−∞ fX,Y (x, y) dx.

→ Similarly, fX(x) =
∫∞
−∞ fX,Y (x, y) dy.

• SIMPLE EXAMPLE: fX,Y (x, y) = 4
3
x + y2 for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1,

otherwise 0.

→ Check: ≥ 0 (yes). And,
∫∞
−∞

∫∞
−∞ fX,Y (x, y) dx dy =

∫ 1

0

( ∫ 1

0
(4

3
x + y2) dx

)
dy =∫ 1

0
(2

3
+ y2) dy = 2

3
+ 1

3
= 1. Yes.

→ Or, in the other order:
∫∞
−∞

∫∞
−∞ fX,Y (x, y) dy dx =

∫ 1

0

( ∫ 1

0
(4

3
x + y2) dy

)
dx =∫ 1

0
(4

3
x+ 1

3
) dx = 4

3
1
2

+ 1
3

= 1. Yes.

→ fX(x) =
∫∞
−∞ fX,Y (x, y) dy =

∫ 1

0
(4

3
x+ y2) dy = 4

3
x+ 1

3
for 0 ≤ x ≤ 1, o.w. 0.

→ fY (y) =
∫∞
−∞ fX,Y (x, y) dx =

∫ 1

0
(4

3
x+ y2) dx = 2

3
+ y2 for 0 ≤ y ≤ 1, o.w. 0.

→ Check:
∫ 1

0
(4

3
x+ 1

3
) dx = 2

3
+ 1

3
= 1, and

∫ 1

0
(2

3
+ y2) dy = 2

3
+ 1

3
= 1.

→ And, P(X < 1
2
, Y < 2

3
) =

∫ 2
3

0

( ∫ 1
2

0
(4

3
x + y2) dx

)
dy =

∫ 2
3

0
(4

3
1
8

+ y2 1
2
) dy =

(4
3

1
8

2
3

+ [(2
3
)3/3] 1

2
) = 13/81.

→ Or, P(X < 1
2
, Y < 2

3
) =

∫ 1
2

0

( ∫ 2
3

0
(4

3
x + y2) dy

)
dx =

∫ 1
2

0

(
4
3
x 2

3
+ [(2

3
)3/3]

)
dx =

(4
3

1
8

2
3

+ [(2
3
)3/3] 1

2
) = 13/81. Same! Phew!

• RUNNING EXAMPLE: fX,Y (x, y) = 15
32
xy2 for 0 ≤ y ≤ x ≤ 2, otherwise 0.

Diagram:

• Valid joint density function?

→Here fX,Y ≥ 0, and
∫∞
−∞

∫∞
−∞ fX,Y (x, y) dx dy =

∫ 2

0

( ∫ 2

y
(15

32
xy2) dx

)
dy =

∫ 2

0
(15

32
1
2
x2y2)

∣∣∣x=2

x=y
dy =∫ 2

0
[15
64

(22 − y2)y2] dy = 15
64

[22 1
3
y3 − 1

5
y5]
∣∣∣y=2

y=0
= 15

64
[4
3
(23 − 0)− 1

5
(25 − 0)] = 1. So, yes!

p.43



• What is P(0 ≤ X ≤ 1/2, 0 ≤ Y ≤ 1/4)? We compute this as . . .

→
∫ 1/4

0

∫ 1/2

y
(15

32
xy2) dx dy =

∫ 1/4

0
(15

32
1
2
x2y2)

∣∣∣x=1/2

x=y
dy =

∫ 1/4

0
[15
64

((1/2)2 − y2)y2] dy =

15
64

[(1/2)2 1
3
y3 − 1

5
y5]
∣∣∣y=1/4

y=0
= 15

64
[ 1
12

((1/4)3 − 0)− 1
5
((1/4)5 − 0)] = 17/65536

.
= 0.00026.

→ Exercise: Compute P(7/4 ≤ X ≤ 2, 3/2 ≤ Y ≤ 2). Is it larger?

• What is fX(x), the density function of X?

→ For 0 ≤ x ≤ 2, fX(x) =
∫∞
−∞ fX,Y (x, y) dy =

∫ x
0

(15
32
xy2) dy = (15

32
1
3
xy3)

∣∣∣y=x

y=0
=

15
32

1
3
x(x3 − 03) = (5/32)x4. (Otherwise fX(x) = 0 if x < 0 or x > 2.)

→ Check:
∫∞
−∞ fX(x) dx =

∫ 2

0
(5/32)x4 dx = (5/32) 1

5
x5
∣∣∣x=2

x=0
= (5/32) 1

5
(25 − 05) =

1. Phew!

→ So e.g. P(X ≤ 1/3) =
∫ 1/3

0
fX(x) dx =

∫ 1/3

0
(5/32)x4 dx = (5/32)1

5
x5
∣∣∣x=1/3

x=0
=

(5/32)1
5
((1/3)5 − 05) = 1/7776

.
= 0.00013.

• What is fY (y), the density function of Y ?

→ For 0 ≤ y ≤ 2, fY (y) =
∫∞
−∞ fX,Y (x, y) dx =

∫ 2

y
(15

32
xy2) dx = (15

32
1
2
x2y2)

∣∣∣x=2

x=y
=

15
32

1
2
(22 − y2)y2 = 15

64
(4y2 − y4). (Otherwise fY (y) = 0 if y < 0 or y > 2.)

→ Check:
∫∞
−∞ fY (y) dy =

∫ 2

0
15
64

(4y2 − y4) dy = 15
64

[41
3
y3 − 1

5
y5)]
∣∣∣y=2

y=0
= 15

64
[41

3
(23 −

03)− 1
5
(25 − 05)] = 1. Phew!

• BONUS EXAMPLE: Suppose X and Y have joint density function fX,Y (x, y) =
1

780
x3y2 for 1 ≤ x ≤ 3 and 2 ≤ y ≤ 5, otherwise 0. What is P(Y < X + 1)?

• SOLUTION #1: Integrate in the order dy dx.

POLL: Then P(Y < X + 1) is equal to: (A)
∫ 3

1

( ∫ 5

2
1

780
x3y2 dy

)
dx. (B)∫ 3

1

( ∫ x+1

2
1

780
x3y2 dy

)
dx. (C)

∫ y−1

1

( ∫ x+1

2
1

780
x3y2 dy

)
dx. (D)

∫ y−1

1

( ∫ 5

2
1

780
x3y2 dy

)
dx.

• Need to integrate fX,Y (x, y) over the pink triangle:

1.0 1.5 2.0 2.5 3.0

1.
5

2.
5

3.
5

4.
5

y=x+1

x

y

→ So x goes from 1 to 3.
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→ And, for each x, y goes from 2 to x+ 1 (blue dashed line). (B) So,

P(Y < X + 1) =

∫ 3

1

(∫ x+1

2

1

780
x3y2 dy

)
dx =

∫ 3

1

( 1

780
x3y

3

3

∣∣∣y=x+1

y=2

)
dx

=

∫ 3

1

( 1

2340
x3[(x+ 1)3 − 23]

)
dx =

1

2340

∫ 3

1

[x6 + 3x5 + 3x4 − 7x3]dx

=
1

2340

[x7

7
+ 3

x6

6
+ 3

x5

5
− 7

x4

4

]∣∣∣x=3

x=1

=
1

2340

[37 − 1

7
+ 3

36 − 1

6
+ 3

35 − 1

5
− 7

34 − 1

4

]
=

1

2340

[26382

35

]
=

5963

20475
.
= 0.291233 .

• SOLUTION #2: Integrate in the order dx dy.

POLL: Then P(Y < X + 1) is equal to: (A)
∫ 5

2

( ∫ 3

1
1

780
x3y2 dx

)
dy. (B)∫ 4

2

( ∫ 3

y−1
1

780
x3y2 dx

)
dy. (C)

∫ 5

2

( ∫ 3

y−1
1

780
x3y2 dx

)
dy. (D)

∫ x+1

2

( ∫ 5

2
1

780
x3y2 dx

)
dy.

• Here y goes from 2 to 4 (not 5!).

→ And, for each y, x goes from y − 1 to 3 (purple dashed line). (B) So,

P(Y < X + 1) =

∫ 4

2

(∫ 3

y−1

1

780
x3y2 dx

)
dy =

∫ 4

2

( 1

780

x4

4
y2
∣∣∣3
x=y−1

)
dy

=

∫ 4

2

( 1

780

34 − (y − 1)4

4
y2
)
dy =

1

3120

∫ 4

2

[
34 − (y − 1)4

]
y2 dy

=
1

3120

∫ 4

2

[
(34 − 1)y2 − y6 + 4y5 − 6y4 + 4y3

]
dy

=
1

3120

[
(34 − 1)

y3

3
− y7

7
+ 4

y6

6
− 6

y5

5
+ 4

y4

4

] ∣∣∣y=4

y=2

=
1

3120

[
(34 − 1)

43 − 23

3
− 47 − 27

7
+ 4

46 − 26

6
− 6

45 − 25

5
+ 4

44 − 24

4

]
=

1

3120

[95408

105

]
=

5963

20475
.
= 0.291233 .

• So, we get the same answer either way, and either method is fine.

→ Both ways are a bit messy, but hopefully not too bad.

Suggested Homework: 2.7.4, 2.7.7, 2.7.8(a–c), 2.7.9, 2.7.14, 2.7.15, 2.7.16.

Conditioning and Independence for Discrete Random Variables (§2.8.1)

• Suppose X and Y are discrete with joint probability function pX,Y given (in

tabular form) by:
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Y = 5 Y = 6 pX(x)

X = 2 0.0 0.1 0.1
X = 3 0.1 0.2 0.3
X = 4 0.2 0.4 0.6

pY (y) 0.3 0.7

(Meaning that pX,Y (2, 5) = 0.0, pX,Y (3, 5) = 0.1, pX,Y (4, 6) = 0.4, etc.)

(Marginals pX(x) and pY (y) are also shown, found by summing.)

POLL: In this example, what is P(Y = 5 |X = 3)?

(A) 1/6. (B) 1/5. (C) 1/4. (D) 1/3. (E) 1/2. (F) 1.

• We compute here that P(Y = 5 |X = 3) = P(X=3, Y=5)
P(X=3)

= 0.1
0.3

= 1/3. (D)

→ Similarly P(Y = 6 |X = 3) = P(X=3, Y=6)
P(X=3)

= 0.2
0.3

= 2/3.

→ Can write this as pY |X(5 | 3) = 1/3, pY |X(6 | 3) = 2/3, otherwise pY |X(y | 3) = 0.

→ So, pY |X(· | 3) is a proper probability function (≥ 0, and sums to 1): the

conditional distribution of Y given that X = 3.

→ Also, P(X = 2 |Y = 6) = P(X=2, Y=6)
P(Y=6)

= 0.1
0.7

= 1/7, and P(X = 3 |Y =

6) = 2/7, and P(X = 4 |Y = 6) = 4/7. So, pX|Y (2 | 6) = 1/7, pX|Y (3 | 6) = 2/7,

pX|Y (4 | 6) = 4/7, the conditional distribution of X given that Y = 6.

→ Exercise: Find pX |Y (x | 5) for all x ∈ R, i.e. the conditional distribution of X

given that Y = 5.

• In general, pX|Y (x | y) = P(X=x, Y=y)
P(Y=y)

, and pY |X(y |x) = P(X=x, Y=y)
P(X=x)

.

→ Then e.g. P(a ≤ Y ≤ b |X = x) =
∑

a≤y≤b P(Y = y |X = x) =
∑

a≤y≤b pY |X(y|x) =∑
a≤y≤b

pX,Y (x,y)

pX(x)
= P(a≤Y≤b,X=x)

P(X=x)
, as it should.

—————————— END MONDAY #7 ——————————

Y = 5 Y = 6 pX(x)

X = 2 0.0 0.1 0.1
X = 3 0.1 0.2 0.3
X = 4 0.2 0.4 0.6

pY (y) 0.3 0.7

POLL: In the above example, what is P(X ≥ 3 |Y = 6)?

(A) 2/3. (B) 3/4. (C) 4/5. (D) 5/6. (E) 6/7. (F) 7/8.

• What about independence?

• Most general definition: Two random variables X and Y are independent if the

events {X ∈ B} and {Y ∈ C} are independent for all subsets B,C ⊆ R, i.e. if we

always have P(X ∈ B, Y ∈ C) = P(X ∈ B) P(Y ∈ C).

→ For example, if we take B = (−∞, x] and C = (−∞, y], this means that

P(X ≤ x, Y ≤ y) = P(X ≤ x) P(Y ≤ y), i.e. FX,Y (x, y) = FX(x)FY (y) for all

x, y ∈ R. (Equivalent definition. Optional.)
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→ For discrete random variables X and Y , it suffices that the events {X = x}
and {Y = y} are independent, i.e. P(X = x, Y = y) = P(X = x) P(Y = y), i.e.

pX,Y (x, y) = pX(x) pY (y) for all x, y ∈ R.

→ Then for any B and C, we have P(X ∈ B, Y ∈ C) =
∑

x∈B
∑

y∈C pX,Y (x, y) =∑
x∈B

∑
y∈C pX(x) pY (y) =

(∑
x∈B pX(x)

) (∑
y∈C pY (y)

)
= P(X ∈ B) P(Y ∈ C).

POLL: If X and Y are discrete and independent, which of these must be true?

(A) P(a ≤ X ≤ b, c ≤ Y ≤ d) = P(a ≤ X ≤ b) P(c ≤ Y ≤ d) for a < b and c < d.

(B) pX|Y (x|y) = pX(x) for all x, y with pY (y) > 0.

(C) pY |X(y|x) = pY (y) for all x, y with pX(x) > 0.

(D) pX|Y (x|y) = pY |X(y|x) for all x, y with pX(x), pY (y) > 0.

(E) All of the above.

(F) Just three of the above.

• Well, (A) follows by taking B = [a, b] and C = [c, d] above.

• And, if X and Y are discrete and independent, then pX|Y (x | y) = P(X=x, Y=y)
P(Y=y)

=
P(X=x) P(Y=y)

P(Y=y)
= P(X = x), showing (B).

→ Similarly, pY |X(y |x) = P(Y = y), showing (C).

• But (D) is false (and crazy!). So, the answer is (F): just three of the above.

• Independence means the values of Y do not affect the probabilities for X.

→ In above example, X and Y are not independent, since e.g. pX,Y (3, 5) = 0.1

but pX(3) pY (5) = (0.3)(0.3) = 0.09 6= 0.1.

Suggested Homework: 2.8.1, 2.8.2, 2.8.5, 2.8.9, 2.8.10, 2.8.12, 2.8.13, 2.8.20.

Conditioning and Independence for Continuous Random Variables (§2.8.2)

• Suppose X and Y have joint density function fX,Y (x, y). Conditionals?

• Does P(a ≤ Y ≤ b |X = x) even make sense?

→ No, since P(X = x) = 0, so we can’t divide by it.

→ Trick: Do it anyway!

→ We first consider certain limits . . .

→ Intuitively, imagine replacing the event {X = x} by the event {x ≤ X ≤ x+ ε}
for some small ε > 0, so that P(x ≤ X ≤ x+ ε) > 0.

POLL: Suppose X and Y have continuous joint density fX,Y (x, y), and X has

marginal density fX(x) =
∫∞
−∞ fX,Y (x, y) dy > 0 for some x. Then for a < b,

lim
ε↘0

P(a ≤ Y ≤ b | x ≤ X ≤ x+ ε)

is equal to: (A)
∫∞
−∞

∫ b
a
fX,Y (x, y) dx dy. (B)

∫∞
−∞

∫ b
a
fX,Y (x, y) dy dx.

(C)
∫ b
a

fX,Y (x,y)

fX(x)
dy. (D)

∫ b
a fX,Y (x,y) dy∫ b
a fX(x) dx

. (E)
∫ b
a fY (y) dy∫ b
a fX(x) dx

. (F) No idea.

• We have that P(x ≤ X ≤ x+ ε) =
∫ x+ε

x
fX(u) du.
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→ If fX is continuous at x, and ε > 0 is small, then P(x ≤ X ≤ x+ ε) ≈ ε fX(x).

→ [“First-order approximation”: formally, limε↘0
1
ε

∫ x+ε

x
fX(u) du = fX(x).]

→ But also, if fX,Y is continuous at (x, y) for a ≤ y ≤ b, then P(x ≤ X ≤
x+ ε, a ≤ Y ≤ b) =

∫ b
a

∫ x+ε

x
fX,Y (u, y) du dy ≈ ε

∫ b
a
fX,Y (x, y) dy.

→ So, P(a ≤ Y ≤ b |x ≤ X ≤ x+ ε) ≈ ε
∫ b
a fX,Y (x,y) dy

ε fX(x)
=
∫ b
a

fX,Y (x,y)

fX(x)
dy. (C)

• Therefore, we define the conditional density of Y given that X = x, to be the

density function fY |X(y |x) =
fX,Y (x,y)

fX(x)
, valid whenever fX(x) > 0.

→ Then we say that P(a ≤ Y ≤ b |X = x) =
∫ b
a
fY |X(y |x) dy :=

∫ b
a

fX,Y (x,y)

fX(x)
dy.

• What about independence?

→ Idea: X and Y being independent should imply that P(a ≤ Y ≤ b |X = x) =

P(a ≤ Y ≤ b) for all a < b.

POLL: To ensure this, it suffices that:

(A) fX,Y (x, y) = 0 for all x, y. (B) fX,Y (x, y) > fX(x) for all x, y. (C) fX,Y (x, y) <

fY (y) for all x, y. (D) fX,Y (x, y) = fX(x) for all x, y. (E) fX,Y (x, y) = fY (y) for

all x, y. (F) fX,Y (x, y) = fX(x) fY (y) for all x, y.

• Definition: X and Y are independent if fX,Y (x, y) = fX(x) fY (y) for “all” x, y ∈ R.

→ Then fY |X(y |x) =
fX,Y (x,y)

fX(x)
= fX(x)fY (y)

fX(x)
= fY (y) whenever fX(x) > 0.

→ And, P(a ≤ Y ≤ b |X = x) =
∫ b
a
fY |X(y |x) dy =

∫ b
a
fY (y) dy = P(a ≤ Y ≤ b).

→ Then for anyB and C, we have P(X ∈ B, Y ∈ C) =
∫
y∈C

(∫
x∈B fX,Y (x, y) dx

)
dy

=
∫
y∈C

(∫
x∈B fX(x) fY (y) dx

)
dy =

∫
y∈C fY (y)

(∫
x∈B fX(x) dx

)
dy

=
(∫

x∈B fX(x) dx
) ∫

y∈C fY (y) dy = P(X ∈ B) P(Y ∈ C).

• Previous “running example”: fX,Y (x, y) = 15
32
xy2 for 0 ≤ y ≤ x ≤ 2, otherwise 0.

→ Found that fX(x) = (5/32)x4 for 0 ≤ x ≤ 2, otherwise 0.

→ And that fY (y) = 15
64

(4y2 − y4) for 0 ≤ y ≤ 2, otherwise 0.

POLL: In this example, are X and Y independent?

(A) Yes. (B) No. (C) No idea.

→ Here fX,Y (x, y) 6= fX(x) fY (y), and fY |X(y |x) 6= fY (y), so not independent.

→ Indeed, for 0 ≤ y ≤ x ≤ 2, we have fY |X(y |x) =
fX,Y (x,y)

fX(x)
=

15
32
xy2

(5/32)x4
= 3x−3y2.

→ So e.g. P(0 ≤ Y ≤ 1 |X = 3/2) =
∫ 1

0
fY |X(y | 3/2) dy =

∫ 1

0
(3(3/2)−3y2) dy =

3(3/2)−3 1
3
(13 − 03) = (3/2)−3 = 8/27.

→Also P(0 ≤ Y ≤ 3/2 |X = 3/2) =
∫ 3/2

0
fY |X(y | 3/2) dy =

∫ 3/2

0
(3(3/2)−3y2) dy =

3(3/2)−3 1
3
((3/2)3 − 03) = (3/2)−3(3/2)3 = 1. Makes sense since here 0 ≤ Y ≤ X.

Summary – Independence of Random Variables (§2.8)

• X and Y are independent if and only if any one of:

→ P(X ∈ B, Y ∈ C) = P(X ∈ B) P(Y ∈ C) for all B,C ⊆ R. (general)

→ FX,Y (x, y) = FX(x)FY (y) for all x, y ∈ R. (general; optional)
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→ pX,Y (x, y) = pX(x) pY (y) for all x, y ∈ R. (discrete)

→ pY |X(y |x) = pY (y) for “all” x, y ∈ R, or vice-versa. (discrete)

→ fX,Y (x, y) = fX(x) fY (y) for “all” x, y ∈ R. (abs. continuous)

→ fY |X(y |x) = fY (y) for “all” x, y ∈ R, or vice-versa. (abs. continuous)

Suggested Homework: 2.8.3, 2.8.4, 2.8.7, 2.8.8, 2.8.14, 2.8.15, 2.8.17.

• Note: We are omitting a few topics from the end of Chapter 2, including:

→ Order Statistics (sorted sample values, from smallest to largest). (§2.8.4)

→ Multivariable Change-Of-Variable Theorem. (§2.9)

→ Computer algorithms to simulate probability distributions. (§2.10)

→ All interesting! Check them out! Try the exercises! Ask me questions!

[END OF TEXTBOOK CHAPTER #2]

Expected Values: Discrete Case (§3.1)

• Intuitively, the expected or average or mean value of a random variable is what

it equals “on average”.

→ e.g. If P(X = 0) = P(X = 12) = 1/2, then E(X) = 6, the average value.

→ e.g. If P(X = 0) = 2/3 and P(X = 12) = 1/3, then E(X) = 4: weighted av.

[Reminder: Next week is READING WEEK – no classes!.]

————————— END WEDNESDAY #8 —————————

• Definition: If X is a discrete random variable, then its expected value is given by

E(X) =
∑

x∈R x P(X = x) =
∑

x∈R x pX(x). (Also sometimes written as µX .)

→ If P(X = xi) = pi where pi ≥ 0 and
∑

i pi = 1, then E(X) =
∑

i xi pi.

• e.g. If P(X = 0) = P(X = 12) = 1/2, E(X) = 0(1/2) + 12(1/2) = 6.

→ Or, if P(X = 0) = 2/3 and P(X = 12) = 1/3, E(X) = 0(2/3) + 12(1/3) = 4.

→ Or, if X = c is constant, i.e. P(X = c) = 1, then E(X) = c(1) = c.

POLL: e.g. If X is the number showing on a fair six-sided die, then E(X) =

(A) 2. (B) 2.5. (C) 3. (D) 3.5. (E) 4.

• Here E(X) =
∑

x∈R xP(X = x) =
∑6

k=1 k (1/6) = (1 + 2 + 3 + 4 + 5 + 6)/6 =

21/6 = 3.5. (Not 3!)

POLL: e.g. If X ∼ Bernoulli(θ), then E(X) =

(A) 0. (B) θ. (C) 0.5. (D) 1− θ. (E) 1.

• Here E(X) = 0(1− θ) + 1(θ) = θ.
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POLL: e.g. Suppose Y ∼ Binomial(n, θ). What is E(Y )? [Best guess.]

(A) θ. (B) n+ θ. (C) nθ. (D) n2θ. (E) nθ(1− θ). (F) No idea.

• Here E(Y ) =
∑

y∈R y P(Y = y) =
∑n

k=0 k
(
n
k

)
θk(1− θ)n−k =

∑n
k=0 k

n!
(n−k)! k!

θk(1−
θ)n−k =

∑n
k=1 n

(n−1)!
(n−k)! (k−1)!

θk(1− θ)n−k = nθ
∑n

k=1

(
n−1
k−1

)
θk−1(1− θ)n−k.

→ Now, set j = k − 1, and use the Binomial Theorem again:

E(Y ) = nθ
∑n−1

j=0

(
n−1
j

)
θj(1− θ)n−1−j = nθ[θ + (1− θ)]n−1 = nθ. Easier way?

→ e.g. Shoot n = 10 free throws, prob θ = 1/4 on each: E(# successes) = 2.5.

• e.g. If Z ∼ Geometric(θ), then E(Z) =
∑

z∈R z P(Z = z) =
∑∞

k=0 k (1− θ)k θ =??

→ Trick: Here (1− θ) E(Z) =
∑∞

k=0 k (1− θ)k+1 θ =
∑∞

`=0 ` (1− θ)`+1 θ.

→ Letting k = `+ 1, this equals
∑∞

k=1(k − 1) (1− θ)k θ.
→ Hence, E(Z)− (1− θ) E(Z) =

∑∞
k=1(1) (1− θ)k θ = 1−θ

1−(1−θ) θ = 1− θ.

→ But E(Z)− (1− θ) E(Z) = θE(Z). Hence, E(Z) = 1−θ
θ

= 1
θ
− 1. Phew!

→ e.g. if θ = 1/2 then E(Z) = 1, but if θ = 1/5 then E(Z) = 4.

• e.g. If X ∼ Poisson(λ), then E(X) =
∑

x∈R xP(X = x) =
∑∞

k=0 k e
−λλk/k! =

e−λλ
[∑∞

k=1 λ
k−1/(k − 1)!

]
= e−λλ

[∑∞
`=0 λ

`/`!
]

= e−λλ [eλ] = λ.

POLL: e.g. Suppose P(X = 2) = 1/2, P(X = 4) = 1/4, P(X = 8) = 1/8, and in

general P(X = 2k) = 2−k for k = 1, 2, 3, . . .. Then E(X) equals . . .

(A) 1. (B) 2. (C) 4. (D) 8. (E) ∞.

• Here E(X) =
∑∞

k=1(2k)(2−k) =
∑∞

k=1(1) = 1 + 1 + 1 + . . . =∞.

POLL: In this same example, what is P(X <∞)?

(A) 1/2. (B) 3/4. (C) 7/8. (D) 1.

• Here P(X <∞) =
∑∞

k=1 P(X = 2k) =
∑∞

k=1 2−k = (1/2)+(1/4)+(1/8)+ . . . = 1.

→ So, E(X) =∞, even though P(X <∞) = 1. Infinite expectation!

• Can also sum to get expectations of functions of discrete random variables:

→ If Z = g(X), then E(Z) = E(g(X)) =
∑
z∈R

z P(Z=z) =
∑
z∈R

z P(g(X)=z) =∑
z∈R

z
∑

x:g(x)=z P(X=x) =
∑
z∈R

∑
x:g(x)=z g(x) P(X=x) =

∑
x∈R

g(x) P(X=x).

→ Or, if Z = h(X, Y ), E(Z) =
∑
z∈R

z P(Z=z) =
∑

x,y∈R
h(x, y) P(X=x, Y=y).

→ (Here Z is also discrete; and get the same expected value either way.)

POLL: e.g. if X ∼ Binomial(2, 1/3), then what is E(X2)?

(A) 2/3. (B) 4/3. (C) 4/9. (D) 8/9. (E) 10/9. (F) 16/9.

• Since X ∼ Binomial(2, 1/3), then know E(X) = nθ = 2(1/3) = 2/3, but also

E(X2) =
∑

x∈R x
2 P(X = x) =

∑2
k=0 k

2
(

2
k

)
(1/3)k(2/3)2−k = 0 + 12 · 2(1/3)(2/3) +

22 · 1(1/3)2 = 4/9 + 4/9 = 8/9.

• e.g. if X ∼ Binomial(3, 1/4), then what is E(5X2)?
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→ Since X ∼ Binomial(3, 1/4), then know E(X) = 3(1/4) = nθ = 3/4, but also

E(5X2) =
∑

x∈R 5x2 P(X = x) =
∑3

k=0 5k2
(

3
k

)
(1/4)k(3/4)3−k

= 5(0)2
(

3
0

)
(1/4)0(3/4)3+5(1)2

(
3
1

)
(1/4)1(3/4)2+5(2)2

(
3
2

)
(1/4)2(3/4)1+5(3)2

(
3
3

)
(1/4)3(3/4)0

= 0 + 5 · 1 · 3 · 32/43 + 5 · 4 · 3 · 3/43 + 5 · 9 · 1 · 1/43 = 45/8 = 5.625.

Suggested Homework: 3.1.1, 3.1.2, 3.1.3, 3.1.8, 3.1.9, 3.1.10, 3.1.14.

• If Z = aX + bY , where a, b ∈ R, and X and Y are discrete random variables,

E(Z) =
∑

z∈R z P(Z = z) =
∑

x,y∈R(ax+ by) P(X = x, Y = y)

= a
∑

x,y∈R xP(X = x, Y = y) + b
∑

x,y∈R y P(X = x, Y = y)

= a
∑

x∈R x
∑

y∈R P(X = x, Y = y) + b
∑

y∈R y
∑

x∈R P(X = x, Y = y)

= a
∑

x∈R xP(X = x) + b
∑

y∈R y P(Y = y) = aE(X) + bE(Y ). Linear property.

• If Y ∼ Binomial(n, θ), then we can think of Y as Y = X1 +X2 + . . .+Xn where

each Xi ∼ Bernoulli(θ). (e.g. Xi = 1 if you score on the ith free throw, otherwise 0)

→ By linearity, E(Y ) = E(X1) + E(X2) + . . .+ E(Xn) = θ + θ + . . .+ θ = nθ.

→ Same answer as before! Easier!

POLL: e.g. Suppose X ∼ Binomial(5, 1/4), and Y ∼ Geometric(1/3), and Z =

2X − 3Y . Then E(Z) equals: (A) 5. (B) 3.5. (C) −1. (D) −3.5. (E) −7.

→ By linearity and the above, E(Z) = E(2X − 3Y ) = 2 E(X) − 3 E(Y ) =

2[(5)(1/4)]− 3[2/3
1/3

] = (10/4)− 6 = (10/4)− (24/4) = −14/4 = −3.5. (Negative!)

• Caution: This is only for linear functions! e.g. If X ∼ Bernoulli(1/2), then

E(X2) = E(X) = 1/2, which is not the same as
(
E(X)

)2
= (1/2)2 = 1/4.

• Suppose X and Y are discrete, and X ≤ Y , i.e. X(s) ≤ Y (s) for all s ∈ S.

→ Or more generally, suppose that P(X ≤ Y ) = 1.

→ Let Z = Y −X. Then Z is discrete, and P(Z ≥ 0) = 1.

→ So, P(Z = z) = 0 whenever z < 0.

→ Hence, E(Z) =
∑

z∈R z P(Z = z) =
∑

z∈[0,∞) z P(Z = z) ≥ 0.

→ But E(Z) = E(Y −X) = E(Y )−E(X), so E(Y )−E(X) ≥ 0, i.e. E(X) ≤ E(Y ).

→ This is the monotonicity property: If P(X ≤ Y ) = 1, then E(X) ≤ E(Y ).

Suggested Homework: 3.1.4, 3.1.5, 3.1.11(a), 3.1.15, 3.1.16.

• Also, expectation preserves products of independent random variables:

→ Suppose X and Y are discrete random variables which are independent.

→ Then E(XY ) =
∑

x,y∈R xy P(X = x, Y = y) =
∑

x,y∈R xy P(X = x) P(Y =

y) =
(∑

x∈R xP(X = x)
)(∑

y∈R y P(Y = y)
)

= E(X) E(Y ). Useful!

POLL: e.g. Suppose X ∼ Binomial(5, 1/4), and Y ∼ Geometric(1/3), and X and

Y are independent, and Z = XY . Then E(Z) equals:

(A) 0. (B) 0.5. (C) 1.5. (D) 2.5. (E) 3.5. (F) 4.5.

• Here E(Z) = E(XY ) = E(X) E(Y ) = [(5)(1/4)] [2/3
1/3

] = [5/4] [2] = 10/4 = 2.5.
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• e.g. Suppose X ∼ Bernoulli(1/2) and Y = X, and let Z = XY .

→ Then E(X) = 1/2, and E(Y ) = 1/2, and E(Z) = E(XY ) = E(X2) = 1/2.

→ So E(XY ) 6= E(X) E(Y ). Why not? Because X and Y are not independent!

Suggested Homework: 3.1.11(b), 3.1.12, 3.1.17, 3.1.20.

Expected Values: Absolutely Continuous Case (§3.2)

• If X is continuous, then P(X = x) = 0, so
∑

x∈R xP(X = x) = 0. Useless!

→ Can we still “add up” the values times their probabilities?

→ Yes, by integrating instead of summing!

• Definition: If X is an absolutely continuous random variable, then its expected

value is given by the integral E(X) =
∫∞
−∞ x fX(x) dx. (Sometimes written as µX .)

→ Intuitively, we are adding up values times little “bits” of probability.

• e.g. If X ∼ Uniform[0, 1], then what is E(X)? We compute that:

E(X) =
∫∞
−∞ x fX(x) dx =

∫ 1

0
x (1) dx = 1

2
x2
∣∣∣x=1

x=0
= 1

2
(12 − 02) = 1

2
.

POLL: e.g. If X ∼ Uniform[L,R], then what is E(X)?

(A) L. (B) R. (C) L+R. (D) (L+R)/2. (E) LR. (F) LR/2.

• We compute that: E(X) =
∫∞
−∞ x fX(x) dx =

∫ R
L
x ( 1

R−L) dx = 1
2
x2 ( 1

R−L)
∣∣∣x=R

x=L
=

1
2

( 1
R−L)(R2 − L2) = 1

2
( 1
R−L)(R− L)(R + L) = 1

2
(R + L) = (L+R)/2.

→ e.g. If X ∼ Uniform[−8, 2], then E(X) = 1
2
(−8 + 2) = −3. Negative!

• If Y ∼ Exponential(λ), then E(Y ) =
∫∞
−∞ y fY (y) dy =

∫∞
0
y λe−λy dy = ??

→ Need to use “integration by parts”!

→ Set u(y) = y and v(y) = −e−λy, then du = dy and dv = λe−λy dy.

→ Then E(Y ) =
∫∞

0
u dv = u(y)v(y)

∣∣∣y=∞

y=0
−
∫∞

0
du v = −ye−λy

∣∣∣y=∞

y=0
−
∫∞

0
dy (−e−λy) =

−0 + 0 +
∫∞

0
e−λy dy = − 1

λ
e−λy

∣∣∣y=∞

y=0
= − 1

λ
(0− 1) = 1

λ
. (Not λ.)

POLL: If Z ∼ Normal(0, 1), then E(Z) =
∫∞
−∞ z φ(z) dz =

∫∞
−∞ z

1√
2π
e−z

2/2 dz = ??

(A) −
√

2π. (B) −1. (C) 0. (D) 1. (E)
√

2π. (F) No idea.

→ This integrand is an “odd” function, so by symmetry, E(Z) = 0.

→ (Alternatively, −e−z2/2 is an anti-derivative of z e−z
2/2.)

• Now suppose W ∼ Normal(µ, σ2). Then what is E(W )?

→ Well, this means that W = µ+ σZ where Z ∼ Normal(0, 1).

→ So, maybe E(W ) = E(µ+ σZ) = µ+ σ E(Z) = µ+ 0 = µ? Yes, because . . .

• Expectation still satisfies the same general properties as for discrete r.v.:

• Can still calculate expectations of functions of abs. cont. random variables:

→ If Z = g(X), then E(Z) = E(g(X)) =
∫∞
−∞ g(x) fX(x) dx.
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→ Or, if Z = h(X, Y ), then E(Z) =
∫∞
−∞

∫∞
−∞ h(x, y) fX,Y (x, y) dx dy.

→ (If Z is abs. cont. or discrete, then get the same expected value either way.)

• Expectation is still linear! Let Z = aX + bY , where a, b ∈ R, and X and Y are

jointly absolutely continuous random variables. Then:

E(Z) =
∫∞
−∞

∫∞
−∞(ax+ by) fX,Y (x, y) dx dy

= a
∫∞
−∞

∫∞
−∞ x fX,Y (x, y) dx dy + b

∫∞
−∞

∫∞
−∞ y fX,Y (x, y) dx dy

= a
∫∞
−∞ x

(∫∞
−∞ fX,Y (x, y) dy

)
dx+ b

∫∞
−∞ y

(∫∞
−∞ fX,Y (x, y) dx

)
dy

= a
∫∞
−∞ x fX(x) dx+ b

∫∞
−∞ y fY (y) dy = aE(X) + bE(Y ).

• And, still monotone: If P(X ≤ Y ) = 1, and Z = Y −X, then fZ(z) = 0 whenever

z < 0, so E(Z) =
∫∞

0
z fZ(z) dz ≥ 0, so E(Y −X) ≥ 0, so E(X) ≤ E(Y ).

• And, still preserves products of independent random variables:

→ Assume X and Y are jointly absolutely continuous, and independent.

→ Then E(XY ) =
∫∞
−∞

∫∞
−∞ x y fX,Y (x, y) dx dy =

∫∞
−∞

∫∞
−∞ x y fX(x) fY (y) dx dy =( ∫∞

−∞ x fX(x) dx
)( ∫∞

−∞ y fY (y) dy
)

= E(X) E(Y ).

Suggested Homework: 3.2.1, 3.2.2, 3.2.3, 3.2.4, 3.2.5, 3.2.6, 3.2.7, 3.2.9, 3.2.10,

3.2.12, 3.2.14, 3.2.15.

Variance and Standard Deviation (§3.3)

• Suppose X has expected value E(X), or µX . Does that tell us everything?

• e.g. X1 ∼ Uniform[4.9, 5.1], X2 ∼ Uniform[4, 6], X3 ∼ Uniform[0, 10].

→ Then E(X1) = 5, and E(X2) = 5, and E(X3) = 5. All the same.

→ But X1 is always very close to 5, while X3 can be quite far away. (X2 medium.)

• The variance of any random variable X is Var(X) := E[(X − µX)2].

→ A measure of how far X usually is from µX := E(X).

→ Why not E(X − µX)? Always zero! Useless!

→ Why not E(|X − µX |)? That turns out to be less convenient . . .

• So, we’ll stick with Var(X) := E[(X − µX)2].

→ But Var(X) has “squared units” (e.g. if X in meters (m), then Var(X) is in

meters-squared (m2)). This can be awkward.

→ So, often use the standard deviation, Sd(X) :=
√

Var(X) =
√

E[(X − µX)2].

—————————— END MONDAY #8 ——————————

• e.g. X ∼ Bernoulli(θ). Then µX := E(X) = θ, so Var(X) = E[(X − θ)2] =

(0− θ)2(1− θ) + (1− θ)2(θ) = −θ2 + θ3 + θ − θ3 = −θ2 + θ = θ(1− θ).

• By linearity, we always have Var(X) := E[(X−µX)2] = E[X2−2X(µX)+(µX)2] =

E[X2]− 2E[X](µX) + (µX)2 = E[X2]− 2(µX)(µX) + (µX)2 = E[X2]− (µX)2.

→ So, if X ∼ Bernoulli(θ), then could instead compute Var(X) by: Var(X) =

E[X2]− (µX)2 = 02(1− θ) + 12(θ)− (θ)2 = θ − θ2 = θ(1− θ). Easier?
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POLL: If Y ∼ Uniform[0, 1], know µY = 1/2. What is E(Y 2)?

(A) 1/4. (B) 1/3. (C) 1/2. (D) 2/3. (E) 3/4. (F) 1.

→ Here E(Y 2) =
∫∞
−∞ y

2 fY (y) dy =
∫ 1

0
y2 (1) dy = 1

3
y3
∣∣∣y=1

y=0
= 1

3
(13 − 03) = 1

3
.

POLL: If Y ∼ Uniform[0, 1], know µY = 1/2 and E(Y 2) = 1/3. What is Var(Y )?

(A) 1/2. (B) 1/3. (C) 1/4. (D) 1/6. (E) 1/8. (F) 1/12.

→ Here Var(Y ) = E(Y 2)− (µY )2 = (1/3)− (1/2)2 = (1/3)− (1/4) = 1/12.

→ So then Sd(Y ) =
√

Var(Y ) =
√

1/12 = 1/
√

12.

• Suppose Z ∼ Uniform[L,R] (where L < R). Know that µZ = (L+R)/2.

→ And, E(Z2) =
∫∞
−∞ z

2 fZ(z) dz =
∫ R
L
z2 1

R−L dz = 1
3(R−L)

z3
∣∣∣z=R
z=L

= 1
3(R−L)

(R3 −
L3) = 1

3(R−L)
(R− L)(R2 +RL+ L2) = 1

3
(R2 +RL+ L2).

→ Hence, Var(Z) = E(Z2)− (µZ)2 = 1
3
(R2 +RL+ L2)− (L+R

2
)2.

→ After a bit of algebra (exercise!), this works out to . . . (R− L)2/12.

→ So then Sd(Z) =
√

Var(Z) = (R− L)/
√

12.

• e.g. if X1 ∼ Uniform[4.9, 5.1], X2 ∼ Uniform[4, 6], and X3 ∼ Uniform[0, 10], then:

Var(X1) = (0.2)2/12
.
= 0.0033, Var(X2) = (2)2/12 = 1/3

.
= 0.033, and Var(X3) =

(10)2/12 = 100/12
.
= 8.33. So Var(X3)� Var(X2)� Var(X1), which makes sense.

• In general, (X − µX)2 ≥ 0, so always have Var(X) := E[(X − µX)2] ≥ 0.

→ But Var(X) = E[X2]− (µX)2, so E[X2]− (µX)2 ≥ 0, i.e. E[X2] ≥ (µX)2.

→ And, since (µX)2 ≥ 0, always have Var(X) = E[X2]− (µX)2 ≤ E[X2], too.

POLL: If a, b ∈ R, then Var(aX + b) is equal to: (A) Var(X). (B) aVar(X).

(C) aVar(X) + b. (D) a2 Var(X). (E) a2 Var(X) + b. (F) No idea.

• Using linearity, Var(aX + b) = E[(aX + b− µaX+b)
2] = E[(aX + b− aµX − b)2] =

E[(a(X−µX))2] = a2 E[(X−µX)2] = a2 Var(X). (Note: a2, not a. And b irrelevant.)

→ Hence, Sd(aX + b) =
√

Var(aX + b) =
√
a2 Var(X) = |a| Sd(X).

• e.g. If Z ∼ Uniform[L,R], can write Z = L+ (R−L)U where U ∼ Uniform[0, 1].

→ Hence, Var(Z) = (R− L)2 Var(U) = (R− L)2/12. Same as before. Easier!

• What about Var(X + Y ) or Var(aX + bY )? Later!

• e.g. W ∼ Exponential(λ). Know µW := E(W ) = 1/λ. Var(W ) = ??

→ Well, E(W 2) =
∫∞
−∞w

2 fW (w) dw =
∫∞

0
w2 λe−λw dw.

→ Integration by parts (check!): this = 0− 0 +
∫∞

0
2w e−λw dw.

→ Integration by parts again: this = 0− 0 +
∫∞

0
2 1
λ
e−λw dw.

→ But
∫∞

0
e−λw dw = − 1

λ
e−λw

∣∣∣w=∞

w=0
= − 1

λ
(0− 1) = 1

λ
.

→ So, E(W 2) = 2 1
λ

1
λ

= 2/λ2.

→ Then Var(W ) = E(W 2)− (µW )2 = (2/λ2)− (1/λ)2 = 1/λ2. Phew!

→ Hence, Sd(W ) = 1/λ.
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• e.g. Z ∼ Normal(0, 1). We know µZ := E(Z) = 0.

→ Also E(Z2) =
∫∞
−∞ z

2 1√
2π
e−z

2/2 dz.

→ Then, integration by parts with u = z and v = −e−z2/2 and dv = z e−z
2/2 dz

gives E(Z2) = 0− 0 +
∫∞
−∞

1√
2π
e−z

2/2 dz =
∫∞
−∞ φ(z) dz = 1 since φ is a density.

→ Hence, Var(Z) = 1− (µz)
2 = 1−02 = 1. (As expected.) Also Sd(Z) =

√
1 = 1.

• Now suppose W ∼ Normal(µ, σ2), where σ > 0. What is Var(W )?

→ Well, this means that W = µ+ σZ where Z ∼ Normal(0, 1).

→ So, Var(W ) = Var(µ+ σZ) = σ2 Var(Z) = σ2. Also Sd(W ) =
√
σ2 = σ.

• Suppose X ∼ Poisson(λ). Know E(X) = λ. What is Var(X)?

→ We compute that: E(X2) =
∑∞

k=0 k
2e−λ λ

k

k!
= λe−λ

∑∞
k=1

(
(k−1) + 1

)
λk−1

(k−1)!
=

λe−λ
(
λ
∑∞

k=2
λk−2

(k−2)!
+
∑∞

k=1
λk−1

(k−1)!

)
= λe−λ

(
λeλ + eλ

)
= λ2 + λ.

→ Then Var(X) = E(X2)− (E(X))2 = (λ2 + λ)− (λ)2 = λ. Phew! Simple!

→ And then Sd(X) =
√
λ, so X is usually within about ±

√
λ of λ.

• What about variance of Geometric(θ)?

→ Messy sum . . . works out to (1− θ)/θ2. [Problem 3.3.18; optional.]

Suggested Homework: 3.3.1(b), 3.3.2(a,c), 3.3.4(first four), 3.3.10(first four),

3.3.11(first three).

Covariance and Correlation (§3.3)

• We know that E(X + Y ) = E(X) + E(Y ). What about Var(X + Y )?

• Well, Var(X + Y ) = E[(X + Y − µX+Y )2] = E[(X + Y − µX − µY )2] = E[((X −
µX) + (Y − µY ))2] = E[(X − µX)2 + (Y − µY )2 + 2(X − µX)(Y − µY )].

• This equals Var(X) + Var(Y ) + 2 Cov(X, Y ), where

Cov(X, Y ) := E[(X − µX)(Y − µY )] is the covariance of X and Y .

→ We always have Cov(X, Y ) = Cov(Y,X).

→ If Cov(X, Y ) > 0, then X and Y tend to increase together.

→ If Cov(X, Y ) < 0, then X and Y tend to increase oppositely.

• Special case: If Y = X, then Cov(X, Y ) = Cov(X,X) = E[(X −µX)(X −µX)] =

E[(X − µX)2] = Var(X). In particular, Cov(X,X) ≥ 0.

→ Or, if Y = −X, then Cov(X, Y ) = Cov(X,−X) = E[(X − µX)(−X − µ−X)] =

E[−(X − µX)2] = −Var(X). In particular, Cov(X,−X) ≤ 0.

POLL: If X and Y are independent, Cov(X, Y ) equals: (A) 0. (B) Var(X + Y ).

(C) Var(X) + Var(Y ). (D) Var(X) Var(Y ). (E)
√

Var(X) Var(Y ). (F) No idea.

————————— END WEDNESDAY #9 —————————
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• If X and Y are independent, then so are X − µX and Y − µY .

→ So, E[(X − µX)(Y − µY )] = E[X − µX ] E[Y − µY ].

→ But by linearity, E[X − µX ] = E(X)− µX = µX − µX = 0.

→ So, Cov(X, Y ) = E[(X − µX)(Y − µY )] = E[X − µX ] E[Y − µY ] = [µX −
µX ] [µY − µY ] = 0 · 0 = 0. (A)

→ Then Var(X + Y ) = Var(X) + Var(Y ) + 2 Cov(X, Y ) = Var(X) + Var(Y ).

• That is: variances add for sums of independent random variables.

→ If X and Y are independent, then Var(X + Y ) = Var(X) + Var(Y ).

→ Since Sd(X) =
√

Var(X), can also write Sd(X + Y ) =
√

Sd(X)2 + Sd(Y )2 .

→ (“propagation of uncertainty” for independent sums; e.g. quantum mechanics?)

POLL: If Y ∼ Binomial(n, θ), then what is Var(Y )?

(A) θ. (B) θ(1− θ). (C) nθ. (D) nθ(1− θ). (E) n2θ(1− θ). (F) No idea.

• Well, if Y ∼ Binomial(n, θ), then we can think of Y as Y = X1 + X2 + . . . + Xn

where each Xi ∼ Bernoulli(θ) and they are independent.

→ By independence, Cov(Xi, Xj) = 0 for all i 6= j.

→ Hence, Var(Y ) = Var(X1) + Var(X2) + . . .+ Var(Xn) = θ(1− θ) + θ(1− θ) +

. . .+ θ(1− θ) = nθ(1− θ). This gives the variance of the Binomial(n, θ) distribution!

• In general, by multiplying out, we have Cov(X, Y ) = E[(X − µX)(Y − µY )] =

E[XY − µXY −XµY + µXµY ] = E[XY ]− µXµY − µXµY + µXµY = E[XY ]− µXµY .

→ (Just like how Var(X) = E[X2]− (µX)2. Makes sense.)

• We know that E(aX + bY ) = aE(X) + bE(Y ), and Var(aX + b) = a2 Var(X).

But what about Cov(aX + bY, Z)?

POLL: Cov(aX + bY, Z) is equal to: (A) Cov(X + Y, Z). (B) Cov(X,Z) +

Cov(Y, Z). (C) (a+b)[Cov(X,Z)+Cov(Y, Z)]. (D) (a+b)2[Cov(X,Z)+Cov(Y, Z)].

(E) aCov(X,Z) + bCov(Y, Z). (F) a2 Cov(X,Z) + b2 Cov(Y, Z).

→ Here Cov(aX + bY, Z) = E[(aX + bY − µaX+bY )(Z − µZ)]

= E[(aX + bY − aµX − bµY )(Z − µZ)] = E[(a(X − µX) + b(Y − µY ))(Z − µZ)]

= aE[(X − µX)(Z − µZ)] + bE[(Y − µY ))(Z − µZ)] = aCov(X,Z) + bCov(Y, Z).

→ Similarly, Cov(X, aY + bZ) = aCov(X, Y ) + bCov(X,Z). (“bilinear”)

• Let X ∼ Uniform[5, 9], and Y ∼ Exponential(3), with X and Y independent.

→ Then Cov(X, Y ) = 0 (by independence).

→ Hence, if Z = 3X + 2Y and W = X − 5Y , then

Cov(Z,W ) = Cov(3X + 2Y,X − 5Y ) = 3 Cov(X,X − 5Y ) + 2 Cov(Y,X − 5Y )

= 3 Cov(X,X)− 15 Cov(X, Y ) + 2 Cov(Y,X)− 10 Cov(Y, Y )

= 3 Var(X)− 15(0) + 2(0)− 10 Var(Y ) = 3 (42/12)− 10(1/32) = 26/9.

• Fact: If X ∼ Normal(µ1, σ
2
1), and Y ∼ Normal(µ2, σ

2
2), with X and Y indepen-

dent, then X + Y is also normal (!). (Textbook Problem 2.9.14.)

→ What mean and variance?
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→ By linearity and independence, E(X + Y ) = E(X) + E(Y ) = µ1 + µ2, and

Var(X + Y ) = Var(X) + Var(Y ) = σ2
1 + σ2

2, so X + Y ∼ Normal(µ1 + µ2, σ
2
1 + σ2

2).

→ So, also, Sd(X + Y ) =
√

Var(X + Y ) =
√
σ2

1 + σ2
2 .

• Suppose now that Y = cX for some constant c ∈ R.

→ Then Var(Y ) = c2 Var(X), so Sd(Y ) = |c| Sd(X), and Sd(X) Sd(Y ) = |c|Var(X).

POLL: If Y = cX for some constant c ∈ R, then Cov(X, Y ) equals:

(A) 0. (B) Sd(X). (C) Var(X). (D) cVar(X). (E) |c|Var(X). (F) c2 Var(X).

→ Indeed, here Cov(X, Y ) = Cov(X, cX) = cCov(X,X) = cVar(X). (D)

→ So, if Y = cX where c ≥ 0, then Cov(X, Y ) = Sd(X) Sd(Y ).

→ Or, if Y = cX where c < 0, then Cov(X, Y ) = −Sd(X) Sd(Y ).

• FACT: These are the extremes: always−Sd(X) Sd(Y ) ≤ Cov(X, Y ) ≤ Sd(X) Sd(Y ).

→ That is, we always have −
√

Var(X) Var(Y ) ≤ Cov(X, Y ) ≤
√

Var(X) Var(Y ).

• Proof: Use the “Cauchy-Schwarz Inequality” that −||u|| ||v|| ≤ u · v ≤ ||u|| ||v||.
→ Here the “vector space” is all random variables with finite variance.

→ And, the “dot product” is X · Y = Cov(X, Y ).

→ So, ‖X‖ =
√
X ·X =

√
Cov(X,X) =

√
Var(X) = Sd(X).

→ So, the result follows by setting u = X and v = Y .

• The correlation of X and Y is Corr(X, Y ) = Cov(X, Y )
/√

Var(X) Var(Y ).

→ So, from the above, we always have −1 ≤ Corr(X, Y ) ≤ 1.

→ Corr(X, Y ) is a “normalised” version of Cov(X, Y ).

→ Can also be written as Corr(X, Y ) = Cov(X, Y )
/

[Sd(X) Sd(Y )].

→ (Requires first computing µX , µY , Var(X), Var(Y ), Cov(X, Y ), . . . .)

• If X, Y independent, then Cov(X, Y ) = 0, so Corr(X, Y ) = 0. (“uncorrelated”)

• Now suppose that Y is a constant r.v., e.g. Y = 5. Then what is Cov(X, 5)?

→ Well, Cov(X, Y ) := E[(X − µX)(Y − µY )] = E[(X − µX)(5− 5)] = 0.

→ Of course! And what about Corr(X, 5)?

→ Well, Var(Y ) = 0, so Corr(X, Y ) = Cov(X,Y )√
Var(X) Var(Y )

= 0
0
. Undefined!

→ Correlation is only defined for non-constant r.v.: Var(X) > 0 and Var(Y ) > 0.

POLL: Suppose Z = c Y for some c > 0. Then Corr(X,Z) is equal to:

(A) Corr(X, Y ). (B) cCorr(X, Y ). (C) c2 Corr(X, Y ). (D) Corr(X, Y )2.

(E) cCorr(X, Y )2. (F) c2 Corr(X, Y )2.

→ Here Var(Z) = c2 Var(Y ), so Sd(Z) =
√

Var(Z) =
√
c2 Var(Y ) = c Sd(Y ).

→ But also, Cov(X,Z) = Cov(X, cY ) = cCov(X, Y ).

→ Hence, Corr(X,Z) = Cov(X,Z)
Sd(X) Sd(Z)

= cCov(X,Y )
Sd(X) cSd(Y )

= Cov(X,Y )
Sd(X) Sd(Y )

= Corr(X, Y ). (A)

→ That is, Corr(X, cY ) = Corr(X, Y ). Unaffected by the constant scale c > 0.
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• If instead Z = c Y where c < 0, then
√
c2 = −c, so Corr(X, cY ) = −Corr(X, Y ).

→ So, the sign of c is still important! (But not its magnitude.)

• We always have Corr(X,X) = Cov(X,X)
Sd(X) Sd(X)

= Var(X)
Var(X)

= 1.

→ And, Corr(X, cX) = sign(c), i.e. = 1 if c > 0, or = −1 if c < 0.

→ And what about if c = 0? . . .

Suggested Homework: 3.3.1, 3.3.2, 3.3.3, 3.3.4, 3.3.7, 3.3.10, 3.3.11, 3.3.12, 3.3.13,

3.3.14, 3.3.15, 3.3.29, 3.3.30.

• EXAMPLE: Suppose pX,Y (5, 1) = pX,Y (5, 9) = pX,Y (7, 3) = pX,Y (7, 7) = 1/4,

otherwise 0. What is Cov(X, Y )? And, are X and Y independent? Diagram:

→ Here µX := E(X) =
∑

x∈R x pX(x) =
∑

x,y∈R x pX,Y (x, y) = 5(1/4) + 5(1/4) +

7(1/4) + 7(1/4) = 6.

→ And µY := E(Y ) =
∑

y∈R y pY (y) =
∑

x,y∈R y pX,Y (x, y) = 1(1/4) + 9(1/4) +

3(1/4) + 7(1/4) = 5.

→ Also E(XY ) =
∑

x,y∈R xy pX,Y (x, y) = (5)(1)(1/4)+(5)(9)(1/4)+(7)(3)(1/4)+

(7)(7)(1/4) = 30.

→ So, Cov(X, Y ) = E(XY )−µXµY = 30− (6)(5) = 0, i.e. E(XY ) = E(X) E(Y ).

→ Hence, also, Corr(X, Y ) = Cov(X,Y )√
Var(X) Var(Y )

= 0, too. (“uncorrelated”)

→ And also Var(X + Y ) = Var(X) + Var(Y ), since Cov(X, Y ) = 0.

→ So, does that mean that X and Y must be independent?

→ No, since e.g. pX(5) = 1/4 + 1/4 = 1/2 > 0 and pY (3) = 1/4 > 0, but

pX,Y (5, 3) = 0 6= pX(5) pY (3). So, X and Y are not independent!

→ Conclusion: independent ⇒ uncorrelated, but uncorrelated 6⇒ independent.

Markov’s Inequality (§3.6)

POLL: Suppose X ≥ 0, and E(X) = 5. What is the largest that P(X ≥ 100) could

be? (A) 1/5. (B) 1/10. (C) 1/20. (D) 1/100. (E) 1. (F) No idea.

• Can’t be too large, or we would have E(X) ≥ (100) P(X ≥ 100)� 5.

→ E(X) = 5 implies (100) P(X≥100) ≤ 5, so P(X≥100) ≤ 5/100 = 1/20. (C)

• Markov’s Inequality: If X ≥ 0, and a > 0, then P(X ≥ a) ≤ E(X)
/
a.

• Proof: Define a new random variable Z by Z = a IX≥a.

→ That is, Z = a whenever X ≥ a, otherwise Z = 0.

→ Then if X ≥ a, then Z = a, so X ≥ Z.

→ Or, if X < a, then Z = 0, so X ≥ Z (since we’ve assumed X ≥ 0).

→ Either way, X ≥ Z. So, by monotonicity, E(X) ≥ E(Z).
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→ But E(Z) = E[a IX≥a] = aP(X ≥ a). Or, to write it differently, E(Z) =

0 P(Z = 0) + aP(Z = a) = aP(Z = a) = aP(X ≥ a).

→ So, E(X) ≥ E(Z) = a P(X ≥ a). Hence, P(X ≥ a) ≤ E(X) / a.

• e.g. If X ≥ 0 and E(X) = 5, then must have P(X ≥ 100) ≤ 5/100 = 1/20.

→ Also, P(X ≥ 1000) ≤ 5/1000 = 1/200. Small!

• But this is only for non-negative random variables. Better is . . .

Chebychev’s Inequality (§3.6)

• Let Y be any random variable, with finite mean µY .

→ If Var(Y ) is small, then Y will “usually” be “pretty close” to µY . More precise?

• Chebychev’s Inequality: For any a > 0, P(|Y − µY | ≥ a) ≤ Var(Y )
/
a2.

• Proof: Let X = (Y −µY )2 ≥ 0. Then by Markov’s Inequality, P(|Y −µY | ≥ a) =

P((Y − µY )2 ≥ a2) ≤ E((Y − µY )2)
/
a2 = Var(Y )

/
a2.

• e.g. Suppose Z has mean 5 and variance 9. Then, P(Z ≥ 17) = P(Z − 5 ≥ 12) ≤
P(|Z − 5| ≥ 12) ≤ 9/122 = 9/144 = 1/16 = 0.0625. Unlikely!

→ And, this is true for any random variable with this mean and variance.

→ If we also knew that Z ≥ 0, then we could use Markov’s inequality directly to

get that P(Z ≥ 17) ≤ E(Z)/17 = 5/17
.
= 0.294. (Weaker bound.)

Suggested Homework: 3.6.1, 3.6.2, 3.6.3, 3.6.4, 3.6.5, 3.6.6, 3.6.8, 3.6.9, 3.6.10,

3.6.11, 3.6.12, 3.6.13, 3.6.14, 3.6.15, 3.6.18.

• Note: We are omitting a few topics from Chapter 3, including:

→ Generating Functions (§3.4)

→ Conditional Expectation (§3.5)

→ Jensen’s Inequality (§3.6.1)

→ General Expectations (neither discrete nor continuous) (§3.7)

→ All interesting! Check them out! Try the exercises! Ask me questions!

[END OF TEXTBOOK CHAPTER #3]

[Reminder: Midterm #2 on Wednesday in EX100 at normal class time..]

—————————— END MONDAY #9 ——————————

(Midterm #2.)

————————— END WEDNESDAY #10 —————————
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Convergence of Random Variables (§4.2)

• Suppose we flip 100 coins.

→ Will the number of Heads be close to 50? How close?

→ Will the fraction of Heads be close to 0.5?

→ If we flip 1,000 coins, will it be closer to 0.5?

→ Maybe? Usually? For sure??

• [Try it in R: e.g. “mean( rbinom(1000,1,1/2) )”, “mean( rgeom(1000,1/5) )”,

“mean( rpois(1000,3) )”, “mean( rexp(1000,3) )”]

• If we flip n coins as n→∞, will the fraction get even closer to 1/2?

→ Will the fraction converge to 1/2? For sure? In what sense?

→ What does it mean for a random quantity to converge??

Convergence in Probability (§4.2)

• Defn: A sequence X1, X2, X3, . . . of random variables converges in probability to

another random variable (or constant) Y if: For all ε > 0, limn→∞ P(|Xn−Y | ≥ ε) = 0.

→ Or, equivalently: For all ε > 0, limn→∞ P(|Xn − Y | < ε) = 1.

→ Sometimes written as: {Xn}
P→ Y , or just Xn

P→ Y .

• e.g. Suppose Xn ∼ Bernoulli( 1
n
), i.e. P(Xn=1) = 1

n
and P(Xn=0) = 1− 1

n
.

→ Does Xn → 0 in probability, i.e. Xn
P→ 0?

→ For any ε > 0, P(|Xn − 0| ≥ ε) ≤ P(Xn 6=0) = P(Xn=1) = 1
n
, and this

probability → 0 as n→∞. So, yes, Xn
P→ 0.

• In general, for any ε > 0, P(|Xn − Y | ≥ ε) ≤ P(Xn 6= Y ).

→ So, if limn→∞ P(Xn 6= Y ) = 0, then Xn
P→ Y .

POLL: Let U ∼ Uniform[0, 1], and Xn = IU≤(1/2)+(1/2n), and Y = IU≤1/2. Does

Xn → Y in probability? (A) Yes. (B) No. (C) Not sure.

→ Well, for any ε > 0, P(|Xn − Y | ≥ ε) ≤ P(Xn 6= Y ) = P(Xn = 1 and

Y = 0) = P[1/2 < U ≤ (1/2) + (1/2n)] = 1/2n.

→ And, this probability → 0 as n→∞. So, yes!

POLL: Let Y ∼ Uniform[0, 5], and Xn = (1 + 1
n
)Y . Does Xn → Y in probability?

(A) Yes. (B) No. (C) Not sure.

→ Here |Xn − Y | = |(1 + 1
n
)Y − Y | = 1

n
Y ≤ 5/n.

→ Now, for any ε > 0, if n > 5/ε, then 5/n < ε.

→ Hence, for all n > 5/ε, we must have |Xn − Y | ≤ 5/n < ε.

→ This means that for all n > 5/ε, P(|Xn − Y | ≥ ε) = 0.

→ So, limn→∞ P(|Xn − Y | ≥ ε) = 0, i.e. Xn → Y in probability. Yes!
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POLL: Flip an infinite sequence of fair coins. Let Xn = Inth coin Heads, i.e. Xn = 1 if

the nth coin is Heads, otherwise 0.

Does Xn → 1/2 in probability? (A) Yes. (B) No. (C) Not sure.

→ Here for 0 < ε < 1/2, we have P(|Xn − (1/2)| ≥ ε) = 1.

→ This does not → 0. So, no!

→ But suppose instead we let Mn = 1
n
(X1 +X2 + . . .+Xn).

→ Then Mn is the fraction of Heads in the first n coins.

→ Does Mn → 1/2 in probability? Maybe!

Suggested Homework: 4.2.1, 4.2.2, 4.2.6, 4.2.7, 4.2.8, 4.2.14, 4.2.17.

Weak Law of Large Numbers (WLLN) (§4.2.1)

• Theorem: For any sequence of random variablesX1, X2, X3, . . . which are independent,

and each have the same mean µ, and each have variance ≤ v for some constant v <∞,

if Mn = 1
n
(X1 +X2 + . . .+Xn), then Mn → µ in probability.

• Proof: We need to understand Mn better. Mean? Variance?

→ First, by linearity, E(Mn) = 1
n
[E(X1) + E(X2) + . . .+ E(Xn)] = 1

n
[nµ] = µ.

→ Then, since the {Xn} are independent, Var(Mn) = ( 1
n
)2[Var(X1) + Var(X2) +

. . .+ Var(Xn)] ≤ ( 1
n
)2[v + v + . . .+ v] = ( 1

n
)2[n v] = v/n. (Not just v.)

→ Now, let ε > 0, and consider P(|Mn − µ| ≥ ε).

→ Use Chebychev’s Inequality! Since E(Mn) = µ, therefore

P(|Mn − µ| ≥ ε) ≤ Var(Mn)/ε2 ≤ v/nε2, which → 0 as n→∞.

→ So, Mn → µ in probability.

• Often assume the {Xn} are i.i.d., i.e. independent and identically distributed.

→ “identically distributed” means the Xn all have the same probabilities.

→ That is, P(a ≤ Xn ≤ b) is the same for all n (for any a < b).

→ In particular, the Xn all have the same mean µ and variance v.

→ Fact (later): If {Xn} i.i.d., then the WLLN doesn’t even need v <∞.

• e.g. Flip an infinite sequence of fair coins, with Xn = Inth coin Heads.

→ Then {Xn} independent (and i.i.d.), with E(Xn) = 1/2 =: µ, and Var(Xn) =

(1/2)(1− (1/2)) = 1/4 =: v <∞.

→ So, if Mn = 1
n
(X1 + X2 + . . . + Xn) is the fraction of Heads on the first n fair

coin flips, then by WLLN, Mn → µ = 1/2 in probability.

→ Hence, P(|Mn − (1/2)| ≥ ε)→ 0 for all ε > 0.

→ e.g. ε = 0.003: P(|Mn − (1/2)| ≥ 0.003)→ 0.

→ So, for all sufficiently large n, P(|Mn − (1/2)| ≥ 0.003) < 0.01 (say).

→ In particular, for those n, P(Mn− (1/2) ≥ 0.003) < 0.01, i.e. P(Mn ≥ 0.503) <

0.01, i.e. P(Mn < 0.503) > 0.99, etc.

• e.g. Roll an infinite sequence of fair dice, with Xn the result of the nth roll.
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→ Then {Xn} independent (and i.i.d.), and E(Xn) = 3.5 =: µ.

→ What about Var(Xn)? Well, E(X2
n) =

∑
x∈R x

2 P(Xn = x) =
∑6

k=1 k
2 (1/6) =

91/6. So Var(Xn) = 91/6− (3.5)2 .
= 2.92 =: v <∞.

→ (Or, simpler: We always have 1 ≤ Xn ≤ 6, so |Xn − 3.5| ≤ 2.5, so Var(Xn) =

E(|Xn − 3.5|2) ≤ (2.5)2 =: v <∞, since we only need the variances to be bounded.)

→ (Or, even simpler: since {Xn} i.i.d., don’t need to check variance.)

→ So, if Mn = 1
n
(X1 +X2 + . . .+Xn) is the average value on the first n fair dice,

then by WLLN, Mn → µ = 3.5 in probability.

• e.g. Repeatedly take free throws, with independent probability θ = 1/4 of scoring

each time. Let Xn = Iscore on nth attempt.

→ Then {Xn} independent, E(Xn) = θ =: µ, and Var(Xn) = θ(1− θ) =: v <∞.

→ So, if Mn = 1
n
(X1 + X2 + . . . + Xn) is the fraction of scores on the first n

attempts, then by WLLN, Mn → µ = 1/4 in probability.

→ So, after e.g. 1,000 attempts, you will probably have about 250 scores.

POLL: Suppose we repeatedly take free throws, with independent probability θ =

1/4 of scoring each time. About how many attempts will it take to score 500 times?

(A) 500. (B) 1000. (C) 1500. (D) 2000. (E) 2500. (F) No idea.

→ Let Xn be the number of misses just before the nth score (i.e., in between the

(n− 1)th and nth scores).

→ Then Xn ∼ Geometric(1/4), so E(Xn) = (1− θ)/θ = (3/4)/(1/4) = 3.

→ Let Zn = Xn + 1, so Zn is the total number of attempts for the nth score.

→ So, E(Zn) = E(Xn) + 1 = 4.

→ Then, W := “# attempts to score 500 times” = Z1 + Z2 + . . .+ Z500.

→ Recall (Problem 3.3.18): Geometric(θ) has finite variance v = (1− θ)/θ2 <∞.

→ (Or, even simpler: since {Xn} and {Zn} i.i.d., don’t need to check variance.)

→ So, if Mn = 1
n
(Z1 + Z2 + . . .+ Zn), then by WLLN, Mn → 4 in probability.

→ So, M500 ≈ 4, i.e. W := Z1 + Z2 + . . .+ Z500 ≈ (4)(500) = 2000.

→ So, it will probably take about 2000 attempts to score 500 free throws.

Suggested Homework: 4.2.3, 4.2.4, 4.2.5, 4.2.10, 4.2.11. Optional: 4.2.12, 4.2.13.

Convergence Almost Surely (a.s.) (with Probability 1) (§4.3)

• Why is the above called just the “weak” law of large numbers?

→ e.g. For a sequence of fair coins, we know Mn
P→ 1/2.

→ This means that for large n, probably Mn ≈ 1/2.

→ But does this mean the random sequence Mn actually converges to 1/2?

→ What does that sort of convergence even mean?

• e.g. Define a sequence of r.v. X1, X2, X3, . . . as follows.

→ Most of the Xn are equal to 5.
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→ However, one of variables X1, X2, . . . , X9 is selected (uniformly at random) and

is instead set to be equal to 7. (But the rest are still equal to 5.)

→ And, one of variables X10, X11, . . . , X99 is selected (uniformly at random) and

is instead set to be equal to 7. (But the rest are still equal to 5.)

→ And, one of variables X100, X101, . . . , X999 is selected (uniformly at random)

and is instead set to be equal to 7. (But the rest are still equal to 5.)

→ And, one of variables X1000, X1001, . . . , X9999 is selected (uniformly at random)

and is instead set to be equal to 7. (But the rest are still equal to 5.)

→ And so on. For each k = 1, 2, 3, . . ., one of the Xn for those n which have

exactly k digits is selected (uniformly at random) and is instead set to be equal to 7.

→ So, when we’re done, the sequence X1, X2, X3, . . . looks something like:

5,5,5,7,5,5,5,5,5,5,5,5,. . . ,5,5,7,5,5,. . . . . . ,5,5,7,5,5, . . . . . . . . . ,5,5,7,5,5,. . . . . . . . . . . .

POLL: Does this sequence X1, X2, X3, . . . converge to 5 in probability?

(A) Yes. (B) No. (C) Not sure.

→ Well, for 1 ≤ n ≤ 9, P(Xn = 7) = 1/9 and P(Xn = 5) = 1− [1/9].

→ And, for 10 ≤ n ≤ 99, P(Xn = 7) = 1/90 and P(Xn = 5) = 1− [1/90].

→ And, for 100 ≤ n ≤ 999, P(Xn = 7) = 1/900 and P(Xn = 5) = 1− [1/900].

→ And, for 1000 ≤ n ≤ 9999, P(Xn = 7) = 1/9000 and P(Xn = 5) = 1− [1/9000].

→ In general, if n has k digits (in base 10), then we compute that:

P(Xn = 7) = 1/(9 · 10k−1) and P(Xn = 5) = 1− [1/(9 · 10k−1].

→ [To be fancy, we could write this as: P(Xn = 7) = 1/(9 · 10blog10(n)c).]

→ The key is that limn→∞ P(Xn = 7) = 0 and limn→∞ P(Xn = 5) = 1.

→ Hence, for any ε > 0, limn→∞ P(|Xn − 5| ≥ ε) ≤ limn→∞ P(|Xn − 5| 6= 0) =

limn→∞ P(Xn = 7) = 0.

→ So, yes, {Xn} → 5 in probability, i.e. Xn
P→ 5.

• Okay, great. But does the actual sequence {Xn} actually converge to 5?

→ Recall that it looks something like:

5,5,5,7,5,5,5,5,5,5,5,5,. . . ,5,5,7,5,5,. . . . . . ,5,5,7,5,5, . . . . . . . . . ,5,5,7,5,5,. . . . . . . . . . . .

→ So, even though it usually equals 5, it still equals 7 infinitely often.

→ But Xn → 5 as a sequence means: For all ε > 0, there is N ∈ N such that for

all n ≥ N , we have |Xn − 5| ≤ ε.

→ This cannot ever hold (for any 0 < ε < 2), since an infinite number of the Xn

equal 7, with |Xn−5| = |7−5| = 2 > ε. That is, Xn → 5 as a sequence is impossible!

→ Conclusion: P(Xn → 5 as a sequence of numbers) = 0. Can never happen!

• So, just because Xn
P→ 5, that does not mean that P(Xn → 5 as a sequence) = 1;

that probability could still be 0. In this sense, convergence in probability is “weak”.

• Defn: A sequence X1, X2, X3, . . . of r.v. converges almost surely or converges a.s.

or converges with probability 1 to another r.v. Y if P(Xn → Y as a sequence) = 1,

i.e. P(limn→∞Xn = Y ) = 1. This is sometimes written as: Xn
a.s.→ Y .
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• So, in the above example Xn
P→ 5, but Xn 6

a.s.→ 5. i.e. we do not have Xn
a.s.→ 5.

• However, the converse always holds – convergence almost surely is “stronger”:

• Theorem: If Xn
a.s.→ Y , then Xn

P→ Y . [That is, if {Xn} converges to Y almost

surely (i.e. with probability 1), then it also converges to Y in probability.]

• Proof: Fix ε > 0, and let An be the event that there is some m ≥ n with

|Xm − Y | ≥ ε. That is, An = {∃ m ≥ n with |Xm − Y | ≥ ε}.
→ Or, as functions: An = {s ∈ S : ∃ m ≥ n with |Xm(s)− Y (s)| ≥ ε}.
→ If s ∈

⋂∞
n=1An, this means we can always find some m ≥ n with |Xm(s) −

Y (s)| ≥ ε, i.e. the sequence {Xn(s)} does not converge as a sequence to Y (s).

→ That is,
⋂∞
n=1An ⊆ {s : Xn(s) 6→ Y (s)}. So, using monotonicity:

→ This shows: P
(
{Xn} does not converge as a sequence to Y

)
≥ P

(⋂∞
n=1 An

)
.

→ We’re assuming Xn
a.s.→ Y , so P

(
{Xn} does converge as a sequence to Y

)
= 1,

so P
(
{Xn} does not converge as a sequence to Y

)
= 0. Hence, P

(⋂∞
n=1An

)
= 0.

→ So what? Well, here An =
⋃∞
m=nBm where Bm = {|Xm − Y | ≥ ε}.

→ Now,
⋃∞
m=n+1 Bm ⊆

⋃∞
m=nBm. Hence, An+1 ⊆ An, i.e. the {An} are decreasing.

→ So, by Continuity of Probabilities, limn→∞ P(An) = P(
⋂∞
n=1 An) = 0.

→ But {|Xn − Y | ≥ ε}= Bn ⊆
⋃∞
m=nBm = An.

→ Hence, P(|Xn − Y | ≥ ε) = P(Bn) ≤ P(An), so limn→∞ P(|Xn − Y | ≥ ε) = 0.

→ Since this is true for any ε > 0, we must have Xn
P→ Y .

• Intuition from the proof: For all ε > 0, as n→∞, . . .

→ For Xn
P→ Y , just need P(|Xn − Y | ≥ ε)→ 0.

→ But for Xn
a.s.→ Y , need P(∃ m ≥ n with |Xm − Y | ≥ ε)→ 0. (Stronger.)

• Confusing? Think about it this way:

→ Xn converges to Y in probability if for each ε > 0, the sequence

an := P(|Xn − Y | ≥ ε) converges to 0.

→ But, Xn converges to Y almost surely if for each ε > 0, the sequence

bn := P(∃m ≥ n : |Xm − Y | ≥ ε) converges to 0.

→ Subtle! However, clearly bn ≥ an, so if bn → 0, then of course an → 0.

→ That is, if Xn
a.s.→ Y , then Xn

P→ Y .

→ But the converse is not true! (e.g. the above “5 & 7” example)

Suggested Homework: 4.3.1, 4.3.2, 4.3.5, 4.3.10, 4.3.16, 4.3.17, 4.3.18, 4.3.19,

4.3.21, 4.3.22.

—————————— END MONDAY #10 ——————————
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POLL: Let U ∼ Uniform[0, 1], and Xn = IU≤(1/2)+(1/2n), and Y = IU≤1/2. Know

Xn → Y in probability. Does Xn → Y a.s.? (A) Yes. (B) No. (C) Not sure.

→ Well, if U ≤ 1/2, then Y = 1, and also Xn = 1 for all n.

→ So, (Xn) = 1, 1, 1, 1, . . ., so Xn → 1 = Y in this case.

→ Or, if 1/2 < U ≤ 1, then Y = 0. What about Xn?

→ Well, in this case, Xn = 1 for small enough n that 1/2n ≥ U − (1/2).

→ But for large enough n that 1/2n < U − (1/2), we have Xn = 0.

→ So, (Xn) = 1, . . . , 1, 0, 0, 0, . . ., so Xn → 0 = Y in this case.

→ So, in any case, Xn → Y . So, P(Xn → Y ) = 1.

→ So, yes, Xn
a.s.→ Y in this case. (A)

POLL: Suppose we change it slightly, so still U ∼ Uniform[0, 1] andXn = IU≤(1/2)+(1/2n),

but now Y = IU<1/2. Does Xn → Y a.s.? (A) Yes. (B) No. (C) Not sure.

→ Well, if U < 1/2, or 1/2 < U ≤ 1, then Xn → Y just like before.

→ What if U = 1/2? Then Xn = 1 for all n, but Y = 0, so Xn 6→ Y .

→ Hence, the event {Xn → Y } = {U 6= 1/2}.
→ But P(U 6= 1/2) = 1. So, P(Xn → Y ) = 1. So, Xn

a.s.→ Y . Yes! (A)

Strong Law of Large Numbers (SLLN) (§4.3.1)

• Theorem: For any sequence of random variables X1, X2, X3, . . . which are i.i.d.,

each with finite mean µ, if Mn = 1
n
(X1 +X2 + . . .+Xn), then Mn → µ almost surely

(i.e., a.s.) (i.e., with probability 1) (i.e., Mn
a.s.→ µ).

→ Proof in more advanced books, e.g. http://probability.ca/grprob

→ Then, of course, also Mn
P→ µ, too. (WLLN)

• e.g. Flip an infinite sequence of fair coins, with Xn = Inth coin Heads.

→ Then {Xn} i.i.d., with E(Xn) = 1/2 =: µ.

→ So, if Mn = 1
n
(X1 + X2 + . . . + Xn) is the fraction of Heads on the first n fair

coin flips, then by WLLN, Mn → µ = 1/2 in probability.

→ Hence, for all ε > 0, P(|Mn − (1/2)| ≥ ε)→ 0.

→ So, for all sufficiently large n, i.e. P(Mn < 0.503) > 0.99, etc.

→ But the SLLN says more: P(Mn → 1/2) = 1.

→ So, for all ε > 0, P(|Mn − 0.5| ≤ ε for all sufficiently large n) = 1.

→ So e.g. P(Mn < 0.503 for all sufficiently large n) = 1.

→ In particular, P(∃ n : Mn < 0.503) = 1.

→ That is, P(∃ n : X1 +X2 + . . .+Xn < (0.503)n) = 1. etc.

• Try it out in R! File http://probability.ca/Rslln (first choose theta).

Suggested Homework: 4.3.3, 4.3.4, 4.3.6, 4.3.7, 4.3.8, 4.3.9, 4.3.11, 4.3.12.
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Central Limit Theorem (CLT) (§4.4.1)

• Suppose X1, X2, . . . are independent and identically distributed, each with finite

mean µ and finite variance σ2. What can we say about the probabilities of their sum?

→ Let Sn = X1 +X2 + . . .+Xn. So the average is 1
n
Sn.

→ We know that 1
n
Sn → µ. But how close?

→ What is the probability distribution of 1
n
Sn − µ?

• Frequency histograms in R – file http://probability.ca/Rclt (first choose theta).

• How does the frequency distribution of 1
n
Sn − µ look?

→ Usually centered near 0 (makes sense).

→ Width is fairly small (how small?). And . . .

POLL: The shape of the frequency distribution of 1
n
Sn−µ is approximately: (A)

Uniform. (B) Binomial. (C) Poisson. (D) Exponential. (E) Normal. (F) Geometric.

→ The shape appears to be approximately . . . normal! (E)

• For center, the mean is E[ 1
n
Sn − µ] = 1

n
(nµ)− µ = µ− µ = 0. (Of course.)

• For width, let’s compute the standard deviation:

→Well, since the {Xi} are i.i.d., Var( 1
n
Sn−µ) = ( 1

n
)2 Var(Sn) = 1

n2 Var(X1 +X2 +

. . .+Xn) = 1
n2 [Var(X1) + Var(X2) + . . .+ Var(Xn)] = 1

n2 [nVar(Xi)] = 1
n

Var(Xi).

→ So, if Var(Xi) = σ2, then Var( 1
n
Sn − µ) = σ2/n. Small! Narrow!

• Now, let Zn = ( 1
n
Sn − µ)

/√
σ2/n = Sn−nµ√

nσ
. Then what are E(Zn) and Var(Zn)?

→ Well, here E(Sn) = nµ, and Var(Sn) = nσ2.

→ So, E(Zn) = E
(
Sn−nµ√

nσ

)
= E(Sn)−nµ√

nσ
= nµ−nµ√

nσ
= 0.

→ And, Var(Zn) = Var
(
Sn−nµ√

nσ

)
= Var(Sn)

(
√
nσ)2

= nσ2

nσ2 = 1.

→ That is, E(Zn) = 0, and Var(Zn) = 1. (“standardised”)

→ But is it really approximately normal??

• Theorem (CLT): The probabilities of Zn converge to those of Z ∼ Normal(0, 1).

→ This means that for each z ∈ R, limn→∞ P(Zn ≤ z) = P(Z ≤ z).

→ i.e. FZn(z)→ FZ(z) =: Φ(z) for all z ∈ R. [Convergence in distribution (§4.4)]

→ Equivalently, limn→∞ P(Sn−nµ√
nσ
≤ z) = Φ(z).

→ Equivalently, limn→∞ P(Sn ≤ nµ+
√
nσz) = P(Z ≤ z) ≡ Φ(z).

→ Or, limn→∞ P( 1
n
Sn ≤ µ+ σ√

n
z) = P(Z ≤ z) ≡ Φ(z). (e.g. z = 0: lim = 1/2)

→ So, not only does 1
n
Sn converge to µ (which we already knew from the Laws of

Large Numbers), but its deviations from µ are O(1/
√
n), with normal probabilities.

• Idea of proof (text pp. 247–8): Use “moment-generating functions”. (§3.4)

→ For any random variable X, its moment-generating function is the function

mX(s) defined by mX(s) = E[esX ] for all s ∈ R.

→ Assume that mX(s) <∞ for all s (at least in a neighbourhood of s = 0).
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→ (If not, can instead use the characteristic function cX(s) = E[eisX ] where

i =
√
−1 . . . similar but more complicated . . . )

→ Useful properties, e.g. mX(0) = E[e0X ] = E[e0] = E[1] = 1, and m′X(s) =
d
ds
mX(s) = d

ds
E[esX ] = E[ ∂

∂s
esX ] = E[XesX ], so m′X(0) = E[X]. Similarly m′′X(0) =

E[X2]. [In general for any k ∈ N we have m
(k)
X (0) = E[Xk]: “moments”]

→ Also, if X and Y are independent, then mX+Y (s) = E[es(X+Y )] = E[esX esY ] =

E[esX ] E[esY ] = mX(s)mY (s).

→ KEY FACT: For any r.v. Y1, Y2, . . ., if limn→∞mYn(s) = mY (s) for all s (at least

in a neighbourhood of s = 0), then for all y ∈ R, limn→∞ P(Yn ≤ y) = P(Y ≤ y), i.e.

limn→∞ FYn(y) = FY (y), i.e. Yn converges to Y in distribution.

• So, how can we prove the Central Limit Theorem (CLT)?

→ Need to show that E(esZn)→ E(esZ) for all s ∈ R, where Z ∼ Normal(0, 1).

• For starters, if Z ∼ Normal(0, 1), then mZ(s) = E[esZ ] =
∫∞
−∞ e

sz 1√
2π
e−z

2/2 dz =∫∞
−∞

1√
2π
esz−(z2/2) dz =

∫∞
−∞

1√
2π
e−(z−s)2/2+(s2/2) dz = es

2/2
∫∞
−∞

1√
2π
e−(z−s)2/2 dz.

→ But
∫∞
−∞

1√
2π
e−(z−s)2/2 dz =

∫∞
−∞

1√
2π
e−w

2/2 dw = 1. (normal density)

→ Hence, mZ(s) = es
2/2 (1) = es

2/2.

• So, we need to show that mZn(s) := E(esZn)→ es
2/2 for all s ∈ R.

• Let Yi = (Xi − µ)/σ, so also i.i.d., with E(Yi) = 0, and Var(Yi) = σ2/σ2 = 1.

→ Then Zn = Sn−nµ√
nσ

= (X1+X2+...+Xn)−nµ√
nσ

= 1√
n
(Y1 + Y2 + . . .+ Yn).

→ So, mZn(s) = m 1√
n

(Y1+Y2+...+Yn)(s) = m 1√
n
Y1

(s) . . .m 1√
n
Yn

(s).

→ Then, since {Yn} are i.i.d., mZn(s) =
[
m 1√

n
Y1

(s)
]n

.

→ But m 1√
n
Y1

(s) = E[e
s( 1√

n
Y1)

] = E[e(s/
√
n)Y1 ] = mY1(s/

√
n).

→ So, mZn(s) =
[
m 1√

n
Y1

(s)
]n

=
[
mY1(s/

√
n)
]n

.

• Now, mY1(0) = E[e0Y1 ] = E[e0] = 1.

→ And, m′Y1(0) = E[Y1] = 0.

→ And, m′′Y1(0) = E[(Y1)2] = Var(Y1) = 1.

→ Then we can use a Taylor series expansion around s = 0:

→ For small s, mY1(s) ≈ 1 + 0 · s+ 1 · s2
2!

+O(s3) ≈ 1 + s2

2
+O(s3).

→ Hence, as n→∞, mY1(s/
√
n) ≈ 1 + (s/

√
n)2

2
= 1 + s2

2n
+O(n−3/2).

→ So, mZn(s) =
[
mY1(s/

√
n)
]n ≈ [1 + s2

2n
+O(n−3/2)

]n
.

• Finally, for any a ∈ R, as n→∞, [1 + a
n
]n → ea. (Here a = s2/2.)

→ Hence, mZn(s) =
[
mY1(s/

√
n)
]n ≈ [1 + s2

2n

]n → es
2/2, as required (phew!).

————————— END WEDNESDAY #11 —————————
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• Summary: If X1, X2, . . . are any i.i.d. random variables with finite mean µ and

variance σ2, and their partial sums or averages are “standardised” to have mean 0

and variance 1, then: Their probabilities always converge to Normal(0,1). Wow!

→ Other versions when {Xn} not i.i.d., e.g. “Lindeberg CLT”; error bounds, etc.

→ This is why the Normal distribution is so important and common, e.g.

https://www.statology.org/example-of-normal-distribution/

https://www.mathsisfun.com/data/quincunx.html

Normal Approximations (§4.4.1)

• Okay, so we know that as n→∞, P(Sn−nµ√
nσ
≤ z)→ Φ(z).

• Hence, for “reasonably large” n, we must have P(Sn−nµ√
nσ
≤ z) ≈ Φ(z).

→ How large? It depends on the distribution of the Xi, and error size.

→ Rough “rule of thumb”: Pretty good approximation if n ≥ 30 . . .

→ Can use this to get approximate values for many probabilities!

• Example: Suppose {Xn} are i.i.d. ∼ Exponential(4).

→ What is a good approximation to P(X1 +X2 + . . .+X100 ≥ 30)?

→ Here µ := E(Xi) = 1/λ = 1/4, and σ := Sd(Xi) =
√

1/λ2 = 1/λ = 1/4.

→ So, if S100 = X1 +X2 + . . .+X100, then: P(S100 ≥ 30)

= P

(
S100 − 100(1/4)√

100 (1/4)
≥ 30− 100(1/4)√

100 (1/4)

)
= P

(
S100 − 100(1/4)√

100 (1/4)
≥ 2

)
= P (Z100 ≥ 2) ≈ P (Z ≥ 2) = P (Z ≤ −2) = Φ(−2)

.
= 0.0228 .

→ Here the value of Φ(−2) can found from software [e.g. “pnorm(-2)” in R], or

from a table like textbook Table D.2. (Both use numerical integration.)

→ [On an exam, if there is no table, you could just leave it as “Φ(−2)”.]

• Example: Suppose {Xn} are independent, each ∼ Uniform[2, 5].

→ What is a good approximation to P(X1 +X2 + . . .+X400 ≤ 1420)?

→ Here µ := E(Xi) = (2 + 5)/2 = 3.5, and σ := Sd(Xi) =
√

Var(Xi) =√
(5− 2)2/12

.
= 0.866.

→ So, if S400 = X1 +X2 + . . .+X400, then: P(S400 ≤ 1420)

= P

(
S400 − 400(3.5)√

400 (0.866)
≤ 1420− 400(3.5)√

400 (0.866)

)
.
= P

(
S400 − 400(3.5)√

400 (0.866)
≤ 1.15

)
≈ P (Z ≤ 1.15) = Φ(1.15) = 1− Φ(−1.15)

.
= 1− 0.1251 = 0.8749 .

POLL: Suppose {Xn} are i.i.d. ∼ Poisson(4). What is the normal approximation

to P(X1 +X2 + . . .+X900 ≥ 3700)?

(A) Φ(1). (B) Φ(5/3). (C) Φ(−5/3). (D) Φ(5/4). (E) Φ(−5/4).

→ Here µ := E(Xi) = λ = 4, and σ := Sd(Xi) =
√

Var(Xi) =
√
λ = 2.
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→ Let S900 = X1 +X2 + . . .+X900.

→ Then P(X1 +X2 + . . .+X900 ≥ 3700) = P(S900 ≥ 3700)

= P

(
S900 − 900(4)√

900 (2)
≥ 3700− 900(4)√

900 (2)

)
= P

(
S900 − 900(4)√

900 (2)
≥ 5/3

)
= P (Z900 ≥ 5/3) ≈ P (Z ≥ 5/3) = P (Z ≤ −5/3) = Φ(−5/3)

.
= 0.0478 .

Suggested Homework: 4.4.5, 4.4.6, 4.4.7, 4.4.12, 4.4.13, [4.4.22, 4.4.23 given var].

Estimation and Confidence Intervals (§4.4.2)

• Fact: Φ(−1.96)
.
= 0.025.

POLL: If Z ∼ Normal(0, 1), then P(−1.96 ≤ Z ≤ +1.96) is approximately:

(A) 0.025. (B) 0.05. (C) 0.5. (D) 0.95. (E) 0.975.

→ Here P(Z ≤ −1.96) = Φ(−1.96)
.
= 0.025, and P(Z ≥ +1.96) = 1−Φ(+1.96) =

Φ(−1.96)
.
= 0.025, so P(−1.96 ≤ Z ≤ +1.96)

.
= 1− 0.025− 0.025 = 0.95:

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

ph
i(x

)

95%
2.5% 2.5%

→ That is, Z will be between −1.96 and +1.96 with probability 0.95, or 95%, or

“19 times out of 20”.

• So, if Sn−nµ√
nσ
≈ Z, then P(−1.96 ≤ Sn−nµ√

nσ
≤ +1.96) ≈ 0.95, too.

• Probability interpretation: P(nµ− 1.96
√
nσ ≤ Sn ≤ nµ+ 1.96

√
nσ) ≈ 0.95.

→ Tells us the probabilities for Sn, if we know µ and σ.

• e.g. If {Xn} i.i.d. ∼ Exponential(5), then µ = 1/5 and σ = 1/5, so if Sn =

X1 +X2 + . . .+Xn, then P(1
5
(n− 1.96

√
n) ≤ Sn ≤ 1

5
(n+ 1.96

√
n) ≈ 0.95.

→ So e.g. with n = 200, we get P(34.45 ≤ X1 +X2 + . . .+X200 ≤ 45.54) ≈ 0.95.

→ That is, X1 +X2 + . . .+X200 will “usually” be in the interval [34.5, 45.5].

→ Try it in R: sum( rexp(200,5) )

• Statistics interpretation: P( 1
n
Sn − 1.96 σ√

n
≤ µ ≤ 1

n
Sn + 1.96 σ√

n
) ≈ 0.95.

→ Different perspective: Trying to “estimate” µ, if we know Sn (and σ?).

→ Statistics: Observe the variable values, then estimate the parameter(s).

→ By LLN, a good estimate of µ is Mn := 1
n
Sn. But how accurate is it?

• Well, if Mn := 1
n
Sn, then P(Mn − 1.96 σ√

n
≤ µ ≤Mn + 1.96 σ√

n
) ≈ 0.95.
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→ Sometimes write Xn := 1
n
Sn, so P(Xn − 1.96 σ√

n
≤ µ ≤ Xn + 1.96 σ√

n
) ≈ 0.95.

• Example: Suppose X1, X2, . . . , X500 ∼ Uniform[a− 1, a+ 1].

→ Suppose we observe the values X1, X2, . . . , X500, but a is unknown.

→ Well, here n = 500, and µ = E[Xi] = [(a−1) + (a+1)]/2 = a.

→ Also σ = Sd(Xi) =
√

[R− L]2/12 =
√

[(a+1)− (a−1)]2/12 =
√

1/3
.
= 0.577.

→ But if Mn := 1
n
Sn, then P(Mn − 1.96 σ√

n
≤ µ ≤Mn + 1.96 σ√

n
) ≈ 0.95.

→ Hence, P(M500 − 1.96 0.577√
500
≤ a ≤M500 + 1.96 0.577√

500
) ≈ 0.95.

→ That is, P(M500 − 0.051 ≤ a ≤M500 + 0.051) ≈ 0.95.

→ Hence, a will “usually” be in the interval [M500 − 0.051, M500 + 0.051].

• In the above example, suppose we observe that X1 +X2 + . . .+X500 = 29.

→ Then M500 = 29
500

.
= 0.058, so [M500 − 0.051, M500 + 0.051] = [0.007, 0.109].

→ Can we say that P(0.007 ≤ a ≤ 0.109) ≈ 0.95?

→ Not really, since a is not random (just unknown) – so no probabilities!

→ And yet, we’re still fairly “confident” that a is in [0.007, 0.109]. (Subtle.)

→ Here, [0.007, 0.109] is called a 95% confidence interval for a.

→ [Aside: Alternative “Bayesian” perspective treats parameters like a as random.]

• In general, recall that P( 1
n
Sn − 1.96 σ√

n
≤ µ ≤ 1

n
Sn + 1.96 σ√

n
) ≈ 0.95.

→ Hence, [ 1
n
Sn − 1.96 σ√

n
, 1
n
Sn + 1.96 σ√

n
] is a 95% confidence interval for µ.

• Aside: The value 95% is “usual”, but other values are also possible. (e.g. 99%)

→ e.g. Φ(−3)
.
= 0.00135, so P(−3 ≤ Z ≤ 3)

.
= 1− 0.00135− 0.00135 = 0.9973.

→ So, P( 1
n
Sn − 3 σ√

n
≤ µ ≤ 1

n
Sn + 3 σ√

n
) ≈ 0.9973. (textbook: “virtual certainty”)

→ Hence, [ 1
n
Sn − 3 σ√

n
, 1
n
Sn + 3 σ√

n
] is a 99.73% confidence interval for µ.

• Suppose now that Y ∼ Binomial(n, θ).

→ Then we can think of Y as Y = X1+X2+. . .+Xn where each Xi ∼ Bernoulli(θ)

and they are independent. (e.g. Xi = 1 if you score on the ith free throw, otherwise 0)

→ So, Mn = 1
n
Y , and µ = θ, and σ =

√
θ(1− θ).

→ Suppose θ is unknown. 95% confidence interval?

→ Well, we know that P(Mn − 1.96 σ√
n
≤ µ ≤Mn + 1.96 σ√

n
) ≈ 0.95.

→ That is, P(Mn − 1.96
√
θ(1− θ)/n ≤ θ ≤Mn + 1.96

√
θ(1− θ)/n) ≈ 0.95.

→ So, [Mn−1.96
√
θ(1− θ)/n, Mn+1.96

√
θ(1− θ)/n] is 95% confidence interval.

→ Problem: θ is unknown! What to do?

→ Usual solution: By LLN, probably Mn ≈ θ. So, approximate the true standard

deviation σ =
√
θ(1− θ) by the estimate σn :=

√
Mn(1−Mn).

→ So, use the interval [Mn− 1.96
√
Mn(1−Mn)/n, Mn + 1.96

√
Mn(1−Mn)/n].

• Now, the above discussion is in terms of general n and Sn (or Mn := Sn/n).

→ If we observe a specific value of Sn for some specific n, then we can get a specific

quantitative confidence interval.
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POLL: Suppose you’re shooting free throws, and score 86 out of 250 of them.

Then a 95% confidence interval for the (unknown) true success rate θ is:

(A) [(86)− 1.96
√

(86)(1− (86))/250, (86) + 1.96
√

(86)(1− (86))/250].

(B) [(86)− 1.96
√

86
250

(1− 86
250

)/250, (86) + 1.96
√

86
250

(1− 86
250

)/250].

(C) [ 86
250
− 1.96

√
(86)(1− (86))/250, 86

250
+ 1.96

√
(86)(1− (86))/250].

(D) [ 86
250
− 1.96

√
86
250

(1− 86
250

), 86
250

+ 1.96
√

86
250

(1− 86
250

)].

(E) [ 86
250
− 1.96

√
86
250

(1− 86
250

)/250, 86
250

+ 1.96
√

86
250

(1− 86
250

)/250].

(F) [ 86
250
− 3
√

86
250

(1− 86
250

)/250, 86
250

+ 3
√

86
250

(1− 86
250

)/250].

→ Here the number of scores is S250 ∼ Binomial(250, θ), with θ unknown.

→ That is, S250 = X1 +X2 + . . .+X250, where the {Xi} are i.i.d. ∼ Bernoulli(θ).

→ So, here n = 250, and µ = θ (unknown).

→ So, if Mn := 1
n
Sn, then P(Mn − 1.96 σ√

n
≤ θ ≤Mn + 1.96 σ√

n
) ≈ 0.95.

→ Hence, P(Mn − 1.96σ/
√
n ≤ θ ≤Mn + 1.96σ/

√
n) ≈ 0.95.

→ Here we observed that n = 250 and M250 = 86
250

.
= 0.344, so:

→ 95% confidence interval: [ 86
250
− 1.96σ/

√
250, 86

250
+ 1.96σ/

√
250].

→ Here σ =
√
θ(1− θ), which is unknown.

→ Estimate: θ ≈ 86
250

, so σ2 = θ(1− θ) ≈ 86
250

(1− 86
250

). This gives:

→ 95% C.I. = [ 86
250
−1.96

√
86
250

(1− 86
250

)/250, 86
250

+ 1.96
√

86
250

(1− 86
250

)/250]. (E)

→ This equals [0.285, 0.403], which gives a 95% confidence interval for θ.

Suggested Homework: 4.5.4, 4.5.7, 4.5.8, 4.5.9, 4.5.10, and the following.

Q1. Suppose Y ∼ Binomial(600, θ), where θ is unknown. Suppose we observe that

there were 483 out of 600 successes. Based on these observations, compute a 95%

confidence interval for θ, and also a 99.73% confidence interval for θ.

Q2. Suppose {Xn} are i.i.d. ∼ Uniform[µ− 5, µ+ 5], where µ is unknown. Compute

a 95% confidence interval for µ, both:

(a) in terms of general n and Sn.

(b) based on the observation that X1 +X2 + . . .+X64 = 300.

Q3. Suppose {Xn} are i.i.d. ∼ Exponential(λ), where λ is unknown. Compute a 95%

confidence interval for λ. [Hint: What are µ and σ in terms of λ?]

Q4. Suppose {Xn} are i.i.d. ∼ Poisson(λ), where λ is unknown. Compute a 95%

confidence interval for λ. [Hint: What are µ and σ in terms of λ?]

Q5. Suppose {Xn} are i.i.d. ∼ Uniform[0, a], where a is unknown. Compute a 95%

confidence interval for a. [Hint: What are µ and σ in terms of a?]

Monte Carlo Algorithms (§4.5)

• e.g. Suppose U ∼ Uniform[0, 1]. What is µ := E
(
U3
[

sin(U4) + cos(U5)
]
e−U

6
)

?

→ In principle, this equals
∫ 1

0
u3[sin(u4) + cos(u5)]e−u

6
du. How to compute??

→ One method: Use a “Monte Carlo algorithm”. What is that?
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→ A wealthy region in Monaco with yachts and a big casino?

→ A nice place for a conference?

→ Well, yes . . . but also a method of computing by using randomness.

→ e.g. To compute µ := E
(
U3[sin(U4)+cos(U5)]e−U

6)
, first generate i.i.d. random

values U1, U2, . . . , Un ∼ Uniform[0, 1] on a computer.

→ Then set Xi = U3
i [sin(U4

i ) + cos(U5
i )]e−U

6
i , for i = 1, 2, 3, . . ..

→ Since the {Ui} are i.i.d., therefore the {Xi} are i.i.d. too.

→Now, recall that E[g(X)] =
∫∞
−∞ g(x) fX(x) dx. Hence, E(Xi) := E

(
U3
i [sin(U4

i )+

cos(U5
i )]e−U

5
i

)
] =

∫ 1

0
u3[sin(u4) + cos(u5)]e−u

6
(1) du ≡ µ for each i.

→ Hence, if Mn = 1
n
Sn := 1

n
(X1 +X2 + . . .+Xn), then Mn ≈ µ for large n.

→ That is, Mn (observed) is a good estimate of µ (unknown).

→ I ran it in R, with n = 50, 000:

U = runif(50000); sum( U^3*(sin(U^4)+cos(U^5))*exp(-U^6) ) / 50000

→ I got S50000 = 11319.6, which gives estimate = Mn = 11319.6/50000
.
= 0.2264.

→ Accurate??
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• Well, [ 1
n
Sn − 1.96 σ√

n
, 1
n
Sn + 1.96 σ√

n
] is a 95% confidence interval for µ.

→ σ unknown, but |Xn| ≤ 2, so σ2 := Var(Xn) ≤ E[(Xn)2] ≤ 4, and σ ≤ 2.

→ So, [ 1
n
Sn − 1.96 2√

n
, 1
n
Sn + 1.96 2√

n
] is a 95% confidence interval.

→ In our case, this works out to:

= [ 1
50000

(11319.6)− 1.96 2√
50000

, 1
50000

(11319.6) + 1.96 2√
50000

]
.
= [0.209, 0.244].

→ So, 95% confident that µ := E[U3(sin(U4) + cos(U5))e−U
6
] ∈ [0.209, 0.244].

→ Of course, µ isn’t really random. Good estimate? Inside interval??

→ Numerical integration in Mathematica: µ
.
= 0.2258 ≈Mn. Yes, inside! Good!

• Can also use Monte Carlo to estimate the value of integrals!

→ Idea: first re-write the integral as an expected value.

• e.g. Compute I :=
∫ 1

0
ecos(x) dx.

→ Use calculus? Too hard! (No closed-form solution?)

→ Instead, note that I = E[ecos(U)] where U ∼ Uniform[0, 1].

→ So, as before, first generate random i.i.d. values U1, U2, . . . , Un ∼ Uniform[0, 1].

→ Then set Xi = ecos(Ui), so µ := E[Xi] = I. And σ ≤
√

E[(Xi)2] ≤
√
e2 = e.

→ Then 1
n
Sn ≈ µ, so 1

n
Sn gives a good estimate of I.

→ And, [ 1
n
Sn − 1.96 e√

n
, 1
n
Sn + 1.96 e√

n
] is a 95% confidence interval for I.

• Many other integrals can also be converted to expected values for Monte Carlo:

→ e.g.
∫ 8

5
cos(x7) dx =

∫ 8

5
[3 cos(x7)] 1

3
dx = E[3 cos(X7)] whereX ∼ Uniform[5, 8].

• And what about over infinite regions?

POLL:
∫∞

0
cos(x7) e−5x dx is equal to the expected value:

(A) E[cos(Y 7)] where Y ∼ Uniform[0, 5]. (B) E[cos(Y 7)] where Y ∼ Exponential(5).

(C) E[5 cos(Y 7)] where Y ∼ Exponential(5). (D) E[1
5

cos(Y 7)] where Y ∼ Exponential(1/5).

(E) E[1
5

cos(Y 7)] where Y ∼ Exponential(5). (F) E[5 cos(Y 7)] where Y ∼ Exponential(1/5).

→ Here
∫∞

0
cos(x7) e−5x dx =

∫∞
0

[1
5

cos(x7)] 5e−5x dx = E[1
5

cos(Y 7)] where Y ∼
Exponential(5). (E)

POLL:
∫∞
−∞ cos(x7) e−x

2/2 dx is equal to the expected value:

(A) E[cos(Z7)] where Z ∼ Exponential(2). (B) E[cos(Z7)] where Z ∼ Normal(0, 1).

(C) E[cos(Z7)] where Z ∼ Normal(0, 2). (D) E[ 1√
2π

cos(Z7)] where Z ∼ Normal(0, 1).

(E) E[
√

2π cos(Z7)] where Z ∼ Normal(0, 1).(F) E[
√

2π cos(Z7)] where Z ∼ Normal(0, 2).

→ Here
∫∞
−∞ cos(x7) e−x

2/2 dx =
∫∞
−∞[
√

2π cos(x7)] 1√
2π
e−x

2/2 dx = E[
√

2π cos(Z7)]

where Z ∼ Normal(0, 1). (E)

—————————— END MONDAY #11 ——————————

p.73



→ And can we do the same thing for sums, too?

POLL: The sum
∑∞

j=0 cos(j7) (2/3)j is equal to the expected value:

(A) E[cos(X7)] where X ∼ Poisson(1/3). (B) E[cos(X7)] where X ∼ Poisson(3).

(C) E[(1/3) cos(X7)] whereX ∼ Poisson(3). (D) E[cos(X7)] whereX ∼ Geometric(1/3).

(E) E[3 cos(X7)] where X ∼ Geometric(1/3).

(F) E[(1/3) cos(X7)] where X ∼ Geometric(1/3).

→ Here
∑∞

j=0 cos(j7) (2/3)j =
∑∞

j=0[3 cos(j7)] [1 − (1/3)]j(1/3) = E[3 cos(X7)]

where X ∼ Geometric(1/3). (E)

→ etc. And then each one can be approximated by similar Monte Carlo, too!

Suggested Homework: 4.5.1, 4.5.2, 4.5.3, 4.5.5, 4.5.6, 4.5.11, 4.5.12.

World’s Oldest Monte Carlo: Buffon’s Needle

• A Monte Carlo method introduced in 1733!

• Suppose we toss a needle randomly onto a lined surface.

→ Suppose the needle length L is equal to the space between the lines.

→ Try it out in R: source("http://probability.ca/mc/Rbuffon"); buffon()

POLL: What is the probability that the needle will touch a line? [Best guess!]

(A) 1/3. (B) 1/2. (C) 2/3. (D) 3/4. (E) 2/π.

→ Well, let α be the angle that the needle makes with the line direction.

→ Then in terms of α, the needle covers vertical distance L sin(α).

→ So, the probability it touches a line is L sin(α)
L

= sin(α).

→ e.g. If α = 0◦, then prob = 0. If α = 90◦, prob = 1. If α = 30◦, prob = 1/2.

→ But this depends on α, which is random. Need to average!

• That is, the probability that the needle will touch the line is equal to the average

value of sin(α), as α ranges over all of its possible (random) values.

→ Here α ∼ Uniform[0◦, 180◦], i.e. α ∼ Uniform[0, π] in radians.

→ So, P(needle touches line) = E[sin(α)] = 1
π

∫ π
0

sin(x) dx = 1
π
[− cos(x)]

∣∣∣x=π

x=0

= 1
π
[− cos(π) + cos(0)] = 1

π
[−(−1) + (1)] = 2/π

.
= 0.637. (Depends on π!) (E)

• Now, suppose we throw a large number N of needles, of which M touch a line.

→ Then, we know that each one had success probability θ = 2/π.

→ So, for large N , we should have M/N ≈ θ = 2/π.

→ This means that π ≈ 2N/M , so 2N/M is a possible estimate of π.

→ This is a Monte Carlo method to approximately compute π!

• First proposed by George-Louis Leclerc, Comte de Buffon, back in 1733 (!).

• In 1864, injured civil war Captain O.C. Fox experimented three times:

→ #1: N=500, est=3.1780. #2: N=530, est=3.1423. #3: N=590, est=3.1416.
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• (See the textbook Challenge 4.5.25 and Discussion 4.5.28.)

• Aside: There are other, better ways to estimate π, e.g.:

→ π/4 = arctan(1) = 1− 1
3

+ 1
5
− 1

7
+ . . .. [trigonometry / calculus]

→ π = 3 + 4
2·3·4 + 4

4·5·6 + 4
6·7·8 + 4

8·9·10
+ . . .. [Nilakantha, India, 1444–1550]

→ But Buffon’s Needle is more fun. And it uses probabilities!

Distributions Related to the Normal (§4.6)

• Because of the CLT, the normal distribution is extremely important!

→ Nearly everything becomes approximately normal for large n.

• So, other distributions related to the normal also become important:

• If X1, X2, . . . , Xn ∼ Normal(0, 1) are i.i.d., then the distribution of their sum of

squares X2
1 + X2

2 + . . . + X2
n is called the chi-squared distribution with n degrees of

freedom, also written χ2(n).

• If Z,X1, X2, . . . , Xn ∼ Normal(0, 1) are i.i.d., the distribution of Z√
(X2

1+X2
2+...+X2

n)/n

is called the t-distribution with n “degrees of freedom”, sometimes written t(n).

• If X1, X2, . . . , Xm, Y1, Y2, . . . , Yn,∼ Normal(0, 1) are i.i.d., then the distribution of
(X2

1+X2
2+...+X2

m)/m

(Y 2
1 +Y 2

2 +...+Y 2
n )/n

is called the F -distribution with m and n degrees of freedom.

• The above distributions all have corresponding densities, and expected values,

and variances, and various interesting properties. (See textbook Section 4.6.)

→ And their probabilities can be computed by statistical software (e.g. R).

→ And some statistics textbooks even have tables of their values.

→ And they are used for lots of statistical tests and analyses. (See e.g. the second

half of the textbook, and the follow-up course STA261.)

→ But we will NOT cover them here. (Not on final exam.)

————————— END WEDNESDAY #12 —————————

Final Announcements

• No class on Monday! (I will attend in case you have any questions.)

• Please complete the online course evaluation!

• During the coming days: TA tutorials and office hours (and Piazza).

→ Extra Instructor Office Hours: Fri Dec 6, 12:30–1:30, in SS 1073.

• ***** Final Exam: Saturday December 7 at 2:00 PM, in Benson Building

(BN: 320 Huron St) room 322 for surnames A–TAN, or St Volodymyr Institute (VO:

620 Spadina Ave) Auditorium B for surnames TANE–ZZ. Three hours. Arrive early!

→ Closed book; bring TCard; can use a basic (IMPORTANT!) calculator only.

***** Good luck on the exam, and with all of your future studies! *****
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