
STA3431 (Monte Carlo Methods) Lecture Notes, Fall 2020

by Jeffrey S. Rosenthal, University of Toronto

(Last updated: November 30, 2020)

Note: I will update these notes regularly (on the course web page). However,
they are just rough, point-form notes, with no guarantee of completeness or
accuracy. They should in no way be regarded as a substitute for attending
the lectures, doing the homework exercises, studying the course material, or
reading the reference books.

INTRODUCTION:

• Introduction to course, handout, references, prerequisites, etc.

− Course web page: probability.ca/sta3431

− Lectures: Online on Zoom, synchronous, Mondays 10:10–12:00.

− If not Stat Dept grad student, must REQUEST enrolment (by e-mail);

need advanced undergraduate probability/statistics background, plus

basic computer programming (including “R”; see e.g. this page).

− Conversely, if you already know lots about MCMC etc., then this

course might not be right for you since it’s an INTRODUCTION to

these topics.

− How many of you are graduate students in Statistics? Computer Sci-

ence? Math? Engineering? Physics? Economics? Management?

Other?

• Theme of the course: use (pseudo)randomness on a computer to simulate,

and hence estimate, important/interesting quantities.

• Example: Suppose we want to estimate m := E[Z4 cos(Z)], where Z ∼
Normal(0, 1).

− “Classical” Monte Carlo solution: replicate a large number z1, . . . , zn
of Normal(0,1) random variables, and let xi = z4

i cos(zi).

− Their mean x ≡ 1
n

∑n
i=1 xi is an estimate of E[X] ≡ E[Z4 cos(Z)].

− R: Z = rnorm(100); X = Z∧4 ∗ cos(Z); mean(X) [file “RMC”]

− Unbiased (good) . . . but unstable . . . but if replace “100” with

“1000000” then x is consistently close to −1.213 . . . good . . .

− [Aside: In this course we will often use R to automatically sample from

simple distributions like Normal, Uniform, Exponential, etc. But how

does it work? Discussed later!]

− Can we quantify the variability?
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− Well, can estimate standard deviation of x by the estimated “standard

error” of x, which is:

se =
√

Var(x) =

√√√√Var

(
1

n

n∑
i=1

xi

)
=

√(
1

n

)2 (
n var(x)

)

= n−1/2
√

var(x) ≈ n−1/2

√√√√ 1

n− 1

n∑
i=1

(xi − x)2 =: n−1/2 sd(x) .

[file “RMCse”]

• Then what is, say, a 95% confidence interval for m?

• Well, by by the Central Limit Theorem (CLT), for large n, we have x ≈
N(m, v) ≈ N(m, se2).

− (Strictly speaking, should use “t” distribution, not normal distribution

. . . but if n large that doesn’t really matter – ignore it for now.)

− So m−x
se
≈ N(0, 1).

− So, P(−1.96 < m−x
se

< 1.96) ≈ 0.95.

− So, P(x− 1.96 se < m < x+ 1.96 se ) ≈ 0.95.

− i.e., approximate 95% confidence interval is [file “RMCci”]

(x− 1.96 se, x+ 1.96 se) .

• Alternatively, could compute expectation as

∫ ∞
−∞

z4 cos(z)
e−z

2/2

√
2π

dz .

Analytic? Numerical? Better? Worse? [file “RMCcomp”: −1.213]

• [Aside: In fact, by considering it as the real part of E(Z4eiZ), with

extra work this expectation can be computed exactly, to be −2/
√
e
.
=

−1.213061. But not for harder examples.]

• What about higher-dimensional examples? (Can’t do numerical integra-

tion!) Can we still sample?

• What if the distribution is too complicated to sample from?

− (MCMC! Metropolis, Gibbs, etc.. . . Soon!)

HISTORICAL EXAMPLE – BUFFON’S NEEDLE:

− Have series of parallel lines . . . line spacing w, needle length ` ≤
w (say ` = w) . . . what is prob that needle lands touching line?

[https://mste.illinois.edu/activity/buffon/]
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− Let h be the vertical distance from the bottom end to the nearest line

above, and θ be the needle’s angle counter-clockwise from horizontal.

− Then h ∼ Uniform[0, w] and θ ∼ Uniform[0, π], independent.

− Touches line iff ` sin(θ) > h, i.e. h < ` sin(θ).

− So, the probability the needle touches the line is:

1

π

∫ π

0

1

w

∫ w

0
1h<` sin(θ) dh dθ =

1

π

∫ π

0

1

w
` sin(θ) dθ

=
1

π

1

w
` [− cos(θ)]θ=πθ=0 =

1

π

1

w
` [−(−1) + (1)] =

2`

wπ
.

− Hence, by LLN, if throw needle n times, of which it touches a line m

times, then for n large, m/n ≈ 2`/wπ, so π ≈ 2n`/mw.

− (e.g. if ` = w, then π ≈ 2n/m)

− [e.g. recuperating English Captain O.C. Fox, 1864: ` = 3, w = 4,

n = 530, m = 253, so π ≈ 2n`/mw
.
= 3.1423.]

− But for modern simulations, use computer. How to randomise??

PSEUDORANDOM NUMBERS:

• Goal: generate an i.i.d. sequence U1, U2, U3, . . . ∼ Uniform[0, 1].

• One method: LINEAR CONGRUENTIAL GENERATOR (LCG).

− Choose (large) positive integers m, a, and b.

− Start with a “seed” value, x0. (e.g., the current time in milliseconds)

− Then, recursively, xn = (axn−1 + b) mod m, i.e. xn = remainder when

axn−1 + b is divided by m.

− So, 0 ≤ xn ≤ m− 1.

− Then let Un = xn/m.

− Then {Un} will “seem” to be approximately i.i.d. ∼ Uniform[0, 1].

(file “Rrng”)

• Choice of m, a, and b? Many issues . . .

− Need m large (so many possible values);

− Need a large enough that no obvious “pattern” between Un−1 and Un.

− Need b to avoid short “cycles” of numbers.

− Want large “period”, i.e. number of iterations before repeat.

− Many statistical tests, to try to see which choices provide good ran-

domness, avoid correlations, etc. (e.g. “diehard tests”, “dieharder”:

www.phy.duke.edu/∼rgb/General/dieharder.php)

− One common “good” choice: m = 232, a = 69, 069, b = 23, 606, 797.
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• Theorem: the LCG has full period (m) if and only if both:

(i) gcd(b,m) = 1, and

(ii) every “prime or 4” divisor of m also divides a− 1.

− So, if m = 232, then if b odd and a− 1 is a multiple of 4 (like above),

then the LCG has full period m = 232 .
= 4.3× 109; good.

• Many other choices, some good, some bad (ASIDE):

− e.g. C programming language “glibc” usesm = 232, a = 1, 103, 515, 245,

b = 12, 345. Pretty good.

− “RANDU” used m = 231, a = 65539 = 216 + 3, b = 0 for many years,

around the 1970s. Seemed okay. But then people noticed:

xn+2 = axn+1 = a2xn = (216 + 3)2xn = (232 + 6(216) + 9)xn
≡ (0 + 6(216 + 3)− 9)xn (mod 231) = 6xn+1 − 9xn.

So, xn+2 = 6xn+1 − 9xn mod m. Too much serial correlation! Bad!

− Microsoft Excel pre-2003: had period < 106, too small . . .

− Excel 2003 instead used a floating-point “version” of LCG . . .

which sometimes gave negative numbers! Bad!

• These numbers are not “really” random, just “pseudorandom” . . .

− Can cause problems! Will fail certain statistical tests!

− Some implementations also use external randomness, e.g. temperature

of computer’s CPU / entropy of kernel (e.g. Linux’s “urandom”).

− Or, the randomness of quantum mechanics, e.g. www.fourmilab.ch/hotbits

(see “myhotbits”).

− Or, of atmospheric noise (from lightning etc.), e.g. random.org.

− But mostly, pseudorandom numbers work pretty well . . .

• LCG’s are “good enough”. But other generators include (ASIDE):

− “Multiply-with-Carry”: xn = (axn−r + bn−1) mod m where bn =

b(axn−r + bn−1)/mc.
− ‘Kiss”: yn = (xn + Jn + Kn) mod 232, where xn as above, and Jn

and Kn are “shift register generators”, given in bit form by Jn+1 =

(I +L15)(I +R17)Jn mod 232, and Kn+1 = (I +L13)(I +R18)Kn mod

231, where L means “shift left” and R means “shift right”.

− Mersenne Twister: xn+k = xn+s⊕ (x(upper)
n |x(lower)

n+1 )A, where 1 ≤ s < k

where 2kw−r − 1 is Mersenne prime, and A is w × w (e.g. 32 × 32)

with (w − 1)× (w − 1) identity in upper-right, and where the matrix

multiplication is done bit-wise mod 2.

− And many others, too. An entire research area!

− R’s choice? See “?RNGkind”. Default is Mersenne Twister.
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• So, just need computer to do simple arithmetic. No problem, right?

LIMITATIONS OF COMPUTER ARITHMETIC:

• Consider the following computations in R:

> 2 + 1 - 2

> 2∧10 + 1 - 2∧10

> 2∧100 + 1 - 2∧100

• Why??

• Question for next class: In R, for what values of n does:

> 2∧n + 1 - 2∧n

give 0 instead of 1?

• (Similarly in many other computer languages too, e.g. C (powertest.c),

Java (powertest.java) . . . and Python with floating numbers . . . but not

Python with integer variables (powertest.py), because it then does dy-

namic memory allocation . . . )

• Also, overflow/Inf/underflow problems: 2∧10000, 2∧(−10000), etc.

• So, numerical computations are approximations, with their own errors.

• We’ll usually ignore these issues, but you should BE CAREFUL!

• So how to use pseudorandomness?

− With LCG etc, we can simulate Uniform[0,1] random variables.

− What about other random variables?

—————————– END WEEK #1 —————————–

SIMULATING OTHER DISTRIBUTIONS:

• Once we have U1, U2, . . . i.i.d. ∼ Uniform[0, 1] (at least approximately),

how do we generate other distributions?

• With transformations, using the “change-of-variable” theorem!

• e.g. to make X ∼ Uniform[L,R], set:

X = (R− L)U1 + L.

• e.g. to make X ∼ Bernoulli(p), set:

X =

{
1, U1 ≤ p
0, U1 > p

• e.g. to make Y ∼ Binomial(n, p), either set:

Y = X1 + . . .+Xn where

Xi =

{
1, Ui ≤ p
0, Ui > p

,
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or set:

Y = max
{
j :

j−1∑
k=0

(
n

k

)
pk(1− p)n−k ≤ U1

}

(where by convention
−1∑
k=0

(· · ·) = 0). (“Inverse CDF method”; see below)

• More generally, to make P(Y = xi) = pi for some x1 < x2 < x3 < . . .,

where pi ≥ 0 and
∑
i pi = 1, set:

Y = max{xj ;
j−1∑
k=1

pk ≤ U1} .

(discrete version of “Inverse CDF method”)

• e.g. to make Z ∼ Exponential(1), set:

Z = − log(U1).

− Then for x > 0, P(Z > x) = P(− log(U1) > x) = P(log(U1) < −x)

= P(U1 < e−x) = e−x. Then CDF = 1− e−x, and density = e−x.

− Then, to make W ∼ Exponential(λ), set:

W = Z/λ = − log(U1)/λ. [So that W has density λe−λx for x > 0.]

• Suppose we want X to have density 6 x510<x<1.

− Let X = U
1/6
1 .

− Then for 0 < x < 1, P(X ≤ x) = P(U
1/6
1 ≤ x) = P(U1 ≤ x6) = x6.

− Hence, fX(x) = d
dx

[
P(X ≤ x)

]
= d

dx
x6 = 6x5 for 0 < x < 1.

− More generally, for r > 1, if X = U
1/r
1 , then fX(x) = r xr−1 for

0 < x < 1. [CHECK!]

• What about normal dist.? Fact: If

X =
√

2 log(1/U1) cos(2πU2) ,

Y =
√

2 log(1/U1) sin(2πU2) ,

then X, Y ∼ N(0, 1), and X and Y are independent! [“Box-Muller trans-

formation”: Ann Math Stat 1958, 29, 610-611]

− Proof (Aside): By multidimensional change-of-variable theorem, if

(x, y) = h(u1, u2) and (u1, u2) = h−1(x, y), then

fX,Y (x, y) = fU1,U2(h
−1(x, y)) / |J(h−1(x, y))|.

Here fU1,U2(u1, u2) = 1 for 0 < u1, u2 < 1 (otherwise 0), and

J(u1, u2) = det

(
∂x
∂u1

∂x
∂u2

∂y
∂u1

∂y
∂u2

)

= det

− cos(2πu2) / u1

√
2 log(1/u1) −2π sin(2πu2)

√
2 log(1/u1)

− sin(2πu2) / u1

√
2 log(1/u1) 2π cos(2πu2)

√
2 log(1/u1)


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= −2π / u1 .

But u1 = e−(x2+y2)/2, so density of (X, Y ) is

fX,Y (x, y) = 1/|J(h−1(x, y))| = 1/|−2π / e−(x2+y2)/2| = e−(x2+y2)/2/2π

=
( 1√

2π
e−x

2/2
)( 1√

2π
e−y

2/2
)
,

i.e. X ∼ N(0, 1) and Y ∼ N(0, 1) are independent.

• Most general approach: the general “INVERSE CDF METHOD”:

− Suppose want P(X ≤ x) = F (x). (“CDF”)

− For 0 < t < 1, set F−1(t) = min{x ; F (x) ≥ t}. (“inverse CDF”)

− Then set X = F−1(U1).

− Then X ≤ x if and only if U1 ≤ F (x). [Subtle; see e.g. Rosenthal, A

First Look at Rigorous Probability Theory, 2nd ed., Lemma 7.1.2.]

− So, P(X ≤ x) = P(U1 ≤ F (x)) = F (x).

− Very general, but computing F−1(t) is often very difficult . . .

• Overall, generating (pseudo)random numbers for most “standard” one-

dimensional distributions is mostly pretty easy or well-known . . .

− So, can get Monte Carlo estimates of expectations involving standard

one-dimensional distributions, e.g. E[Z4 cos(Z)] where Z ∼ Normal(0, 1).

• What about other Monte Carlo estimates?

MONTE CARLO INTEGRATION:

• How to compute an integral with Monte Carlo?

− Re-write it as an expectation!

• EXAMPLE: Want to compute
∫ 1

0

∫ 1
0 g(x, y) dx dy.

− Regard this as E[g(X, Y )], where X, Y i.i.d. ∼ Uniform[0, 1].

− Then, similar to before, estimate E[g(X, Y )] by 1
M

∑M
i=1 g(xi, yi), where

xi ∼ Uniform[0, 1] and yi ∼ Uniform[0, 1] (all independent).

− e.g. g(x, y) = cos(
√
xy ). (file “RMCint”) Easy!

− Get about 0.88± 0.003 . . . Mathematica gives 0.879544.

• e.g. estimate I =
∫ 5

0

∫ 4
0 g(x, y) dy dx, where g(x, y) = cos(

√
xy ).

− Here∫ 5

0

∫ 4

0
g(x, y) dy dx =

∫ 5

0

∫ 4

0
5·4·g(x, y) (1/4)dy (1/5)dx = E[5·4·g(X, Y )] ,

where X ∼ Uniform[0, 5] and Y ∼ Uniform[0, 4].

− So, let Xi ∼ Uniform[0, 5], and Yi ∼ Uniform[0, 4] (all independent).
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− Estimate I by 1
M

∑M
i=1(5 · 4 · g(Xi, Yi)). (file “RMCint2”)

− Standard error: se = M−1/2 sd(5 · 4 · g(X1, Y1), . . . , 5 · 4 · g(XM , YM)).

− With M = 106, get about −4.11 ± 0.01 . . . Mathematica gives

−4.11692.

• e.g. estimate
∫ 1

0

∫∞
0 h(x, y) dy dx, where h(x, y) = e−y

2
cos(
√
xy ).

− (Can’t use “Uniform” expectations.)

− Instead, write this as, say,
∫ 1

0

∫∞
0 (ey h(x, y)) e−y dy dx.

− This is the same as E[eY h(X, Y )], where X ∼ Uniform[0, 1] and Y ∼
Exponential(1) are independent.

− So, estimate it by 1
M

∑M
i=1 e

Yih(Xi, Yi), where Xi ∼ Uniform[0, 1] and

Yi ∼ Exponential(1) (i.i.d.). (file “RMCint3”)

− With M = 106 get about 0.767± 0.0004 . . . Small error!

− Mathematica: 0.767211.

• Alternatively, could write this as
∫ 1

0

∫∞
0 (1

5
e5y h(x, y)) (5 e−5y) dy dx = E[1

5
e5Y h(X, Y )]

where X ∼ Uniform[0, 1] and Y ∼ Exponential(5) (indep.).

− Then, estimate it by 1
M

∑M
i=1

1
5
e5yih(xi, yi), where xi ∼ Uniform[0, 1]

and yi ∼ Exponential(5) (i.i.d.).

− With M = 106, get about 0.767± 0.0016 . . . larger standard error . . .

(file “RMCint4”).

− If replace 5 by 1/5, get about 0.767± 0.0015 . . . about the same.

• So which choice is best?

− Whichever one minimises the standard error!

− (λ ≈ 1.5, se ≈ 0.00025?)

• In general, to evaluate I ≡
∫
s(y) dy, could write it as I =

∫ s(x)
f(x)

f(x) dx,

where f is easily sampled from, with f(x) > 0 whenever s(x) > 0.

− Then I = E
(
s(X)
f(X)

)
, where X has density f .

− (“Importance Sampling”)

− So, I ≈ 1
M

∑M
i=1

s(xi)
f(xi)

where xi ∼ f .

− Can then do classical (iid) Monte Carlo integration, and also get stan-

dard errors, confidence intervals, etc.

− Good if it’s easier to sample from f , and/or if the function s(x)
f(x)

is less

variable than h itself.

• In general, best to make s(x)
f(x)

approximately constant if possible.

− e.g. extreme case: if I =
∫∞

0 e−3x dx, then I =
∫∞

0 (1/3)(3e−3x)dx =

E[1/3] where X ∼ Exponential(3), so I = 1/3 (error = 0, no MC

needed). [Here s(x) = e−3x, and f(x) = 3e−3x.]
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UNNORMALISED DENSITIES:

• Suppose now that π(y) = c g(y), where we know g but don’t know c or

π. (“Unnormalised density”, e.g. Bayesian posterior.)

− Obviously, c = 1∫
g(y) dy

, but this might be hard to compute.

− Still, I =
∫
h(x) π(x) dx =

∫
h(x) c g(x) dx =

∫
h(x) g(x) dx∫
g(x) dx

.

− Here
∫
h(x) g(x) dx =

∫ (
h(x) g(x) / f(x)

)
f(x) dx = E[h(X) g(X) / f(X)]

where X ∼ f .

− So,
∫
h(x) g(x) dx ≈ 1

M

∑M
i=1

(
h(xi) g(xi) / f(xi)

)
if {xi} ∼ f (i.i.d.).

− Similarly,
∫
g(x) dx ≈ 1

M

∑M
i=1

(
g(xi) / f(xi)

)
if {xi} ∼ f (i.i.d.).

− So, must I ≈
∑M

i=1

(
h(xi) g(xi) / f(xi)

)
∑M

i=1

(
g(xi) / f(xi)

) .

− (“Importance Sampling”: weighted average)

− (Because we are taking ratios of (unbiased) estimates, the resulting

estimate is not unbiased, and its standard errors are less clear. But it

is still consistent as M →∞.)

—————————– END WEEK #2 —————————–

• Example: compute I ≡ E(Y 2) where Y has density c y3 sin(y4) cos(y5)10<y<1,

where c > 0 is unknown (and hard to compute).

− Here g(y) = y3 sin(y4) cos(y5)10<y<1, and h(y) = y2.

− Let f(y) = 6 y510<y<1.

− [Recall: if U ∼ Uniform[0, 1], and if X = U1/6, then X ∼ f .]

− Then I ≈
∑M

i=1
(h(xi) g(xi) / f(xi))∑M

i=1
(g(xi) / f(xi))

=
∑M

i=1
( sin(x4i ) cos(x5i ))∑M

i=1
( sin(x4i ) cos(x5i ) / x

2
i )
,

where {xi} are i.i.d. ∼ f . (file “Rimp1” . . . get about 0.766 . . . )

− Or, let f(y) = 4 y310<y<1. [Then if U ∼ Uniform[0, 1], then U1/4 ∼ f .]

− Then I ≈
∑M

i=1
(h(xi) g(xi) / f(xi))∑M

i=1
(g(xi) / f(xi))

=
∑M

i=1
( sin(x4i ) cos(x5i ) x

2
i )∑M

i=1
( sin(x4i ) cos(x5i ))

. (file “Rimp2”)

− Numerical integration: 0.7661155 (file “Rimp3”).

• With importance sampling, is it important to use the same samples {xi}
in both numerator and denominator?

− What if independent samples are used instead?

− Let’s try it! (file “Rimpind”)

− Both ways work, but usually(?) the same samples work better.

− Overall, good to use same sample {xi} for both numerator and de-

nominator: easier computationally, and leads to smaller variance.
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• What other methods are available to iid sample from π?

REJECTION SAMPLER:

• Assume π(x) = c g(x), with π and c unknown, g known but hard to

sample from.

• Want to sample X ∼ π. (Then if X1, X2, . . . , XM ∼ π iid, then can

estimate Eπ(h) by 1
M

∑M
i=1 h(Xi), etc.)

• Find some other, easily-sampled density f , and known K > 0, such that

K f(x) ≥ g(x) for all x. (i.e., K f(x) ≥ π(x) / c, i.e. cK f(x) ≥ π(x))

• Sample X ∼ f , and U ∼ Uniform[0, 1] (indep.).

− If U ≤ g(X)
Kf(X)

, then accept X (as a draw from π).

− Otherwise, reject X and start over again.

• Does this algorithm give valid samples?

− Well, conditional on accepting, we have for any y ∈ R that

P
(
X ≤ y

∣∣∣U ≤ g(X)

Kf(X)

)
=

P
(
X ≤ y, U ≤ g(X)

Kf(X)

)
P
(
U ≤ g(X)

Kf(X)

) = ?

− Since 0 ≤ g(x)
Kf(x)

≤ 1, therefore P(U ≤ g(X)
Kf(X)

|X = x) = g(x)
Kf(x)

.

− Hence, by the double expectation formula, P
(
U ≤ g(X)

Kf(X)

)
= E

[
P
(
U ≤

g(X)
Kf(X)

∣∣∣X)] = E
[
g(X)
Kf(X)

]
=
∫∞
−∞

g(x)
Kf(x)

f(x) dx = 1
K

∫∞
−∞ g(x) dx.

− Similarly, for any y ∈ R, P
(
X ≤ y, U ≤ g(X)

Kf(X)

)
= E

[
1X≤y 1U≤ g(X)

Kf(X)

]
=

E
[
1X≤y P

(
U ≤ g(X)

Kf(X)

∣∣∣X)] = E
[
1X≤y

g(X)
Kf(X)

]
=
∫ y
−∞

g(x)
Kf(x)

f(x) dx =
1
K

∫ y
−∞ g(x) dx.

• So,

P
(
X ≤ y

∣∣∣U ≤ g(X)

Kf(X)

)
=

1
K

∫ y
−∞ g(x) dx

1
K

∫∞
−∞ g(x) dx

=
∫ y

−∞
π(x) dx .

− So, conditional on accepting, X ∼ π. Good! iid!

• However, prob. of accepting may be very small.

− If so, then get very few samples – bad.

• EXAMPLE: π = N(0, 1), i.e. g(x) = π(x) = (2π)−1/2 exp(−x2/2).

− Want: Eπ(X4), i.e. h(x) = x4. (Should be 3.)

− Let f be double-exponential (Laplace) distribution, i.e. f(x) = 1
2
e−|x|.

• If K = 8, then:

10



− For |x| ≤ 2, Kf(x) = 8 1
2

exp(−|x|) ≥ 8 1
2

exp(−2) ≥ (2π)−1/2 ≥
π(x) = g(x).

− For |x| ≥ 2, Kf(x) = 8 1
2

exp(−|x|) ≥ 8 1
2

exp(−x2/2) ≥ (2π)−1/2 exp(−x2/2) =

π(x) = g(x).

− See graph: file “Rrejgraph”.

• So, can apply rejection sampler with this f and K, to get samples, esti-

mate of E[X], estimate of E[h(X)], estimate of P[X < −1], etc.

− Try it: file “Rrej”

• For Rejection Sampler, P (accept) = E[P (accept|X)] = E[ g(X)
Kf(X)

] =
∫ g(x)
Kf(x)

f(x) dx =
1
K

∫
g(x) dx = 1

cK
. (Only depends on K, not f .)

− So, in M attempts, get about M/cK iid samples.

− (“Rrej” example: c = 1, K = 8, M = 10, 000, so get about M/8 =

1250 samples.)

− Since c fixed, try to minimise K.

− Extreme case: f(x) = π(x), so g(x) = π(x)/c = f(x)/c, and can take

K = 1/c, whence P (accept) = 1, iid sampling: optimal.

• Note: these algorithms all work in discrete case too.

− Can let π, f , etc. be “probability functions”, i.e. probability densities

with respect to counting measure.

− Then the algorithms proceed exactly as before.

AUXILIARY VARIABLE APPROACH:

• (related: “slice sampler”)

• Suppose π(x) = c g(x), and (X, Y ) chosen uniformly under graph of g.

− i.e., (X, Y ) ∼ Uniform{(x, y) ∈ R2 : 0 ≤ y ≤ g(x)}.
− Then X ∼ π, i.e. we have sampled from π.

− Why? Well, for a < b,

P(a < X < b) =
area with a < x < b

total area
=

∫ b
a g(x) dx∫∞
−∞ g(x) dx

=
∫ b

a
π(x) dx .

− So, if repeat, get i.i.d. samples from π, can estimate Eπ(h) etc.

• Auxiliary Variable rejection sampler:

− If support of g contained in [L,R], and |g(x)| ≤ K, then can first

sample (X, Y ) ∼ Uniform([L,R] × [0, K]), then reject if Y > g(X),

otherwise accept as sample with (X, Y ) ∼ Uniform{(x, y) : 0 ≤ y ≤
g(x)}, hence X ∼ π.

• Example: g(y) = y3 sin(y4) cos(y5)10<y<1.
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− Then L = 0, R = 1, K = 1.

− So, sample X, Y ∼ Uniform[0, 1], then keep X iff Y ≤ g(X).

− If h(y) = y2, could compute e.g. Eπ(h) as the mean of the squares of

the accepted samples. (file “Raux”)

DIGRESSION – QUEUEING THEORY:

• Consider a long line (queue) of customers.

− Let Q(t) = number of people in queue at time t ≥ 0.

• Suppose service times ∼ Exponential(µ) [mean 1/µ], and interarrival

times ∼ Exponential(λ) (“M/M/1 queue”), so {Q(t)} Markovian. Then

well known [e.g. STA447/2006]:

− If µ ≤ λ, then Q(t)→∞ as t→∞.

− If µ > λ, then Q(t) converges in distribution as t→∞:

− P(Q(t) = i)→ (1− λ
µ
)(λ
µ
)i, for i = 0, 1, 2, . . ..

− Easy! (e.g. µ = 3, λ = 2, t = 1000) [file “Rqueue”]

• Now suppose instead that service times ∼ Uniform[0, 1], and interarrival

times have distribution of |Z| where Z ∼ Normal(0, 1). Limits not easily

computed. Now what?

− Simulate it! [file “Rqueue2”]

• Or, to make the means the same as the first example, suppose service

times ∼ Uniform[0, 2/3], and interarrival times have distribution of Z2/2

where Z ∼ Normal(0, 1). Now what? [file “Rqueue3”]

—————————– END WEEK #3 —————————–

DIGRESSION – MONTE CARLO IN FINANCE:

• Xt = stock price at time t

• Assume that X0 = a > 0, and dXt = bXtdt + σXtdBt, where {Bt} is

Brownian motion. (“diffusion”)

− i.e., for small h > 0,

(Xt+h−Xt |Xt) ≈ bXt(t+h−t)+σXt(Bt+h−Bt) ∼ bXt(t+h−t)+σXtN(0, h) ,

so

(Xt+h |Xt) ∼ N
(
Xt + bXth, σ

2(Xt)
2h
)
. (∗)

• A “European call option” is the option to purchase one share of the stock

at a fixed time T > 0 for a fixed price q > 0.
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• Question: what is a fair price for this option?

− At time T , its value is max(0, XT − q).
− So, at time 0, its value is e−rT max(0, XT−q), where r is the “risk-free

interest rate”.

− But at time 0, XT is unknown! So, what is fair price??

• FACT: the fair price is equal to E(e−rT max(0, XT − q)), but only after

replacing b by r.

− (Proof: transform to risk-neutral martingale measure . . . )

− Intuition: if b very large, might as well just buy stock itself.

• If σ and r constant, then there’s a formula (“Black-Scholes eqn”) for this

price, in terms of Φ = cdf of N(0, 1):

a Φ

(
1

σ
√
T

(
log(a/q) + T (r +

1

2
σ2)

))
− qe−rTΦ

(
1

σ
√
T

(
log(a/q) + T (r − 1

2
σ2)

))

• But we can also estimate it through (iid) Monte Carlo!

− Use (∗) above (for fixed small h > 0, e.g. h = 0.05) to generate samples

from the difusion.

− Any one run is highly variable. (file “RBS”, with M = 1)

− But many runs give good estimate. (file “RBS”, with M = 1000)

• An “Asian call option” is similar, but with XT replaced by Xk,t ≡
1
k

∑k
i=1XiT/k, for some fixed positive integer k (e.g., k = 8).

− Above “FACT” still holds (again with XT replaced by Xk,t).

− Now formulas not so simple . . . but can still simulate! (file “RAO”)

• So, can iid / importance / rejection / auxiliary sampling solve ALL of

our problems? No!

− Many challenging cases arise, e.g. from Bayesian statistics (later).

− Some are high-dimensional, and the above algorithms fail.

− Alternative algorithm: MCMC!

*** MARKOV CHAIN MONTE CARLO (MCMC) ***:

• Suppose have complicated, high-dimensional density π = c g.

• Want samples X1, X2, . . . ∼ π. (Then can do Monte Carlo.) Difficult!

• Define a Markov chain (dependent random process: STA2006)X0, X1, X2, . . .

in such a way that for large enough n, Xn ≈ π.
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• Then can estimate Eπ(h) ≡
∫
h(x) π(x) dx by:

Eπ(h) ≈ 1

M −B

M∑
i=B+1

h(Xi) ,

where B (“burn-in”) is chosen large enough so XB ≈ π, and M is chosen

large enough to get good Monte Carlo estimates.

• How to design such a Markov chain? One good way is:

• METROPOLIS ALGORITHM (1953):

− Choose some initial value X0 (perhaps random).

− Then, given Xn−1, choose a proposal state Yn ∼ MVN(Xn−1, σ
2 I)

for some fixed σ > 0 (say).

− Let An = π(Yn) / π(Xn−1) = g(Yn) / g(Xn−1), and Un ∼ Uniform[0, 1].

− Then, if Un < An, set Xn = Yn (“accept”), otherwise set Xn = Xn−1

(“reject”).

− Repeat, for n = 1, 2, 3, . . . ,M .

− (Note: only need to compute π(Yn) / π(Xn−1), so the normalising con-

stant c cancels and is not required.)

− (Why does it work? Markov chain theory – later!)

− Try it: www.probability.ca/metropolis (Javascript; formerly Java.)

− Note: This version is called “random walk Metropolis” (RWM). Why?

Because the proposals, if we always accepted them, would form a

traditional random walk process.

• How large B? Difficult to say! Some theory (later) . . . usually just use

trial-and-error / statistical analysis of output, and hope for the best . . .

• What initial value X0?

− Virtually any one will do, but “central” ones best.

− Can also use an “overdispersed starting distribution”: choose X0 ran-

domly from some distribution that “covers” the “important” parts of

the state space. Good for checking consistency . . .

• EXAMPLE: g(y) = y3 sin(y4) cos(y5)10<y<1.

− Want to compute (again!) Eπ(h) where h(y) = y2.

− Use Metropolis algorithm with proposal Y ∼ N(X, 1). [file “Rmet”]

− Works pretty well, but lots of variability!

− Plot: appears to have “good mixing”.

− acf: has some serial autocorrelation E(XnXn+k). Important! (Soon.)

• EXAMPLE: π(x1, x2) = C | cos(
√
x1 x2 )| I(0 ≤ x1 ≤ 5, 0 ≤ x2 ≤ 4).
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− Want to compute Eπ(h), where h(x1, x2) = ex1 + (x2)2.

− Metropolis algorithm (file “Rmet2”) . . . works, but large uncertainty.

− Gets between about 34 and 44 . . . (Mathematica gets 38.7044)

− Individual plots appear to have “good mixing” . . .

− Joint plot shows fewer samples where x1x2 ≈ (π/2)2 .
= 2.5 . . .

—————————– END WEEK #4 —————————–

• OPTIMAL SCALING:

− What if we change σ? How does that affect estimate? plot? acf?

− Can change proposal distribution to Yn ∼ MVN(Xn−1, σ
2I) for any

choice of σ > 0. Which is best?

− If σ too small, then usually accept, but chain won’t move much.

− If σ too large, then will usually reject proposals, so chain still won’t

move much.

− Optimal: need σ “just right” to avoid both extremes. (“Goldilocks

Principle”)

− Can experiment (“www.probability.ca/metropolis”, “Rmet”, “Rmet2”).

− Some theory . . . limited . . . active area of research . . .

− General principle: the acceptance rate should be far from 0 and far

from 1.

− Surprising Fact: In a certain idealised high-dimensional limit, optimal

acceptance rate is 0.234 (!). [Roberts et al., Ann Appl Prob 1997;

Roberts and Rosenthal, Stat Sci 2001] (More later!)

MCMC STANDARD ERROR:

• What about MCMC’s standard error, i.e. uncertainty?

− It’s usually larger than in the i.i.d. case (due to the positive correlations),

and harder to quantify.

• Simplest: re-run the chain many times, with same M and B, with dif-

ferent initial values drawn from some overdispersed starting distribution,

and get a fresh estimate each time, and then compute the standard error

of the sequence of estimates.

− Then can analyse the estimates obtained as iid . . .

• But how to estimate standard error from a single run?

• i.e., how to estimate v ≡ Var
(

1
M−B

∑M
i=B+1 h(Xi)

)
?

− For simplicity, let h(x) = h(x)− Eπ(h), so Eπ(h) = 0.
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− And, assume B large enough that Xi ≈ π for i > B.

− Then, for large M −B,

v ≈ Eπ

[([ 1

M −B

M∑
i=B+1

h(Xi)
]
−Eπ(h)

)2]
= Eπ

[( 1

M −B

M∑
i=B+1

h(Xi)
)2]

=
1

(M −B)2

[
(M −B)Eπ[h(Xi)

2] + 2(M −B − 1)Eπ[h(Xi)h(Xi+1)]

+2(M −B − 2)Eπ[h(Xi)h(Xi+2)] + . . .
]

≈ 1

M −B
(
Eπ[h(Xi)

2] + 2Eπ[h(Xi)h(Xi+1)] + 2Eπ[h(Xi)h(Xi+2)] + . . .
)

=
1

M −B
(
Varπ(h)+2 Covπ(h(Xi), h(Xi+1))+2 Covπ(h(Xi), h(Xi+2))+. . .

)
=

1

M −B
Varπ(h)

(
1+2 Corrπ(h(Xi), h(Xi+1))+2 Corrπ(h(Xi), h(Xi+2))+. . .

)
≡ 1

M −B
Varπ(h)(varfact) = (iid variance) (varfact) ,

where

“varfact” = 1 + 2
∞∑
k=1

Corrπ
(
h(X0), h(Xk)

)
≡ 1 + 2

∞∑
k=1

ρk

= 2
( ∞∑
k=0

ρk
)
− 1 =

∞∑
k=−∞

ρk

since ρ0 = 1 and ρ−k = ρk.

− Also called “integrated auto-correlation time” or “ACT”.

• Then can estimate both iid variance, and varfact, from the sample run.

• Note: to compute varfact, don’t sum over all k, just e.g. until, say, |ρk| <
0.05 or ρk < 0 or . . .

− (Can use R’s built-in “acf” function, hopefully with a good choice of

the “lag.max” parameter. Or can write your own – better.)

• Then standard error = se =
√
v = (iid-se)

√
varfact.

• e.g. the files Rmet and Rmet2. (Recall: true answers are about 0.766 and

38.7, respectively.)

− Usually varfact� 1; try to get “better” chains so varfact smaller.

− Sometimes even try to design chain to get varfact < 1 (“antithetic”).

− Work in parallel? (Antithetically??) Some work, but limited. (Project?)
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CONFIDENCE INTERVALS:

• Suppose we estimate u ≡ Eπ(h) by the quantity e = 1
M−B

∑M
i=B+1 h(Xi),

and obtain an estimate e and an approximate variance (as above) v.

• Then what is, say, a 95% confidence interval for u?

• Well, if have central limit theorem (CLT), then for large M − B, e ≈
N(u, v).

− So (e− u) v−1/2 ≈ N(0, 1).

− So, P(−1.96 < (e− u) v−1/2 < 1.96) ≈ 0.95.

− So, P(−1.96
√
v < e− u < 1.96

√
v ) ≈ 0.95.

− i.e., with probability 95%, the interval (e− 1.96
√
v, e+ 1.96

√
v) will

contain u.

− (Again, strictly speaking, should use something like a “t” distribution,

not the normal distribution . . . but if M −B large that doesn’t really

matter – ignore it for now.)

• e.g. the files Rmet and Rmet2. (Recall: true answers are about 0.766 and

38.7, respectively.)

• But does a CLT even hold??

− Does not follow from classical i.i.d. CLT. Does not always hold. But

often does.

− For example, CLT holds if chain is “geometrically ergodic” (later!)

and Eπ(|h|2+δ) <∞ for some δ > 0.

− (If chain also reversible then don’t need δ: Roberts and Rosenthal,

“Geometric ergodicity and hybrid Markov chains”, ECP 1997.)

− Can get alternative (slightly larger) confidence intervals even with-

out a CLT, if have consistent variance estimator: Rosenthal, “Simple

confidence intervals for MCMC without CLTs”, EJS 2017.)

• So MCMC is more complicated than standard Monte Carlo.

− Why should we bother? Some problems are too challenging for other

methods! (e.g. Bayesian – later)

METROPOLIS-HASTINGS ALGORITHM:

• The Metropolis algorithm doesn’t always work well.

− Sometimes other MCMC algorithms can help too.

− With above theory, can derive other valid algorithms!

• Note: key facts about q(x, y) are symmetry, and irreducibility.

− So, could replace Yn ∼ N(Xn−1, 1) by e.g. Yn ∼ Uniform[Xn−1 −
1, Xn−1 + 1], or (on discrete space) Yn = Xn−1 ± 1 prob. 1

2
each, etc.
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− Metropolis algorithm still works provided proposal distribution is symmetric,

i.e. q(x, y) = q(y, x).

− But what if q is not symmetric?

• Hastings, Biometrika 1970 [Canadian! see www.probability.ca/hastings]:

− Claim: If we replace “An = π(Yn) / π(Xn−1)” byAn = π(Yn) q(Yn,Xn−1)
π(Xn−1) q(Xn−1,Yn)

,

then the algorithm is still valid even if q is not symmetric.

− That is, we still accept if Un < An, otherwise reject.

− (Intuition: if q(x, y) >> q(y, x), then Metropolis chain would spend

too much time at y and not enough at x, so need to accept fewer

moves x→ y.)

− Do require that q(x, y) > 0 iff q(y, x) > 0.

− Why is it valid? Later!

• EXAMPLE: again π(x1, x2) = C | cos(
√
x1 x2 )| I(0 ≤ x1 ≤ 5, 0 ≤ x2 ≤

4), and h(x1, x2) = ex1 + (x2)2. (Mathematica gives Eπ(h)
.
= 38.7044.)

− Proposal distribution: Yn ∼MVN(Xn−1, σ
2 (1 + |Xn−1|2)2 I).

− (Intuition: larger proposal variance if farther from center.)

− So, q(x, y) = C (1 + |x|2)−2 exp(−|y − x|2 / 2σ2(1 + |x|2)2).

− Then, can run Metropolis-Hastings algorithm. (file “RMH”)

− Usually get between 34 and 43, with claimed standard error ≈ 2.

INDEPENDENCE SAMPLER:

• Propose {Yn} ∼ q(·), i.e. the {Yn} are i.i.d. from some fixed density q,

independent of Xn−1. (e.g. Yn ∼MVN(0, Id))

− Then accept if Un < An where Un ∼ Uniform[0, 1] andAn = π(Yn) q(Xn−1)
π(Xn−1) q(Yn)

.

− Special case of the Metropolis-Hastings algorithm, where Yn ∼ q(Xn−1, ·),
and An = π(Yn) q(Yn, Xn−1)

π(Xn−1) q(Xn−1, Yn)
.

− Very special case: if q(y) ≡ π(y), i.e. propose exactly from target

density π, then An ≡ 1, i.e. make great proposals, and always accept

them (iid).

• e.g. independence sampler with π(x) = e−x and q(y) = ke−ky for x > 0.

− Then if Xn−1 = x and Yn = y, then An = e−y ke−kx

e−x ke−ky
= e(k−1)(y−x). (file

“Rind”)

− k = 1: iid sampling (great).

− k = 0.01: proposals way too large (so-so).

− k = 5: proposals somewhat too small (terrible).

− And with k = 5, confidence intervals often miss 1. (file “Rind2”)
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− Why is large k so much worse than small k? (Later!)

LANGEVIN ALGORITHM:

− Special case of Metropolis-Hastings algorithm.

− Yn ∼MVN(Xn−1 + 1
2
σ2∇ log π(Xn−1), σ2I).

− Intuition: tries to move in direction where π increasing.

− Based on discrete approximation to “Langevin diffusion”.

− Usually more efficient, but requires knowledge and computation of

∇ log π.

− For theory, see e.g. Roberts & Tweedie, Bernoulli 2(4), 341–363, 1996;

Roberts & Rosenthal, JRSSB 60, 255–268, 1998.

COMPONENTWISE (VARIABLE-AT-A-TIME) MCMC:

• Propose to move just one coordinate at a time, leaving all the other

coordinates fixed (since changing all coordinates at once may be difficult).

− e.g. proposal Yn has Yn,i ∼ N(Xn−1,i, σ
2), with Yn,j = Xn−1,j for j 6= i.

− (Here Yn,i is the ith coordinate of Yn.)

• Then accept/reject with usual Metropolis rule (symmetric proposals: “Com-

ponentwise Metropolis”, or “Variable-at-a-time Metropolis”, or “Metropolis-

within-Gibbs”) or Metropolis-Hastings rule (non-symmetric proposals:

“Componentwise Metropolis-Hastings”, or “Variable-at-a-time Metropolis-

Hastings”, or “Metropolis-Hastings-within-Gibbs”).

• Need to choose which coordinate to update each time . . .

− Could choose coordinates in sequence 1, 2, . . . , d, 1, 2, . . . (“systematic-

scan”).

− Or, choose coordinate ∼ Uniform{1, 2, . . . , d} each time (“random-

scan”).

− Note: one systematic-scan iteration corresponds to d random-scan

ones . . .

• EXAMPLE: again π(x1, x2) = C | cos(
√
x1 x2 )| I(0 ≤ x1 ≤ 5, 0 ≤ x2 ≤

4), and h(x1, x2) = ex1 + (x2)2. (Recall: Mathematica gives Eπ(h)
.
=

38.7044.)

− Works with systematic-scan (file “Rcompwise”) or random-scan (file

“Rcompwise2”).

• So, lots of MCMC algorithms to choose from.

− Why do we need them all?

− To compute with complicated models! For example . . .
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BAYESIAN STATISTICS:

• Have unknown parameter(s) θ, and a statistical model (likelihood func-

tion) for how the distribution of the data Y depends on θ: L(Y | θ).

• Have a prior distribution, representing our “initial” (subjective?) proba-

bilities for θ: L(θ).

• Combining these gives a full joint distribution for θ and Y , i.e. L(θ, Y ).

• Then posterior distribution of θ, π(θ), is then the conditional distribution

of θ, conditioned on the observed data y, i.e. π(θ) = L(θ |Y = y).

− In terms of densities, if have prior density fθ(θ), and likelihood fY |θ(y, θ),

then joint density is fθ,Y (θ, y) = fθ(θ) fY |θ(y, θ), and posterior density

is

π(θ) =
fθ,Y (θ, y)

fY (y)
= C fθ,Y (θ, y) = C fθ(θ) fY |θ(y, θ) .

• Bayesian Statistics Example: VARIANCE COMPONENTS MODEL (a.k.a.

“random effects model”):

µ
↙ ↓ ↘

θ1 . . . . . . θK θi ∼ N(µ, V )
↙ ↓ ↓ ↘

Y11, . . . , Y1J1 . . . . . . YK1, . . . , YKJK Yij ∼ N(θi,W ) [observed]

− Suppose some population has overall mean µ (unknown).

− Population consists of K groups.

− Observe Yi1, . . . , YiJi from group i, for 1 ≤ i ≤ K.

− Assume Yij ∼ N(θi,W ) (cond. ind.), where θi and W unknown.

− Assume the different θi are “linked” by θi ∼ N(µ, V ) (cond. ind.),

with µ and V also unknown.

− Want to estimate some or all of V,W, µ, θ1, . . . , θK .

− Bayesian approach: use prior distributions, e.g. (“conjugate”):

V ∼ IG(a1, b1); W ∼ IG(a2, b2); µ ∼ N(a3, b3)

(indep), where ai, bi known constants, and IG(a, b) is the “inverse

gamma” distribution, with density ba

Γ(a)
e−b/x x−a−1 for x > 0.

• Combining the above dependencies, we see that the joint density is (for

V,W > 0):

f(V,W, µ, θ1, . . . , θK , Y11, Y12, . . . , YKJK )

=

(
ba11

Γ(a1)
e−b1/V V −a1−1

)(
ba22

Γ(a2)
e−b2/WW−a2−1

)(
1√

2πb3

e−(µ−a3)2/2b3

)
×
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×
(
K∏
i=1

1√
2πV

e−(θi−µ)2/2V

) K∏
i=1

Ji∏
j=1

1√
2πW

e−(Yij−θi)2/2W


= C2 e

−b1/V V −a1−1e−b2/WW−a2−1e−(µ−a3)2/2b3V −K/2W− 1
2

∑K

i=1
Ji ×

× exp

[
−

K∑
i=1

(θi − µ)2/2V

]
exp

− K∑
i=1

Ji∑
j=1

(Yij − θi)2/2W

 .
• Then

π(V,W, µ, θ1, . . . , θK)

= f(V,W, µ, θ1, . . . , θK , Y11, Y12, . . . , YKJK ) / fY (Y11, Y12, . . . , YKJK )

∝ f(V,W, µ, θ1, . . . , θK , Y11, Y12, . . . , YKJK )

= C3 e
−b1/V V −a1−1e−b2/WW−a2−1e−(µ−a3)2/2b3V −K/2W− 1

2

∑K

i=1
Ji ×

× exp

[
−

K∑
i=1

(θi − µ)2/2V

]
exp

− K∑
i=1

Ji∑
j=1

(Yij − θi)2/2W

 .
• NOTE: Many applications of variance components model, e.g.:

− Predicting success at law school (D. Rubin, JASA 1980), K = 82

schools.

− Melanoma (skin cancer) recurrence (http://www.mssanz.org.au/MODSIM07/

papers/52_s24/Analysing_Clinicals24_Bartolucci_.pdf),

with K = 19 different patient categories.

− Comparing baseball home-run hitters (J. Albert, The American Statis-

tician 1992), K = 12 players.

− Analysing fabric dyes (Davies 1967; Box/Tiao 1973; Gelfand/Smith

JASA 1990), K = 6 batches of dyestuff, Ji ≡ 5. (data in file “Rdye”)

• Here, the dimension is d = K + 3, e.g. K = 19, d = 22. High!

• How to compute/estimate, say, Eπ(W/V ), or the effect of changing b1?

− Numerical integration? No, too high-dimensional!

− Importance sampling? Perhaps, but what “f”? Too inefficient!

− Rejection sampling? What “f”? What “K”? Virtually no samples!

− Perhaps MCMC can work!

− But need clever, useful MCMC algorithms!

− Perhaps Metropolis, or . . .

• ASIDE: For big complicated π, often better to work with logarithms, e.g.

accept iff log(Un) < log(An) = log(π(Yn))− log(π(Xn−1)).

− Then only need to compute log(π(x)); helps avoid overflow problems.

− So, better to program on log scale: log π(V,W, µ, θ1, . . . , θK) = . . ..
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− Also sometimes simpler, e.g. if π(x) = exp
(∑

i<j |xj − xi|
)
, then log(π(x)) =∑

i<j |xj − xi|. (Best to type in the log formula directly.)

GIBBS SAMPLER:

• (Special case of Componentwise Metropolis-Hastings.)

• Proposal distribution for ith coordinate is equal to the full conditional dis-

tribution of that coordinate (according to π), conditional on the current

values of all the other coordinates.

− Can use either systematic or random scan, just like above.

− Then, always accept. Why? Later!

− (Intuition: if start in stationary distribution, then update one coordi-

nate from its conditional stationary distribution (and always accept),

then the distribution remains the same, i.e. stationarity is preserved.)

—————————– END WEEK #5 —————————–

• EXAMPLE: Variance Components Model:

− Update of µ (say) should be from conditional density of µ, conditional

on current values of all the other coordinates: L(µ |V,W, θ1, . . . , θK , Y11, . . . , YJKK).

− This conditional density is proportional to the full joint density, but

with all variables besides µ treated as constant.

− Recall: full joint density is:

= C3e
−b1/V V −a1−1e−b2/WW−a2−1e−(µ−a3)2/2b3V −K/2W− 1

2

∑K

i=1
Ji ×

× exp

[
−

K∑
i=1

(θi − µ)2/2V

]
exp

− K∑
i=1

Ji∑
j=1

(Yij − θi)2/2W

 .
− So, combining “constants” (w.r.t. µ), the conditional density of µ is

C4 e
−(µ−a3)2/2b3 exp

[
−

K∑
i=1

(θi − µ)2/2V

]
.

− This equals (verify this! HW!)

C5 exp
(
− µ2(

1

2b3

+
K

2V
) + µ(

a3

b3

+
1

V

K∑
i=1

θi)
)
.

− Side calculation: if µ ∼ N(m, v), then density ∝ e−(µ−m)2/2v ∝
e−µ

2(1/2v)+µ(m/v).

− Hence, here µ ∼ N(m, v), where 1/2v = 1
2b3

+ K
2V

and m/v = a3
b3

+
1
V

∑K
i=1 θi.
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− Solve: v = b3V/(V +Kb3), and m = (a3V + b3
∑K
i=1 θi) / (V +Kb3).

− So, in Gibbs Sampler, each time µ is updated, we sample it from

N(m, v) for this m and v (and always accept).

• Similarly (HW!), conditional distribution for V is:

C6e
−b1/V V −a1−1V −K/2 exp

[
−

K∑
i=1

(θi − µ)2/2V

]
, V > 0 .

− Recall that “IG(r, s)” has density sr

Γ(r)
e−s/x x−r−1 for x > 0.

− So, conditional distribution for V equals

IG(a1 +K/2, b1 + 1
2

∑K
i=1(θi − µ)2).

• Can similar compute conditional distributions for W and θi (HW!).

• The systematic-scan Gibbs sampler then proceeds (HW!) by:

− Update V from its conditional distribution IG(. . . , . . .).

− Update W from its conditional distribution IG(. . . , . . .).

− Update µ from its conditional distribution N(. . . , . . .).

− Update θi from its conditional distributionN(. . . , . . .), for i = 1, 2, . . . , K.

− Repeat all of the above M times.

• Or, the random-scan Gibbs sampler proceeds by choosing one of V,W, µ, θ1, . . . , θK
uniformly at random, and then updating that coordinate from its corre-

sponding conditional distribution.

− Then repeat this step M times [or M(K + 3) times?].

− How well does it work? HW!

SUBSAMPLING (THINNING):

• The autocorrelations (acf) of an MCMC run usually start near 1, and then

decrease until they become negligible after some lag L. (file “Rmetnorm”)

− This means that every Lth iteration of the chain is approximately

independent.

− But also, after the burn-in B, the chain is approximately in station-

arity, i.e. has distribution approximately π.

− So, the states XB, XB+L, XB+2L, XB+3L, . . . are approximately i.i.d.

samples from π. Good?

• When running MCMC, some people use “subsampling” (or, “thinning”)

by just using every Sth sample, i.e. by using the Markov chain {XB+Sn}.
− If S ≥ L, then the {XB+Sn} are approximately independent.

− This could be useful: i.i.d. samples, classical standard error and con-

fidence intervals, good tests for accuracy, etc.
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• But does it improve the actual estimator? e.g. its variance?

− The number of samples is reduced from M −B to (M −B)/S, which

increases the estimator variance by a factor of S. Bad.

− But the varfact is reduced from 1+2
∑∞
k=1 ρk to 1+2

∑∞
k=1 ρSk (good).

− So, which is larger, 1 + 2
∑∞
k=1 ρk, or S (1 + 2

∑∞
k=1 ρSk)?

− Well, we can re-write S (1 + 2
∑∞
k=1 ρSk) as

(1 + . . .+ 1) + (2ρS + . . .+ 2ρS) + (2ρ2S + . . .+ 2ρ2S) + . . . .

− We want to compare this to

(1+2ρ1 + . . .+2ρS−1)+(2ρS+2ρS+1 + . . .+2ρ2S−1)+(2ρ2S+ . . .)+. . . .

− Assuming the ρi are decreasing, and ignoring some of the “2” factors,

the first (subsampled) variance is larger.

• This calculation seems to suggest that subsampling is not advantageous.

− In fact, for “reversible” Markov chains (defined later), consecutive

sums ρ2i + ρ2i+1 are decreasing, and the first (subsampled) variance is

always larger: Geyer 1992

− More generally, even if not reversible, subsampling always increases

the estimator variance: Maceachern & Berliner, 1994

• Conclusion: Subsampling makes the estimator variance larger, i.e. sub-

sampling does not improve the estimator.

− However, if lots of extra computation is required to compute the func-

tional values h(Xi), then subsampling might help: Owen 2017

JUSTIFICATION: WHY DOES METROPOLIS ALG WORK?:

• (Uses Markov chain theory . . . e.g. STA447/2006 . . . already know?)

• Basic fact: if a Markov chain is “irreducible” and “aperiodic”, with “sta-

tionarity distribution” π, then L(Xn)→ π as n→∞. More precisely:

• THEOREM: If Markov chain is irreducible, with stationarity probability

density π, then for π-a.e. initial value X0 = x,

(a) if Eπ(|h|) <∞, then lim
n→∞

1
n

∑n
i=1 h(Xi) = Eπ(h) ≡

∫
h(x) π(x) dx;

and (b) if chain aperiodic, then also lim
n→∞

P(Xn ∈ S) =
∫
S π(x) dx for all

S ⊆ X .

• Let’s figure out what this all means . . .

• Notation: P (i, j) = P(Xn+1 = j |Xn = i) (discrete case), or P (x,A) =

P(Xn+1 ∈ A |Xn = x) (general case). Also Π(A) =
∫
A π(x) dx.
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• Well, irreducible means that you have positive probability of eventually

getting from anywhere to anywhere else.

− Discrete case: for all i, j ∈ X (the state space), there is n ∈ N such

that P (Xn = j |X0 = i) > 0.

− Actually, we only need to require this for states j such that π(j) > 0.

− General case: for all x ∈ X , and for all A ⊆ X with Π(A) > 0, there

is n ∈ N such that P (Xn ∈ A |X0 = x) > 0. (“π-irreducible”)

− (Since usually P (Xn = y |X0 = x) = 0 for all y.)

− Irreducibility is usually satisfied for MCMC.

• And, aperiodic means there are no forced cycles, i.e. there do not exist dis-

joint non-empty subsets X1,X2, . . . ,Xd for d ≥ 2, such that P (x,Xi+1) = 1

for all x ∈ Xi (1 ≤ i ≤ d−1), and P (x,X1) = 1 for all x ∈ Xd. [Diagram.]

− (Discrete case: Equivalent that gcd{n : pn(i, i) > 0} = 1 ∀i.)
− This is true for virtually any Metropolis algorithm, e.g. it’s true if

P (x, {x}) > 0 for any one state x ∈ X , e.g. if positive prob of rejection.

− Also true if P (x, ·) has positive density throughout S, for all x ∈ S,

for some S ⊆ X with Π(S) > 0. (e.g. Normal proposals)

− Not quite guaranteed, e.g. X = {0, 1, 2, 3}, and π uniform on X , and

Yn = Xn−1 ± 1 (mod 4). [Diagram.] But almost always holds.

• What about Π being a stationary distribution?

− This means that if we start with the probabilities Π, and then run the

Markov chain for one step, that we will still have the probabilities Π.

− Will this be true for the Metropolis algorithm?

—————————– END WEEK #6 —————————–

• Begin with DISCRETE CASE (e.g. www.probability.ca/metropolis).

− State space is X , e.g. X ≡ {1, 2, 3, 4, 5, 6}.

• Here stationary means that if X0 ∼ π, i.e. P(X0 = i) = π(i) for all i,

then also X1 ∼ π, i.e. P(X1 = j) = π(j) for all j.

− But P(X1 = j) =
∑
i∈S P(X0 = i, X1 = j) =

∑
i∈S P(X0 =

i)P (i, j).

− So, π is stationary if
∑
i∈S π(i)P (i, j) = π(j) for all j.

• Let q(x, y) = P(Yn = y |Xn−1 = x) be the proposal distribution, e.g.

perhaps q(x, x+ 1) = q(x, x− 1) = 1/2.

− Assume that q is symmetric, i.e. q(x, y) = q(y, x) for all x, y ∈ X .

− Then if α(x, y) is the probability of accepting a proposed move from
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x to y, then

α(x, y) = P(Un < An |Xn−1 = x, Yn = y)

= P(Un <
π(y)

π(x)
) = min[1,

π(y)

π(x)
] .

− (Assume for simplicity that π(x) > 0.)

• Then we compute that for i, j ∈ X with i 6= j,

P (i, j) = q(i, j) α(i, j) = q(i, j) min(1,
π(j)

π(i)
) .

− Hence, using the symmetry of q,

π(i)P (i, j) = q(i, j) min(π(i), π(j))

= q(j, i) min(π(i), π(j)) = π(j)P (j, i) .

− This (obviously) still holds if i = j.

− It follows that chain is “(time) reversible”, i.e.

π(i)P (i, j) = π(j)P (j, i) ∀i, j ∈ X .

− (Intuition: if X0 ∼ π, i.e. P(X0 = i) = π(i) for all i ∈ X , then

P(X0 = i, X1 = j) = π(i)P (i, j) = P(X0 = j, X1 = i) . . . )

• Suppose now that X0 ∼ π, i.e. that P(X0 = i) = π(i) for all i ∈ X .

− Then using reversibility, we have

P(X1 = j) =
∑
i∈X

P(X0 = i)P (i, j) =
∑
i∈X

π(i)P (i, j)

=
∑
i∈X

π(j)P (j, i) = π(j)
∑
i∈X

P (j, i) = π(j) ,

i.e. X1 ∼ π too!

− So, the Markov chain “preserves” π, i.e. π is a stationary distribution.

− This is true for any Metropolis algorithm!

• It then follows from the Theorem (i.e., “Basic Fact”) that as n → ∞,

L(Xn)→ π, i.e. limn→∞ P (Xn = i) = π(i) for all i ∈ X .

− Also follows that if Eπ(|h|) < ∞, then lim
n→∞

1
n

∑n
i=1 h(Xi) = Eπ(h) ≡∫

h(x) π(x) dx. (“LLN”)

JUSTIFICATION: GENERAL CONTINUOUS CASE:

• Some notation:

− Let X be the state space of all possible values. (Usually X ⊆ Rd, e.g.

X = R2, or X = (0,∞)× (0, 1)×R5, or . . . )
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− Let π(x) be the target density function.

− Let q(x, y) be the proposal density for y given x. (e.g. q(x, y) =

(2πσ)−d/2 exp (−∑d
i=1(yi − xi)2/2σ2).)

− Assume again that q is symmetric: q(x, y) = q(y, x).

− Let α(x, y) = min[1, π(y)
π(x)

] be probability of accepting a proposed move

from x to y.

− Let P (x, S) = P(X1 ∈ S |X0 = x) be the transition probabilities.

− (Don’t use P (x, y) since that is usually 0.)

• Then if x 6∈ S, then

P (x, S) = P(Y1 ∈ S, U1 < A1 |X0 = x)

=
∫
S
q(x, y) α(x, y) dy =

∫
S
q(x, y) min[1, π(y)/π(x)] dy .

• Shorthand: write “P (x, dy)” for the transition measure, i.e. a quantity

whose integral over any subset S is equal to the transition probability to

S, meaning that P (x, S) =
∫
y∈S P (x, dy).

− Then, for x 6= y, P (x, dy) = q(x, y) min[1, π(y)/π(x)] dy.

− Hence, for x 6= y,

π(x) dxP (x, dy) = π(x) dx q(x, y) min[1, π(y)/π(x)] dy

= q(x, y) min[π(x), π(y)] dy dx .

− This is symmetric in x and y, i.e. π(x) dxP (x, dy) = π(y) dy P (y, dx)

for all x, y ∈ X .

− Shorthand: Π(dx)P (x, dy) = Π(dy)P (y, dx). (“reversible”)

• How does “reversible” help? Just like for discrete chains!

• Indeed, suppose X0 ∼ Π, i.e. we “start in stationarity”. Then

P(X1 ∈ S) =
∫
x∈X

π(x) dx
∫
y∈S

P (x, dy) =
∫
x∈X

∫
y∈S

Π(dx)P (x, dy)

=
∫
x∈X

∫
y∈S

Π(dy)P (y, dx) =
∫
y∈S

Π(dy)
∫
x∈X

P (y, dx)

=
∫
y∈S

Π(dy) =
∫
y∈S

π(y) dy ≡ Π(S) ,

so also X1 ∼ Π. So, chain “preserves” Π, i.e. Π is stationary distribution.

• And, again, almost always irreducible and aperiodic.

• So, again, the Theorem applies.
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EXAMPLES RE WHY DOES MCMC WORK:

• EXAMPLE #1: Metropolis algorithm where X = Z, π(x) = 2−|x|/3, and

q(x, y) = 1
2

if |x− y| = 1, otherwise 0.

− Reversible? Yes, it’s a Metropolis algorithm!

− π stationary? Yes, follows from reversibility!

− Aperiodic? Yes, since P (x, {x}) > 0!

− Irreducible? Yes: π(x) > 0 for all x ∈ X , so can get from x to y in

|x− y| steps.

− So, by theorem, probabilities and expectations converge to those of π

– good.

• EXAMPLE #2: Same as #1, except now π(x) = 2−|x|−1 for x 6= 0, with

π(0) = 0.

− Still reversible, π stationary, aperiodic, same as before.

− Irreducible? No – can’t go from positive to negative!

• EXAMPLE #3: Same as #2, except now q(x, y) = 1
4

if 1 ≤ |x− y| ≤ 2,

otherwise 0.

− Still reversible, π stationary, aperiodic, same as before.

− Irreducible? Yes – can “jump over 0” to get from positive to negative,

and back!

• EXAMPLE #4: Metropolis algorithm with X = R, and π(x) = C e−x
6
,

and proposals Yn ∼ Uniform[Xn−1 − 1, Xn−1 + 1].

− Reversible? Yes since it’s Metropolis, and q(x, y) still symmetric.

− π stationary? Yes since reversible!

− Irreducible? Yes, since the n-step transitions P n(x, dy) have positive

density whenever |y − x| < n.

− Aperiodic? Yes since if periodic, then if e.g. X1 ∩ [0, 1] has positive

measure, then possible to go from X1 directly to X1, i.e. if x ∈ X1 ∩
[0, 1], then P (x,X1) > 0. (Or, even simpler: since P (x, {x}) > 0 for

all x ∈ X .)

− So, by theorem, probabilities and expectations converge to those of π

– good.

• EXAMPLE #5: Same as #4, except now π(x) = C1 e
−x6(1x<2 + 1x>4).

− Still reversible and stationary and aperiodic, same as before.

− But no longer irreducible: cannot jump from [4,∞) to (−∞, 2] or

back.

− So, does not converge.
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• EXAMPLE #6: Same as #5, except now proposals are

Yn ∼ Uniform[Xn−1 − 5, Xn−1 + 5].

− Still reversible and stationary and aperiodic, same as before.

− And now irreducible, too: now can jump from [4,∞) to (−∞, 2] or

back.

• EXAMPLE #7: Same as #6, except now

Yn ∼ Uniform[Xn−1 − 5, Xn−1 + 10].

− Makes no sense – proposals not symmetric, so not a Metropolis al-

gorithm! (Not even symmetrically zero, for the Metropolis-Hastings

algorithm below, e.g. have positive density 3→ 9 but not 9→ 3.)

—————————– END WEEK #7 —————————–

JUSTIFICATION OF METROPOLIS-HASTINGS:

• Can we modify the above proof to work for Metropolis-Hastings, too?

• For Metropolis, key was that the Markov chain is reversible, i.e. π(x)P (x, y) =

π(y)P (y, x), i.e. q(x, y)α(x, y) π(x) is symmetric in x and y.

− If instead An = π(Yn) q(Yn,Xn−1)
π(Xn−1) q(Xn−1,Yn)

, i.e. acceptance prob. ≡ α(x, y) =

min
[
1, π(y) q(y,x)

π(x) q(x,y)

]
, then:

q(x, y)α(x, y) π(x) = q(x, y) min
[
1,

π(y) q(y, x)

π(x) q(x, y)

]
π(x)

= min
[
π(x) q(x, y), π(y) q(y, x)

]
.

− So, π(x)P (x, y) is still symmetric, even if q wasn’t.

− So, still reversible. So, still have stationary distribution Π.

− So, if irreducible and aperiodic (nearly always true), then can again

apply usual Theorem, and again conclude that it converges to Π.

• Conclusion: For the Metropolis-Hastings algorithm, if we replace “An =

π(Yn) / π(Xn−1)” by An = π(Yn) q(Yn,Xn−1)
π(Xn−1) q(Xn−1,Yn)

, and keep everything else the

same (i.e., still accept if Un < An, otherwise reject), then it is still valid,

and still converges to the correct distribution Π.

JUSTIFICATION FOR VARIABLE-AT-A-TIME:

• The exact same justification works just like for the “regular” (full-dimensional)

Metropolis and Metropolis-Hastings algorithms:

− If we update the variables one-at-a-time (e.g. Metropolis-within-Gibbs,

Metropolis-Hastings-within-Gibbs, etc.), then each individual step is

still reversible (for the same reason), so π is still stationary.
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− So, like any irreducible, aperiodic Markov chain with stationary dis-

tribution π, it will eventually converge to π.

JUSTIFICATION OF GIBBS SAMPLER:

− Special case of Metropolis-Hastings-within-Gibbs.

− Proposal distribution for ith coordinate is equal to the conditional

distribution of that coordinate (according to π), conditional on the

current values of all the other coordinates.

− That is, qi(x, y) = C[x(−i)] π(y) whenever x(−i) = y(−i), where x(−i)

means all coordinates except the ith one.

− (And qi(x, y) = 0 if x(−i) 6= y(−i).)

− Here C[x(−i)] is the appropriate normalising constant (which depends

on x(−i)). So, will always have C[x(−i)] = C[y(−i)].

− Then An = π(Yn) qi(Yn,Xn−1)
π(Xn−1) qi(Xn−1,Yn)

= π(Yn)C[Y
(−i)
n ]π(Xn−1)

π(Xn−1)C[X
(−i)
n−1 ]π(Yn)

= 1.

− So, always accept (i.e., can ignore the accept-reject step).

INITIAL DISTRIBUTION CONDITION:

• Why does the above Theorem say “π-a.e.” X0 = x?

• Example: X = {1, 2, 3, 4, . . .}, and P (1, {1}) = 1, and for x ≥ 2,

P (x, {x+ 1}) = 1− (1/x2) and P (x, {1}) = 1/x2.

− Stationary distribution?

Π(·) = δ1(·), i.e. Π(S) = 11∈S for S ⊆ X .

− Irreducible?

Yes, since if Π(S) > 0 then 1 ∈ S so P (x, S) ≥ P (x, {1}) > 0 for all

x ∈ X .

− Aperiodic?

Yes, since P (1, {1}) > 0.

− Converges?

Yes, by Theorem, for π-a.e. X0, have limn→∞P(Xn ∈ S) = Π(S), i.e.

limn→∞P(Xn = 1) = 1.

− From everywhere?

No! If X0 = x ≥ 2, then P[Xn = x+n for all n] =
∏∞
j=x(1−(1/j2)) > 0

(since
∑∞
j=x(1/j

2) <∞), so limn→∞P(Xn = 1) 6= 1.

− Convergence holds if X0 = 1, which is π-a.e. since Π(1) = 1, but not

from X0 = x ≥ 2.

• So, convergence subtle. But usually holds from any x ∈ X . (“Harris

recurrent”, see e.g. http://probability.ca/jeff/ftpdir/harris.pdf)
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TEMPERED MCMC:

• Suppose Π(·) is multi-modal, i.e. has distinct “parts” (e.g., Π = 1
2
N(0, 1)+

1
2
N(20, 1))

• Usual RWM with Yn ∼ N(Xn−1, 1) (say) can explore well within each

mode, but how to get from one mode to the other?

• Idea: if Π(·) were flatter, e.g. 1
2
N(0, 102)+ 1

2
N(20, 102), then much easier

to get between modes.

• So: define a sequence Π1,Π2, . . . ,Πm where Π1 = Π (“cold”), and Πτ

is flatter for larger τ (“hot”). (e.g. Πτ = 1
2
N(0, τ 2) + 1

2
N(20, τ 2); file

“Rtempered”)

• In the end, only “count” those samples where τ = 1.

• Proceed by defining a joint Markov chain (x, τ) on X×{1, 2, . . . ,m}, with

stationary distribution Π defined by Π(S × {τ}) = 1
m

Πτ (S).

− (Can also use other weights besides 1
m

.)

• The Markov chain should have both spatial moves (change x) and tem-

perature moves (change τ).

− e.g. perhaps chain alternates between:

(a) propose x′ ∼ N(x, 1), accept with prob min
(
1, π(x′,τ)

π(x,τ)

)
= min

(
1, πτ (x′)

πτ (x)

)
.

(b) propose τ ′ = τ ± 1 (prob 1
2

each), accept with prob

min
(
1, π(x,τ ′)

π(x,τ)

)
= min

(
1, πτ ′ (x)

πτ (x)

)
.

• Chain should converge to Π.

• Then, as above, only “count” those samples where τ = 1. (red)

• EXAMPLE: Π = 1
2
N(0, 1) + 1

2
N(20, 1)

− Assume proposals are Yn ∼ N(Xn−1, 1).

− Mixing for Π: terrible! (file “Rtempered” with dotempering=FALSE

and temp=1; note the small claimed standard error!)

− Define Πτ = 1
2
N(0, τ 2) + 1

2
N(20, τ 2), for τ = 1, 2, . . . , 10.

− Mixing better for larger τ ! (file “Rtempered” with dotempering=FALSE

and temp=1,2,3,4,...,10)

− (Compare graphs of π1 and π8: plot commands at bottom of “Rtem-

pered” . . . )

− So, use above “(a)–(b)” algorithm; converges fairly well to Π. (file

“Rtempered”, with dotempering=TRUE)

− So, conditional on τ = 1, converges to Π. (“points” command at end

of file “Rtempered”)
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− So, average of those h(x) with τ = 1 gives good estimate of Eπ(h).

FINDING THE TEMPERED DENSITIES:

• Usually won’t “know” about e.g. Πτ = 1
2
N(0, τ 2) + 1

2
N(20, τ 2).

• Instead, can e.g. let πτ (x) = cτ (π(x))1/τ . (Sometimes write β = 1/τ .)

− Then Π1 = Π, and πτ flatter for larger τ – good.

− (e.g. if π(x) density ofN(µ, σ2), then cτ (π(x))1/τ density ofN(µ, τσ2).)

− Then temperature acceptance probability is:

min
(
1,

πτ ′(x)

πτ (x)

)
= min

(
1,

cτ ′

cτ
(π(x))(1/τ ′)−(1/τ)

)
.

− But this depends on the cτ , which are usually unknown – bad.

− e.g. in above example, could try πτ (x) =
(

1
2
N(0, 1;x)+1

2
N(20, 1;x)

)1/τ
,

but don’t know normalising constants cτ so not valid! (“Rtempered2”)

• What to do?

PARALLEL TEMPERING:

• (a.k.a. replica exchange: Swendsen and Wang, 1986)

• (a.k.a. Metropolis-Coupled MCMC, or MCMCMC: Geyer, 1991)

• Alternative to tempered MCMC.

• Again have a sequence Π1,Π2, . . . ,Πm where Π1 = Π (“cold”), and Πτ is

flatter for larger τ (“hot”).

− e.g. πτ (x) = cτ (π(x))1/τ , where τ ranges over τ1 = 1, τ2, τ3, . . . , τm.

• Use state space Xm, with m chains, i.e. one chain for each temperature.

− So, state at time n is Xn = (Xn1, Xn2, . . . , Xnm), where Xnτ is “at

temperature τ”.

• Stationary distribution is now Π = Π1 × Π2 × . . . × Πm, i.e. Π(X1 ∈
S1, X2 ∈ S2, . . . , Xm ∈ Sm) = Π1(S1) Π2(S2) . . . Πm(Sm).

• Then, can update the chain Xn−1,τ at temperature τ (for each 1 ≤ τ ≤
m), by proposing e.g. Yn,τ ∼ N(Xn−1,τ , 1), and accepting with probability

min
(
1, πτ (Yn,τ )

πτ (Xn−1,τ )

)
.

• Or, can also choose temperatures τ and τ ′ (e.g., at random), and propose

to “swap” the values Xn,τ and Xn,τ ′ , and accept this with probability

min
(
1,

πτ (Xn,τ ′ )πτ ′ (Xn,τ )

πτ (Xn,τ )πτ ′ (Xn,τ ′ )

)
.

− Now, normalising constants cancel, e.g. if πτ (x) = cτ (π(x))1/τ , then

32



acceptance probability is:

min
(
1,
cτπ(Xn,τ ′)

1/τ cτ ′π(Xn,τ )
1/τ ′

cτπ(Xn,τ )1/τ cτ ′π(Xn,τ ′)1/τ ′

)
= min

(
1,
π(Xn,τ ′)

1/τ π(Xn,τ )
1/τ ′

π(Xn,τ )1/τ π(Xn,τ ′)1/τ ′

)
,

so cτ and cτ ′ are not required.

− Hence, can set gτ (x) = π(x)1/τ , no problem.

• EXAMPLE: again Π = 1
2
N(0, 1) + 1

2
N(20, 1).

− Now can set gτ (x) = π(x)1/τ , and ignore cτ .

− Then run parallel tempering . . . works pretty well. (file “Rpara”)

—————————– END WEEK #8 —————————–

MONTE CARLO OPTIMISATION – Simulated Annealing:

• General method to find highest mode of π.

• Idea: mode of π is same as mode of a flatter or a more peaked version

πτ , for any τ > 0.

− e.g. πτ ≡ π1/τ . Flatter if τ > 1, more peaked if τ < 1. (“tempered”)

− For large τ , MCMC explores a lot; good at beginning of search.

− For small τ , MCMC narrows in on local mode; good at end of search.

• So, use tempered MCMC, but where τ = τn ↘ 0, so πτn becomes more

and more concentrated at mode as n→∞.

• Need to choose {τn}, the “cooling schedule”.

− e.g. geometric (τn = τ0 r
n for some r < 1).

− or linear (τn = τ0 − dn for some d > 0, chosen so τM = τ0 − dM ≥ 0).

− or logarithmic (τn = τ0/ log(1 + n)).

− or . . .

− Theorem:: if c ≥ sup π, then simulated annealing with τn = c/ log(1+

n) will converge to the global maximum as n→∞. (But very slow.)

• EXAMPLE: Πτ = 0.3N(0, τ 2) + 0.7N(20, τ 2). (file “Rsimann”)

− Highest mode is at 20 (for any τ).

− If run usual Metropolis algorithm, it will either jump forever between

modes (if τ large), or get stuck in one mode or the other with equal

probability (if τ small) – bad.

− But if τn ↘ 0 slowly, then can usually find the highest mode (20) –

good.

− Try both geometric and linear (better?) cooling . . . (file “Rsimann”)

33



• EXAMPLE with real density powers:

− Set πτ (x) =
(
0.3N(0, 1) + 0.7N(20, 1)

)1/τ
.

− Need longer run, and smaller final τ .

− Then it works pretty well. (file “Rsimann2”)

DIGRESSION – CODE BREAKING:

• Try it out: “decipherdemo”. [uses file “decipher.c”]

• Data is the coded message text: s1s2s3 . . . sN ,

where si ∈ A = {A,B,C, . . . , Z, space}.

• State space X is set of all bijections (for now) of A, i.e. one-to-one onto

mappings f : A → A, subject to f(space) = space.

− [“substitution cipher”]

• Use a reference text (e.g. “War and Peace”) to get matrix M(x, y) = 1+

number of times y follows x, for x, y ∈ A.

• Then for f ∈ X , let π(f) =
∏N−1
i=1 M

(
f(si), f(si+1)

)
.

− (Or raise this all to a power, e.g. 0.25.)

• Idea: if π(f) is larger, then f leads to pair frequencies which more closely

match the reference text, so f is a “better” choice.

• Would like to find the choice of f which maximises π(f).

• To do this, run a “Metropolis algorithm” for π:

− Choose a, b ∈ A \ {space}, uniformly at random.

− Propose to replace f by g, where g(a) = f(b), g(b) = f(a), and

g(x) = f(x) for all x 6= a, b.

− Accept with probability min
(
1, π(g)

π(f)

)
.

• Easily seen to be an irreducible, aperiodic, reversible Markov chain.

• So, converges (quickly!) to correct answer, breaking the code.

• References: S. Conner (2003), “Simulation and solving substitution codes”.

P. Diaconis (2008), “The Markov Chain Monte Carlo Revolution”.

• We later extended this, to transposition ciphers and more: J. Chen and

J.S. Rosenthal (2010), “Decrypting Classical Cipher Text Using Markov

Chain Monte Carlo” (Statistics and Computing 22(2), 397–413, 2011).

DIGRESSION – PATTERN DETECTION:

• Data is an image, given in terms of a grid of pixels (each “on” or “off”).

• Want to “find” the face in the image.
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− (Harder for computers than for humans!)

• Java applet: faces.html (See before and after images.)

• Define the face location by a vector θ of various parameters (face center,

eye width, nose height, etc.).

• Then define a score function S(θ) indicating how well the image agrees

with having a face in the location corresponding to the parameters θ.

• Then run a “mixed” Monte Carlo search (sometimes updating by small

RWM moves, sometimes starting fresh from a random vector) over the

entire parameter space, searching for argmaxθ S(θ), i.e. for the parameter

values which maximise the score function.

− Keep track of the best θ so far – this allows for greater flexibility in

trying different search moves without needing to preserve a stationary

distribution.

− Works pretty well, and fast! (“faces.html” Java applet)

− For details, see Java applet source code file “faces.java”, or the paper

J.S. Rosenthal, Optimising Monte Carlo Search Strategies for Auto-

mated Pattern Detection. F. E. J. Math. Sci. 2009.

• Here, again, we want to maximise (i.e., optimise) π, not sample from π.

MCMC CONVERGENCE RATES THEORY:

• {Xn} : Markov chain on X , with stationary distribution Π(·).

• Let P n(x, S) = P[Xn ∈ S |X0 = x] be the probabilties for the Markov

chain after n steps, when started at x.

− Hope that for large n, P n(x, S) ≈ Π(S).

• Let D(x, n) = ‖P n(x, ·)− Π(·)‖ ≡ supS⊆X |P n(x, S)− Π(S)|.

• DEFN: chain is ergodic if limn→∞D(x, n) = 0, for Π-a.e. x ∈ X .

• Theorem (mentioned earlier): if chain is irreducible and aperiodic and

Π(·) stationary, then chain is ergodic, i.e. converges asymptotically to Π.

• DEFN: chain is geometrically ergodic if there is ρ < 1, and M : X →
[0,∞] which is Π-a.e. finite, such that D(x, n) ≤ M(x) ρn for all x ∈ X
and n ∈ N.

• Fact (mentioned earlier): CLT holds for 1
n

∑n
i=1 h(Xi) if chain is geomet-

rically ergodic and Eπ(|h|2+δ) <∞ for some δ > 0.

− (If chain also reversible then don’t need δ: Roberts and Rosenthal,

“Geometric ergodicity and hybrid Markov chains”, ECP 1997.)

− If CLT holds, then (as before) have 95% confidence interval

(e− 1.96
√
v, e+ 1.96

√
v), where v ≈ 1

M−B Varπ(h)(varfact).
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• DEFN: chain is uniformly ergodic if there is ρ < 1, and M < ∞ such

that D(x, n) ≤M ρn for all x ∈ X and n ∈ N.

• DEFN: a quantitative bound on convergence is an actual number n∗ such

that D(x, n∗) < 0.01 (say). [Then sometimes say chain “converges in n∗

iterations”.]

• Quantitative bounds often difficult (though I’ve worked on them a lot,

see e.g. Rosenthal, “Quantitative convergence rates of Markov chains: A

simple account”, Elec Comm Prob 2002 and the references therein), but

“geometric ergodicity” is often easier to verify.

• But what about convergence rates, i.e. bounds on D(x, n)?

• Useful Theorem: If P (x, dy) ≥ δ π(dy) for all x, y ∈ X , then D(x, n) ≤
(1− δ)n. (“minorisation condition” . . . proof by “coupling” . . . )

− If true, shows uniform ergodicity and can give a quantitative bound.

• Special Case: INDEPENDENCE SAMPLER (mentioned earlier):

− Proposals {Yn} i.i.d. from some fixed distribution (say, Yn ∼MVN(0, I)).

− Another special case of Metropolis-Hastings algorithm, where q(x, y) =

q(y) depends only on y. So, Π is a stationary distribution.

− By above Theorem, independence sampler is ergodic provided q(x) >

0 whenever π(x) > 0 (since then it must be irreducible and aperiodic).

− But does that guarantee that it will work well?

− No, e.g. previous “Rind” example with k = 5: ergodic (of course), but

performs terribly.

− FACT: independence sampler is geometrically ergodic IF AND ONLY

IF there is δ > 0 such that q(x) ≥ δπ(x) for π-a.e. x ∈ X .

− If so, then we compute that

p(x, y) ≥ q(y) min[1,
π(y) q(x)

π(x) q(y)
] = min[q(y), π(y) (q(x) / π(x))]

≥ min[δ π(y), δ π(y)] = δ π(y) .

Hence, from the above, D(x, n) ≤ (1− δ)n for π-a.e. x ∈ X .

• PREVIOUS EXAMPLE: Independence sampler with π(x) = e−x and

q(x) = ke−kx for x > 0. (file “Rind”)

− If 0 < k ≤ 1, then setting δ = k, we have that q(x) = ke−kx ≥
ke−x = kπ(x) = δπ(x) for all x > 0, so it’s geometrically ergodic, and

furthermore D(x, n) ≤ (1− k)n.

− e.g. if k = 0.01, then D(x, 459) ≤ (0.99)459 .
= 0.0099 < 0.01 for all

x > 0, i.e. “converges after 459 iterations”.

36

http://probability.ca/jeff/ftpdir/computsimple.pdf
http://probability.ca/jeff/ftpdir/computsimple.pdf


− But if k > 1, then cannot find any δ > 0 such that q(x) ≥ δπ(x) for

all x, so it is not geometrically ergodic.

− If k > 2, then no CLT (Roberts, J. Appl. Prob. 36, 1210–1217, 1999).

− So, if k = 5 (as in “Rind”), then not geometrically ergodic, and CLT

does not hold. Indeed, confidence intervals often miss 1. (file “Rind2”)

− Fact: if k = 5, then D(0, n) > 0.01 for all n ≤ 4, 000, 000, while

D(0, n) < 0.01 for all n ≥ 14, 000, 000, i.e. “convergence” takes be-

tween 4 million and 14 million iterations. Slow! [Roberts and Rosen-

thal, “Quantitative Non-Geometric Convergence Bounds for Indepen-

dence Samplers”, MCAP 2011.]

• What about other MCMC algorithms (besides independence sampler)?

• FACT: if state space is finite, and chain is irreducible and aperiodic,

then always ergodic (of course) and also geometrically ergodic. (See e.g.

J.S. Rosenthal, SIAM Review 37:387-405, 1995.)

• What about for the “random-walk Metropolis algorithm” (RWM), i.e.

where {Yn −Xn−1} ∼ q (i.i.d.) for some fixed symmetric density q?

− e.g. Yn ∼ N(Xn−1, σ
2I), or Yn ∼ Uniform[Xn−1 − δ, Xn−1 + δ].

• FACT: RWM is geometrically ergodic essentially if and only if π has ex-

ponentially light tails, i.e. there are a, b, c > 0 such that π(x) ≤ ae−b|x|

whenever |x| > c. (Requires a few technical conditions: π and q contin-

uous and positive; q has finite first moment; and π non-increasing in the

tails, with (in higher dims) bounded Gaussian curvature.) [Mengersen

and Tweedie, Ann Stat 1996; Roberts and Tweedie, Biometrika 1996]

—————————– END WEEK #9 —————————–

• [11 STUDENT PRESENTATIONS!]

• EXAMPLES: RWM on R with usual proposals: Yn ∼ N(Xn−1, σ
2):

→ CASE #1: Π = N(5, 42), and functional h(y) = y2, so Eπ(h) = 52 + 42 =

41. (file “Rnorm” . . . σ = 1 v. σ = 4 v. σ = 16)

− Geometrically ergodic? Yes! (By above.)

− Does CLT hold? Yes! (geometrically ergodic, and Eπ(|h|p) < ∞ for

all p.)

− Indeed, confidence intervals “usually” contain 41. (file “Rnorm2”)

→ CASE #2: π(y) = c 1
(1+y4)

, and functional h(y) = y2, so

Eπ(h) =

∫∞
−∞ y

2 1
(1+y4)

dy∫∞
−∞

1
(1+y4)

dy
=

π/
√

2

π/
√

2
= 1 .
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− Not exponentially light tails, so not geometrically ergodic; estimates

less stable, confidence intervals often miss 1. (file “Rheavy”)

→ CASE #3: π(y) = 1
π(1+y2)

(Cauchy), and functional h(y) = 1−10<y<10.

− Recall that for Cauchy, Π(0 < X < y) = arctan(y)/π.

− So, Eπ(h) = Π(|X| < 10) = 2 arctan(10)/π = 0.93655.

− Again, not exponentially light tails, so not geometrically ergodic.

− Confidence intervals often miss 0.93655. (file “Rcauchy”)

→ CASE #4: π(y) = 1
π(1+y2)

(Cauchy), and functional h(y) = min(y2, 100).

− [Numerical integration: Eπ(h)
.
= 11.77]

− Once again, not exponentially light tails, so not geometrically ergodic.

− And, 95% CI often miss 11.77, though iid MC does better. (“Rcauchy2”)

• NOTE: Even when CLT holds, it can be rather unstable, e.g. it requires

that chain has converged to Π, so it might underestimate v.

− Estimate of v is very important! And “varfact” is not always reliable!

− Repeated runs?

− Another approach is “batch means”, whereby chain is broken into m

large “batches”, which are assumed to be approximately i.i.d.

OPTIMAL RWM PROPOSAL SHAPE:

• Consider RWM on X = Rd, where Yn ∼MVN(Xn−1, Σ) for some d× d
proposal covariance matrix Σ.

• What is best choice of Σ?

− Usually we take Σ = σ2 Id for some σ > 0, and then choose σ so

acceptance rate not too small, not too large (e.g. 0.234).

− But can we do better?

• Suppose for now that Π = MVN(µ0, Σ0) for some fixed µ0 and Σ0, in

dim=5. Try RWM with various proposal distributions (file “Ropt”):

− first version: Yn ∼MVN(Xn−1, Id). (acc ≈ 0.06; varfact ≈ 220)

− second version: Yn ∼ MVN(Xn−1, 0.1 Id). (acc ≈ 0.234; varfact ≈
300)

− third version: Yn ∼MVN(Xn−1, Σ0). (acc ≈ 0.31; varfact ≈ 15)

− fourth version: Yn ∼MVN(Xn−1, 1.4 Σ0). (acc ≈ 0.234; varfact ≈
7)

• Or in dim=20 (file “Ropt2”, with file “Rtarg20”):

− Yn ∼MVN(Xn−1, 0.025 Id). (acc ≈ 0.234; varfact ≈ 400 or more)

− Yn ∼MVN(Xn−1, 0.283 Σ0). (acc ≈ 0.234; varfact ≈ 50)
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• Conclusion: acceptance rates near 0.234 are better.

• But also, proposals shaped like the target are better.

− Indeed, best is when proposal covariance = ((2.38)2/d)Σ0.

− This has been proved for targets which are orthogonal transformations

of independent components (Roberts et al., Ann Appl Prob 1997;

Roberts and Rosenthal, Stat Sci 2001 ; Bédard, Ann Appl Prob 2007).

− And it’s “approximately” true for most unimodal targets . . .

• Problem: Σ0 would usually be unknown; then what?

− Can perhaps “adapt“!

ADAPTIVE MCMC:

• Recall: RWM optimal proposal covariance is ((2.38)2/d)Σ0.

• What if target covariance Σ0 is unknown??

• Can estimate Σ0 based on run so far, to get empirical covariance Σn.

• Then update proposal covariance “on the fly”.

• “Learn as you go”: see e.g. the Javascript simulation.

• For Adaptive MCMC, could use proposal Yn ∼MVN(Xn−1, ((2.38)2/d)Σn).

− Hope that for large n, Σn ≈ Σ0, so proposals “nearly” optimal.

− (Usually also add εId to proposal covariance, to improve stability, e.g.

ε = 0.05.)

• Try R version, for the same MVN example as in Ropt (file “Radapt”):

− Need much longer burn-in, e.g. B = 20, 000, for adaption to work.

− Get varfact of last 4000 iterations of about 18 . . . “competitive” with

Ropt optimal . . .

− The longer the run, the more benefit from adaptation.

− Can also compute “slow-down factor”, sn ≡ d
(∑d

i=1 λ
−2
in / (

∑d
i=1 λ

−1
in )2

)
,

where {λin} eigenvals of Σ1/2
n Σ

−1/2
0 . Starts large, should converge to 1.

[Motivation: if Σn = Σ0, then λin ≡ 1, so sn = d(d/d2) ≡ 1.] See

Roberts and Rosenthal, Examples of Adaptive MCMC, JCGS 2009.

• Higher dimensions: figure “RplotAMx200.png” (dim=200). (beautiful!)

− Works well, but it takes many iterations before the adaption is helpful.

—————————– END WEEK #10 —————————–
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