STA3431 (Monte Carlo Methods) Lecture Notes, Fall 2020

by Jeffrey S. Rosenthal, University of Toronto

(Last updated: November 30, 2020)

Note: I will update these notes regularly (on the course web page). However, they are just rough, point-form notes, with no guarantee of completeness or accuracy. They should in no way be regarded as a substitute for attending the lectures, doing the homework exercises, studying the course material, or reading the reference books.

INTRODUCTION:

- Introduction to course, handout, references, prerequisites, etc.
 - Course web page: probability.ca/sta3431
 - Lectures: Online on Zoom, synchronous, Mondays 10:10–12:00.
 - If not Stat Dept grad student, must REQUEST enrolment (by e-mail); need advanced undergraduate probability/statistics background, plus basic computer programming (including "R"; see e.g. this page).
 - Conversely, if you already know lots about MCMC etc., then this course might not be right for you since it's an INTRODUCTION to these topics.
 - How many of you are graduate students in Statistics? Computer Science? Math? Engineering? Physics? Economics? Management? Other?
- Theme of the course: use (pseudo)randomness on a computer to simulate, and hence estimate, important/interesting quantities.
- Example: Suppose we want to estimate $m := \mathbf{E}[Z^4 \cos(Z)]$, where $Z \sim Normal(0, 1)$.
 - "Classical" Monte Carlo solution: replicate a large number z_1, \ldots, z_n of Normal(0,1) random variables, and let $x_i = z_i^4 \cos(z_i)$.
 - Their mean $\overline{x} \equiv \frac{1}{n} \sum_{i=1}^{n} x_i$ is an estimate of $\mathbf{E}[X] \equiv \mathbf{E}[Z^4 \cos(Z)]$.
 - R: $Z = \operatorname{rnorm}(100)$; $X = Z \wedge 4 * \cos(Z)$; mean(X) [file "RMC"]
 - Unbiased (good) ... but unstable ... but if replace "100" with "1000000" then \overline{x} is consistently close to $-1.213 \dots$ good ...
 - [Aside: In this course we will often use R to <u>automatically</u> sample from simple distributions like Normal, Uniform, Exponential, etc. But how does it work? Discussed later!]
 - Can we quantify the variability?

- Well, can estimate standard deviation of \overline{x} by the estimated "standard error" of \overline{x} , which is:

$$se = \sqrt{\operatorname{Var}(\overline{x})} = \sqrt{\operatorname{Var}\left(\frac{1}{n}\sum_{i=1}^{n}x_{i}\right)} = \sqrt{\left(\frac{1}{n}\right)^{2}\left(n\operatorname{var}(x)\right)}$$
$$= n^{-1/2}\sqrt{\operatorname{var}(x)} \approx n^{-1/2}\sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(x_{i}-\overline{x})^{2}} =: n^{-1/2}\operatorname{sd}(x) .$$

[file "RMCse"]

- Then what is, say, a 95% confidence interval for m?
- Well, by by the Central Limit Theorem (CLT), for large n, we have $\overline{x} \approx N(m, v) \approx N(m, se^2)$.
 - (Strictly speaking, should use "t" distribution, not normal distribution
 ... but if n large that doesn't really matter ignore it for now.)
 - So $\frac{m-\overline{x}}{se} \approx N(0,1)$.
 - So, $\mathbf{P}(-1.96 < \frac{m-\overline{x}}{se} < 1.96) \approx 0.95.$
 - So, $\mathbf{P}(\overline{x} 1.96 \, se \, < m < \overline{x} + 1.96 \, se) \approx 0.95.$
 - i.e., <u>approximate</u> 95% confidence interval is [file "RMCci"]

$$(\overline{x} - 1.96 \, se, \, \overline{x} + 1.96 \, se)$$
.

• Alternatively, could compute expectation as

$$\int_{-\infty}^{\infty} z^4 \, \cos(z) \, \frac{e^{-z^2/2}}{\sqrt{2\pi}} \, dz \, .$$

Analytic? Numerical? Better? Worse? [file "RMCcomp": -1.213]

- [Aside: In fact, by considering it as the real part of $\mathbf{E}(Z^4 e^{iZ})$, with extra work this expectation can be computed exactly, to be $-2/\sqrt{e} \doteq -1.213061$. But not for harder examples.]
- What about higher-dimensional examples? (Can't do numerical integration!) Can we still sample?
- What if the distribution is too complicated to sample from?
 - (MCMC! Metropolis, Gibbs, etc.... Soon!)

HISTORICAL EXAMPLE – BUFFON'S NEEDLE:

- Have series of parallel lines ... line spacing w, needle length $\ell \leq w$ (say $\ell = w$) ... what is prob that needle lands touching line? [https://mste.illinois.edu/activity/buffon/]

- Let h be the vertical distance from the bottom end to the nearest line above, and θ be the needle's angle counter-clockwise from horizontal.
- Then $h \sim \text{Uniform}[0, w]$ and $\theta \sim \text{Uniform}[0, \pi]$, independent.
- Touches line iff $l \sin(\theta) > h$, i.e. $h < l \sin(\theta)$.
- So, the probability the needle touches the line is:

$$\frac{1}{\pi} \int_0^\pi \frac{1}{w} \int_0^w \mathbf{1}_{h < \ell \sin(\theta)} dh \, d\theta = \frac{1}{\pi} \int_0^\pi \frac{1}{w} \ell \sin(\theta) \, d\theta$$
$$= \frac{1}{\pi} \frac{1}{w} \ell \left[-\cos(\theta) \right]_{\theta=0}^{\theta=\pi} = \frac{1}{\pi} \frac{1}{w} \ell \left[-(-1) + (1) \right] = \frac{2\ell}{w\pi}.$$

- Hence, by LLN, if throw needle *n* times, of which it touches a line *m* times, then for *n* large, $m/n \approx 2\ell/w\pi$, so $\pi \approx 2n\ell/mw$.
- (e.g. if $\ell = w$, then $\pi \approx 2n/m$)
- [e.g. recuperating English Captain O.C. Fox, 1864: $\ell = 3, w = 4, n = 530, m = 253, \text{ so } \pi \approx 2n\ell/mw \doteq 3.1423.$]
- But for modern simulations, use <u>computer</u>. How to randomise??

PSEUDORANDOM NUMBERS:

- Goal: generate an i.i.d. sequence $U_1, U_2, U_3, \ldots \sim \text{Uniform}[0, 1]$.
- One method: LINEAR CONGRUENTIAL GENERATOR (LCG).
 - Choose (large) positive integers m, a, and b.
 - Start with a "seed" value, x_0 . (e.g., the current time in milliseconds)
 - Then, recursively, $x_n = (ax_{n-1} + b) \mod m$, i.e. $x_n =$ remainder when $ax_{n-1} + b$ is divided by m.
 - $So, 0 \le x_n \le m 1.$
 - Then let $U_n = x_n/m$.
 - Then $\{U_n\}$ will "seem" to be approximately i.i.d. ~ Uniform[0, 1]. (file "Rrng")
- Choice of m, a, and b? Many issues ...
 - Need m large (so many possible values);
 - Need a large enough that no obvious "pattern" between U_{n-1} and U_n .
 - Need b to avoid short "cycles" of numbers.
 - Want large "period", i.e. number of iterations before repeat.
 - Many statistical tests, to try to see which choices provide good randomness, avoid correlations, etc. (e.g. "diehard tests", "dieharder": www.phy.duke.edu/~rgb/General/dieharder.php)
 - One common "good" choice: $m = 2^{32}$, a = 69,069, b = 23,606,797.

- <u>Theorem</u>: the LCG has full period (m) if and only if both:
 (i) gcd(b, m) = 1, and
 - (ii) every "prime or 4" divisor of m also divides a 1.
 - So, if $m = 2^{32}$, then if b odd and a 1 is a multiple of 4 (like above), then the LCG has full period $m = 2^{32} \doteq 4.3 \times 10^9$; good.
- Many other choices, some good, some bad (ASIDE):
 - -e.g. C
 programming language "glibc" uses $m=2^{32},\,a=1,103,515,245,$
b=12,345. Pretty good.
 - "RANDU" used $m = 2^{31}$, $a = 65539 = 2^{16} + 3$, b = 0 for many years, around the 1970s. Seemed okay. But then people noticed: $x_{n+2} = ax_{n+1} = a^2x_n = (2^{16} + 3)^2x_n = (2^{32} + 6(2^{16}) + 9)x_n$ $\equiv (0 + 6(2^{16} + 3) - 9)x_n \pmod{2^{31}} = 6x_{n+1} - 9x_n.$ So, $x_{n+2} = 6x_{n+1} - 9x_n \mod m$. Too much serial correlation! Bad!
 - Microsoft Excel pre-2003: had period $< 10^6$, too small ...
 - Excel 2003 instead used a floating-point "version" of LCG ... which sometimes gave negative numbers! Bad!
- These numbers are <u>not</u> "really" random, just "pseudorandom" ...
 - Can cause problems! Will fail certain statistical tests!
 - Some implementations also use external randomness, e.g. temperature of computer's CPU / entropy of kernel (e.g. Linux's "urandom").
 - Or, the randomness of quantum mechanics, e.g. www.fourmilab.ch/hotbits (see "myhotbits").
 - Or, of atmospheric noise (from lightning etc.), e.g. random.org.
 - But mostly, pseudorandom numbers work pretty well ...
- LCG's are "good enough". But other generators include (ASIDE):
 - "Multiply-with-Carry": $x_n = (ax_{n-r} + b_{n-1}) \mod m$ where $b_n = \lfloor (ax_{n-r} + b_{n-1})/m \rfloor$.
 - 'Kiss": $y_n = (x_n + J_n + K_n) \mod 2^{32}$, where x_n as above, and J_n and K_n are "shift register generators", given in bit form by $J_{n+1} = (I + L^{15})(I + R^{17})J_n \mod 2^{32}$, and $K_{n+1} = (I + L^{13})(I + R^{18})K_n \mod 2^{31}$, where L means "shift left" and R means "shift right".
 - Mersenne Twister: $x_{n+k} = x_{n+s} \oplus (x_n^{(\text{upper})} | x_{n+1}^{(\text{lower})}) A$, where $1 \le s < k$ where $2^{kw-r} - 1$ is Mersenne prime, and A is $w \times w$ (e.g. 32×32) with $(w-1) \times (w-1)$ identity in upper-right, and where the matrix multiplication is done bit-wise mod 2.
 - And many others, too. An entire research area!
 - R's choice? See "?RNGkind". Default is Mersenne Twister.

• So, just need computer to do <u>simple arithmetic</u>. No problem, right?

LIMITATIONS OF COMPUTER ARITHMETIC:

- Consider the following computations in R:
 - > 2 + 1 2 $> 2 \land 10 + 1 - 2 \land 10$ $> 2 \land 100 + 1 - 2 \land 100$
- Why??
- Question for next class: In R, for what values of n does:
 > 2∧n + 1 2∧n give 0 instead of 1?
- (Similarly in many other computer languages too, e.g. C (powertest.c), Java (powertest.java) ... and Python with floating numbers ... but not Python with *integer* variables (powertest.py), because it then does dynamic memory allocation ...)
- Also, overflow/Inf/underflow problems: $2 \wedge 10000$, $2 \wedge (-10000)$, etc.
- So, numerical computations are <u>approximations</u>, with their own errors.
- We'll usually ignore these issues, but you should BE CAREFUL!
- So how to use pseudorandomness?
 - With LCG etc, we can simulate Uniform[0,1] random variables.
 - What about <u>other</u> random variables?

END WEEK #1

SIMULATING OTHER DISTRIBUTIONS:

- Once we have U_1, U_2, \ldots i.i.d. ~ Uniform[0, 1] (at least approximately), how do we generate other distributions?
- With transformations, using the "change-of-variable" theorem!
- e.g. to make $X \sim \text{Uniform}[L, R]$, set: $X = (R - L)U_1 + L.$
- e.g. to make $X \sim \text{Bernoulli}(p)$, set:

$$X = \begin{cases} 1, & U_1 \le p \\ 0, & U_1 > p \end{cases}$$

• e.g. to make $Y \sim \text{Binomial}(n, p)$, either set: $Y = X_1 + \ldots + X_n$ where

$$X_i = \begin{cases} 1, & U_i \le p \\ 0, & U_i > p \end{cases},$$

or set:

$$Y = \max\left\{j : \sum_{k=0}^{j-1} \binom{n}{k} p^k (1-p)^{n-k} \le U_1\right\}$$

(where by convention $\sum_{k=0}^{-1} (\cdots) = 0$). ("Inverse CDF method"; see below)

• More generally, to make $\mathbf{P}(Y = x_i) = p_i$ for some $x_1 < x_2 < x_3 < \dots$, where $p_i \ge 0$ and $\sum_i p_i = 1$, set:

$$Y = \max\{x_j; \sum_{k=1}^{j-1} p_k \leq U_1\}.$$

(discrete version of "Inverse CDF method")

- e.g. to make $Z \sim \text{Exponential}(1)$, set: $Z = -\log(U_1)$.
 - Then for x > 0, $\mathbf{P}(Z > x) = \mathbf{P}(-\log(U_1) > x) = \mathbf{P}(\log(U_1) < -x)$ = $\mathbf{P}(U_1 < e^{-x}) = e^{-x}$. Then CDF = $1 - e^{-x}$, and density $= e^{-x}$.
 - Then, to make $W \sim \text{Exponential}(\lambda)$, set: $W = Z/\lambda = -\log(U_1)/\lambda$. [So that W has density $\lambda e^{-\lambda x}$ for x > 0.]
- Suppose we want X to have density $6 x^5 \mathbf{1}_{0 < x < 1}$.
 - Let $X = U_1^{1/6}$.
 - Then for 0 < x < 1, $\mathbf{P}(X \le x) = \mathbf{P}(U_1^{1/6} \le x) = \mathbf{P}(U_1 \le x^6) = x^6$.
 - Hence, $f_X(x) = \frac{d}{dx} \left[\mathbf{P}(X \le x) \right] = \frac{d}{dx} x^6 = 6 x^5$ for 0 < x < 1.
 - More generally, for r > 1, if $X = U_1^{1/r}$, then $f_X(x) = r x^{r-1}$ for 0 < x < 1. [CHECK!]
- What about normal dist.? Fact: If

$$X = \sqrt{2 \log(1/U_1)} \cos(2\pi U_2),$$

$$Y = \sqrt{2 \log(1/U_1)} \sin(2\pi U_2),$$

then $X, Y \sim N(0, 1)$, and X and Y are independent! ["Box-Muller transformation": Ann Math Stat 1958, 29, 610-611]

- Proof (Aside): By multidimensional change-of-variable theorem, if $(x, y) = h(u_1, u_2)$ and $(u_1, u_2) = h^{-1}(x, y)$, then $f_{X,Y}(x, y) = f_{U_1,U_2}(h^{-1}(x, y)) / |J(h^{-1}(x, y))|$. Here $f_{U_1,U_2}(u_1, u_2) = 1$ for $0 < u_1, u_2 < 1$ (otherwise 0), and

$$J(u_1, u_2) = \det \begin{pmatrix} \frac{\partial x}{\partial u_1} & \frac{\partial x}{\partial u_2} \\ \frac{\partial y}{\partial u_1} & \frac{\partial y}{\partial u_2} \end{pmatrix}$$
$$= \det \begin{pmatrix} -\cos(2\pi u_2) / u_1 \sqrt{2\log(1/u_1)} & -2\pi \sin(2\pi u_2) \sqrt{2\log(1/u_1)} \\ -\sin(2\pi u_2) / u_1 \sqrt{2\log(1/u_1)} & 2\pi \cos(2\pi u_2) \sqrt{2\log(1/u_1)} \end{pmatrix}$$

 $= -2\pi / u_1$.

But $u_1 = e^{-(x^2+y^2)/2}$, so density of (X, Y) is

$$f_{X,Y}(x,y) = 1/|J(h^{-1}(x,y))| = 1/|-2\pi / e^{-(x^2+y^2)/2}| = e^{-(x^2+y^2)/2}/2\pi$$
$$= \left(\frac{1}{\sqrt{2\pi}}e^{-x^2/2}\right) \left(\frac{1}{\sqrt{2\pi}}e^{-y^2/2}\right),$$

i.e. $X \sim N(0, 1)$ and $Y \sim N(0, 1)$ are independent.

- Most general approach: the general "INVERSE CDF METHOD":
 - Suppose want $\mathbf{P}(X \le x) = F(x)$. ("CDF")
 - For 0 < t < 1, set $F^{-1}(t) = \min\{x; F(x) \ge t\}$. ("inverse CDF")
 - Then set $X = F^{-1}(U_1)$.
 - Then $X \leq x$ if and only if $U_1 \leq F(x)$. [Subtle; see e.g. Rosenthal, A First Look at Rigorous Probability Theory, 2nd ed., Lemma 7.1.2.]
 - So, $\mathbf{P}(X \le x) = \mathbf{P}(U_1 \le F(x)) = F(x).$
 - Very general, but computing $F^{-1}(t)$ is often very difficult ...
- Overall, generating (pseudo)random numbers for most "standard" onedimensional distributions is mostly pretty easy or well-known ...
 - So, can get Monte Carlo estimates of expectations involving standard one-dimensional distributions, e.g. $\mathbf{E}[Z^4 \cos(Z)]$ where $Z \sim \text{Normal}(0, 1)$.
- What about other Monte Carlo estimates?

MONTE CARLO INTEGRATION:

- How to compute an integral with Monte Carlo?
 - Re-write it as an expectation!
- EXAMPLE: Want to compute $\int_0^1 \int_0^1 g(x, y) dx dy$.
 - Regard this as $\mathbf{E}[g(X, Y)]$, where X, Y i.i.d. ~ Uniform[0, 1].
 - Then, similar to before, estimate $\mathbf{E}[g(X,Y)]$ by $\frac{1}{M} \sum_{i=1}^{M} g(x_i, y_i)$, where $x_i \sim \text{Uniform}[0,1]$ and $y_i \sim \text{Uniform}[0,1]$ (all independent).
 - e.g. $g(x, y) = \cos(\sqrt{xy})$. (file "RMCint") Easy!
 - Get about $0.88 \pm 0.003 \dots$ Mathematica gives 0.879544.
- e.g. estimate $I = \int_0^5 \int_0^4 g(x, y) \, dy \, dx$, where $g(x, y) = \cos(\sqrt{xy})$.
 - Here

$$\int_{0}^{5} \int_{0}^{4} g(x,y) \, dy \, dx = \int_{0}^{5} \int_{0}^{4} 5 \cdot 4 \cdot g(x,y) \, (1/4) \, dy \, (1/5) \, dx = \mathbf{E}[5 \cdot 4 \cdot g(X,Y)] \, ,$$

where $X \sim \text{Uniform}[0, 5]$ and $Y \sim \text{Uniform}[0, 4]$.

- So, let $X_i \sim \text{Uniform}[0, 5]$, and $Y_i \sim \text{Uniform}[0, 4]$ (all independent).

- Estimate I by $\frac{1}{M} \sum_{i=1}^{M} (5 \cdot 4 \cdot g(X_i, Y_i))$. (file "RMCint2")
- Standard error: $se = M^{-1/2} sd(5 \cdot 4 \cdot g(X_1, Y_1), \ldots, 5 \cdot 4 \cdot g(X_M, Y_M)).$
- With $M = 10^6$, get about $-4.11 \pm 0.01 \dots$ Mathematica gives -4.11692.
- e.g. estimate $\int_0^1 \int_0^\infty h(x, y) \, dy \, dx$, where $h(x, y) = e^{-y^2} \cos(\sqrt{xy})$.
 - (Can't use "Uniform" expectations.)
 - Instead, write this as, say, $\int_0^1 \int_0^\infty (e^y h(x, y)) e^{-y} dy dx$.
 - This is the same as $\mathbf{E}[e^Y h(X, Y)]$, where $X \sim \text{Uniform}[0, 1]$ and $Y \sim \text{Exponential}(1)$ are independent.
 - So, estimate it by $\frac{1}{M} \sum_{i=1}^{M} e^{Y_i} h(X_i, Y_i)$, where $X_i \sim \text{Uniform}[0, 1]$ and $Y_i \sim \text{Exponential}(1)$ (i.i.d.). (file "RMCint3")
 - With $M = 10^6$ get about $0.767 \pm 0.0004 \dots$ Small error!
 - Mathematica: 0.767211.
- Alternatively, could write this as $\int_0^1 \int_0^\infty (\frac{1}{5} e^{5y} h(x, y)) (5 e^{-5y}) dy dx = \mathbf{E}[\frac{1}{5} e^{5Y} h(X, Y)]$ where $X \sim \text{Uniform}[0, 1]$ and $Y \sim \text{Exponential}(5)$ (indep.).
 - Then, estimate it by $\frac{1}{M} \sum_{i=1}^{M} \frac{1}{5} e^{5y_i} h(x_i, y_i)$, where $x_i \sim \text{Uniform}[0, 1]$ and $y_i \sim \text{Exponential}(5)$ (i.i.d.).
 - With $M = 10^6$, get about $0.767 \pm 0.0016 \dots$ larger standard error \dots (file "RMCint4").
 - If replace 5 by 1/5, get about $0.767 \pm 0.0015 \dots$ about the same.
- So which choice is best?
 - Whichever one minimises the standard error!
 - $(\lambda \approx 1.5, se \approx 0.00025?)$
- In general, to evaluate $I \equiv \int s(y) \, dy$, could write it as $I = \int \frac{s(x)}{f(x)} f(x) \, dx$, where f is easily sampled from, with f(x) > 0 whenever s(x) > 0.
 - Then $I = \mathbf{E}\left(\frac{s(X)}{f(X)}\right)$, where X has density f.
 - ("Importance Sampling")
 - So, $I \approx \frac{1}{M} \sum_{i=1}^{M} \frac{s(x_i)}{f(x_i)}$ where $x_i \sim f$.
 - Can then do classical (iid) Monte Carlo integration, and also get standard errors, confidence intervals, etc.
 - Good if it's easier to sample from f, and/or if the function $\frac{s(x)}{f(x)}$ is less variable than h itself.
- In general, best to make $\frac{s(x)}{f(x)}$ approximately constant if possible.
 - e.g. extreme case: if $I = \int_0^\infty e^{-3x} dx$, then $I = \int_0^\infty (1/3)(3e^{-3x})dx = \mathbf{E}[1/3]$ where $X \sim \text{Exponential}(3)$, so I = 1/3 (error = 0, no MC needed). [Here $s(x) = e^{-3x}$, and $f(x) = 3e^{-3x}$.]

UNNORMALISED DENSITIES:

- Suppose now that $\pi(y) = c g(y)$, where we know g but <u>don't</u> know c or
 - $\pi.$ ("Unnormalised density", e.g. Bayesian posterior.)
 - Obviously, $c = \frac{1}{\int g(y) dy}$, but this might be hard to compute.
 - Still, $I = \int h(x) \pi(x) dx = \int h(x) c g(x) dx = \frac{\int h(x) g(x) dx}{\int g(x) dx}$.
 - Here $\int h(x) g(x) dx = \int (h(x) g(x) / f(x)) f(x) dx = \mathbf{E}[h(X) g(X) / f(X)]$ where $X \sim f$.
 - So, $\int h(x) g(x) dx \approx \frac{1}{M} \sum_{i=1}^{M} \left(h(x_i) g(x_i) / f(x_i) \right)$ if $\{x_i\} \sim f$ (i.i.d.).
 - Similarly, $\int g(x) dx \approx \frac{1}{M} \sum_{i=1}^{M} \left(g(x_i) / f(x_i) \right)$ if $\{x_i\} \sim f$ (i.i.d.).

- So, must
$$I \approx \frac{\sum_{i=1}^{M} \left(h(x_i) g(x_i) / f(x_i) \right)}{\sum_{i=1}^{M} \left(g(x_i) / f(x_i) \right)}.$$

- ("Importance Sampling": weighted average)
- (Because we are taking <u>ratios</u> of (unbiased) estimates, the resulting estimate is <u>not</u> unbiased, and its standard errors are less clear. But it is still <u>consistent</u> as $M \to \infty$.)

END WEEK #2

- Example: compute $I \equiv \mathbf{E}(Y^2)$ where Y has density $c y^3 \sin(y^4) \cos(y^5) \mathbf{1}_{0 < y < 1}$, where c > 0 is unknown (and hard to compute).
 - Here $g(y) = y^3 \sin(y^4) \cos(y^5) \mathbf{1}_{0 < y < 1}$, and $h(y) = y^2$.
 - Let $f(y) = 6 y^5 \mathbf{1}_{0 < y < 1}$.
 - [Recall: if $U \sim \text{Uniform}[0, 1]$, and if $X = U^{1/6}$, then $X \sim f$.]
 - $\text{ Then } I \approx \frac{\sum_{i=1}^{M} \left(h(x_i) g(x_i) / f(x_i) \right)}{\sum_{i=1}^{M} \left(g(x_i) / f(x_i) \right)} = \frac{\sum_{i=1}^{M} \left(\sin(x_i^4) \cos(x_i^5) \right)}{\sum_{i=1}^{M} \left(\sin(x_i^4) \cos(x_i^5) / x_i^2 \right)},$ where $\{x_i\}$ are i.i.d. $\sim f$. (file "Rimp1" ... get about 0.766 ...)
 - Or, let $f(y) = 4 y^3 \mathbf{1}_{0 < y < 1}$. [Then if $U \sim \text{Uniform}[0, 1]$, then $U^{1/4} \sim f$.] $\sum_{k=1}^{M} (h(x_k) g(x_k) / f(x_k)) = \sum_{k=1}^{M} (\sin(x^4) \cos(x^5) x^2)$

$$- \text{ Then } I \approx \frac{\sum_{i=1}^{M} \left(\frac{h(x_i) g(x_i)}{f(x_i)} \right)}{\sum_{i=1}^{M} \left(\frac{g(x_i)}{f(x_i)} \right)} = \frac{\sum_{i=1}^{M} \left(\frac{\sin(x_i^*) \cos(x_i^*) x_i^*}{1 \cos(x_i^*) \cos(x_i^*)} \right)}{\sum_{i=1}^{M} \left(\frac{\sin(x_i^*) \cos(x_i^*)}{1 \cos(x_i^*)} \right)} . \text{ (file "Rimp2")}$$

- Numerical integration: 0.7661155 (file "Rimp3").
- With importance sampling, is it important to use the same samples $\{x_i\}$ in both numerator and denominator?
 - What if independent samples are used instead?
 - Let's try it! (file "Rimpind")
 - Both ways work, but usually(?) the same samples work better.
 - Overall, good to use <u>same</u> sample $\{x_i\}$ for both numerator and denominator: easier computationally, and leads to smaller variance.

• What <u>other</u> methods are available to iid sample from π ?

REJECTION SAMPLER:

- Assume $\pi(x) = c g(x)$, with π and c unknown, g known but <u>hard</u> to sample from.
- <u>Want</u> to sample $X \sim \pi$. (Then if $X_1, X_2, \ldots, X_M \sim \pi$ iid, then can estimate $\mathbf{E}_{\pi}(h)$ by $\frac{1}{M} \sum_{i=1}^{M} h(X_i)$, etc.)
- Find some other, easily-sampled density f, and known K > 0, such that $K f(x) \ge g(x)$ for all x. (i.e., $K f(x) \ge \pi(x) / c$, i.e. $c K f(x) \ge \pi(x)$)
- Sample $X \sim f$, and $U \sim \text{Uniform}[0, 1]$ (indep.).
 - If $U \leq \frac{g(X)}{Kf(X)}$, then <u>accept</u> X (as a draw from π).
 - Otherwise, $\underline{\text{reject}} X$ and start over again.
- Does this algorithm give valid samples?
 - Well, conditional on accepting, we have for any $y \in \mathbf{R}$ that

$$\mathbf{P}\left(X \le y \,\Big|\, U \le \frac{g(X)}{Kf(X)}\right) = \frac{\mathbf{P}\left(X \le y, \ U \le \frac{g(X)}{Kf(X)}\right)}{\mathbf{P}\left(U \le \frac{g(X)}{Kf(X)}\right)} = ?$$

- Since $0 \leq \frac{g(x)}{Kf(x)} \leq 1$, therefore $\mathbf{P}(U \leq \frac{g(X)}{Kf(X)} \mid X = x) = \frac{g(x)}{Kf(x)}$.
- Hence, by the double expectation formula, $\mathbf{P}\left(U \leq \frac{g(X)}{Kf(X)}\right) = \mathbf{E}\left[\mathbf{P}\left(U \leq \frac{g(X)}{Kf(X)}\right)\right] = \mathbf{E}\left[\frac{g(X)}{Kf(X)}\right] = \int_{-\infty}^{\infty} \frac{g(x)}{Kf(x)} f(x) dx = \frac{1}{K} \int_{-\infty}^{\infty} g(x) dx.$
- Similarly, for any $y \in \mathbf{R}$, $\mathbf{P}\left(X \leq y, U \leq \frac{g(X)}{Kf(X)}\right) = \mathbf{E}\left[\mathbf{1}_{X \leq y} \mathbf{1}_{U \leq \frac{g(X)}{Kf(X)}}\right] = \mathbf{E}\left[\mathbf{1}_{X \leq y} \mathbf{P}\left(U \leq \frac{g(X)}{Kf(X)} \middle| X\right)\right] = \mathbf{E}\left[\mathbf{1}_{X \leq y} \frac{g(X)}{Kf(X)}\right] = \int_{-\infty}^{y} \frac{g(x)}{Kf(x)} f(x) dx = \frac{1}{K} \int_{-\infty}^{y} g(x) dx.$
- So,

$$\mathbf{P}\Big(X \le y \,\Big|\, U \le \frac{g(X)}{Kf(X)}\Big) = \frac{\frac{1}{K} \int_{-\infty}^{y} g(x) \, dx}{\frac{1}{K} \int_{-\infty}^{\infty} g(x) \, dx} = \int_{-\infty}^{y} \pi(x) \, dx.$$

- So, conditional on accepting, $X \sim \pi$. Good! iid!
- However, prob. of accepting may be very <u>small</u>.
 - If so, then get very $\underline{\text{few}}$ samples bad.
- EXAMPLE: $\pi = N(0, 1)$, i.e. $g(x) = \pi(x) = (2\pi)^{-1/2} \exp(-x^2/2)$.
 - Want: $\mathbf{E}_{\pi}(X^4)$, i.e. $h(x) = x^4$. (Should be 3.)
 - Let f be double-exponential (Laplace) distribution, i.e. $f(x) = \frac{1}{2} e^{-|x|}$.
- If K = 8, then:

- For $|x| \leq 2$, $Kf(x) = 8\frac{1}{2}\exp(-|x|) \geq 8\frac{1}{2}\exp(-2) \geq (2\pi)^{-1/2} \geq \pi(x) = g(x)$.
- For $|x| \ge 2$, $Kf(x) = 8\frac{1}{2}\exp(-|x|) \ge 8\frac{1}{2}\exp(-x^2/2) \ge (2\pi)^{-1/2}\exp(-x^2/2) = \pi(x) = g(x)$.
- See graph: file "Rrejgraph".
- So, can apply rejection sampler with this f and K, to get samples, estimate of $\mathbf{E}[X]$, estimate of $\mathbf{E}[h(X)]$, estimate of $\mathbf{P}[X < -1]$, etc.
 - Try it: file "Rrej"
- For Rejection Sampler, $P(\text{accept}) = \mathbf{E}[P(\text{accept}|X)] = \mathbf{E}[\frac{g(X)}{Kf(X)}] = \int \frac{g(x)}{Kf(x)} f(x) dx = \frac{1}{K} \int g(x) dx = \frac{1}{cK}$. (Only depends on K, not f.)
 - So, in M attempts, get about M/cK iid samples.
 - ("Rrej" example: c = 1, K = 8, M = 10,000, so get about M/8 = 1250 samples.)
 - Since c fixed, try to minimise K.
 - Extreme case: $f(x) = \pi(x)$, so $g(x) = \pi(x)/c = f(x)/c$, and can take K = 1/c, whence P(accept) = 1, iid sampling: optimal.
- Note: these algorithms all work in <u>discrete</u> case too.
 - Can let π , f, etc. be "probability functions", i.e. probability densities with respect to counting measure.
 - Then the algorithms proceed exactly as before.

AUXILIARY VARIABLE APPROACH:

- (related: "slice sampler")
- Suppose $\pi(x) = c g(x)$, and (X, Y) chosen uniformly under graph of g.
 - i.e., $(X, Y) \sim \text{Uniform}\{(x, y) \in \mathbf{R}^2 : 0 \le y \le g(x)\}.$
 - Then $X \sim \pi$, i.e. we have sampled from π .
 - Why? Well, for a < b,

$$\mathbf{P}(a < X < b) = \frac{\text{area with } a < x < b}{\text{total area}} = \frac{\int_a^b g(x) \, dx}{\int_{-\infty}^\infty g(x) \, dx} = \int_a^b \pi(x) \, dx.$$

- So, if repeat, get i.i.d. samples from π , can estimate $\mathbf{E}_{\pi}(h)$ etc.
- Auxiliary Variable rejection sampler:
 - If support of g contained in [L, R], and $|g(x)| \leq K$, then can first sample $(X, Y) \sim \text{Uniform}([L, R] \times [0, K])$, then reject if Y > g(X), otherwise accept as sample with $(X, Y) \sim \text{Uniform}\{(x, y) : 0 \leq y \leq g(x)\}$, hence $X \sim \pi$.
- Example: $g(y) = y^3 \sin(y^4) \cos(y^5) \mathbf{1}_{0 < y < 1}$.

- Then L = 0, R = 1, K = 1.
- So, sample $X, Y \sim \text{Uniform}[0, 1]$, then keep X iff $Y \leq g(X)$.
- If $h(y) = y^2$, could compute e.g. $\mathbf{E}_{\pi}(h)$ as the mean of the squares of the accepted samples. (file "Raux")

DIGRESSION – QUEUEING THEORY:

- Consider a long line (queue) of customers.
 - Let Q(t) = number of people in queue at time $t \ge 0$.
- Suppose service times ~ Exponential(μ) [mean 1/μ], and interarrival times ~ Exponential(λ) ("M/M/1 queue"), so {Q(t)} Markovian. Then well known [e.g. STA447/2006]:
 - If $\mu \leq \lambda$, then $Q(t) \to \infty$ as $t \to \infty$.
 - If $\mu > \lambda$, then Q(t) converges in distribution as $t \to \infty$:
 - $\mathbf{P}(Q(t) = i) \to (1 \frac{\lambda}{\mu})(\frac{\lambda}{\mu})^{i}$, for $i = 0, 1, 2, \dots$
 - Easy! (e.g. $\mu = 3, \lambda = 2, t = 1000$) [file "Rqueue"]
- Now suppose instead that service times ~ Uniform[0, 1], and interarrival times have distribution of |Z| where Z ~ Normal(0, 1). Limits not easily computed. Now what?
 - Simulate it! [file "Rqueue2"]
- Or, to make the means the same as the first example, suppose service times ~ Uniform[0, 2/3], and interarrival times have distribution of Z²/2 where Z ~ Normal(0, 1). Now what? [file "Rqueue3"]

END WEEK
$$\#3 -$$

DIGRESSION – MONTE CARLO IN FINANCE:

- $X_t = \text{stock price at time } t$
- Assume that $X_0 = a > 0$, and $dX_t = bX_t dt + \sigma X_t dB_t$, where $\{B_t\}$ is Brownian motion. ("diffusion")
 - i.e., for small h > 0,

$$(X_{t+h} - X_t | X_t) \approx bX_t(t+h-t) + \sigma X_t(B_{t+h} - B_t) \sim bX_t(t+h-t) + \sigma X_t N(0,h),$$

 \mathbf{SO}

$$(X_{t+h} | X_t) \sim N(X_t + bX_t h, \sigma^2 (X_t)^2 h).$$
 (*)

• A "European call option" is the option to purchase one share of the stock at a fixed time T > 0 for a fixed price q > 0.

- Question: what is a fair <u>price</u> for this option?
 - At time T, its value is $\max(0, X_T q)$.
 - So, at time 0, its value is $e^{-rT} \max(0, X_T q)$, where r is the "risk-free interest rate".
 - But at time 0, X_T is unknown! So, what is fair price??
- FACT: the fair price is equal to $\mathbf{E}(e^{-rT}\max(0, X_T q))$, but only after replacing b by r.
 - (Proof: transform to risk-neutral martingale measure ...)
 - Intuition: if *b* very large, might as well just buy stock itself.
- If σ and r constant, then there's a <u>formula</u> ("Black-Scholes eqn") for this price, in terms of $\Phi = \text{cdf}$ of N(0, 1):

$$a \Phi\left(\frac{1}{\sigma\sqrt{T}} \left(\log(a/q) + T(r + \frac{1}{2}\sigma^2)\right)\right) - q e^{-rT} \Phi\left(\frac{1}{\sigma\sqrt{T}} \left(\log(a/q) + T(r - \frac{1}{2}\sigma^2)\right)\right)$$

- But we can also estimate it through (iid) Monte Carlo!
 - Use (*) above (for fixed small h > 0, e.g. h = 0.05) to generate samples from the diffusion.
 - Any <u>one</u> run is highly variable. (file "RBS", with M = 1)
 - But <u>many</u> runs give good estimate. (file "RBS", with M = 1000)
- An "Asian call option" is similar, but with X_T replaced by $\overline{X}_{k,t} \equiv \frac{1}{k} \sum_{i=1}^{k} X_{iT/k}$, for some fixed positive integer k (e.g., k = 8).
 - Above "FACT" still holds (again with X_T replaced by $\overline{X}_{k,t}$).
 - Now formulas not so simple ... but can still simulate! (file "RAO")
- So, can iid / importance / rejection / auxiliary sampling solve ALL of our problems? No!
 - Many <u>challenging</u> cases arise, e.g. from Bayesian statistics (later).
 - Some are high-dimensional, and the above algorithms fail.
 - Alternative algorithm: MCMC!

*** MARKOV CHAIN MONTE CARLO (MCMC) ***:

- Suppose have complicated, high-dimensional density $\pi = c g$.
- <u>Want</u> samples $X_1, X_2, \ldots \sim \pi$. (Then can do Monte Carlo.) Difficult!
- Define a <u>Markov chain</u> (dependent random process: STA2006) X_0, X_1, X_2, \ldots in such a way that for large enough $n, X_n \approx \pi$.

• Then can estimate $\mathbf{E}_{\pi}(h) \equiv \int h(x) \, \pi(x) \, dx$ by:

$$\mathbf{E}_{\pi}(h) \approx \frac{1}{M-B} \sum_{i=B+1}^{M} h(X_i),$$

where B ("burn-in") is chosen large enough so $X_B \approx \pi$, and M is chosen large enough to get good Monte Carlo estimates.

- How to design such a Markov chain? One good way is:
- METROPOLIS ALGORITHM (1953):
 - Choose some initial value X_0 (perhaps random).
 - Then, given X_{n-1} , choose a proposal state $Y_n \sim MVN(X_{n-1}, \sigma^2 I)$ for some fixed $\sigma > 0$ (say).
 - Let $A_n = \pi(Y_n) / \pi(X_{n-1}) = g(Y_n) / g(X_{n-1})$, and $U_n \sim \text{Uniform}[0, 1]$.
 - Then, if $U_n < A_n$, set $X_n = Y_n$ ("accept"), otherwise set $X_n = X_{n-1}$ ("reject").
 - Repeat, for n = 1, 2, 3, ..., M.
 - (Note: only need to compute $\pi(Y_n) / \pi(X_{n-1})$, so the normalising constant c cancels and is not required.)
 - (Why does it work? Markov chain theory later!)
 - Try it: www.probability.ca/metropolis (Javascript; formerly Java.)
 - Note: This version is called "random walk Metropolis" (RWM). Why? Because the <u>proposals</u>, if we always accepted them, would form a traditional random walk process.
- How large B? Difficult to say! Some theory (later) ... usually just use trial-and-error / statistical analysis of output, and hope for the best ...
- What initial value X_0 ?
 - Virtually any one will do, but "central" ones best.
 - Can also use an "overdispersed starting distribution": choose X_0 randomly from <u>some</u> distribution that "covers" the "important" parts of the state space. Good for checking consistency ...
- EXAMPLE: $g(y) = y^3 \sin(y^4) \cos(y^5) \mathbf{1}_{0 < y < 1}$.
 - Want to compute (again!) $\mathbf{E}_{\pi}(h)$ where $h(y) = y^2$.
 - Use Metropolis algorithm with proposal $Y \sim N(X, 1)$. [file "Rmet"]
 - Works pretty well, but lots of variability!
 - Plot: appears to have "good mixing".
 - acf: has some serial autocorrelation $\mathbf{E}(X_n X_{n+k})$. Important! (Soon.)
- EXAMPLE: $\pi(x_1, x_2) = C |\cos(\sqrt{x_1 x_2})| \ I(0 \le x_1 \le 5, \ 0 \le x_2 \le 4).$

- Want to compute $\mathbf{E}_{\pi}(h)$, where $h(x_1, x_2) = e^{x_1} + (x_2)^2$.
- Metropolis algorithm (file "Rmet2") ... works, but large uncertainty.
- Gets between about 34 and 44 \ldots (Mathematica gets 38.7044)
- Individual plots appear to have "good mixing" ...
- Joint plot shows fewer samples where $x_1 x_2 \approx (\pi/2)^2 \doteq 2.5 \dots$

END WEEK #4

• OPTIMAL SCALING:

- What if we change σ ? How does that affect estimate? plot? acf?
- Can change proposal distribution to $Y_n \sim MVN(X_{n-1}, \sigma^2 I)$ for any choice of $\sigma > 0$. Which is best?
- If σ too small, then usually accept, but chain won't move much.
- If σ too large, then will usually <u>reject</u> proposals, so chain <u>still</u> won't move much.
- Optimal: need σ "just right" to avoid both extremes. ("Goldilocks Principle")
- Can experiment ("www.probability.ca/metropolis", "Rmet", "Rmet2").
- Some theory ... limited ... active area of research ...
- General principle: the <u>acceptance rate</u> should be far from 0 and far from 1.
- Surprising Fact: In a certain idealised high-dimensional limit, <u>optimal</u> acceptance rate is 0.234 (!). [Roberts et al., Ann Appl Prob 1997; Roberts and Rosenthal, Stat Sci 2001] (More later!)

MCMC STANDARD ERROR:

- What about MCMC's standard error, i.e. uncertainty?
 - It's usually <u>larger</u> than in the i.i.d. case (due to the positive <u>correlations</u>), and harder to quantify.
- Simplest: re-run the chain <u>many</u> times, with same *M* and *B*, with different initial values drawn from some <u>overdispersed</u> starting distribution, and get a fresh estimate each time, and then compute the standard error of the sequence of estimates.
 - Then can analyse the estimates obtained as iid ...
- But how to estimate standard error from a single run?
- i.e., how to estimate $v \equiv \operatorname{Var}\left(\frac{1}{M-B}\sum_{i=B+1}^{M}h(X_i)\right)$?
 - For simplicity, let $\overline{h}(x) = h(x) \mathbf{E}_{\pi}(h)$, so $\mathbf{E}_{\pi}(\overline{h}) = 0$.

- And, assume B large enough that $X_i \approx \pi$ for i > B.
- Then, for large M B,

$$v \approx \mathbf{E}_{\pi} \Big[\Big(\Big[\frac{1}{M-B} \sum_{i=B+1}^{M} h(X_i) \Big] - \mathbf{E}_{\pi}(h) \Big)^2 \Big] = \mathbf{E}_{\pi} \Big[\Big(\frac{1}{M-B} \sum_{i=B+1}^{M} \overline{h}(X_i) \Big)^2 \Big]$$

$$= \frac{1}{(M-B)^2} \Big[(M-B) \mathbf{E}_{\pi}[\overline{h}(X_i)^2] + 2(M-B-1) \mathbf{E}_{\pi}[\overline{h}(X_i)\overline{h}(X_{i+1})] \\ + 2(M-B-2) \mathbf{E}_{\pi}[\overline{h}(X_i)\overline{h}(X_{i+2})] + \dots \Big] \\\approx \frac{1}{M-B} \Big(\mathbf{E}_{\pi}[\overline{h}(X_i)^2] + 2 \mathbf{E}_{\pi}[\overline{h}(X_i)\overline{h}(X_{i+1})] + 2 \mathbf{E}_{\pi}[\overline{h}(X_i)\overline{h}(X_{i+2})] + \dots \Big) \\ = \frac{1}{M-B} \Big(\operatorname{Var}_{\pi}(h) + 2 \operatorname{Cov}_{\pi}(h(X_i), h(X_{i+1})) + 2 \operatorname{Cov}_{\pi}(h(X_i), h(X_{i+2})) + \dots \Big) \\ = \frac{1}{M-B} \operatorname{Var}_{\pi}(h) \Big(1 + 2 \operatorname{Corr}_{\pi}(h(X_i), h(X_{i+1})) + 2 \operatorname{Corr}_{\pi}(h(X_i), h(X_{i+2})) + \dots \Big) \\ \equiv \frac{1}{M-B} \operatorname{Var}_{\pi}(h) \Big(\operatorname{varfact}) = (\operatorname{iid variance}) (\operatorname{varfact}),$$

where

"varfact" =
$$1 + 2\sum_{k=1}^{\infty} \operatorname{Corr}_{\pi} \left(h(X_0), h(X_k) \right) \equiv 1 + 2\sum_{k=1}^{\infty} \rho_k$$

= $2 \left(\sum_{k=0}^{\infty} \rho_k \right) - 1 = \sum_{k=-\infty}^{\infty} \rho_k$

since $\rho_0 = 1$ and $\rho_{-k} = \rho_k$.

- Also called "integrated auto-correlation time" or "ACT".
- Then can estimate both iid variance, and varfact, from the sample run.
- Note: to compute varfact, don't sum over <u>all</u> k, just e.g. until, say, $|\rho_k| < 0.05$ or $\rho_k < 0$ or ...
 - (Can use R's built-in "acf" function, hopefully with a good choice of the "lag.max" parameter. Or can write your own – better.)
- Then standard error $= se = \sqrt{v} = (iid\text{-}se)\sqrt{\text{varfact}}$.
- e.g. the files Rmet and Rmet2. (Recall: true answers are about 0.766 and 38.7, respectively.)
 - Usually varfact $\gg 1$; try to get "better" chains so varfact smaller.
 - Sometimes even try to design chain to get variant < 1 ("antithetic").
 - Work in parallel? (Antithetically??) Some work, but limited. (Project?)

CONFIDENCE INTERVALS:

- Suppose we estimate $u \equiv \mathbf{E}_{\pi}(h)$ by the quantity $e = \frac{1}{M-B} \sum_{i=B+1}^{M} h(X_i)$, and obtain an estimate e and an approximate variance (as above) v.
- Then what is, say, a 95% confidence interval for u?
- Well, <u>if</u> have central limit theorem (CLT), then for large M B, $e \approx N(u, v)$.
 - So $(e-u) v^{-1/2} \approx N(0,1)$.
 - So, $\mathbf{P}(-1.96 < (e-u) v^{-1/2} < 1.96) \approx 0.95.$
 - So, $\mathbf{P}(-1.96\sqrt{v} < e u < 1.96\sqrt{v}) \approx 0.95.$
 - i.e., with probability 95%, the interval $(e 1.96\sqrt{v}, e + 1.96\sqrt{v})$ will contain u.
 - (Again, strictly speaking, should use something like a "t" distribution, not the normal distribution ... but if M - B large that doesn't really matter – ignore it for now.)
- e.g. the files Rmet and Rmet2. (Recall: true answers are about 0.766 and 38.7, respectively.)
- But does a CLT even hold??
 - Does <u>not</u> follow from classical i.i.d. CLT. Does <u>not</u> always hold. But often does.
 - For example, CLT holds if chain is "geometrically ergodic" (later!) and $\mathbf{E}_{\pi}(|h|^{2+\delta}) < \infty$ for some $\delta > 0$.
 - (If chain also <u>reversible</u> then don't need δ : Roberts and Rosenthal, "Geometric ergodicity and hybrid Markov chains", ECP 1997.)
 - Can get alternative (slightly larger) confidence intervals even without a CLT, if have consistent variance estimator: Rosenthal, "Simple confidence intervals for MCMC without CLTs", EJS 2017.)
- So MCMC is more <u>complicated</u> than standard Monte Carlo.
 - Why should we bother? Some problems are too challenging for other methods! (e.g. Bayesian – later)

METROPOLIS-HASTINGS ALGORITHM:

- The Metropolis algorithm doesn't always work well.
 - Sometimes <u>other</u> MCMC algorithms can help too.
 - With above theory, can derive other valid algorithms!
- Note: key facts about q(x, y) are symmetry, and irreducibility.
 - So, could replace $Y_n \sim N(X_{n-1}, 1)$ by e.g. $Y_n \sim \text{Uniform}[X_{n-1} 1, X_{n-1} + 1]$, or (on discrete space) $Y_n = X_{n-1} \pm 1$ prob. $\frac{1}{2}$ each, etc.

- Metropolis algorithm still works provided proposal distribution is <u>symmetric</u>, i.e. q(x, y) = q(y, x).
- But what if q is <u>not</u> symmetric?
- Hastings, Biometrika 1970 [Canadian! see www.probability.ca/hastings]:
 - Claim: If we replace " $A_n = \pi(Y_n) / \pi(X_{n-1})$ " by $A_n = \frac{\pi(Y_n) q(Y_n, X_{n-1})}{\pi(X_{n-1}) q(X_{n-1}, Y_n)}$, then the algorithm is still valid even if q is not symmetric.
 - That is, we still accept if $U_n < A_n$, otherwise reject.
 - (Intuition: if q(x, y) >> q(y, x), then Metropolis chain would spend too much time at y and not enough at x, so need to accept fewer moves $x \to y$.)
 - Do require that q(x, y) > 0 iff q(y, x) > 0.
 - Why is it valid? Later!
- EXAMPLE: again $\pi(x_1, x_2) = C |\cos(\sqrt{x_1 x_2})| \ I(0 \le x_1 \le 5, 0 \le x_2 \le 4)$, and $h(x_1, x_2) = e^{x_1} + (x_2)^2$. (Mathematica gives $\mathbf{E}_{\pi}(h) \doteq 38.7044$.)
 - Proposal distribution: $Y_n \sim MVN(X_{n-1}, \sigma^2 (1+|X_{n-1}|^2)^2 I).$
 - (Intuition: larger proposal variance if farther from center.)
 - So, $q(x, y) = C (1 + |x|^2)^{-2} \exp(-|y x|^2 / 2\sigma^2 (1 + |x|^2)^2).$
 - Then, can run Metropolis-Hastings algorithm. (file "RMH")
 - Usually get between 34 and 43, with claimed standard error ≈ 2 .

INDEPENDENCE SAMPLER:

- Propose $\{Y_n\} \sim q(\cdot)$, i.e. the $\{Y_n\}$ are <u>i.i.d.</u> from some <u>fixed</u> density q, independent of X_{n-1} . (e.g. $Y_n \sim MVN(0, I_d)$)
 - Then accept if $U_n < A_n$ where $U_n \sim \text{Uniform}[0, 1]$ and $A_n = \frac{\pi(Y_n) q(X_{n-1})}{\pi(X_{n-1}) q(Y_n)}$.
 - Special case of the Metropolis-Hastings algorithm, where $Y_n \sim q(X_{n-1}, \cdot)$, and $A_n = \frac{\pi(Y_n) q(Y_n, X_{n-1})}{\pi(X_{n-1}) q(X_{n-1}, Y_n)}$.
 - Very special case: if $q(y) \equiv \pi(y)$, i.e. propose <u>exactly</u> from target density π , then $A_n \equiv 1$, i.e. make great proposals, and always accept them (iid).
- e.g. independence sampler with $\pi(x) = e^{-x}$ and $q(y) = ke^{-ky}$ for x > 0.
 - Then if $X_{n-1} = x$ and $Y_n = y$, then $A_n = \frac{e^{-y} k e^{-kx}}{e^{-x} k e^{-ky}} = e^{(k-1)(y-x)}$. (file "Rind")
 - -k = 1: iid sampling (great).
 - k = 0.01: proposals way too large (so-so).
 - -k = 5: proposals somewhat too small (terrible).
 - And with k = 5, confidence intervals often miss 1. (file "Rind2")

- Why is large k so much worse than small k? (Later!)

LANGEVIN ALGORITHM:

- Special case of Metropolis-Hastings algorithm.
- $-Y_n \sim MVN(X_{n-1} + \frac{1}{2}\sigma^2 \nabla \log \pi(X_{n-1}), \sigma^2 I).$
- Intuition: tries to move in direction where π increasing.
- Based on discrete approximation to "Langevin diffusion".
- Usually more efficient, but requires knowledge and computation of $\nabla \log \pi$.
- For theory, see e.g. Roberts & Tweedie, Bernoulli 2(4), 341–363, 1996;
 Roberts & Rosenthal, JRSSB 60, 255–268, 1998.

COMPONENTWISE (VARIABLE-AT-A-TIME) MCMC:

- Propose to move just <u>one</u> coordinate at a time, leaving all the other coordinates <u>fixed</u> (since changing all coordinates at once may be difficult).
 - e.g. proposal Y_n has $Y_{n,i} \sim N(X_{n-1,i}, \sigma^2)$, with $Y_{n,j} = X_{n-1,j}$ for $j \neq i$.
 - (Here $Y_{n,i}$ is the *i*th coordinate of Y_n .)
- Then accept/reject with usual Metropolis rule (symmetric proposals: "Componentwise Metropolis", or "Variable-at-a-time Metropolis", or "Metropoliswithin-Gibbs") or Metropolis-Hastings rule (non-symmetric proposals: "Componentwise Metropolis-Hastings", or "Variable-at-a-time Metropolis-Hastings", or "Metropolis-Hastings-within-Gibbs").
- Need to choose which coordinate to update each time ...
 - Could choose coordinates in sequence 1, 2, ..., d, 1, 2, ... ("systematic-scan").
 - Or, choose coordinate ~ Uniform $\{1, 2, ..., d\}$ each time ("random-scan").
 - Note: one systematic-scan iteration corresponds to d random-scan ones \ldots
- EXAMPLE: again $\pi(x_1, x_2) = C |\cos(\sqrt{x_1 x_2})| I(0 \le x_1 \le 5, 0 \le x_2 \le 4)$, and $h(x_1, x_2) = e^{x_1} + (x_2)^2$. (Recall: Mathematica gives $\mathbf{E}_{\pi}(h) \doteq 38.7044$.)
 - Works with systematic-scan (file "Rcompwise") or random-scan (file "Rcompwise2").
- So, lots of MCMC algorithms to choose from.
 - Why do we need them all?
 - To compute with complicated models! For example ...

BAYESIAN STATISTICS:

- Have unknown parameter(s) θ , and a statistical model (likelihood function) for how the distribution of the data Y depends on θ : $\mathcal{L}(Y \mid \theta)$.
- Have a <u>prior</u> distribution, representing our "initial" (subjective?) probabilities for θ : $\mathcal{L}(\theta)$.
- Combining these gives a full joint distribution for θ and Y, i.e. $\mathcal{L}(\theta, Y)$.
- Then <u>posterior</u> distribution of θ , $\pi(\theta)$, is then the <u>conditional</u> distribution of θ , <u>conditioned</u> on the observed data y, i.e. $\pi(\theta) = \mathcal{L}(\theta \mid Y = y)$.
 - In terms of densities, if have prior density $f_{\theta}(\theta)$, and likelihood $f_{Y|\theta}(y,\theta)$, then joint density is $f_{\theta,Y}(\theta, y) = f_{\theta}(\theta) f_{Y|\theta}(y,\theta)$, and posterior density is

$$\pi(\theta) = \frac{f_{\theta,Y}(\theta, y)}{f_Y(y)} = C f_{\theta,Y}(\theta, y) = C f_{\theta}(\theta) f_{Y|\theta}(y, \theta).$$

• Bayesian Statistics Example: VARIANCE COMPONENTS MODEL (a.k.a. "random effects model"):

- Suppose some population has overall mean μ (unknown).
- Population consists of K groups.
- Observe Y_{i1}, \ldots, Y_{iJ_i} from group i, for $1 \le i \le K$.
- Assume $Y_{ij} \sim N(\theta_i, W)$ (cond. ind.), where θ_i and W unknown.
- Assume the different θ_i are "linked" by $\theta_i \sim N(\mu, V)$ (cond. ind.), with μ and V also unknown.
- Want to estimate some or all of $V, W, \mu, \theta_1, \ldots, \theta_K$.
- Bayesian approach: use prior distributions, e.g. ("conjugate"):

$$V \sim IG(a_1, b_1);$$
 $W \sim IG(a_2, b_2);$ $\mu \sim N(a_3, b_3)$

(indep), where a_i, b_i known constants, and IG(a, b) is the "inverse gamma" distribution, with density $\frac{b^a}{\Gamma(a)} e^{-b/x} x^{-a-1}$ for x > 0.

• Combining the above dependencies, we see that the joint density is (for V, W > 0):

$$f(V, W, \mu, \theta_1, \dots, \theta_K, Y_{11}, Y_{12}, \dots, Y_{KJ_K}) = \left(\frac{b_1^{a_1}}{\Gamma(a_1)}e^{-b_1/V}V^{-a_1-1}\right) \left(\frac{b_2^{a_2}}{\Gamma(a_2)}e^{-b_2/W}W^{-a_2-1}\right) \left(\frac{1}{\sqrt{2\pi b_3}}e^{-(\mu-a_3)^2/2b_3}\right) \times$$

$$\times \left(\prod_{i=1}^{K} \frac{1}{\sqrt{2\pi V}} e^{-(\theta_i - \mu)^2 / 2V}\right) \left(\prod_{i=1}^{K} \prod_{j=1}^{J_i} \frac{1}{\sqrt{2\pi W}} e^{-(Y_{ij} - \theta_i)^2 / 2W}\right)$$
$$= C_2 e^{-b_1 / V} V^{-a_1 - 1} e^{-b_2 / W} W^{-a_2 - 1} e^{-(\mu - a_3)^2 / 2b_3} V^{-K/2} W^{-\frac{1}{2} \sum_{i=1}^{K} J_i} \times$$
$$\times \exp\left[-\sum_{i=1}^{K} (\theta_i - \mu)^2 / 2V\right] \exp\left[-\sum_{i=1}^{K} \sum_{j=1}^{J_i} (Y_{ij} - \theta_i)^2 / 2W\right].$$

• Then

$$\pi(V, W, \mu, \theta_1, \dots, \theta_K)$$

$$= f(V, W, \mu, \theta_1, \dots, \theta_K, Y_{11}, Y_{12}, \dots, Y_{KJ_K}) / f_Y(Y_{11}, Y_{12}, \dots, Y_{KJ_K})$$

$$\propto f(V, W, \mu, \theta_1, \dots, \theta_K, Y_{11}, Y_{12}, \dots, Y_{KJ_K})$$

$$= C_3 e^{-b_1/V} V^{-a_1 - 1} e^{-b_2/W} W^{-a_2 - 1} e^{-(\mu - a_3)^2/2b_3} V^{-K/2} W^{-\frac{1}{2} \sum_{i=1}^K J_i} \times$$

$$\times \exp\left[-\sum_{i=1}^K (\theta_i - \mu)^2/2V\right] \exp\left[-\sum_{i=1}^K \sum_{j=1}^{J_i} (Y_{ij} - \theta_i)^2/2W\right].$$

- NOTE: Many applications of variance components model, e.g.:
 - Predicting success at law school (D. Rubin, JASA 1980), K = 82 schools.
 - Melanoma (skin cancer) recurrence (http://www.mssanz.org.au/MODSIM07/ papers/52_s24/Analysing_Clinicals24_Bartolucci_.pdf), with K = 19 different patient categories.
 - Comparing baseball home-run hitters (J. Albert, The American Statistician 1992), K = 12 players.
 - Analysing fabric dyes (Davies 1967; Box/Tiao 1973; Gelfand/Smith JASA 1990), K = 6 batches of dyestuff, $J_i \equiv 5$. (data in file "Rdye")
- Here, the dimension is d = K + 3, e.g. K = 19, d = 22. High!
- How to compute/estimate, say, $\mathbf{E}_{\pi}(W/V)$, or the effect of changing b_1 ?
 - Numerical integration? No, too high-dimensional!
 - Importance sampling? Perhaps, but what "f"? Too inefficient!
 - Rejection sampling? What "f"? What "K"? Virtually no samples!
 - Perhaps MCMC can work!
 - But need clever, useful MCMC algorithms!
 - Perhaps Metropolis, or ...
- ASIDE: For big complicated π , often better to work with <u>logarithms</u>, e.g. accept iff $\log(U_n) < \log(A_n) = \log(\pi(Y_n)) \log(\pi(X_{n-1}))$.
 - Then only need to compute $\log(\pi(x))$; helps avoid <u>overflow</u> problems.
 - So, better to program on log scale: $\log \pi(V, W, \mu, \theta_1, \dots, \theta_K) = \dots$

- Also sometimes simpler, e.g. if $\pi(x) = \exp\left(\sum_{i < j} |x_j - x_i|\right)$, then $\log(\pi(x)) = \sum_{i < j} |x_j - x_i|$. (Best to type in the log formula <u>directly</u>.)

GIBBS SAMPLER:

- (Special case of Componentwise Metropolis-Hastings.)
- Proposal distribution for i^{th} coordinate is equal to the full conditional distribution of that coordinate (according to π), conditional on the current values of all the other coordinates.
 - Can use either systematic or random scan, just like above.
 - Then, <u>always</u> accept. Why? Later!
 - (Intuition: if <u>start</u> in stationary distribution, then update one coordinate from its <u>conditional</u> stationary distribution (and always accept), then the distribution remains the same, i.e. stationarity is preserved.)

END WEEK #5

- EXAMPLE: Variance Components Model:
 - Update of μ (say) should be from conditional density of μ , conditional on current values of all the other coordinates: $\mathcal{L}(\mu \mid V, W, \theta_1, \dots, \theta_K, Y_{11}, \dots, Y_{J_KK})$.
 - This conditional density is proportional to the full joint density, but with all variables <u>besides</u> μ treated as constant.
 - Recall: full joint density is:

$$= C_3 e^{-b_1/V} V^{-a_1-1} e^{-b_2/W} W^{-a_2-1} e^{-(\mu-a_3)^2/2b_3} V^{-K/2} W^{-\frac{1}{2}\sum_{i=1}^K J_i} \times \\ \times \exp\left[-\sum_{i=1}^K (\theta_i - \mu)^2/2V\right] \exp\left[-\sum_{i=1}^K \sum_{j=1}^{J_i} (Y_{ij} - \theta_i)^2/2W\right].$$

- So, combining "constants" (w.r.t. μ), the conditional density of μ is

$$C_4 e^{-(\mu-a_3)^2/2b_3} \exp\left[-\sum_{i=1}^K (\theta_i - \mu)^2/2V\right]$$

- This equals (verify this! HW!)

$$C_5 \exp\left(-\mu^2\left(\frac{1}{2b_3} + \frac{K}{2V}\right) + \mu\left(\frac{a_3}{b_3} + \frac{1}{V}\sum_{i=1}^K \theta_i\right)\right).$$

- Side calculation: if $\mu \sim N(m, v)$, then density $\propto e^{-(\mu-m)^2/2v} \propto e^{-\mu^2(1/2v)+\mu(m/v)}$.
- Hence, here $\mu \sim N(m, v)$, where $1/2v = \frac{1}{2b_3} + \frac{K}{2V}$ and $m/v = \frac{a_3}{b_3} + \frac{1}{V} \sum_{i=1}^{K} \theta_i$.

- Solve: $v = b_3 V / (V + K b_3)$, and $m = (a_3 V + b_3 \sum_{i=1}^{K} \theta_i) / (V + K b_3)$.
- <u>So</u>, in Gibbs Sampler, each time μ is updated, we sample it from N(m, v) for this m and v (and always accept).
- Similarly (HW!), conditional distribution for V is:

$$C_6 e^{-b_1/V} V^{-a_1-1} V^{-K/2} \exp\left[-\sum_{i=1}^K (\theta_i - \mu)^2/2V\right], \quad V > 0.$$

- Recall that "IG(r, s)" has density $\frac{s^r}{\Gamma(r)} e^{-s/x} x^{-r-1}$ for x > 0.

- So, conditional distribution for V equals $IG(a_1 + K/2, \ b_1 + \frac{1}{2}\sum_{i=1}^{K}(\theta_i - \mu)^2).$

- Can similar compute conditional distributions for W and θ_i (HW!).
- The systematic-scan Gibbs sampler then proceeds (HW!) by:
 - Update V from its conditional distribution $IG(\ldots, \ldots)$.
 - Update W from its conditional distribution $IG(\ldots, \ldots)$.
 - Update μ from its conditional distribution $N(\ldots,\ldots)$.
 - Update θ_i from its conditional distribution $N(\ldots, \ldots)$, for $i = 1, 2, \ldots, K$.
 - Repeat all of the above M times.
- Or, the random-scan Gibbs sampler proceeds by choosing <u>one</u> of $V, W, \mu, \theta_1, \ldots, \theta_K$ uniformly at <u>random</u>, and then updating that coordinate from its corresponding conditional distribution.
 - Then repeat this step M times [or M(K+3) times?].
 - How well does it work? HW!

SUBSAMPLING (THINNING):

- The autocorrelations (acf) of an MCMC run usually start near 1, and then decrease until they become negligible after some lag L. (file "Rmetnorm")
 - This means that every L^{th} iteration of the chain is approximately independent.
 - But also, after the burn-in B, the chain is approximately in stationarity, i.e. has distribution approximately π .
 - So, the states $X_B, X_{B+L}, X_{B+2L}, X_{B+3L}, \ldots$ are approximately i.i.d. samples from π . Good?
- When running MCMC, some people use "subsampling" (or, "thinning") by just using every S^{th} sample, i.e. by using the Markov chain $\{X_{B+Sn}\}$.
 - If $S \ge L$, then the $\{X_{B+Sn}\}$ are approximately independent.
 - This could be useful: i.i.d. samples, classical standard error and confidence intervals, good tests for accuracy, etc.

- But does it improve the actual estimator? e.g. its variance?
 - The number of samples is reduced from M B to (M B)/S, which increases the estimator variance by a factor of S. Bad.
 - But the variant is reduced from $1+2\sum_{k=1}^{\infty}\rho_k$ to $1+2\sum_{k=1}^{\infty}\rho_{Sk}$ (good).
 - So, which is larger, $1 + 2 \sum_{k=1}^{\infty} \rho_k$, or $S(1 + 2 \sum_{k=1}^{\infty} \rho_{Sk})$?
 - Well, we can re-write $S(1 + 2\sum_{k=1}^{\infty} \rho_{Sk})$ as

$$(1 + \ldots + 1) + (2\rho_S + \ldots + 2\rho_S) + (2\rho_{2S} + \ldots + 2\rho_{2S}) + \ldots$$

- We want to compare this to

$$(1+2\rho_1+\ldots+2\rho_{S-1})+(2\rho_S+2\rho_{S+1}+\ldots+2\rho_{2S-1})+(2\rho_{2S}+\ldots)+\ldots$$

- Assuming the ρ_i are decreasing, and ignoring some of the "2" factors, the first (subsampled) variance is larger.
- This calculation seems to suggest that subsampling is <u>not</u> advantageous.
 - In fact, for "reversible" Markov chains (defined later), consecutive sums $\rho_{2i} + \rho_{2i+1}$ are decreasing, and the first (subsampled) variance is always larger: Geyer 1992
 - More generally, even if not reversible, subsampling always increases the estimator variance: Maceachern & Berliner, 1994
- Conclusion: Subsampling makes the estimator variance <u>larger</u>, i.e. subsampling does <u>not</u> improve the estimator.
 - However, if lots of extra computation is required to compute the functional values $h(X_i)$, then subsampling might help: Owen 2017

JUSTIFICATION: WHY DOES METROPOLIS ALG WORK?:

- (Uses Markov chain theory ... e.g. STA447/2006 ... already know?)
- <u>Basic fact</u>: if a Markov chain is "irreducible" and "aperiodic", with "stationarity distribution" π , then $\mathcal{L}(X_n) \to \pi$ as $n \to \infty$. More precisely:
- THEOREM: If Markov chain is irreducible, with stationarity probability density π , then for π -a.e. initial value $X_0 = x$, (a) if $\mathbf{E}_{\pi}(|h|) < \infty$, then $\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} h(X_i) = \mathbf{E}_{\pi}(h) \equiv \int h(x) \pi(x) dx$; and (b) if chain aperiodic, then also $\lim_{n \to \infty} \mathbf{P}(X_n \in S) = \int_S \pi(x) dx$ for all $S \subseteq \mathcal{X}$.
- Let's figure out what this all means ...
- Notation: $P(i, j) = \mathbf{P}(X_{n+1} = j | X_n = i)$ (discrete case), or $P(x, A) = \mathbf{P}(X_{n+1} \in A | X_n = x)$ (general case). Also $\Pi(A) = \int_A \pi(x) dx$.

- Well, <u>irreducible</u> means that you have <u>positive</u> probability of <u>eventually</u> getting from anywhere to anywhere else.
 - <u>Discrete case</u>: for all $i, j \in \mathcal{X}$ (the state space), there is $n \in \mathbb{N}$ such that $P(X_n = j | X_0 = i) > 0$.
 - Actually, we only need to require this for states j such that $\pi(j) > 0$.
 - <u>General case</u>: for all $x \in \mathcal{X}$, and for all $A \subseteq \mathcal{X}$ with $\Pi(A) > 0$, there is $n \in \mathbb{N}$ such that $P(X_n \in A \mid X_0 = x) > 0$. (" π -irreducible")
 - (Since usually $P(X_n = y | X_0 = x) = 0$ for all y.)
 - Irreducibility is <u>usually</u> satisfied for MCMC.
- And, <u>aperiodic</u> means there are no forced cycles, i.e. there do <u>not</u> exist disjoint non-empty subsets $\mathcal{X}_1, \mathcal{X}_2, \ldots, \mathcal{X}_d$ for $d \ge 2$, such that $P(x, \mathcal{X}_{i+1}) = 1$ for all $x \in \mathcal{X}_i$ $(1 \le i \le d-1)$, and $P(x, \mathcal{X}_1) = 1$ for all $x \in \mathcal{X}_d$. [Diagram.]
 - (Discrete case: Equivalent that $gcd\{n: p^n(i,i) > 0\} = 1 \quad \forall i.$)
 - This is true for virtually any Metropolis algorithm, e.g. it's true if $P(x, \{x\}) > 0$ for any one state $x \in \mathcal{X}$, e.g. if positive prob of rejection.
 - Also true if $P(x, \cdot)$ has positive density throughout S, for all $x \in S$, for some $S \subseteq \mathcal{X}$ with $\Pi(S) > 0$. (e.g. Normal proposals)
 - Not quite <u>guaranteed</u>, e.g. $\mathcal{X} = \{0, 1, 2, 3\}$, and π uniform on \mathcal{X} , and $Y_n = X_{n-1} \pm 1 \pmod{4}$. [Diagram.] But almost always holds.
- What about Π being a stationary distribution?
 - This means that if we start with the probabilities Π , and then run the Markov chain for one step, that we will <u>still</u> have the probabilities Π .
 - Will this be true for the Metropolis algorithm?

END WEEK #6

- Begin with DISCRETE CASE (e.g. www.probability.ca/metropolis).
 - State space is \mathcal{X} , e.g. $\mathcal{X} \equiv \{1, 2, 3, 4, 5, 6\}$.
- Here stationary means that if $X_0 \sim \pi$, i.e. $\mathbf{P}(X_0 = i) = \pi(i)$ for all i, then also $X_1 \sim \pi$, i.e. $\mathbf{P}(X_1 = j) = \pi(j)$ for all j.
 - But $\mathbf{P}(X_1 = j) = \sum_{i \in S} \mathbf{P}(X_0 = i, X_1 = j) = \sum_{i \in S} \mathbf{P}(X_0 = i) P(i, j).$
 - So, π is stationary if $\sum_{i \in S} \pi(i) P(i, j) = \pi(j)$ for all j.
- Let $q(x,y) = \mathbf{P}(Y_n = y | X_{n-1} = x)$ be the proposal distribution, e.g. perhaps q(x, x + 1) = q(x, x 1) = 1/2.
 - Assume that q is <u>symmetric</u>, i.e. q(x, y) = q(y, x) for all $x, y \in \mathcal{X}$.
 - Then if $\alpha(x, y)$ is the probability of accepting a proposed move from

x to y, then

$$\alpha(x, y) = \mathbf{P}(U_n < A_n | X_{n-1} = x, Y_n = y)$$

= $\mathbf{P}(U_n < \frac{\pi(y)}{\pi(x)}) = \min[1, \frac{\pi(y)}{\pi(x)}].$

- (Assume for simplicity that $\pi(x) > 0$.)
- Then we compute that for $i, j \in \mathcal{X}$ with $i \neq j$,

$$P(i,j) = q(i,j) \alpha(i,j) = q(i,j) \min(1, \frac{\pi(j)}{\pi(i)}).$$

- Hence, using the symmetry of q,

$$\pi(i) P(i, j) = q(i, j) \min(\pi(i), \pi(j))$$

= $q(j, i) \min(\pi(i), \pi(j)) = \pi(j) P(j, i).$

- This (obviously) still holds if i = j.
- It follows that chain is "(time) reversible", i.e. $\pi(i) P(i, j) = \pi(j) P(j, i) \forall i, j \in \mathcal{X}.$
- (Intuition: if $X_0 \sim \pi$, i.e. $\mathbf{P}(X_0 = i) = \pi(i)$ for all $i \in \mathcal{X}$, then $\mathbf{P}(X_0 = i, X_1 = j) = \pi(i) P(i, j) = \mathbf{P}(X_0 = j, X_1 = i) \dots$)
- Suppose now that $X_0 \sim \pi$, i.e. that $\mathbf{P}(X_0 = i) = \pi(i)$ for all $i \in \mathcal{X}$.
 - Then using reversibility, we have

$$\mathbf{P}(X_1 = j) = \sum_{i \in \mathcal{X}} \mathbf{P}(X_0 = i) P(i, j) = \sum_{i \in \mathcal{X}} \pi(i) P(i, j)$$
$$= \sum_{i \in \mathcal{X}} \pi(j) P(j, i) = \pi(j) \sum_{i \in \mathcal{X}} P(j, i) = \pi(j),$$

i.e. $X_1 \sim \pi$ too!

- So, the Markov chain "preserves" π , i.e. π is a <u>stationary distribution</u>.
- This is true for <u>any</u> Metropolis algorithm!
- It then follows from the Theorem (i.e., "Basic Fact") that as $n \to \infty$, $\mathcal{L}(X_n) \to \pi$, i.e. $\lim_{n\to\infty} P(X_n = i) = \pi(i)$ for all $i \in \mathcal{X}$.
 - Also follows that if $\mathbf{E}_{\pi}(|h|) < \infty$, then $\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} h(X_i) = \mathbf{E}_{\pi}(h) \equiv \int h(x) \pi(x) dx$. ("LLN")

JUSTIFICATION: GENERAL CONTINUOUS CASE:

- Some notation:
 - Let \mathcal{X} be the state space of all possible values. (Usually $\mathcal{X} \subseteq \mathbf{R}^d$, e.g. $\mathcal{X} = \mathbf{R}^2$, or $\mathcal{X} = (0, \infty) \times (0, 1) \times \mathbf{R}^5$, or ...)

- Let $\pi(x)$ be the target density function.
- Let q(x, y) be the proposal density for y given x. (e.g. $q(x, y) = (2\pi\sigma)^{-d/2} \exp\left(-\sum_{i=1}^{d} (y_i x_i)^2/2\sigma^2\right)$.)
- Assume again that q is symmetric: q(x, y) = q(y, x).
- Let $\alpha(x, y) = \min[1, \frac{\pi(y)}{\pi(x)}]$ be probability of accepting a proposed move from x to y.
- Let $P(x, S) = \mathbf{P}(X_1 \in S \mid X_0 = x)$ be the transition probabilities.
- (Don't use P(x, y) since that is usually 0.)
- Then if $x \notin S$, then

$$P(x,S) = \mathbf{P}(Y_1 \in S, \ U_1 < A_1 \mid X_0 = x)$$
$$= \int_S q(x,y) \ \alpha(x,y) \ dy = \int_S q(x,y) \ \min[1, \ \pi(y)/\pi(x)] \ dy.$$

- Shorthand: write "P(x, dy)" for the transition measure, i.e. a quantity whose integral over any subset S is equal to the transition probability to S, meaning that $P(x, S) = \int_{y \in S} P(x, dy)$.
 - Then, for $x \neq y$, $P(x, dy) = q(x, y) \min[1, \pi(y)/\pi(x)] dy$.
 - Hence, for $x \neq y$,

$$\pi(x) \, dx \, P(x, dy) = \pi(x) \, dx \, q(x, y) \, \min[1, \, \pi(y) / \pi(x)] \, dy$$
$$= q(x, y) \, \min[\pi(x), \, \pi(y)] \, dy \, dx \, .$$

- This is symmetric in x and y, i.e. $\pi(x) dx P(x, dy) = \pi(y) dy P(y, dx)$ for all $x, y \in \mathcal{X}$.
- Shorthand: $\Pi(dx) P(x, dy) = \Pi(dy) P(y, dx)$. ("<u>reversible</u>")
- How does "reversible" help? Just like for discrete chains!
- Indeed, suppose $X_0 \sim \Pi$, i.e. we "start in stationarity". Then

$$\begin{aligned} \mathbf{P}(X_1 \in S) &= \int_{x \in \mathcal{X}} \pi(x) \, dx \, \int_{y \in S} P(x, dy) \,=\, \int_{x \in \mathcal{X}} \int_{y \in S} \Pi(dx) \, P(x, dy) \\ &= \int_{x \in \mathcal{X}} \int_{y \in S} \Pi(dy) \, P(y, dx) \,=\, \int_{y \in S} \Pi(dy) \, \int_{x \in \mathcal{X}} P(y, dx) \\ &= \int_{y \in S} \Pi(dy) \,=\, \int_{y \in S} \pi(y) \, dy \,\equiv\, \Pi(S) \,, \end{aligned}$$

so also $X_1 \sim \Pi$. So, chain "preserves" Π , i.e. Π is <u>stationary</u> distribution.

- And, again, almost always irreducible and aperiodic.
- So, again, the Theorem applies.

EXAMPLES RE WHY DOES MCMC WORK:

- EXAMPLE #1: Metropolis algorithm where $\mathcal{X} = \mathbf{Z}$, $\pi(x) = 2^{-|x|}/3$, and $q(x, y) = \frac{1}{2}$ if |x y| = 1, otherwise 0.
 - Reversible? Yes, it's a Metropolis algorithm!
 - $-\pi$ stationary? Yes, follows from reversibility!
 - Aperiodic? Yes, since $P(x, \{x\}) > 0!$
 - Irreducible? Yes: $\pi(x) > 0$ for all $x \in \mathcal{X}$, so <u>can</u> get from x to y in |x y| steps.
 - So, by theorem, probabilities and expectations converge to those of π good.
- EXAMPLE #2: Same as #1, except now $\pi(x) = 2^{-|x|-1}$ for $x \neq 0$, with $\pi(0) = 0$.
 - Still reversible, π stationary, aperiodic, same as before.
 - Irreducible? No can't go from positive to negative!
- EXAMPLE #3: Same as #2, except now $q(x, y) = \frac{1}{4}$ if $1 \le |x y| \le 2$, otherwise 0.
 - Still reversible, π stationary, aperiodic, same as before.
 - Irreducible? Yes can "jump over 0" to get from positive to negative, and back!
- EXAMPLE #4: Metropolis algorithm with $\mathcal{X} = \mathbf{R}$, and $\pi(x) = C e^{-x^6}$, and proposals $Y_n \sim \text{Uniform}[X_{n-1} 1, X_{n-1} + 1]$.
 - Reversible? Yes since it's Metropolis, and q(x, y) still <u>symmetric</u>.
 - $-\pi$ stationary? Yes since reversible!
 - Irreducible? Yes, since the *n*-step transitions $P^n(x, dy)$ have positive density whenever |y x| < n.
 - Aperiodic? Yes since if periodic, then if e.g. $\mathcal{X}_1 \cap [0, 1]$ has positive measure, then possible to go from \mathcal{X}_1 directly to \mathcal{X}_1 , i.e. if $x \in \mathcal{X}_1 \cap$ [0, 1], then $P(x, \mathcal{X}_1) > 0$. (Or, even simpler: since $P(x, \{x\}) > 0$ for all $x \in \mathcal{X}$.)
 - So, by theorem, probabilities and expectations converge to those of π good.
- EXAMPLE #5: Same as #4, except now $\pi(x) = C_1 e^{-x^6} (\mathbf{1}_{x<2} + \mathbf{1}_{x>4}).$
 - Still reversible and stationary and aperiodic, same as before.
 - But no longer irreducible: cannot jump from $[4, \infty)$ to $(-\infty, 2]$ or back.
 - So, does <u>not</u> converge.

- EXAMPLE #6: Same as #5, except now proposals are $Y_n \sim \text{Uniform}[X_{n-1} 5, X_{n-1} + 5].$
 - Still reversible and stationary and aperiodic, same as before.
 - And now irreducible, too: now <u>can</u> jump from $[4, \infty)$ to $(-\infty, 2]$ or back.
- EXAMPLE #7: Same as #6, except now $Y_n \sim \text{Uniform}[X_{n-1} 5, X_{n-1} + 10].$
 - Makes no sense proposals not symmetric, so not a Metropolis algorithm! (Not even symmetrically zero, for the Metropolis-Hastings algorithm below, e.g. have positive density $3 \rightarrow 9$ but not $9 \rightarrow 3$.)

END WEEK #7

JUSTIFICATION OF METROPOLIS-HASTINGS:

- Can we modify the above proof to work for Metropolis-Hastings, too?
- For Metropolis, key was that the Markov chain is <u>reversible</u>, i.e. $\pi(x) P(x, y) = \pi(y) P(y, x)$, i.e. $q(x, y) \alpha(x, y) \pi(x)$ is <u>symmetric</u> in x and y.
 - If instead $A_n = \frac{\pi(Y_n) q(Y_n, X_{n-1})}{\pi(X_{n-1}) q(X_{n-1}, Y_n)}$, i.e. acceptance prob. $\equiv \alpha(x, y) = \min\left[1, \frac{\pi(y) q(y, x)}{\pi(x) q(x, y)}\right]$, then:

$$q(x,y) \alpha(x,y) \pi(x) = q(x,y) \min \left[1, \frac{\pi(y) q(y,x)}{\pi(x) q(x,y)}\right] \pi(x)$$

= min $\left[\pi(x) q(x,y), \pi(y) q(y,x)\right].$

- So, $\pi(x) P(x, y)$ is still symmetric, even if q wasn't.
- So, still reversible. So, still have stationary distribution Π .
- So, if irreducible and aperiodic (nearly always true), then can again apply usual Theorem, and again conclude that it converges to Π .
- Conclusion: For the Metropolis-Hastings algorithm, if we replace " $A_n = \pi(Y_n) / \pi(X_{n-1})$ " by $A_n = \frac{\pi(Y_n) q(Y_n, X_{n-1})}{\pi(X_{n-1}) q(X_{n-1}, Y_n)}$, and keep everything else the same (i.e., still accept if $U_n < A_n$, otherwise reject), then it is still valid, and still converges to the correct distribution Π .

JUSTIFICATION FOR VARIABLE-AT-A-TIME:

- The exact same justification works just like for the "regular" (full-dimensional) Metropolis and Metropolis-Hastings algorithms:
 - If we update the variables one-at-a-time (e.g. Metropolis-within-Gibbs, Metropolis-Hastings-within-Gibbs, etc.), then each individual step is still reversible (for the same reason), so π is still stationary.

- So, like any irreducible, aperiodic Markov chain with stationary distribution π , it will eventually converge to π .

JUSTIFICATION OF GIBBS SAMPLER:

- Special case of Metropolis-Hastings-within-Gibbs.
- Proposal distribution for i^{th} coordinate is equal to the conditional distribution of that coordinate (according to π), conditional on the current values of all the other coordinates.
- That is, $q_i(x, y) = C[x^{(-i)}] \pi(y)$ whenever $x^{(-i)} = y^{(-i)}$, where $x^{(-i)}$ means all coordinates <u>except</u> the *i*th one.
- (And $q_i(x, y) = 0$ if $x^{(-i)} \neq y^{(-i)}$.)
- Here $C[x^{(-i)}]$ is the appropriate normalising constant (which depends on $x^{(-i)}$). So, will always have $C[x^{(-i)}] = C[y^{(-i)}]$.
- Then $A_n = \frac{\pi(Y_n) q_i(Y_n, X_{n-1})}{\pi(X_{n-1}) q_i(X_{n-1}, Y_n)} = \frac{\pi(Y_n) C[Y_n^{(-i)}] \pi(X_{n-1})}{\pi(X_{n-1}) C[X_{n-1}^{(-i)}] \pi(Y_n)} = 1.$
- So, <u>always</u> accept (i.e., can ignore the accept-reject step).

INITIAL DISTRIBUTION CONDITION:

- Why does the above Theorem say " π -a.e." $X_0 = x$?
- Example: $\mathcal{X} = \{1, 2, 3, 4, \ldots\}$, and $P(1, \{1\}) = 1$, and for $x \ge 2$, $P(x, \{x+1\}) = 1 (1/x^2)$ and $P(x, \{1\}) = 1/x^2$.
 - Stationary distribution? $\Pi(\cdot) = \delta_1(\cdot), \text{ i.e. } \Pi(S) = \mathbf{1}_{1 \in S} \text{ for } S \subseteq \mathcal{X}.$
 - Irreducible? Yes, since if $\Pi(S) > 0$ then $1 \in S$ so $P(x, S) \ge P(x, \{1\}) > 0$ for all $x \in \mathcal{X}$.
 - Aperiodic? Yes, since $P(1, \{1\}) > 0$.
 - Converges?

Yes, by Theorem, for π -a.e. X_0 , have $\lim_{n\to\infty} \mathbf{P}(X_n \in S) = \Pi(S)$, i.e. $\lim_{n\to\infty} \mathbf{P}(X_n = 1) = 1$.

- From everywhere?

No! If $X_0 = x \ge 2$, then $\mathbf{P}[X_n = x + n \text{ for all } n] = \prod_{j=x}^{\infty} (1 - (1/j^2)) > 0$ (since $\sum_{j=x}^{\infty} (1/j^2) < \infty$), so $\lim_{n \to \infty} \mathbf{P}(X_n = 1) \ne 1$.

- Convergence holds if $X_0 = 1$, which is π -a.e. since $\Pi(1) = 1$, but <u>not</u> from $X_0 = x \ge 2$.
- So, convergence subtle. But <u>usually</u> holds from any $x \in \mathcal{X}$. ("Harris recurrent", see e.g. http://probability.ca/jeff/ftpdir/harris.pdf)

TEMPERED MCMC:

- Suppose $\Pi(\cdot)$ is <u>multi-modal</u>, i.e. has distinct "parts" (e.g., $\Pi = \frac{1}{2}N(0,1) + \frac{1}{2}N(20,1)$)
- Usual RWM with $Y_n \sim N(X_{n-1}, 1)$ (say) can explore well within each mode, but how to get from one mode to the other?
- Idea: if $\Pi(\cdot)$ were <u>flatter</u>, e.g. $\frac{1}{2}N(0, 10^2) + \frac{1}{2}N(20, 10^2)$, then much easier to get between modes.
- So: define a <u>sequence</u> $\Pi_1, \Pi_2, \ldots, \Pi_m$ where $\Pi_1 = \Pi$ ("cold"), and Π_{τ} is flatter for larger τ ("hot"). (e.g. $\Pi_{\tau} = \frac{1}{2}N(0,\tau^2) + \frac{1}{2}N(20,\tau^2)$; file "Rtempered")
- In the end, only "count" those samples where $\tau = 1$.
- Proceed by defining a joint Markov chain (x, τ) on $\mathcal{X} \times \{1, 2, \dots, m\}$, with stationary distribution $\overline{\Pi}$ defined by $\overline{\Pi}(S \times \{\tau\}) = \frac{1}{m} \prod_{\tau} (S)$.
 - (Can also use other weights besides $\frac{1}{m}$.)
- The Markov chain should have both spatial moves (change x) and temperature moves (change τ).
 - e.g. perhaps chain alternates between: (a) propose $x' \sim N(x, 1)$, accept with prob min $\left(1, \frac{\overline{\pi}(x', \tau)}{\overline{\pi}(x, \tau)}\right) = \min\left(1, \frac{\pi_{\tau}(x')}{\pi_{\tau}(x)}\right)$.

(b) propose $\tau' = \tau \pm 1$ (prob $\frac{1}{2}$ each), accept with prob min $\left(1, \frac{\overline{\pi}(x,\tau')}{\overline{\pi}(x,\tau)}\right) = \min\left(1, \frac{\pi_{\tau'}(x)}{\pi_{\tau}(x)}\right)$.

- Chain should converge to $\overline{\Pi}$.
- Then, as above, only "count" those samples where $\tau = 1$. (red)
- EXAMPLE: $\Pi = \frac{1}{2} N(0, 1) + \frac{1}{2} N(20, 1)$
 - Assume proposals are $Y_n \sim N(X_{n-1}, 1)$.
 - Mixing for Π: terrible! (file "Rtempered" with dotempering=FALSE and temp=1; note the small claimed standard error!)
 - Define $\Pi_{\tau} = \frac{1}{2} N(0, \tau^2) + \frac{1}{2} N(20, \tau^2)$, for $\tau = 1, 2, \dots, 10$.
 - Mixing better for larger τ ! (file "Rtempered" with dotempering=FALSE and temp=1,2,3,4,...,10)
 - (Compare graphs of π_1 and π_8 : plot commands at bottom of "Rtempered" ...)
 - So, use above "(a)–(b)" algorithm; converges <u>fairly</u> well to $\overline{\Pi}$. (file "Rtempered", with dotempering=TRUE)
 - So, conditional on $\tau = 1$, converges to Π . ("points" command at end of file "Rtempered")

- So, average of those h(x) with $\tau = 1$ gives good estimate of $\mathbf{E}_{\pi}(h)$.

FINDING THE TEMPERED DENSITIES:

- Usually won't "know" about e.g. $\Pi_{\tau} = \frac{1}{2} N(0, \tau^2) + \frac{1}{2} N(20, \tau^2).$
- Instead, can e.g. let $\pi_{\tau}(x) = c_{\tau} (\pi(x))^{1/\tau}$. (Sometimes write $\beta = 1/\tau$.)
 - Then $\Pi_1 = \Pi$, and π_{τ} flatter for larger τ good.
 - (e.g. if $\pi(x)$ density of $N(\mu, \sigma^2)$, then $c_{\tau}(\pi(x))^{1/\tau}$ density of $N(\mu, \tau \sigma^2)$.)
 - Then temperature acceptance probability is:

$$\min\left(1, \ \frac{\pi_{\tau'}(x)}{\pi_{\tau}(x)}\right) \ = \ \min\left(1, \ \frac{c_{\tau'}}{c_{\tau}}(\pi(x))^{(1/\tau')-(1/\tau)}\right).$$

- But this depends on the c_{τ} , which are usually unknown bad.
- e.g. in above example, could try $\pi_{\tau}(x) = \left(\frac{1}{2}N(0,1;x) + \frac{1}{2}N(20,1;x)\right)^{1/\tau}$, but don't know normalising constants c_{τ} so not valid! ("Rtempered2")
- What to do?

PARALLEL TEMPERING:

- (a.k.a. replica exchange: Swendsen and Wang, 1986)
- (a.k.a. Metropolis-Coupled MCMC, or MCMCMC: Geyer, 1991)
- Alternative to tempered MCMC.
- Again have a <u>sequence</u> $\Pi_1, \Pi_2, \ldots, \Pi_m$ where $\Pi_1 = \Pi$ ("cold"), and Π_{τ} is flatter for larger τ ("hot").
 - e.g. $\pi_{\tau}(x) = c_{\tau} (\pi(x))^{1/\tau}$, where τ ranges over $\tau_1 = 1, \tau_2, \tau_3, \ldots, \tau_m$.
- Use state space \mathcal{X}^m , with *m* chains, i.e. one chain for <u>each</u> temperature.
 - So, state at time n is $X_n = (X_{n1}, X_{n2}, \ldots, X_{nm})$, where $X_{n\tau}$ is "at temperature τ ".
- Stationary distribution is now $\overline{\Pi} = \Pi_1 \times \Pi_2 \times \ldots \times \Pi_m$, i.e. $\overline{\Pi}(X_1 \in S_1, X_2 \in S_2, \ldots, X_m \in S_m) = \Pi_1(S_1) \Pi_2(S_2) \ldots \Pi_m(S_m)$.
- Then, can update the chain $X_{n-1,\tau}$ at temperature τ (for each $1 \leq \tau \leq m$), by proposing e.g. $Y_{n,\tau} \sim N(X_{n-1,\tau}, 1)$, and accepting with probability $\min\left(1, \frac{\pi_{\tau}(Y_{n,\tau})}{\pi_{\tau}(X_{n-1,\tau})}\right)$.
- Or, can also choose temperatures τ and τ' (e.g., at random), and propose to "swap" the values $X_{n,\tau}$ and $X_{n,\tau'}$, and accept this with probability $\min\left(1, \frac{\pi_{\tau}(X_{n,\tau'})\pi_{\tau'}(X_{n,\tau})}{\pi_{\tau}(X_{n,\tau})\pi_{\tau'}(X_{n,\tau'})}\right)$.

- Now, normalising constants cancel, e.g. if $\pi_{\tau}(x) = c_{\tau} (\pi(x))^{1/\tau}$, then

acceptance probability is:

$$\min\left(1, \frac{c_{\tau}\pi(X_{n,\tau'})^{1/\tau} c_{\tau'}\pi(X_{n,\tau})^{1/\tau'}}{c_{\tau}\pi(X_{n,\tau})^{1/\tau} c_{\tau'}\pi(X_{n,\tau'})^{1/\tau'}}\right) = \min\left(1, \frac{\pi(X_{n,\tau'})^{1/\tau} \pi(X_{n,\tau})^{1/\tau'}}{\pi(X_{n,\tau})^{1/\tau} \pi(X_{n,\tau'})^{1/\tau'}}\right),$$

so c_{τ} and $c_{\tau'}$ are not required.

- Hence, can set $g_{\tau}(x) = \pi(x)^{1/\tau}$, no problem.
- EXAMPLE: again $\Pi = \frac{1}{2}N(0,1) + \frac{1}{2}N(20,1).$
 - Now can set $g_{\tau}(x) = \pi(x)^{1/\tau}$, and ignore c_{τ} .
 - Then run parallel tempering ... works pretty well. (file "Rpara")

END WEEK #8

MONTE CARLO OPTIMISATION – Simulated Annealing:

- General method to find highest <u>mode</u> of π .
- Idea: mode of π is same as mode of a <u>flatter</u> or a <u>more peaked</u> version π_{τ} , for any $\tau > 0$.
 - e.g. $\pi_{\tau} \equiv \pi^{1/\tau}$. Flatter if $\tau > 1$, more peaked if $\tau < 1$. ("tempered")
 - For large τ , MCMC explores a lot; good at beginning of search.
 - For small τ , MCMC narrows in on local mode; good at end of search.
- So, use tempered MCMC, but where $\tau = \tau_n \searrow 0$, so π_{τ_n} becomes more and more <u>concentrated</u> at mode as $n \to \infty$.
- Need to choose $\{\tau_n\}$, the "cooling schedule".
 - e.g. geometric $(\tau_n = \tau_0 r^n \text{ for some } r < 1).$
 - or linear $(\tau_n = \tau_0 dn$ for some d > 0, chosen so $\tau_M = \tau_0 dM \ge 0$).
 - or logarithmic $(\tau_n = \tau_0 / \log(1+n)).$
 - or ...
 - Theorem:: if $c \ge \sup \pi$, then simulated annealing with $\tau_n = c/\log(1 + n)$ will converge to the global maximum as $n \to \infty$. (But very slow.)
- EXAMPLE: $\Pi_{\tau} = 0.3 N(0, \tau^2) + 0.7 N(20, \tau^2)$. (file "Rsimann")
 - Highest mode is at 20 (for any τ).
 - If run usual Metropolis algorithm, it will either jump forever between modes (if τ large), or get stuck in one mode or the other with equal probability (if τ small) bad.
 - But if $\tau_n \searrow 0$ slowly, then can <u>usually</u> find the highest mode (20) good.
 - Try both geometric and linear (better?) cooling ... (file "Rsimann")

- EXAMPLE with real density powers:
 - Set $\pi_{\tau}(x) = (0.3 N(0, 1) + 0.7 N(20, 1))^{1/\tau}$.
 - Need longer run, and smaller final τ .
 - Then it works pretty well. (file "Rsimann2")

DIGRESSION - CODE BREAKING:

- Try it out: "decipherdemo". [uses file "decipher.c"]
- Data is the coded message text: $s_1 s_2 s_3 \dots s_N$, where $s_i \in \mathcal{A} = \{A, B, C, \dots, Z, \text{space}\}.$
- State space \mathcal{X} is set of all bijections (for now) of \mathcal{A} , i.e. one-to-one onto mappings $f : \mathcal{A} \to \mathcal{A}$, subject to f(space) = space.
 - ["substitution cipher"]
- Use a reference text (e.g. "War and Peace") to get matrix M(x, y) = 1 + number of times y follows x, for $x, y \in A$.
- Then for $f \in \mathcal{X}$, let $\pi(f) = \prod_{i=1}^{N-1} M(f(s_i), f(s_{i+1}))$. - (Or raise this all to a power, e.g. 0.25.)
- Idea: if $\pi(f)$ is larger, then f leads to pair frequencies which more closely match the reference text, so f is a "better" choice.
- Would like to find the choice of f which <u>maximises</u> $\pi(f)$.
- To do this, run a "Metropolis algorithm" for π :
 - Choose $a, b \in \mathcal{A} \setminus \{\text{space}\}$, uniformly at random.
 - Propose to replace f by g, where g(a) = f(b), g(b) = f(a), and g(x) = f(x) for all $x \neq a, b$.
 - Accept with probability $\min\left(1, \frac{\pi(g)}{\pi(f)}\right)$.
- Easily seen to be an irreducible, aperiodic, reversible Markov chain.
- So, converges (quickly!) to correct answer, breaking the code.
- References: S. Conner (2003), "Simulation and solving substitution codes".
 P. Diaconis (2008), "The Markov Chain Monte Carlo Revolution".
- We later extended this, to transposition ciphers and more: J. Chen and J.S. Rosenthal (2010), "Decrypting Classical Cipher Text Using Markov Chain Monte Carlo" (*Statistics and Computing* **22(2)**, 397–413, 2011).

DIGRESSION – PATTERN DETECTION:

- Data is an image, given in terms of a grid of pixels (each "on" or "off").
- Want to "find" the face in the image.

- (Harder for computers than for humans!)
- Java applet: faces.html (See before and after images.)
- Define the face location by a vector θ of various parameters (face center, eye width, nose height, etc.).
- Then define a <u>score function</u> $S(\theta)$ indicating how well the image agrees with having a face in the location corresponding to the parameters θ .
- Then run a "mixed" Monte Carlo search (sometimes updating by small RWM moves, sometimes starting fresh from a random vector) over the entire parameter space, searching for $\operatorname{argmax}_{\theta} S(\theta)$, i.e. for the parameter values which <u>maximise</u> the score function.
 - Keep track of the best θ so far this allows for greater flexibility in trying different search moves without needing to preserve a stationary distribution.
 - Works pretty well, and fast! ("faces.html" Java applet)
 - For details, see Java applet source code file "faces.java", or the paper J.S. Rosenthal, Optimising Monte Carlo Search Strategies for Automated Pattern Detection. F. E. J. Math. Sci. 2009.
- Here, again, we want to <u>maximise</u> (i.e., <u>optimise</u>) π , not <u>sample</u> from π .

MCMC CONVERGENCE RATES THEORY:

- $\{X_n\}$: Markov chain on \mathcal{X} , with stationary distribution $\Pi(\cdot)$.
- Let $P^n(x, S) = \mathbf{P}[X_n \in S | X_0 = x]$ be the probabilities for the Markov chain after n steps, when started at x.
 - Hope that for large $n, P^n(x, S) \approx \Pi(S)$.
- Let $D(x,n) = ||P^n(x,\cdot) \Pi(\cdot)|| \equiv \sup_{S \subseteq \mathcal{X}} |P^n(x,S) \Pi(S)|.$
- DEFN: chain is <u>ergodic</u> if $\lim_{n\to\infty} D(x,n) = 0$, for Π -a.e. $x \in \mathcal{X}$.
- Theorem (mentioned earlier): if chain is <u>irreducible</u> and <u>aperiodic</u> and $\Pi(\cdot)$ <u>stationary</u>, then chain is <u>ergodic</u>, i.e. converges asymptotically to Π .
- DEFN: chain is geometrically ergodic if there is $\rho < 1$, and $M : \mathcal{X} \rightarrow [0, \infty]$ which is Π -a.e. finite, such that $D(x, n) \leq M(x) \rho^n$ for all $x \in \mathcal{X}$ and $n \in \mathbb{N}$.
- Fact (mentioned earlier): CLT holds for $\frac{1}{n} \sum_{i=1}^{n} h(X_i)$ if chain is geometrically ergodic and $\mathbf{E}_{\pi}(|h|^{2+\delta}) < \infty$ for some $\delta > 0$.
 - (If chain also <u>reversible</u> then don't need δ : Roberts and Rosenthal, "Geometric ergodicity and hybrid Markov chains", ECP 1997.)
 - If CLT holds, then (as before) have 95% confidence interval $(e 1.96\sqrt{v}, e + 1.96\sqrt{v})$, where $v \approx \frac{1}{M-B} \operatorname{Var}_{\pi}(h)(\operatorname{varfact})$.

- DEFN: chain is <u>uniformly ergodic</u> if there is $\rho < 1$, and $M < \infty$ such that $D(x, n) \leq M \rho^n$ for all $x \in \mathcal{X}$ and $n \in \mathbb{N}$.
- DEFN: a <u>quantitative bound</u> on convergence is an actual number n^* such that $D(x, n^*) < 0.01$ (say). [Then sometimes say chain "converges in n^* iterations".]
- <u>Quantitative</u> bounds often difficult (though I've worked on them a lot, see e.g. Rosenthal, "Quantitative convergence rates of Markov chains: A simple account", Elec Comm Prob 2002 and the references therein), but "geometric ergodicity" is often easier to verify.
- But what about convergence <u>rates</u>, i.e. bounds on D(x, n)?
- Useful Theorem: If $P(x, dy) \ge \delta \pi(dy)$ for all $x, y \in \mathcal{X}$, then $D(x, n) \le (1 \delta)^n$. ("minorisation condition" ... proof by "coupling" ...)
 - If true, shows uniform ergodicity <u>and</u> can give a quantitative bound.
- Special Case: INDEPENDENCE SAMPLER (mentioned earlier):
 - Proposals $\{Y_n\}$ i.i.d. from some <u>fixed</u> distribution (say, $Y_n \sim MVN(0, I)$).
 - Another special case of Metropolis-Hastings algorithm, where q(x, y) = q(y) depends only on y. So, Π is a stationary distribution.
 - By above Theorem, independence sampler is ergodic provided q(x) > 0 whenever $\pi(x) > 0$ (since then it must be irreducible and aperiodic).
 - But does that guarantee that it will work <u>well</u>?
 - No, e.g. previous "Rind" example with k = 5: ergodic (of course), but performs terribly.
 - FACT: independence sampler is geometrically ergodic IF AND ONLY IF there is $\delta > 0$ such that $q(x) \ge \delta \pi(x)$ for π -a.e. $x \in \mathcal{X}$.
 - If so, then we compute that

$$p(x,y) \ge q(y) \min[1, \frac{\pi(y) q(x)}{\pi(x) q(y)}] = \min[q(y), \pi(y) (q(x) / \pi(x))]$$
$$\ge \min[\delta \pi(y), \ \delta \pi(y)] = \delta \pi(y).$$

Hence, from the above, $D(x,n) \leq (1-\delta)^n$ for π -a.e. $x \in \mathcal{X}$.

- PREVIOUS EXAMPLE: Independence sampler with $\pi(x) = e^{-x}$ and $q(x) = ke^{-kx}$ for x > 0. (file "Rind")
 - If $0 < k \leq 1$, then setting $\delta = k$, we have that $q(x) = ke^{-kx} \geq ke^{-x} = k\pi(x) = \delta\pi(x)$ for all x > 0, so it's geometrically ergodic, and furthermore $D(x, n) \leq (1 k)^n$.
 - e.g. if k = 0.01, then $D(x, 459) \leq (0.99)^{459} \doteq 0.0099 < 0.01$ for all x > 0, i.e. "converges after 459 iterations".

- But if k > 1, then <u>cannot</u> find any $\delta > 0$ such that $q(x) \ge \delta \pi(x)$ for all x, so it is <u>not</u> geometrically ergodic.
- If k > 2, then <u>no CLT</u> (Roberts, J. Appl. Prob. **36**, 1210–1217, 1999).
- So, if k = 5 (as in "Rind"), then <u>not</u> geometrically ergodic, and CLT does <u>not</u> hold. Indeed, confidence intervals often <u>miss</u> 1. (file "Rind2")
- Fact: if k = 5, then D(0,n) > 0.01 for all $n \le 4,000,000$, while D(0,n) < 0.01 for all $n \ge 14,000,000$, i.e. "convergence" takes between 4 million and 14 million iterations. Slow! [Roberts and Rosenthal, "Quantitative Non-Geometric Convergence Bounds for Independence Samplers", MCAP 2011.]
- What about <u>other</u> MCMC algorithms (besides independence sampler)?
- FACT: if state space is <u>finite</u>, and chain is irreducible and aperiodic, then always ergodic (of course) and also <u>geometrically</u> ergodic. (See e.g. J.S. Rosenthal, SIAM Review 37:387-405, 1995.)
- What about for the "random-walk Metropolis algorithm" (RWM), i.e. where $\{Y_n X_{n-1}\} \sim q$ (i.i.d.) for some fixed symmetric density q?
 - e.g. $Y_n \sim N(X_{n-1}, \sigma^2 I)$, or $Y_n \sim \text{Uniform}[X_{n-1} \delta, X_{n-1} + \delta]$.
- FACT: RWM is geometrically ergodic essentially if and only if π has exponentially light tails, i.e. there are a, b, c > 0 such that $\pi(x) \leq ae^{-b|x|}$ whenever |x| > c. (Requires a few technical conditions: π and q continuous and positive; q has finite first moment; and π non-increasing in the tails, with (in higher dims) bounded Gaussian curvature.) [Mengersen and Tweedie, Ann Stat 1996; Roberts and Tweedie, Biometrika 1996]

END WEEK #9

- [11 STUDENT PRESENTATIONS!]
- EXAMPLES: RWM on **R** with usual proposals: $Y_n \sim N(X_{n-1}, \sigma^2)$:
- \rightarrow CASE #1: $\Pi = N(5, 4^2)$, and functional $h(y) = y^2$, so $\mathbf{E}_{\pi}(h) = 5^2 + 4^2 = 41$. (file "Rnorm" ... $\sigma = 1$ v. $\sigma = 4$ v. $\sigma = 16$)
 - Geometrically ergodic? Yes! (By above.)
 - Does CLT hold? Yes! (geometrically ergodic, and $\mathbf{E}_{\pi}(|h|^p) < \infty$ for all p.)
 - Indeed, confidence intervals "usually" contain 41. (file "Rnorm2")
- \rightarrow CASE #2: $\pi(y) = c \frac{1}{(1+y^4)}$, and functional $h(y) = y^2$, so

$$\mathbf{E}_{\pi}(h) = \frac{\int_{-\infty}^{\infty} y^2 \frac{1}{(1+y^4)} dy}{\int_{-\infty}^{\infty} \frac{1}{(1+y^4)} dy} = \frac{\pi/\sqrt{2}}{\pi/\sqrt{2}} = 1.$$

- <u>Not</u> exponentially light tails, so <u>not</u> geometrically ergodic; estimates less stable, confidence intervals often miss 1. (file "Rheavy")
- \rightarrow CASE #3: $\pi(y) = \frac{1}{\pi(1+y^2)}$ (Cauchy), and functional $h(y) = \mathbf{1}_{-10 < y < 10}$.
 - Recall that for Cauchy, $\Pi(0 < X < y) = \arctan(y)/\pi$.
 - So, $\mathbf{E}_{\pi}(h) = \Pi(|X| < 10) = 2 \arctan(10)/\pi = 0.93655.$
 - Again, <u>not</u> exponentially light tails, so <u>not</u> geometrically ergodic.
 - Confidence intervals often miss 0.93655. (file "Rcauchy")
- \rightarrow CASE #4: $\pi(y) = \frac{1}{\pi(1+y^2)}$ (Cauchy), and functional $h(y) = \min(y^2, 100)$.
 - [Numerical integration: $\mathbf{E}_{\pi}(h) \doteq 11.77$]
 - Once again, <u>not</u> exponentially light tails, so <u>not</u> geometrically ergodic.
 - And, 95% CI often miss 11.77, though iid MC does better. ("Rcauchy2")
 - <u>NOTE</u>: Even when CLT holds, it can be rather unstable, e.g. it requires that chain has <u>converged</u> to Π , so it might <u>underestimate</u> v.
 - Estimate of v is very important! And "varfact" is not always reliable!
 - Repeated runs?
 - Another approach is "batch means", whereby chain is broken into m large "batches", which are assumed to be approximately i.i.d.

OPTIMAL RWM PROPOSAL SHAPE:

- Consider RWM on $\mathcal{X} = \mathbf{R}^d$, where $Y_n \sim MVN(X_{n-1}, \Sigma)$ for some $d \times d$ proposal covariance matrix Σ .
- What is best choice of Σ ?
 - Usually we take $\Sigma = \sigma^2 I_d$ for some $\sigma > 0$, and then choose σ so acceptance rate not too small, not too large (e.g. 0.234).
 - But can we do better?
- Suppose for now that Π = MVN(μ₀, Σ₀) for some fixed μ₀ and Σ₀, in dim=5. Try RWM with various proposal distributions (file "Ropt"):
 - first version: $Y_n \sim MVN(X_{n-1}, I_d)$. (acc ≈ 0.06 ; varfact ≈ 220)
 - second version: $Y_n \sim MVN(X_{n-1}, 0.1 I_d)$. (acc ≈ 0.234 ; varfact ≈ 300)
 - third version: $Y_n \sim MVN(X_{n-1}, \Sigma_0)$. (acc ≈ 0.31 ; varfact ≈ 15)
 - fourth version: $Y_n \sim MVN(X_{n-1}, 1.4\Sigma_0)$. (acc ≈ 0.234 ; varfact ≈ 7)
- Or in dim=20 (file "Ropt2", with file "Rtarg20"):
 - $-Y_n \sim MVN(X_{n-1}, 0.025 I_d).$ (acc ≈ 0.234 ; varfact ≈ 400 or more)
 - $Y_n \sim MVN(X_{n-1}, 0.283 \Sigma_0). \ (acc \approx 0.234; \ varfact \approx 50)$

- Conclusion: acceptance rates near 0.234 are better.
- <u>But also</u>, proposals shaped like the target are better.
 - Indeed, best is when proposal covariance = $((2.38)^2/d)\Sigma_0$.
 - This has been <u>proved</u> for targets which are orthogonal transformations of independent components (Roberts et al., Ann Appl Prob 1997; Roberts and Rosenthal, Stat Sci 2001; Bédard, Ann Appl Prob 2007).
 - And it's "approximately" true for most unimodal targets ...
- Problem: Σ_0 would usually be <u>unknown</u>; then what?
 - Can perhaps "adapt"!

ADAPTIVE MCMC:

- Recall: RWM optimal proposal covariance is $((2.38)^2/d)\Sigma_0$.
- What if target covariance Σ_0 is unknown??
- Can <u>estimate</u> Σ_0 based on run so far, to get <u>empirical</u> covariance Σ_n .
- Then <u>update</u> proposal covariance "on the fly".
- "Learn as you go": see e.g. the Javascript simulation.
- For Adaptive MCMC, could use proposal $Y_n \sim MVN(X_{n-1}, ((2.38)^2/d)\Sigma_n)$.
 - <u>Hope</u> that for large $n, \Sigma_n \approx \Sigma_0$, so proposals "nearly" optimal.
 - (Usually also add ϵI_d to proposal covariance, to improve stability, e.g. $\epsilon = 0.05$.)
- Try R version, for the same MVN example as in Ropt (file "Radapt"):
 - Need much longer burn-in, e.g. B = 20,000, for adaption to work.
 - Get varfact of last 4000 iterations of about 18 ... "competitive" with Ropt optimal ...
 - The longer the run, the more benefit from adaptation.
 - Can also compute "slow-down factor", $s_n \equiv d \left(\sum_{i=1}^d \lambda_{in}^{-2} / (\sum_{i=1}^d \lambda_{in}^{-1})^2 \right)$, where $\{\lambda_{in}\}$ eigenvals of $\Sigma_n^{1/2} \Sigma_0^{-1/2}$. Starts large, should converge to 1. [Motivation: if $\Sigma_n = \Sigma_0$, then $\lambda_{in} \equiv 1$, so $s_n = d(d/d^2) \equiv 1$.] See Roberts and Rosenthal, Examples of Adaptive MCMC, JCGS 2009.
- Higher dimensions: figure "RplotAMx200.png" (dim=200). (beautiful!)
 - Works well, but it takes <u>many</u> iterations before the adaption is helpful.

END WEEK #10