
STA447/2006 Midterm #2, March 19, 2020

(ONLINE; 3 hours; 8 questions; 4 pages; total points = 50)

[SOLUTIONS]

1. [5] Let S = {1, 2, 3, 4}, and π1 = 1/6, π2 = 1/12, and π3 = 1/2, π4 = 1/4. Find explicit
transition probabilities {pij}i,j∈S for a Markov chain on S, with pij = 0 whenever |i− j| ≥ 2,

such that (with proof) lim
n→∞

p
(n)
ij = πj for all i, j ∈ S. [Hint: Don’t forget Metropolis.]

Solution. The Metropolis algorithm says the chain will be reversible with respect to π if
pi,i+1 = 1

2
min[1, πi+1

πi
] and pi,i−1 = 1

2
min[1, πi−1

πi
] and pi,i = 1−pi,i+1−pi,i−1. Thus, explicitly,

p2,1 = p2,3 = p4,3 = 1/2, and p1,2 = 1
2
[(1/12)/(1/6)] = 1/4, and p3,2 = 1

2
[(1/12)/(1/2)] =

1/12, and p3,4 = 1
2
[(1/4)/(1/2)] = 1/4. Then p1,1 = 1 − p1,2 = 1 − (1/4) = 3/4, p2,2 =

1− p2,1 − p2,3 = 1− (1/2)− (1/2) = 0, p3,3 = 1− p3,2 − p3,4 = 1− (1/12)− (1/4) = 2/3, and
p4,4 = 1− p4,3 = 1− (1/2) = 1/2. In matrix form,

P =


3/4 1/4 0 0
1/2 0 1/2 0
0 1/12 2/3 1/4
0 0 1/2 1/2

 .

Then pij = 0 whenever |i − j| ≥ 2. And P is reversible with respect to π since it is a
Metropolis algorithm, so π is stationary. Also, the chain is irreducible since it is possible to
go 1 → 2 → 3 → 4 and 4 → 3 → 2 → 1. And the chain is aperiodic since e.g. p1,1 > 0. So,

by the Markov Chain Convergence Theorem, lim
n→∞

p
(n)
ij = πj for all i, j ∈ S.

2. [6] Consider a graph with vertex set V = {1, 2, 3, 4, 5}, and edge weights w(1, 2) =
w(2, 1) = w(1, 3) = w(3, 1) = w(2, 3) = w(3, 2) = w(1, 4) = w(4, 1) = w(1, 5) = w(5, 1) =
w(4, 5) = w(5, 4) = 1, and w(u, v) = 0 otherwise. Let {Xn} be random walk on this graph,
with X0 = 1. For each of the following limits, determine whether or not the limit exists, and
if yes then what it equals: (a) lim

n→∞
P(Xn = 1), (b) lim

n→∞
1
2
[P(Xn = 1) + P(Xn+1 = 1)], and

(c) lim
n→∞

1
3
[P(Xn = 1) + P(Xn+1 = 1) + P(Xn+2 = 1)].

Solution. Here Z =
∑
u,v∈V w(u, v) = 12 < ∞, so the walk has stationary distribution

given by πu = d(u)/12 where d(u) is the degree of vertex u ∈ V . The graph is connected since
e.g. it is possible to go 1→ 2→ 3→ 1→ 4→ 5→ 1, so the random walk is irreducible. And,
the walk is aperiodic (i.e., the graph is not bipartite) since e.g. it is possible to go 1→ 2→ 1
and also 1 → 2 → 3 → 1 so the period of state 1 is gcd{2, 3} = 1. Hence, by the Graph

Convergence Theorem, limn→∞ p
(n)
11 = d(1)/12 = 4/12 = 1/3. So, limn→∞P1(Xn = 1) = 1/3.

Hence also limn→∞P1(Xn+1 = 1) = 1/3 and limn→∞P1(Xn+2 = 1) = 1/3. Therefore,
limit (a) equals 1/3, and limit (b) equals 1

2
[(1/3) + (1/3)] = 1/3, and limit (c) equals

1
3
[(1/3) + (1/3) + (1/3)] = 1/3, i.e. all three limits exist and all equal 1/3.

3. [8] Suppose each car that passes is independently equally likely to be Red, Green,
or Blue. Let τ be the number of cars which pass until the first time we see the pattern
Red-Green (i.e., until a Green car passes right after a Red car). Compute z = E(τ).
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Solution. Let Xn be the amount of the pattern “RG” that we have achieved after the nth

car (starting over as soon as we complete it). Then {Xn} is a Markov chain on S = {0, 1, 2}.
Then starting from state 0 or 2 (if we have not yet completed any part of a new RG pattern),
the transition probabilities are given by p01 = p21 = 1/3 (if the next car is Red, beginning
a new RG pattern), or p00 = p20 = 2/3 (if the next car is Green or Blue, not starting a
pattern). And, starting from state 1 (if we have just seen a Red car), then p12 = 1/3 (if the
next car is Green, finishing the pattern), and p11 = 1/3 (if the next car is Red, restarting
the pattern at R), and p10 = 1/3 (if the next car is Blue, ruining the pattern). That is,

P =

 2/3 1/3 0
1/3 1/3 1/3
2/3 1/3 0

 .

Its stationary distribution π must satisfy that πP = π, i.e. π0p0j + π1p1j + π2p2j = πj for
all j ∈ S. Setting j = 0 gives π0(2/3) + π1(1/3) + π2(2/3) = π0. Setting j = 1 gives
π0(1/3) + π1(1/3) + π2(1/3) = π1, and since π0 + π1 + π2 = 1 this means that π1 = 1/3.
Setting j = 2 gives π1(1/3) = π2, i.e. π2 = π1(1/3) = 1/9. Since π0 + π1 + π2 = 1 we must
have π0 = 1− π1 − π2 = 1− (1/3)− 1/9) = 5/9. But z is the expected time to go from 0 to
2, or equivalently the mean recurrence time of the state 2. Hence, by the Recurrence Time
Theorem, z = 1/π2 = 1/(1/9) = 9.

4. [4] In the previous question, suppose each Red car is worth 12, each Green car is worth
6, and each Blue car is worth 3. Let Y be the total worth of all cars up to and including
time τ . Compute E(Y ). [Note: If you could not solve the previous question, then you may
leave your answer to this question in terms of the unknown value “z”.]

Solution. Here τ is a stopping time with finite mean z. And, Y is a sum of i.i.d. car
values having mean m = (1/3)(12) + (1/3)(6) + (1/3)(3) = 4 + 2 + 1 = 7. Hence, by Wald’s
Theorem, E(Y ) = mE(τ) = 7z = 7(9) = 63.

5. [6] Find Markov chain transitions {pij}i,j∈S on the state space S = {1, 2, 5} (so there
are only 3 states), such that p21 = 1/2, and also the chain is a martingale.

Solution. To be a martingale, we need
∑
j∈S j pij = i for each i ∈ S. Setting i = 2

and recalling that p21 = 1/2, we have (1)(1/2) + (2)p22 + (5)p25 = 2. But we must have
p21 + p22 + p25 = 1, i.e. (1/2) + p22 + p25 = 1, i.e. p22 + p25 = 1 − (1/2) = 1/2, i.e.
p22 = (1/2) − p25. So, (1)(1/2) + (2)[(1/2) − p25] + (5)p25 = 2, i.e. (3/2) + 3p25 = 2, i.e.
3p25 = 1/2, i.e. p25 = 1/6. Then p22 = 1− p21 − p25 = 1− (1/2)− (1/6) = 1/3. Also, since
the states 1 and 5 are endpoints, the only way to stay the same on average is to never move
at all, so we must have p11 = p55 = 1, whence p12 = p15 = p51 = p52 = 0. In matrix form,

P =

 1 0 0
1/2 1/3 1/6
0 0 1

 .

6. [6] Consider a Markov chain {Xn} with state space S = {5, 6, 7, 8, . . .}, with p5,5 = 1, and
pi,i−1 = pi,i = pi,i+1 = 1/3 for all i ≥ 6, and with X0 = 8. (You may assume that E|Xn| <∞
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for each n.) Then (a) show that as n→∞, the values {Xn} converge with probability 1 to
some random variable X, and (b) determine whether or not E(X) = limn→∞E(Xn).

Solution. First of all, p55 = 1, and for each i ≥ 6 we have
∑
j j pij = (i−1)(1/3)+(i)(1/3)+

(i + 1)(1/3) = i[(1/3) + (1/3) + (1/3)] − (1/3) + (1/3) = i[1] + 0 = i. Hence (since also
E|Xn| <∞), {Xn} is a martingale.

Then, since {Xn} is a martingale which is non-negative and hence bounded on one side,
by the Martingale Convergence Theorem the values {Xn} must converge with probability 1
to some random variable X.

However, since S is discrete, {Xn} can only converge to states i with pii = 1, which only
holds for i = 5. So, we must have P(X = 5) = 1. Hence, E(X) = (5)(1) + 0 = 5.

But since {Xn} is a martingale, therefore E(Xn) = E(X0) = 8 for each fixed n ∈ N.
Therefore, limn→∞E(Xn) = limn→∞(8) = 8 6= 5 = E(X), so no we do not have

limn→∞E(Xn) = E(X).

7. [9] Consider a branching process with initial value X0 = 2, and with offspring distribu-
tion given by µ{0} = 1/3 and µ{2} = 2/3. Let q be the probability of eventual extinction.
Then (a) compute P(X1 = 2), and (b) compute P(X2 = 8), and (c) determine (with
explanation) whether q = 0, or q = 1, or 0 < q < 1.

Solution. For (a), since X0 = 2, we could have X1 = 2 if either the first individual has 2
offspring (probability 2/3) and the second individual has 0 offspring (probability 1/3), or the
first individual has 0 offspring (probability 1/3) and the second individual has 2 offspring
(probability 2/3). Hence, P(X1 = 2) = (2/3)(1/3) + (1/3)(2/3) = 4/9.

For (b), since X0 = 2, the only way to get X2 = 8 is if each of the 2 individuals at time 0
has 2 offspring (probability 2/3 each), and then each of the 4 individuals at time 1 has 2
offspring (probability 2/3 each). Hence, P(X2 = 8) = (2/3)2(2/3)4 = 26/36 = 64/729.

For (c), we first compute that the reproductive number m is the mean of µ, so m =
(0)(1/3) + (2)(2/3) = 4/3. Since m > 1 and X0 > 0, we know from class that flourishing is
possible, and hence extinction is not certain, i.e. q < 1. On the other hand, the probability
that both offspring at time 0 have 0 offspring is (µ{0})2 = (1/3)2 = 1/9 > 0, so extinction
is possible, i.e. q > 0. Hence, we have 0 < q < 1.

8. [6] Suppose a stock price X0 at time 0 is equal to 10, and at time S is random with
P(XS = 4) = 3/5 and P(XS = 12) = 2/5. Suppose there is also an option to buy one
share of the stock at time S for price K = 7, and this option has been priced (by some
company) at the value $2. Assume you are allowed to buy or sell any amount of the stock
at its given price of 10, and also to buy or sell any amount of this option at its listed price
of 2. Determine (with explanation) an explicit amount of stock and of this option that you
could buy or sell at time 0 to achieve arbitrage, i.e. to make a guaranteed positive profit.

Solution. Suppose that at time 0, you buy x stock shares for $10 each, and y option shares
for $2 each. Then if the stock price goes up to $12, then you make $12− $10 = $2 on each
stock share, and make $(12− 7− 2) = $3 on each option share, for a total profit of 2x+ 3y.
But if the stock instead goes down to $4, you lose $(10− 4) = $6 on each stock share, and
lose $2 on each option share, for a total profit of −6x − 2y. These two profits are equal
if 2x + 3y = −6x − 2y, i.e. 8x = −5y, i.e. y = (−8/5)x. For example, if we buy x = −5
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shares of the stock (i.e. sell 5 shares), and buy y = 8 shares of the option, then if XS = 12
then our profit is 2(−5) + 3(8) = −10 + 24 = 14 > 0, while if XS = 4 then our profit is
(−6)(−5) + (−2)(8) = 30− 16 = 14 > 0, so in either case we make a positive profit, i.e. we
have achieved arbitrage.

[END OF EXAMINATION; total points = 50]
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