STA4502 (Monte Carlo Estimation) Lecture Notes, Jan—Feb 2016

by Jeffrey S. Rosenthal, University of Toronto
(Last updated: February 12, 2016)

Note: I will update these notes regularly (on the course web page). However,
they are just rough, point-form notes, with no guarantee of completeness or
accuracy. They should in no way be regarded as a substitute for attending
the lectures, doing the homework exercises, studying for the test, or reading
the reference books.

INTRODUCTION:

e Introduction to course, handout, references, prerequisites, etc.
— Course web page: www.probability.ca/stad502
— Six weeks only; counts for QUARTER-credit only.
— Sidney Smith Hall room 1080, Wednesdays 11:10-1:00, and Fridays
11:10-12:00.

— If not Stat Dept grad student, must REQUEST enrolment (by e-mail);
need advanced undergraduate probability /statistics background, plus
basic computer programming experience.

— Conversely, if you already know lots about MCMC etc., then this
course might not be right for you since it’s an INTRODUCTION to
these topics.

— How many of you are stat grad students? undergrads? math? com-

puter science? physics? economics? management? engineering?
other? Auditing??

e Theme of the course: use (pseudo)randomness on a computer to simulate
(and hence estimate) important/interesting quantities.

e Example: Suppose want to estimate m := E[Z* cos(Z)], where Z ~
Normal(0, 1).
— Monte Carlo solution: replicate a large number zq,...,z, of Nor-

mal(0,1) random variables, and let x; = 2} cos(z;).
— TheirmeanT = 1 "7 | z; is an (unbiased) estimate of E[X] = E[Z* cos(Z)].
— R: Z = rmorm(100); X = ZA4 * cos(Z); mean(X) [file “RMC”]

— unstable ... but if replace “100” with “1000000” then Z close to
—1.213 ...

— Variability??

— WEell, can estimate standard deviation of T by “standard error” of 7,


http://probability.ca/sta4502

which is:

se = n Y2sd(z) ~ n7V?\|var(z) = nl/QJ
i=1

file “RMCse”]
e Then what is, say, a 95% confidence interval for m?

e Well, by central limit theorem (CLT), for large n, have T ~ N(m,v) ~
N(m, se?).
— (Strictly speaking, should use “t” distribution, not normal distribution
. but if n large that doesn’t really matter — ignore it for now.)

— So ™=% ~ N(0,1).

se

— So, P(—1.96 < mf < 1.96) =~ 0.95.

S

— So, P(T —1.96se <m <ZT+ 1.96se) ~ 0.95.

— i.e., approximate 95% confidence interval is [file “RMCci”]

(T — 1.96 se, T+ 1.96 se) .

e Alternatively, could compute expectation as

—22/2

/_o:o 2t cos(2) e\/ﬁ dz .

Analytic? Numerical? Better? Worse? [file “RMCcomp”: —1.213]

— What about higher-dimensional versions? (Can’t do numerical inte-
gration!)

e Note: In this course we will just use R to automatically sample from
simple distributions like Normal, Uniform, Exponential, etc.

— (How does it work? Discussed in e.g. Statistical Computing course.)

e What if distribution too complicated to sample from?

— (MCMC!... including Metropolis, Gibbs, tempered, trans-dimensional,

)

HISTORICAL EXAMPLE - BUFFON’S NEEDLE:

— Have series of parallel lines ... line spacing w, needle length ¢ <
w (say ¢ = w) ... what is prob that needle lands touching line?
[http: //www.metablake.com /pi.swi]

— Let 6 be angle counter-clockwise from line direction, and A distance
of top end above nearest line.

— Then h ~ Uniform[0, w] and 6 ~ Uniform|0, 7].
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— Touches line iff h < ¢sin(6).

— So, prob = %foﬁ i Jo" Lh<tsingg) dh df = %fgr iﬁ sin(0) df = 20 /w.

— Hence, by LLN, if throw needle n times, of which it touches a line m
times, then for n large, m/n ~ 20/wn, so m ~ 2nl/mw = 2n/m (if
(= w).

— [e.g. recuperating English Captain O.C. Fox, 1864: ¢ = 3, w = 4,
n = 530, m = 253, so m ~ 2nl/mw = 3.1423.]

— But for modern simulations, use computer. How to randomise??

PSEUDORANDOM NUMBERS:
e Goal: generate an i.i.d. sequence Uy, Uy, Us, ... ~ Uniform|0, 1].

e One method: LINEAR CONGRUENTIAL GENERATOR (LCG).
— Choose (large) positive integers m, a, and b.
— Start with a “seed” value, z¢. (e.g., the current time in milliseconds)

— Then, recursively, z,, = (ax,_1 +b) mod m, i.e. z,, = remainder when
ar,_1+ b is divided by m.

— S0, 0<x, <m—1.
— Then let U, = z,/m.
— Then {U,} will “seem” to be approximately i.i.d. ~ Uniform|0, 1].
(file “Rrng”)
e Choice of m, a, and b7

e Many issues:
— need m large (so many possible values);
— need a large enough that no obvious “pattern” between U,,_; and U,.
— need b to avoid short “cycles” of numbers.

— many statistical tests, to try to see which choices provide good ran-
domness, avoid correlations, etc. (e.g. “diehard tests”, |http:/ /stat.fsu.edu/pub/dichard/
; “dieharder” | (www.phy.duke.edu/~rgb/General /dieharder.php)

— One common “good” choice: m = 232, a = 69,069, b = 23, 606, 797.

e Theorem: the LCG has full period (m) if and only if both (i) ged(b, m) =

1, and (ii) every “prime or 4” divisor of m also divides a — 1.

— So, if m = 232, then if b odd and @ — 1 is a multiple of 4, then the
LCG has full period m = 232 = 4.3 x 10%; good.

— Many other choices, e.g. C programming language (glibc) uses m =
932 o = 1,103,515, 245, b = 12, 345.

— One bad choice: m = 23! a = 65539 = 2 +3 b =0 (“RANDU”) ...
used for many years (esp. early 1970s) ... but then z,, 1o = 62,1 -9,
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mod m ... too much serial correlation. [Proof: z,.9 = (2! +3)%z, =
(22 +6(2'%) +9)z, = (0+6(2'°+3) —9)x,, (mod 23!) = 62,41 — 9, ]

— (Microsoft Excel pre-2003: period < 10°, too small ... Excel 2003
used floating-point “version” of LCG, which sometimes gave negative
numbers — bad!)

e Not “really” random, just “pseudorandom” ...
— Can cause problems!
— Will fail certain statistical tests ...

— Some implementations also use external randomness, e.g. current tem-
perature of computer’s CPU / entropy of kernel (e.g. Linux’s “uran-
dom”).

— Or the randomness of quantum mechanics, e.g. www.fourmilab.ch/hotbits
— Or of atmospheric noise, e.g. random. org.

— But for most purposes, standard pseudorandom numbers are pretty
good ...

e We'll consider LCG’s “good enough for now”, but:

— Other generators include “Multiply-with-Carry” [z,, = (azp—r + by—1)
mod m where b, = |(azx,_, + b,_1)/m]; and ‘Kiss” [y, = (z, + o +
K,) mod 2% where z,, as above, and J, and K,, are “shift register
generators”, given in bit form by J,,.1 = (I+L")(I+R'").J,, mod 232,
and K, 11 = (I + L)(I + R"®)K, mod 23']; and “Mersenne Twister”
[Tpak = Tpys D (x;“pper”mgiv{er))A, where 1 < s < k where 2"~ — 1 is
Mersenne prime, and A is w X w (e.g. 32 x 32) with (w—1) x (w — 1)
identity in upper-right, with matrix mult. done bit-wise mod 2], and
many others too.

— (R implementation: see “?.Random.seed” ... default is Mersenne
Twister.)

e So, just need computer to do simple arithmetic. No problem, right?

LIMITATIONS OF COMPUTER ARITHMETIC:

e Consider the following computations in R:

> 241-2
1] 1
> 2710 + 1 - 2A10
> 27100 + 1 - 27100

o Why??

e Homework question: for what values of n does:
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> 2An + 1 - 2An
give 0 instead of 177

So, numerical computations are just approximations, with their own er-

rors!

We'll usually ignore this, but MUST BE CAREFUL! Then can simulate

SIMULATING OTHER DISTRIBUTIONS:

Once we have Uy, Uy, ... ii.d. ~ Uniform[0, 1] (at least approximately),
how do we generate other distributions?

With transformations, using “change-of-variable” theorem!
e.g. to make X ~ Uniform[L, R|, set X = (R — L)U; + L.
e.g. to make X ~ Bernoulli(p), set

_ 17 Ulgp
X_{O, Ui >p

e.g. to make Y ~ Binomial(n, p), either set Y = X; + ...+ X,, where

XZ_{O, U >p ’

or set -
o
Y = max{j Y <Z>pk(1_p)n—k < Ul}

-1
(where by convention Y (---) =0). (“Inverse CDF method”)
k=0

More generally, to make P(Y = x;) = p; for some x; < 23 < x3 < ...,
where p; > 0 and Y, p; = 1, simply set

7j—1

Y = max{z;; > p < Ui}.

k=1

e c.g. to make Z ~ Exponential(1), set Z = —log(Uy).

— Then P(Z > z) = P(—log(U;) > z) = P(log(U,) < —z) = P(U; <
er)=¢e".

— Then, to make W ~ Exponential()\), set W = Z/\ = —log(Uy) /.

e What if want X to have density 6 2°1gcpe1.

— Let X =U/°.
— Thenfor0 <z <1, P(X <z)= P(Ull/6 <z)=P(U, <1% =15
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— Hence, fx(z) = L% =62° for 0 <z < 1.

— More generally, for r > 1, it X = Ull/r, then fx(z) = ra"! for
0<z <L

e What about normal dist.? Fact: If

X = y/2log(1/U;) cos(2nUs),

Yy — \/m sin(27ls) ,

then X, Y ~ N(0,1) (independent!). [“Box-Muller transformation”: Ann
Math Stat 1958, 29, 610-611]

— Proof: By multidimensional change-of-variable theorem, if (z,y) =

h(uy, uz) and (u1, uz) = h™'(z,y), then fxy (z,y) = fu,v (b~ (2,)) /[T (W~ (2, )]
Here fu, v, (u1,uz) =1 for 0 < uy,us < 1 (otherwise 0), and

o ow
J(ug,ug) = det< h %22>
dui  Duy
~ et —cos(2mugy) [ ury/2log(1/uy)  —2msin(2wu2)y/2log(1/uy)
—sin(2mug) /uyy/2log(1/uy) 2w cos(2mu2)y/2log(1/uy)

= —27T/U1.

But u; = e~ @ 1¥")/2 50 density of (X,Y) is

Fxy(@y) = 1/|J(h Y x,y)| = 1/|=2r ) e @H/2| = =@ +07)/2 jon

()
ie. X ~ N(0,1) and Y ~ N(0,1) are independent.
e Another approach: “INVERSE CDF METHOD”:

— Suppose want P(X < z) = F(z). (“CDF”)
— For 0 <t<1,set F7(t) = min{z; F(z) > t}. (“inverse CDF”)
— Then set X = F~1(U).
— Then X < z if and only if U; < F(z).
— So, P(X <z) = P(U; < F(z)) = F(x).
— Very general, but computing F~*(¢) could be difficult ...

e So, generating (pseudo)random numbers for most “standard” one-dimensional
distributions is pretty easy ...

— So, can get Monte Carlo estimates of expectations involving standard
one-dimensional distributions, e.g. E[Z* cos(Z)] where Z ~ Normal(0, 1).

e But what if distribution is complicated, multidimensional, etc.? Simulate!



SIMULATION EXAMPLE: QUEUEING THEORY:
— @(t) = number of people in queue at time t > 0.
e Suppose service times ~ Exponential(y) [mean 1/u|, and interarrival

times ~ Exponential(\) (“M/M/1 queue”), so {Q(t)} Markovian. Then
well known:

— If p < A, then Q(t) — oo as t — oc.
— If p > A, then Q(t) converges in distribution as t — oo:
_ Ay (AN _
- PQE)=1) = (1—2)(5), fori=0,1,2,....
— Easy! (e.g. p =3, A =2,¢t=1000) [file “Rqueue”]
e Now suppose instead that service times ~ Uniform|0, 1], and interarrival

times have distribution of |Z| where Z ~ Normal(0, 1). Limits not easily
computed. Now what?

— Simulate it! [file “Rqueue2”|
e Or, to make the means the same as the first example, suppose service

times ~ Uniform|0,2/3], and interarrival times have distribution of Z2/2
where Z ~ Normal(0,1). Now what? [file “Rqueue3”]

END WEDNESDAY #1

MONTE CARLO INTEGRATION:

e How to compute an integral with Monte Carlo?

— Re-write it as an expectation!
e EXAMPLE: Want to compute [; [1 g(z,y) dz dy.
— Regard this as E[g(X,Y)], where X,Y i.i.d. ~ Uniform[0, 1].
— e.g. g(z,y) = cos( \/xy ). (file “RMCint”) Easy!
— Get about 0.88 £ 0.003 ... Mathematica gives 0.879544.
e c.g. estimate [ = [ f04 g(z,y) dy dx, where g(z,y) = cos( /Ty ).

— Here

/05 /049(116,?/) dydx = /05 /04 5-4-g(x,y) (1/4)dy (1/5)dx = E[5-4-9(X,Y)],

where X ~ Uniform|0, 5] and Y ~ Uniform][0, 4].
— So, let X; ~ Uniform|0, 5], and Y; ~ Uniform[0, 4] (all independent).
— Estimate I by - >M (54 ¢(X;,Y;)). (file “RMCint2”)
— Standard error: se = M~Y2 sd(5-4-g(X1,Y1), ..., 5-4-9(Xar, Yar)).

— With M = 10°%, get about —4.11 & 0.01 ... Mathematica gives
—4.11692.



e e.g. estimate [§ [o°h(z,y) dy dz, where h(z,y) = eV cos( VZY ).
— (Can’t use “Uniform” expectations.)
— Instead, write this as fj [°(e¥ h(z,y)) e ¥ dy dx.
— This is the same as E[e¥ h(X,Y)], where X ~ Uniform[0,1] and YV ~
Exponential(1) are independent.
— So, estimate it by - > e¥h(X;,Y;), where X; ~ Uniform[0, 1] and
Y; ~ Exponential(1) (i.i.d.). (file “RMCint3”)

— With M = 10° get about 0.76740.0004 ... Small error! Mathematica:
0.767211.

e Alternatively, could write this as [} [ (3 €™ h(z,y)) (e ™) dyde = E[;e" h(X,Y)]
where X ~ Uniform[0, 1] and Y ~ Exponential(5) (indep.).

— Then, estimate it by - >, fe®ih(z;,y;), where z; ~ Uniform[0, 1]

and y; ~ Exponential(5) (i.i.d.).

— With M = 108, get about 0.767 £0.0016 ... larger standard error ...
(file “RMCint4”).

— If replace 5 by 1/5, get about 0.767 + 0.0015 ... about the same.
e So which choice is best?

— Whichever one minimises the standard error! (A ~ 1.5, se ~ 0.000257)

e In general, to evaluate I = E[h(Y')] = [ h(y) 7(y) dy, where Y has density
7, could instead re-write this as I = [ h(x) % f(z)dx, where f is easily
sampled from, with f(z) > 0 whenever 7(z) > 0.

— m(X)
~ Then I = E (h(X) 7
pling”)

— Can then do classical (iid) Monte Carlo integration, get standard er-

), where X has density f. (“Importance Sam-

rors etc.

— Good if easier to sample from f than 7, and/or if the function h(z) %

is less variable than A itself.

e In general, best to make h(x) fE g approximately constant.

— e.g. extreme case: if I = [§®e " dx, then I = [;°(1/3)(3e7%")dx =
E[1/3] where X ~ Exponential(3), so I = 1/3 (error = 0, no MC
needed).

UNNORMALISED DENSITIES:

e Suppose now that m(y) = cg(y), where we know ¢ but don’t know ¢ or
7. (“Unnormalised density”, e.g. Bayesian posterior.)

Obviously, ¢ Tow s’ but this might be hard to compute.

=St T = [ h(z) 7(z) de = [ h(z) cg(z)dr = f’}jg(x’“.



~ Ifsample {;} ~ f (iid.), then [ h(z) g(x) dz = [ (h(x) g(x) / f(x)) f(x) dw
E[h(X) g(X) / f(X)] where X ~ f.

— So, [ h(z) g(x)dz ~ & M, (h(x:) g(x:) / f(x:)).

— Similarly, [ g(x)dz ~ & 22, (g(2:) / f(2:)).

S, (e oo/ 1)
S (s s@)

— So, I ~ (“Importance Sampling”: weighted

average)
— (Not unbiased, standard errors less clear, but still consistent.)
— (Good to use same sample {z;} for both numerator and denominator:

easier computationally, and smaller variance.)

e Example: compute I = E(Y?) where Y has density cy® sin(y*) cos(y°) Lo<y<1,
where ¢ > 0 unknown (and hard to compute!).
— Here g(y) =y’ sin(y*) cos(y”) Locy<1, and h(y) = y*.
— Let f(y) = 69°1o<y<1. [Fact (check): if U ~ Uniform|0, 1], then

X=UY~ f)]
o i i i M in(z? 5)
 Then I ~v Zima (Mot /f@) - 327 (sinted) costed) gy iy
! 2511 (9(12)/“%)) Zi\il (sin(mf) cos(z?) /zf) ( Hp

. get about 0.766 ... )
— Or, let f(y) = 4y*1g<y<1. [Then if U ~ Uniform[0, 1], then U4 ~ f]

M M Gin(zt 5) 42
_ Then I ~ 2 (Meda@)/ f@) _ YL, (sinad) costed) a2) 1wy
" Zﬁ1 (9(%) /f(l"z)) Z?il (sin(z?) cos(x?)) ( 1mp )

e With importance sampling, is it important to use the same samples {z;}

in both numerator and denominator?

— What if independent samples are used instead?

— Let’s try it! (file “Rimpind”)

— Both ways work, but usually the same samples work better.

e What other methods are available to iid sample from 7?7

REJECTION SAMPLER:

e Assume 7(z) = cg(x), with 7 and ¢ unknown, g known but hard to
sample from.

e Want to sample X ~ 7.

— Thenif Xy, Xo, ..., Xy ~ 7 iid, then can estimate E.(h) by - >M | h(X;),
etc.

e Find some other, easily-sampled density f, and known K > 0, such that
K f(x) > g(z) for all z. (i.e., K f(z) > m(x) /¢, ie. ¢ K f(x) > 7(z))

e Sample X ~ f, and U ~ Uniform|0, 1] (indep.).
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— IfU < g(X)/Kf(X), then accept X (as a draw from 7).
— Otherwise, reject X and start over again.

e Now, P(U < g(X)/Kf(X)|X = z) = g(x)/K f(x), so conditional on
accepting, we have that

g(X) \ P(ng, US%)
P(XSZ/‘US Kf(X)) - P( - Ig}(@))
_ P S@ i de @) de g
O f(w) ;}f;) dr [ g(x)dr L Oow(x) dx

— So, conditional on accepting, X ~ w. Good! iid!

— However, prob. of accepting may be very small, then get very few
samples.

e Example: 7 = N(0,1), i.e. g(z) = n(x) = (27) Y2 exp(—22/2).

— Want: E,(X%), ie. h(z) = 2.

— Let f be double-exponential (Laplace) distribution, i.e. f(z) = %e“f”'.
o If K =38, then:

— For |z| < 2, Kf(z) = 8L exp(—|z|) > 83 exp(-2) > (2m)71/2 >

m(z) = g(x).
— For|z| > 2, Kf(z) = 83 exp(—|z]) > 81 exp(—2?/2) > (2m) /2 exp(—a?/2) =
m(z) = g(x).

END FRIDAY #1

— See graph: file “Rrejgraph”.

e So, can apply rejection sampler with this f and K, to get samples, es-
timate of E[X], estimate of E[h(X)], estimate of P[X < —1], etc. (file
“Rre‘j”)

e For Rejection Sampler, P(accept) = E[P(accept|X)] = E[Kg})&)] =/ If](f(”;) fz)de =
% 9(z) dz = . (Only depends on K, not f.)
— So, in M attempts, get about M /cK iid samples.

— (“Rrej” example: ¢ = 1, K =8, M = 10,000, so get about M/8 =
1250 samples.)

— Since ¢ fixed, try to minimise K.

— Extreme case: f(z) = 7(z), so g(x) = w(z)/c = f(x)/c, and can take
K = 1/c, whence P(accept) = 1, iid sampling: optimal.

e Note: these algorithms all work in discrete case too.
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— Can let m, f, etc. be “probability functions”, i.e. probability densities
with respect to counting measure.

— Then the algorithms proceed exactly as before.

e AUXILIARY VARIABLE APPROACH: (related: “slice sampler”)

— Suppose 7(z) = cg(x), and (X,Y) chosen uniformly under the graph
of g.

— ie., (X,Y) ~ Uniform{(z,y) e R*: 0 <y < g(x)}.

— Then X ~ 7, i.e. we have sampled from 7.

b
. 2 __ area with a<X<b __ fa g(z) dx _
Why For a < b? P(a <X < b) - total area o fjooog(ac)dz o
[P r(x) da.

— So, if repeat, get i.i.d. samples from 7, can estimate E(h) etc.

e Auxiliary Variable rejection sampler:

— If support of g contained in [L, R], and |g(x)| < K, then can first
sample (X,Y) ~ Uniform([L, R] x [0, K]), then reject if Y > g(X),
otherwise accept as sample with (X,Y) ~ Uniform{(z,y) : 0 <y <
g(x)}, hence X ~ .

e Example: g(y) =y’ sin(y") cos(y®) Lo<y<1.
— Then L=0,R=1, K =1.
— So, sample X, Y ~ Uniform|0, 1], then keep X iff Y < g(X).

— If h(y) = y?, could compute e.g. E;(h) as the mean of the squares of
the accepted samples. (file “Raux”)

e Can iid / importance / rejection / auxiliary sampling solve all problems?
No!

— Many challenging cases arise, e.g. from Bayesian statistics (later).
— Some are high-dimensional, and the above algorithms fail.

— Alternative algorithm: MCMC!

MARKOV CHAIN MONTE CARLO (MCMC):
e Suppose have complicated, high-dimensional density m = cg.
e Want samples X;, Xo,... ~ 7. (Then can do Monte Carlo.)

e Define a Markov chain (dependent random process) Xo, X, Xo,... in
such a way that for large enough n, X,, ~ .

o METROPOLIS ALGORITHM (1953):
— Choose some initial value X, (perhaps random).
— Then, given X,,_;, choose a proposal move Y,, ~ MV N(X,,_,, 0*1I)
(say).
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Let A, = 7(Y,) / m(Xn-1) = 9(Ya) / 9(Xn-1), and U,, ~ Uniform|0, 1].
Then, if U, < A,, set X,, =Y, (“accept”), otherwise set X,, = X,,_1
(“reject”).

Repeat, forn=1,2,3,..., M.

(Note: only need to compute 7(Y;,) / 7(X,,—1), so multiplicative con-
stants cancel.)

Fact: Then, for large n, have X, ~ 7. (“rwm.html” Java applet)
Then can estimate E.(h) = [ h(x) 7(z)dx by:

B) ~ ot > (X)),

=B+1

where B (“burn-in”) chosen large enough so Xp = 7, and M chosen large

enough to get good Monte Carlo estimates.

Aside: if accepted all proposals, then would have a “random walk” Markov

chain.

So, this is called the “random walk Metropolis” (RWM) algorithm.

How large B? Difficult to say! (Some theory ... active area of research

[see e.g. |Rosenthal, “Quantitative convergence rates of Markov chains: A

simple account”, Elec Comm Prob 2002, on instructor’s web page] ...

usually use trial-and-error ... )

What initial value X7

Virtually any one will do, but “central” ones best.

Ideal: “overdispersed starting distribution”, i.e. choose X,y randomly
from some distribution that “covers” the “important” part of the state
space.

EXAMPLE: g(y) = v°sin(y*) cos(y°) 1o<y<1.

Want to compute (again!) E,(h) where h(y) = y°.

Use Metropolis algorithm with proposal Y ~ N (X, 1). [file “Rmet”]
Works pretty well, but lots of variability!

Plot: appears to have “good mixing” ...

acf: has some serial autocorrelation. Important! (Soon.)

What if we change 0?7 How does that affect estimate? plot? acf?

e EXAMPLE: m(x1,25) = C|cos(y/T1x2)| I(0 <z <5, 0 <29 <4).

Want to compute E,(h), where h(xy, z5) = €™ + (z2)2.

Metropolis algorithm ... works ... gets between about 34 and 44 ...
but large uncertainty ... (file “Rmet2”) (Mathematica gets 38.7044)
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Individual plots appear to have “good mixing” ...

Joint plot shows fewer samples where x1zo &~ (7/2)* = 2.5 ...

e.g. if m(z) = exp (ZKJ- |z, — xl|), then log(m(z)) = i<; |z; — 4.

END WEDNESDAY #2

e OPTIMAL SCALING:

Can change proposal distribution to Y,, ~ MV N(X,,_1, 02I) for any
o> 0.

Which is best?
If 0 too small, then usually accept, but chain won’t move much.

If o too large, then will usually reject proposals, so chain still won’t
move much.

Optimal: need o “just right” to avoid both extremes. (“Goldilocks
Principle”)

Can experiment ... (‘rwm.html” applet, files “Rmet”, “Rmet2”) ...
Some theory ... limited ... active area of research ...

General principle: the acceptance rate should be far from 0 and far

from 1.

In a certain idealised high-dimensional limit, optimal acceptance rate
is 0.234 (!). [Roberts et al., Ann Appl Prob 1997; Roberts and Rosen-
thal, Stat Sci 2001]

MCMC STANDARD ERROR:

e What about standard error, i.e. uncertainty?

It’s usually larger than in iid case (due to correlations), and harder to
quantify.

e Simplest: re-run the chain many times, with same M and B, with dif-

ferent initial values drawn from some overdispersed starting distribution,

and compute standard error of the sequence of estimates.

Then can analyse the estimates obtained as iid ...

e But how to estimate standard error from a single run?

e i.e., how to estimate v = Var (ﬁ S h(Xi))?

Let h(z) = h(z) — Ex(h), so E.(h) = 0.
And, assume B large enough that X; ~ 7 for i > B.
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— Then, for large M — B,

v A~ E“[((Ml—B % h(Xi))—Eﬂ(h))ﬁ _ E”KM—B sz: E(Xi))z}

i=B+1 1=B+1

- (M-B)
+2(M — B — 2)Ex(

=
=
I
=
s
+
®
+

1
M—-B

= 3 1_ B(Varw(h>+2 Cova(h(X:)h(Xi11))+2 Cova (h(Xi)h(Xiy2))+. .. )

- L V() (142 Corry (h(X0), A(Xi41))+2 Corty ((X), h(Xi2)) .. )

Q

(Ex(A(X0)")+2 Bx(R(X)h(Xi11))+2 Ex (B X:)B(Xi12))+. )

1
= Var, (h)(varfact) = (iid variance) (varfact),

M—-B

where

varfact = 1+2ZCorrﬂ(h(X0),h(Xk)) = 142> p = D pr

k=1 k=1 k=—o00

(“integrated auto-correlation time”).
— Also varfact =2 (X322, pr) — 1.

— Then can estimate both iid variance, and varfact, from the sample
run, as usual.

— Note: to compute varfact, don’t sum over all k, just e.g. until, say,
lpk| < 0.05 or pp, <Oor ...

— (Can use R’s built-in “act” function, or can write your own — better.)
— Then standard error = se = \/v = (iid-se) v/varfact.

e e.g. the files Rmet and Rmet2. (Recall: true answers are about 0.766 and
38.7, respectively.)
— Usually varfact > 1; try to get “better” chains so varfact smaller.

— Sometimes even try to design chain to get varfact < 1 (“antithetic”).

END FRIDAY #2

CONFIDENCE INTERVALS:

e Suppose we estimate v = E,(h) by the quantity e = 1= "M 5 | h(X)),
and obtain an estimate e and an approximate variance (as above) v.

e Then what is, say, a 95% confidence interval for u?
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e Well, if have central limit theorem (CLT), then for large M — B, e ~
N(u,v).
— So (e —u)v™/2 2~ N(0,1).
— So, P(—1.96 < (e — u) v™1/2 < 1.96) =~ 0.95.
— S0, P(~1.96 /v < e—u< 1.96/v) ~ 0.95.

— i.e., with prob 95%, the interval (e —1.96 /v, e+1.96 y/v) will contain
u.

— (Again, strictly speaking, should use “t” distribution, not normal dis-
tribution ... but if M — B large that doesn’t really matter — ignore
it for now.)

e c.g. the files Rmet and Rmet2. (Recall: true answers are about 0.766 and
38.7, respectively.)

e But does a CLT even hold??

— Does not follow from classical i.i.d. CLT. Does not always hold. But
often does.

— For example, CLT holds if chain is “geometrically ergodic” (later!)
and E,(|h|?*°) < oo for some § > 0.

— (If chain also reversible then don’t need §: Roberts and Rosenthal,
“Geometric ergodicity and hybrid Markov chains”, ECP 1997)

e So MCMC is more complicated than standard Monte Carlo.
— Why should we bother?

— Some problems too challenging for other methods. For example ...

BAYESIAN STATISTICS:

e Have unknown parameter(s) 6, and a statistical model (likelihood func-
tion) for how the distribution of the data Y depends on 6: L(Y | 6).

e Have a prior distribution, representing our “initial” (subjective?) proba-
bilities for 8: L£(6).

e Combining these gives a full joint distribution for § and Y, i.e. £L(0,Y).

e Then posterior distribution of 6, w(6), is then the conditional distribution
of 0, conditioned on the observed data y, i.e. w(0) = L(0]Y = y).

— In terms of densities, if have prior density fp(#), and likelihood fye(y,0),
then joint density is foy (6,y) = fo(0) fyv1o(y,0), and posterior density

n(6) = W = o (0.9) = cfol®) Fr(y,0).

e Bayesian Statistics Example: VARIANCE COMPONENTS MODEL (a.k.a.

1S
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“random effects model”):

6‘1 9[{ (91 ~ N(/L, V)

e N
3/11,...,1/1]1 YKlaw';YKJK Y;JNN<GZ,W) [observed]

I
v N

— Suppose some population has overall mean g (unknown).

— Population consists of K groups.

— Observe Yy, ...,Y,,, from group ¢, for 1 <7 < K.

— Assume Yj; ~ N(6;, W) (cond. ind.), where 6; and W unknown.

— Assume the different 6; are “linked” by 6; ~ N(u, V) (cond. ind.),

with ¢ and V' also unknown.
— Want to estimate some or all of V. W, u,0,,...,0k.

— Bayesian approach: use prior distributions, e.g. (“conjugate”):
VNIG(al,bl); WN]G(CLQ,bQ); ,LLNN(CLg,bg),

where a;, b; known constants, and IG(a,b) is the “inverse gamma”
distribution, with density % e t* g1 for 2 > 0.
e Combining the above dependencies, we see that the joint density is (for
V,W > 0):
f(V7VV7:u7917"'76K7}/117}/127-"7YKJK)

— Cl (efbl/vaalfl) (esz/Wwfagfl) (67(y7a3)2/2b3> %

<H V12— (0i—1) /2V> (H HW 1/2,~(Yij~6:) /2w)

=1 i=17=1
K
_ 02€fb1/vaalflefbg/WWfag7167(p7a3)2/2b3VfK/2W7% o1 i

X exp [—Z( 1)*/2V — Zi Yii — /2W]

=1 i=1j=1

e Then
W(V7VVJILL7817‘ .- 79K)

— 03 (efbl/vaalfl) (efbg/Wwfagfl) (ef(yfa3)2/2b3> %

<H V12— (0i—1) /2V> (H HW 1/2 ,~(Yij—6:) /gw)

=1 i=1j=1
e After a bit of simplifying,

7T-(‘/7VV7:U’7617'"791(')

16



_ Ce—bl/Vv—al—le—bz/WW—az—le—(u—a3)2/2b3V—K/2W—% f(:l Ji %

K

X oxp | = S0 — w22V — S (Y - 022w | |

i—1 i=1j=1

Dimension: d = K 4+ 3, e.g. K =19, d = 22.

How to compute/estimate, say, E,(W/V), or effect from changing b;7
— Numerical integration? No, too high-dimensional!

— Importance sampling? Perhaps, but what “f”7 Not very efficient!
— Rejection sampling? What “f”? What “K”? Virtually no samples!
— Perhaps MCMC can work!

— But need clever, useful MCMC algorithms!

COMMENT: For big complicated 7, often better to work with the LOG-
ARITHMS, i.e. accept if log(U,,) < log(A,,) = log(n(Y,)) —log(m(X,-1)).

— Then only need to compute log(m(z)), which might work better.
— So, better to program on log scale: logm(V, W, u,61,...,0x) =....

NOTE: Many applications of this model, e.g.:
— Predicting success at law school (D. Rubin, JASA 1980), K = 82

schools.

— Melanoma recurrence (http://www.mssanz.org.au/modsim07 /papers/52 s24/
Analysing_Clinicals24_Bartolucci_.pdf), K = 19 patient catagories.

— Comparing baseball home-run hitters (J. Albert, The American Statis-
tician 1992), K = 12 players.

— Analysing fabric dyes (Davies 1967; Box/Tiao 1973; Gelfand/Smith
JASA 1990), K = 6 batches of dyestuff. (data in file “Rdyec”)

METROPOLIS-HASTINGS ALGORITHM:
e (Hastings [Canadian!], Biometrika 1970; see www.probability.ca/hastings)

e Previous Metropolis algorithm works provided proposal distribution is
symmetric, i.e. ¢(z,y) = q(y, z). But what if it isn’t?

e FACT: if we replace “A,, = n(Y,) /7(Xn-1)” by A, = ﬂ&i’?ﬁg’}fﬁ;%),

then it’s still valid (justification later); everything else remains the same.

— i.e., still accept if U,, < A,,, otherwise reject.

— (Intuition: if ¢(z,y) >> q(y,x), then Metropolis chain would spend
too much time at y and not enough at z, so need to accept fewer
moves r — y.)

— Do require that ¢(x,y) > 0 iff ¢(y,x) > 0.

17


http://probability.ca/sta4502/supp/Rdye
http://probability.ca/hastings

e EXAMPLE: again m(z1,z9) = C|cos(/T12z2)| 1(0 <z <5,0 < 29
4), and h(z1,79) = €™ + (z2)?. (Recall: Mathematica gives E,(h)

IEVAN

38.7044.)

Proposal distribution: Y, ~ MV N(X,,_1, o (1 + | X,_1[*)?I).
(Intuition: larger proposal variance if farther from center.)
So, gz, y) = C (1 + [2]*)7 exp(—ly — z[* /20*(1 + |2[*)?).

So, can run Metropolis-Hastings algorithm for this example. (file
CCRMH”)

Usually get between 34 and 43, with claimed standard error =~ 2.
(Recall: Mathematica gets 38.7044.)

e LANGEVIN ALGORITHM:

Y, ~ MVN(X,_1 + 302 Viogn(X,_1), o2I).
Special case of Metropolis-Hastings algorithm.
Intuition: tries to move in direction where 7 increasing.
Based on discrete approximation to Langevin diffusion.

Usually more efficient, but requires knowledge and computation of
Vlogn. (Hard. Homework!)

For theory, see e.g. Roberts & Tweedie, Bernoulli 2(4), 341-363, 1996;
Roberts & Rosenthal, JRSSB 60, 255-268, 1998.

INDEPENDENCE SAMPLER:

e Recall: with “random-walk Metropolis”, propose Y,, ~ MV N(X,,_1, 021),
then accept if U,, < A, where U,, ~ Uniform[0, 1] and A,, = 7(Y},) / m(Xp—1).

e One alternative (of many — later) is the “independence sampler”.

Propose {Y,} ~ ¢(+), i.e. the {Y,,} are ii.d. from some fixed density
q, independent of X,, ;. (e.g. Y, ~ MV N(0, 1))

. . (V) a(Xn_1)
Then accept if U,, < A,, where U,, ~ Uniform|0, 1] and A,, = m.

Special case of the Metropolis-Hastings algorithm, where Y,, ~ ¢(X,,—1, ),

_ _m(¥n)g(¥n, Xn—1)
and An - W(Xn—l)Q(Xn—LYn).

Very special case: if q(y) = 7w(y), i.e. propose exactly from target

density 7, then A, = 1, i.e. make great proposals, and always accept
them (iid).

e EXAMPLE: independence sampler with 7(x) = = and q(y) = ke ™.

Then if X,,_ 1 =2 and Y,, =y, then A, = Z:Z ZZ:Z = e(F=D=2)  (file
“Rindﬁ)

k = 1: iid sampling (great).

k = 0.01: proposals way too large (so-so).
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— k = 5: proposals somewhat too small (terrible).
— And with k£ = 5, confidence intervals often miss 1. (file “Rind2”)

— Why is large k so much worse than small k7

VARIABLE-AT-A-TIME MCMC:

e Propose to move just one coordinate at a time, leaving all the other
coordinates fixed (since changing all coordinates at once may be difficult).

— e.g. proposal Y, has Y,,; ~ N(X,,_1,,0%), with Y, ; = X, 1 for j # 1.

— (Here Y, ; is the i*" coordinate of Y,,.)

e Then accept /reject with usual Metropolis rule (symmetric case: “Metropolis-
within-Gibbs”) or Metropolis-Hastings rule (general case: “Metropolis-
Hastings-within-Gibbs”).

e Need to choose which coordinate to update each time ...

— Could choose coordinates in sequence 1,2,...,d,1,2,... (“systematic-
scan”).

— Or, choose coordinate ~ Uniform{1,2,...,d} each time (“random-
scan”).

— Note: one systematic-scan iteration corresponds to d random-scan
ones ...

e EXAMPLE: again 7w(z1,x9) = C'|cos(/Z1z2)| I(0 <23 <5, 0< 12y <
4), and h(z1,79) = €™ + (z2)?. (Recall: Mathematica gives E,(h) =
38.7044.)

— Works with systematic-scan (file “Rmwg”) or random-scan (file “Rmwg2”).

END WEDNESDAY #3

GIBBS SAMPLER:
e (Special case of Metropolis-Hastings-within-Gibbs.)

e Proposal distribution for i coordinate is equal to the conditional dis-
tribution of that coordinate (according to 7), conditional on the current
values of all the other coordinates.

— Then, always accept. (Reason later.)

— Can use either systematic or random scan, just like above.

e EXAMPLE: Variance Components Model:

— Update of p (say) should be from conditional density of y, conditional
on current values of all the other coordinates: L(pu |V, W, 601, ...,0k,Y11,...,Y ) k).
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— This conditional density is proportional to the full joint density, but
with everything except u treated as constant.

— Recall: full joint density is:
— Ol bt/Vy—ai—1g=by/Wppr—aa—1 ,—(n—a3)?/2bs 1/~ K/2p7~5 000 Ji o
K K J;
x exp |— Y (0; —p)?/2V = > > (Vi — 6:)*/2W | .
i=1 i=1j=1

— So, conditional density of p is

IR

Cy e (h=as)*/2bs oy, [— 0; — M)2/2V1 .

=1

— This equals (verify this! HW!)

1 K az | 1 &
C — 1A (5= + == —+=> 0)).
— Side calculation: if p ~ N(m,v), then density oc e (#=™*/20
o= H2(1/20)+u(m o)
— Hence, here p ~ N(m,v), where 1/2v = ﬁ + £ and m/v = B2+

LzK 0.

Vv =1 "

— Solve: v = b3V/(V + Kb3), and m = (asV + b3 S5, 6;) / (V + Kbs).

— So, in Gibbs Sampler, each time p is updated, we sample it from
N(m,v) for this m and v (and always accept).

e Similarly (HW!), conditional distribution for V' is:

K
Che VY=Y =EK2 o | - S7 (0, — p)?/2V | V>0.

=1

— Recall that “IG(r,s)” has density FS(;) e/ 771 for z > 0.

— So, conditional distribution for V' equals

IG(ar + K/2, b+ 5205, (0; — p)?).-
e Can similar compute conditional distributions for W and 6; (HW).

e So, in this case, the systematic-scan Gibbs sampler proceeds (HW) by:

— Update V from its conditional distribution IG(..., ...).

— Update W from its conditional distribution IG(..., ...).

— Update p from its conditional distribution N(..., ...).

— Update 6; from its conditional distribution N (..., ...),fori =1,2,... K.

— Repeat all of the above M times.
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Or, the random-scan Gibbs sampler proceeds by choosing one of V. W, u, 64, . ..

uniformly at random, and then updating that coordinate from its corre-
sponding conditional distribution.

— Then repeat this step M times [or M (K + 3) times?].
— How well does it work? HW!

MCMC CONVERGENCE RATES THEORY:

{X,} : Markov chain on X', with stationary distribution II(-).
Let P"(z,S) =P[X, € S| Xo = z].

— Hope that for large n, P"(x,S) ~ I1(5).

Let D(x,n) = ||P™(x, ) — II(-)|| = supgcy |P"(x,S) — II(S)].
DEFN: chain is ergodic if lim,,_,o, D(z,n) = 0, for [l-a.e. z € X.

DEFN: chain is geometrically ergodic if there is p < 1, and M : X —
[0, 00] which is II-a.e. finite, such that D(z,n) < M(x) p™ for all x € X
and n € N.

DEFN: a quantitative bound on convergence is an actual number n* such
that D(x,n*) < 0.01 (say). [Then sometimes say chain “converges in n*
iterations” .|

Quantitative bounds often difficult (though I've worked on them a lot,
see e.g. |[Rosenthal, “Quantitative convergence rates of Markov chains: Al
simple account”, Elec Comm Prob 2002 and the references therein), but
“geometric ergodicity” is often easier to verify.

— Fact: CLT holds for % >, h(X;) if chain is geometrically ergodic and
E.(|h?*°) < oo for some § > 0.

— (If chain also reversible then don’t need ¢: [Roberts and Rosenthal,
“Geometric ergodicity and hybrid Markov chains”, ECP 1997)

— If CLT holds, then (as before) have 95% confidence interval
(e —1.96 /v, e+ 1.96/v).

So what do we know about ergodicity?

Theorem (later): if chain is irreducible and aperiodic and I1(-) is stationary,

then chain is ergodic.

What about convergence rates of independence sampler?

— By Thm, independence sampler is ergodic provided ¢(z) > 0 whenever
m(x) > 0.
— But is that sufficient?

— No, e.g. previous “Rind” example with k£ = 5: ergodic (of course), but
not geometrically ergodic, CLT does not hold, confidence intervals
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often miss 1. (file “Rind2")

e FACT: independence sampler is geometrically ergodic IF AND ONLY IF
there is § > 0 such that ¢(z) > on(x) for m-a.e. € X, in which case
D(z,n) < (1 —=4§)" for m-a.e. x € X.

So, if m(x) = ¢7® and ¢(z) = ke *® for z > 0, where 0 < k < 1, then
can take 6 =k, so D(z,n) < (1 — k)™

e.g. if k = 0.01, then D(z,459) < (0.99)%° = 0.0099 < 0.01 for all
x > 0, i.e. “converges after 459 iterations”.

But if £ > 1, then not geometrically ergodic.

If £ > 2, then no CLT (Roberts, J. Appl. Prob. 36, 1210-1217, 1999).

Fact: if k& = 5, then D(0,n) > 0.01 for all n < 4,000,000, while
D(0,n) < 0.01 for all n > 14,000,000, i.e. “convergence” takes be-
tween 4 million and 14 million iterations. Slow! [Roberts and Rosen-
thal, “Quantitative Non-Geometric Convergence Bounds for Indepen-
dence Samplers”, MCAP 2011}]

END FRIDAY #3

e What about other chains (besides independence sampler)?

e FACT: if state space is finite, and chain is irreducible and aperiodic, then

always geometrically ergodic. (See e.g. J.5. Rosenthal, STANM Review

37:

387-405, 1995])

e What about for “random-walk Metropolis algorithm” (RWM), i.e. where
{Y,, — X,,_1} ~ q for some fixed symmetric density ¢?

e.g. Y, ~ N(X,_1,0%I), or Y, ~ Uniform[X,,_; — §, X,,_1 + d].

e FACT: RWM is geometrically ergodic essentially if and only if 7 has ex-

ponential tails, i.e. there are a, b, ¢ > 0 such that 7(x) < ae~**! whenever

|z| > ¢. (Requires a few technical conditions: 7 and ¢ continuous and

positive; ¢ has finite first moment; and 7 non-increasing in the tails, with

(in higher dims) bounded Gaussian curvature.) [Mengersen and Tweedie,
Ann Stat 1996; Roberts and Tweedie, Biometrika 1996]

e EXAMPLES: RWM on R with usual proposals: Y, ~ N(X,_1, 02).

CASE #1: II = N(5,4%), and functional h(y) = y?, so E.(h) =
52 + 42 = 41. (file “Rnorm” ... o =1v. 0 =4v. 0 = 16)

Does CLT hold? Yes! (geometrically ergodic, and E,(|h|?) < oo for
all p.)

Indeed, confidence intervals “usually” contain 41. (file “Rnorm2”)

CASE #2: 7(y) = ¢ =4, and functional h(y) = y? (file “Rheavy”),

(1+y*)
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SO
f ooy (1+y dy . 7T/\/§ .
foo 1+y dy 71-/\/5

Not exponential tails, so no CLT; estimates less stable, confidence

Eﬂ(h) =

intervals often miss 1.

CASE #3: n(y) = m (Cauchy), and functional h(y) = 1_19<y<10,
so E.(h) = II(|X| < 10) = 2arctan(10)/7 = 0.93655. [11(0 < X <
x) = arctan(x) /7] (file “Rcauchy”)

Not geometrically ergodic.

Confidence intervals often miss 0.93655.

CASE #4: n(y) = (IT (Cauchy), and functional h(y) = min(y?, 100).
[Numerical integration: E,(h) = 11.77] (file “Rcauchy2”)

Again, not geometrically ergodic, and 95% CI often miss 11.77, though
iid MC does better.

e NOTE: Even when CLT holds, it’s rather unstable, e.g. requires that
chain has converged to II, and might underestimate v.

So, estimate of v is very important!
“varfact” not always reliable?
Repeated runs!

Another approach is “batch means”, whereby chain is broken into m
large “batches”, which are assumed to be approximately i.i.d.,

JUSTIFICATION: WHY DOES MCMC WORK?:

e (Uses Markov chain theory ... e.g. STA447/2006 ... already know?)

e Basic fact: if a Markov chain is “irreducible” and “aperiodic”, with “sta-

tionarity distribution” 7, then £(X,) — 7 as n — co. More precisely:

e THEOREM: If Markov chain is irreducible, with stationarity probability
density m, then for 7-a.e. initial value Xy = x,
(a) if E-(]h]|) < oo, then nh_)IgO% "L h(X;) = Ex(h) = [h(z)n(x)dx;

and
(b) if chain aperiodic, then also lim P(X, € S5) = [gm(z)dz for all
SCXx.

Let’s figure out what this all means ...

Notation: P(i,j) = P(X,.+1 = 7| X, = i) (discrete case), or P(x, A) =
P(X,+1 € A|X,, = z) (general case). Also I1(A) = [, 7(z) dx.

e Well, irreducible means that you have positive probability of eventually

getting from anywhere to anywhere else.

23



— Discrete case: for all 4,j € & there is n € N such that P(X, =
— Actually, we only need to require this for states j such that 7(j) > 0.

— General case: for all x € X, and for all A C X with [I(A) > 0, there
is n € N such that P(X,, € A| Xy =1xz) > 0.

— Usually satisfied for MCMC.

e And, aperiodic means there are no forced cycles, i.e. there do not exist dis-
joint non-empty subsets X, X, ..., X, for d > 2, such that P(x, Xj11) = 1
forallz € X; (1 <i<d—1),and P(z,X;) =1 for all z € &;. [Diagram.]

— This is true for virtually any Metropolis algorithm, e.g. it’s true if
P(z,{x}) > 0 for any one state x € X, e.g. if positive prob of rejection.

— Also true if P(z,-) has positive density throughout S, for all z € S,
for some S C X with II(S) > 0. (e.g. Normal proposals)

— Not quite guaranteed, e.g. X = {0, 1,2,3}, and 7 uniform on X', and
Y, = Xn—1 £ 1 (mod 4). But almost always holds.
e What about II being a stationary distribution?
e Begin with DISCRETE CASE (e.g. rwi.html).

e Assume for simplicity that m(z) > 0 for all z € X.

— Let g(z,y) = P(Y, = y|X,_1 = x) be proposal distribution, e.g.
q(z,z+ 1) = q(x,z — 1) = 1/2. Always chosen to be symmetric, i.e.
q(z,y) = qly, ).

— Let a(z,y) be probability of accepting a proposed move from z to y,

ie.
™Y . ™Y
alz,y) =PU, < A, | Xpna1=2,Y,=y) = P(U, < 7TE$§) = min]1, WEx; :
— State space is X, e.g. X = {1,2,3,4,5,6}.
e Then, for 7,7 € X with ¢ # j,
7(J)

e Follows that chain is “(time) reversible”: for all 7, j € X', by symmetry,
7(i) PGi,3) = qli, ) min(r(i), 7(3)) = a(j,i) min(r(i), 7()) = 7(j) PG ).

— (Intuition: if Xy ~ m, i.e. P(Xg = i) = 7(i) for all ¢ € X, then
P(Xo=1i, X1 =7)=7() P(i,j) =P(Xo =, Xi=14)...)

e We then compute that if X ~ 7, i.e. that P(Xy = i) = II(4) for all i € X,
then:

P(Xy=j) = > P(Xo=1)P(i,j) = > n(i) Pi,5) = >_7(j) P(j,7)

ieX ieX ieX
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) > P(ji) = w(j),

ieX

i.e. X; ~ 7 too!

— So, the Markov chain “preserves” , i.e. 7 is a stationary distribution.

— This is true for any Metropolis algorithm!

e It then follows from the Theorem (i.e., “Basic Fact”) that as n — oo,
L(X,) — =, ie lim, o P(X, = i) = w(i) for all i € X. (applet

“‘rwm.html”)

— Also follows that if E.(|h|) < oo, then nli_)rrolo%Z?:l h(X;) = E,(h)
[ h(z)m(x)de. (“LLN")

JUSTIFICATION: GENERAL CONTINUOUS CASE:

e Some notation:

— Let X be the state space of all possible values. (Usually X C R,
for Variance Components Model, X = (0,00) x (0,00) x R x RE
RK+3.)

— Let ¢

q(y,

e.g.

C

(x,y) be the proposal density for y given z. (So, in above case,
2(z,y) = (270) 2 exp (— S (s —)?/20%).) Symmetric: g(z, ) =
).

— Let a(x,y) = min[1, %} be probability of accepting a proposed move

from x to y.

— Let P(x,S) =P(X; € S| Xy =) be the transition probabilities.
e Then if x € S, then

P(z,S) =PV eSS, Uy <A | Xo=12) = /Sq(x,y) min[l, w(y)/7(z)] dy

— Shorthand: for z # y, P(z,dy) = q(z,y) min[l, 7(y)/7(x)]dy

— Then for z # y, P(z,dy) n(x)dz = q(x,y) min[l, n(y)/7(z)| dy 7(z) dx

q(z,y) min[r(x), n(y)]dydx = P(y,dx)n(y)dy. (symmetric)

— Follows that P(z,dy)n(x)dx = P(y,dz)w(y)dy for all z,y € X.

(“reversible”)
— Shorthand: P(xz,dy)Il(dz) = P(y, dz) I1(dy).
e How does “reversible” help? Just like for discrete chains!

e Indeed, suppose Xy ~ II, i.e. we “start in stationarity”. Then

P(X,€89) = /QCGXP(X1€S|XO_1: /xe)(/yES (. dy)w

= /mex/yesp(y,dfﬂ)ﬂ(y)dy = /yesﬂ(y)dy = II(9),
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so also X; ~ 7. So, chain “preserves” m, i.e. 7 is stationary distribution.

e So, again, the Theorem applies.

e Note: key facts about ¢(z,y) are symmetry, and irreducibility.
— So, could replace Y,, ~ N(X,_1,1) by e.g. ¥,, ~ Uniform[X,, ; —
1, X, 1 + 1], or (on discrete space) Y,, = X,,_; £ 1 with prob. % each,
etc.

JUSTIFICATION OF METROPOLIS-HASTINGS:

e Now that we understand the theory, we can consider more general algo-
rithms too ...

e Previous Metropolis algorithm works provided proposal distribution is
symmetric, i.e. ¢(x,y) = q(y, ). But what if it isn’t?

e For Metropolis, key was that ¢(z,y) a(x,y) m(x) was symmetric (to make
the Markov chain be reversible).

. _ W(Yn) (Ynaan )
e If instead An - W(Xn,lc;q(anlé/n)’

: m(y) a(y,x) .
min [1, ﬂ(x)q(zy)}, then:

i.e. acceptance prob. = «(z,y) =

(o) ) 7(0) = a(o.) min[1, DO

q

(@) g(

= min [7(z) q(z,y), () q(y,7)] .

So, still symmetric, even if ¢ wasn’t.

— So, for Metropolis-Hastings algorithm, replace “A,, = 7(Y,,) / 7(X,-1)"
by A, = ﬂ”(Y”)q(Y”’X"”) , then still reversible, and everything else re-

(Xn—l)q(Xn—lyyn)
mains the same: still accept if U, < A,,, otherwise reject.

— Do require that ¢(z,y) > 0 iff ¢(y,z) > 0.

e INDEPENDENCE SAMPLER (mentioned earlier):
— Proposals {Y,, } i.i.d. from some fixed distribution (say, Y;, ~ MV N(0, I)).
— Another special case of Metropolis-Hastings algorithm.

— Then ¢(z,y) = q(y), depends only on y.

— So, now A, = %. (files “Rind”, “Rind2” from before)

e VARIABLE-AT-A-TIME: The exact same justification works if we up-
date the variables one-at-a-time (e.g. Metropolis-within-Gibbs, Metropolis-
Hastings-within-Gibbs, etc.); each individual step is still reversible (for
the same reason), so 7 is still stationary.
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JUSTIFICATION OF GIBBS SAMPLER:

e Special case of Metropolis-Hastings-within-Gibbs.

e Proposal distribution for i coordinate is equal to the conditional dis-

tribution of that coordinate (according to ), conditional on the current

values of all the other coordinates.

That is, ¢i(z,y) = C(x) 7(y) whenever (-9 = 4= where x(-?
means all coordinates except the it" one.

Here C(2(=") is the appropriate normalising constant (which depends
on 7)), (So C(z=9) = C(y=9).)

(V) eV Xno1)  _ 7(Ya) COY ) m(Xn1) _
Then A, = TXn-1) ai(Xn-1.Yn)  7(Xp_1) CX D) a(¥n) 1.

So, always accept (i.e., can ignore the accept-reject step).

EXAMPLES RE WHY DOES MCMC WORK:

e EXAMPLE #1: Metropolis algorithm where X = Z, 7(z) = 271#1/3, and
q(z,y) = 3 if |z — y| = 1, otherwise 0.

Reversible? Yes, it’s a Metropolis algorithm!
7 stationary? Yes, follows from reversibility!
Aperiodic? Yes, since P(x,{z}) > 0!

Irreducible? Yes: 7(x) > 0 for all x € X, so can get from x to y in
|z — y| steps.

So, by theorem, probabilities and expectations converge to those of 7
— good.

e EXAMPLE #2: Same as #1, except now 7(x) = 271#1=1 for 2 # 0, with
7(0) = 0.

Still reversible, m stationary, aperiodic, same as before.

Irreducible? No — can’t go from positive to negative!

e EXAMPLE #3: Same as #2, except now ¢(z,y) = i if 1 <z —y| <2,
otherwise 0.

e EXAMPLE #4: Metropolis algorithm with X = R, and 7(z) = Ce ™,

Still reversible, 7 stationary, aperiodic, same as before.

Irreducible? Yes — can “jump over 0” to get from positive to negative,
and back!

6

and proposals Y;, ~ Uniform[X,,_; — 1, X,,_; + 1].

Reversible? Yes since ¢(x,y) still symmetric.
7 stationary? Yes since reversible!

Irreducible? Yes since P"(x,dy) has positive density whenever |y —
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x| < n.

— Aperiodic? Yes since if periodic, then if e.g. X3 N[0, 1] has positive
measure, then possible to go from A directly to Ay, i.e. if x € A1 N
[0,1], then P(x, &) > 0. (Or, even simpler: since P(z,{z}) > 0 for
all z € X.)

— So, by theorem, probabilities and expectations converge to those of 7
— good.

o EXAMPLE #5: Same as #4, except now m(z) = Cy e (1ycg 4 1g4).
— Still reversible and stationary and aperiodic, same as before.

— But no longer irreducible: cannot jump from [4,00) to (—o0,2] or
back.

— So, does not converge.

e EXAMPLE #6: Same as #5, except now proposals are
Y, ~ Uniform[X,, ; — 5, X,,_1 + 5].

— Still reversible and stationary and aperiodic, same as before.

— And now irreducible, too: now can jump from [4,00) to (—oo,2] or

back.

e EXAMPLE #7: Same as #6, except now
Y, ~ Uniform[X,,_; — 5, X,,_; + 10].

— Makes no sense — proposals not symmetric, so not a Metropolis algo-
rithm!

— (Not even symmetrically zero, for a Metropolis-Hastings algorithm.)

END WEDNESDAY +#4

e ASIDE: Why does Theorem say “m-a.e.” Xy = 7

e Example: X ={1,2,3,...},and P(1,{1}) = 1, and for z > 2, P(x,{1}) =
1/2? and P(x,{z +1}) =1 — (1/2?).
— Stationary distribution: II(-) = d;(-), i.e. II(S) = 115 for S C A

— Trreducible, since if TI(S) > 0 then 1 € S so P(z,S) > P(z,{1}) >0
for all x € X.

— Aperiodic since P(1,{1}) > 0.

— So, by Theorem, for m-a.e. Xy, have lim,,_,, P(X,, € S) = I1(9), i.e.
lim,, oo P(X, = 1) = 1.

— Butif Xo = 2 > 2, then P[X,, = z4n for all n] = [[32,(1-(1/5%)) > 0
(since 3252,(1/5°%) < 00), 50 lim,, oo P(X, = 1) # 1.

— Convergence holds if Xy = 1, which is 7-a.e. since II(1) = 1, but not
from Xg=x > 2.
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e So, convergence subtle. But usually holds from any x € X. (“Harris

recurrent”)

OPTIMAL RWM PROPOSALS:

e Consider RWM on X = R?, where Y,, ~ MV N(X, 1, X) for some d x d
proposal covariance matrix .

e What is best choice of X7

Usually we take ¥ = o021, for some o > 0, and then choose o so
acceptance rate not too small, not too large (e.g. 0.234).

But can we do better?

e Suppose for now that IT = MV N(pg, Xg) for some fixed pp and X, in
dim=>5. Try RWM with various proposal distributions (file “Ropt”):

first version: Y,, ~ MV N(X,,_1, ;). (acc = 0.06; wvarfact ~ 220)

second version: Y, ~ MV N(X,_1, 0.11;). (acc = 0.234; varfact ~
300)

third version: Y,, ~ MV N(X,,_1, ¥0). (acc = 0.31; wvarfact =~ 15)

fourth version: Y,, ~ MV N(X,_1, 1.4%). (acc = 0.234; wvarfact ~
7)

Or in dim=20 (file “Ropt2”, with file “targ20”):

Y, ~ MV N(X,_1,0.0251;). (acc ~ 0.234; wvar fact =~ 400 or more)
Y, ~ MVN(X,-1,0.283%)). (acc ~ 0.234; wvarfact = 50)

Conclusion: acceptance rates near 0.234 are better.

But also, proposals shaped like the target are better.

Indeed, best is when proposal covariance = ((2.38)2/d)S4rget-

This has been proved for targets which are orthogonal transformations
of independent components (Roberts et al., Ann Appl Prob 1997;
Roberts and Rosenthal, Stat Sci 2001|; [Bédard, Ann Appl Prob 2007),

And it’s “approximately” true for most unimodal targets ...

Problem: ¥, would usually be unknown; then what?

(('

Can perhaps “adapt

ADAPTIVE MCMC:

e What if target covariance Xy is unknown??

e Can estimate target covariance based on run so far, to get empirical

covariance >,.

e Then update proposal covariance “on the fly”.
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“Learn as you go”: see e.g. the Java applet “adapt.html”

For Adaptive MCMC, could use proposal Y, ~ MVN(X,_1, %,) [or
Y, ~ MVN(Xp_1, 1.45,), or Y, ~ MVN(X,_1, ((2.38)%/d),.)].

END FRIDAY #4

— Hope that for large n, >, =~ ¥, so proposals “nearly” optimal.

— (Usually also add el to proposal covariance, to improve stability, e.g.
e =0.05.)

Try R version, for the same MVN example as in Ropt (file “Radapt”):

— Need much longer burn-in, e.g. B = 20,000, for adaption to work.

— Get varfact of last 4000 iterations of about 18 ... “competitive” with
Ropt optimal . ..

— The longer the run, the more benefit from adaptation.

— Can also compute “slow-down factor”, s, = d ( 4N )\i—;)z),
where {\;, } eigenvals of ¥1/2 ¥ '2 Starts large, should converge to 1.
[Motivation: if ¥, = Xy, then \;, = 1, so s, = d(d/d?) = 1.] See

Roberts and Rosenthal, Examples of Adaptive MCMC, JCGS 2009,
Higher dimensions: figure “plotAMx200.png” (dim=200). (beautiful!)
— Works well, but it takes many iterations before the adaption is helpful.
BUT IS “ADAPTIVE MCMC” A VALID ALGORITHM??

Not in general: see e.g. “adapt.html”
Algorithm now non-Markovian, doesn’t preserve stationarity at each step.

However, still guaranteed to converge to II under various technical con-
ditions.

For example, it suffices (see Roberts & Rosenthal, “Coupling and Con-

vergence of Adaptive MCMC” (J. Appl. Prob. 2007)) that the adaption

satisfies:

— (a) Diminishing Adaptation: Adapt less and less as the algorithm
proceeds. Formally, sup,cy || Pr, ., (z,:)—Pr,(z,-)|| = 0in prob. [Can
always be made to hold, since adaption is user controlled.]

— (b) Containment: For all € > 0, the time to converge to within € of
stationary from z = X,,, if fix v = I',,, remain bounded in probability
as n — o0o. [Technical condition, to avoid “escape to infinity”. Holds
if e.g. the state space and adaption spaces are both compact, etc. And
always seems to hold in practice.

— (This also guarantees WLLN for bounded functionals. Various other
results about LLN / CLT under stronger assumptions.)
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— There are various “checkable” sufficient conditions which guarantee
Containment, e.g. |Y. Bai, G.O. Roberts, and J.S. Rosenthal, Adv.
Appl. Stat. 2011 and |Craiu, Gray, Latusynski, Madras, Roberts, and
Rosenthal, Ann. Appl. Prob. 2015 and |J.S. Rosenthal and J. Yang,
Ergodicity of Discontinuous Adaptive MCMC Algorithms, submitted!

e So, some “reasonable” theory, but you have to be careful!

MONTE CARLO IN FINANCE [brief]:
e X, = stock price at time ¢

e Assume that Xo = a > 0, and dX; = bXydt + 0 XdB;, where {B;} is
Brownian motion.

— i.e., for small A > 0,
(Xt+h_Xt | Xt) ~ bXt(t+h—t)+UXt(Bt+h—Bt) ~ bXt(t+h—t)+UXt N(O, h) s

SO
(Xern | X0) ~ N (X, +bX;h, 0*(X,)%h) . (%)

e A “European call option” is the option to purchase one share of the stock
at a fixed time 7" > 0 for a fixed price ¢ > 0.

e Question: what is a fair price for this option?
— At time T, its value is max(0, X7 — q).

rT

— So, at time 0, its value is e max(0, X7—q), where r is the “risk-free

interest rate”.

— But at time 0, X7 is unknown! So, what is fair price??

e FACT: the fair price is equal to E(e™"? max(0, X7 — ¢)), but only after
replacing b by r.

— (Proof: transform to risk-neutral martingale measure ... )

— Intuition: if b very large, might as well just buy stock itself.

e If o and r constant, then there’s a formula (“Black-Scholes eqn”) for this
price, in terms of ® = cdf of N(0,1):

1 L, T 1 L,
a®d (U\/T(log(a/q) +T(r+ 29 )))— ge " d ((T\/T(log(a/q) +T(r— 50 )))

e But we can also estimate it through (iid) Monte Carlo!

— Use (%) above (for fixed small h > 0, e.g. h = 0.05) to generate samples
from the difusion.

— Any one run is highly variable. (file “RBS”, with M = 1)
— But many runs give good estimate. (file “RBS”, with M = 1000)
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— Note that it’s iid replications, so varfact = 1.

e An “Asian call option” is similar, but with X7 replaced by Yk,t =
%Zle Xir/k, for some fixed positive integer k (e.g., k = 8).

— Above “FACT” still holds (again with X7 replaced by Xy ;).

— Now there is no simple formula . . . but can still simulate! (file “RAO”)

MONTE CARLO OPTIMISATION Example — Code Breaking:
e Try it out: “decipherdemo”. [uses file “decipher.c”]
e Data is the coded message text: s15283...sn, wheres; € A={A,B,C, ..., Z, space}.

e State space X is set of all bijections (for now) of A, i.e. one-to-one onto
mappings f : A — A, subject to f(space) = space.

— [“substitution cipher”|

e Use a reference text (e.g. “War and Peace”) to get matrix M (z,y) = 1+
number of times y follows z, for x,y € A.

e Then for f € X, let 7n(f) = Hﬁ’llM(f(si),f(siH)).
— (Or raise this all to a power, e.g. 0.25.)

e Idea: if m(f) is larger, then f leads to pair frequencies which more closely
match the reference text, so f is a “better” choice.

e Would like to find the choice of f which maximises 7(f).
e To do this, run a Metropolis algorithm for 7:

— Choose a,b € A\ {space}, uniformly at random.

— Propose to replace f by g, where g(a) = f(b), g(b) = f(a), and
g(x) = f(x) for all x # a,b.
— Accept with probability min (1, %)
e Easily seen to be irreducible, aperiodic, reversible.
e So, converges (quickly!) to correct answer, breaking the code.

e We later extended this to transposition ciphers etc.

e References: S. Conner (2003), “Simulation and solving substitution codes”.
P. Diaconis (2008), “The Markov Chain Monte Carlo Revolution”. J. Chen
and J.S. Rosenthal (2010),|“Decrypting Classical Cipher Text Using Markov
Chain Monte Carlo”| (Statistics and Computing 22(2), 397-413, 2011).

MONTE CARLO OPTIMISATION — Pattern Detection:

e Try it out: faces.html

e Data is an image, given in terms of a grid of pixels (each “on” or “off”).
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e Want to “find” the face in the image.
— (Harder for computers than for humans!)

e Define the face location by a vector 6 of various parameters (face center,
eye width, nose height, etc.).

e Then define a score function S(#) indicating how well the image agrees
with having a face in the location corresponding to the parameters 6.

e Then run a “mixed” Monte Carlo search (sometimes updating by small
RWM moves, sometimes starting fresh from a random vector) over the
entire parameter space, searching for argmax, S(6), i.e. for the parameter
values which maximise the score function.

— Keep track of the best 6 so far — this allows for greater flexibility in
trying different search moves without needing to preserve a stationary
distribution.

— Works pretty well, and fast! (“faces.html” Java applet)

— For details, see Java applet source code file “faces.java’”; or the paper
J.5. Rosenthal, Optimising Monte Carlo Search Strategies for Auto-
mated Pattern Detection. F. k. J. Math. Sci. 2009L

e In both of these examples, wanted to MAXIMISE (i.e., OPTIMISE) T,
rather than SAMPLE from 7.

— General method?

MONTE CARLO OPTIMISATION — Simulated Annealing:
e General method to find highest mode of .

e Idea: mode of 7 is same as mode of a flatter or a more peaked version
7, for any 7 > 0.

— e.g. m, = /7. Flatter if 7 > 1, more peaked if 7 < 1.
— For large 7, MCMC explores a lot; good at beginning of search.

— For small 7, MCMC narrows in on local mode; good at end of search.

END WEDNESDAY #5

e So, use tempered MCMC, but where 7 = 7, \, 0, so 7, becomes more
and more concentrated at mode as n — oo.

e Need to choose {7,}, the “cooling schedule”.
— e.g. geometric (7, = 7o 7™ for some r < 1).
— or linear (7, = 19 — dn for some d > 0, chosen so 7y = 79 — dM > 0).

— or logarithmic (7,, = 70/ log(1 + n)).
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— or...
— Theorem:: if ¢ > sup 7, then simulated annealing with 7,, = ¢/ log(1+
n) will converge to the global maximum as n — oco. (But very slow.)
¢ EXAMPLE: TI, = 0.3 N(0, 72) + 0.7 N(20, 72). (file “Rsimann”)
— Highest mode is at 20 (for any 7).

— If run usual Metropolis algorithm, it will either jump forever between
modes (if 7 large), or get stuck in one mode or the other with equal
probability (if 7 small) — bad.

— But if 7, N\ 0 slowly, then can usually find the highest mode (20) —
good.

— Try both geometric and linear (better?) cooling ... (file “Rsimann”)

TEMPERED MCMC:
N(0,1)+

e Suppose I1(-) is multi-modal, i.e. has distinct “parts” (e.g., I = 3

5N (20,1))

e Usual RWM with Y,, ~ N(X,_1,1) (say) can explore well within each
mode, but how to get from one mode to the other?

e Idea: if II(-) were flatter, e.g. 3 N(0,10%)+ 3 N(20,10?), then much easier
to get between modes.

e So: define a sequence IIy, 1y, ..., II,, where II; = II (“cold”), and II,
is flatter for larger 7 (“hot”). (e.g. I, = 3 N(0,7%) + 1 N (20, 72); file
“Rtempered”)

e In the end, only “count” those samples where 7 = 1.

e Proceed by defining a joint Markov chain (x,7) on X x {1,2,...,m}, with
stationary distribution IT defined by II(S x {7}) = = IL.(S5).
— (Can also use other weights besides =)

e The Markov chain should have both spatial moves (change x) and tem-
perature moves (change 7).

— e.g. perhaps chain alternates between:
(a) propose 2’ ~ N(z, 1), accept with prob min (1, ”(x/’T)) = min (1 %ﬂ)))

7(z,7) ' o (x

(b) propose /T/ =7+ 1 (prob % each), accept with prob
min (1, M) = min (1 7TT’(I)).

7(x,T) b e (x)

e Chain should converge to II.
e Then, as above, only “count” those samples where 7 = 1. (red)

o EXAMPLE: II = 1 N(0,1) + £ N(20, 1)
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— Assume proposals are Y,, ~ N(X,,_1,1).

— Mixing for IT: terrible! (file “Rtempered” with dotempering=FALSE
and temp=1; note the small claimed standard error!)

— Define I, = %N(O,T2)+%N(20,72), for r=1,2,...,10.

— Mixing better for larger 7! (file “Rtempered” with dotempering=FALSE
and temp=1,2,34,...,10)

— (Compare graphs of m and 7g: plot commands at bottom of “Rtem-
pered” ... )

— So, use above “(a)—(b)” algorithm; converges fairly well to II. (file
“Rtempered”, with dotempering=TRUE)

— So, conditional on 7 = 1, converges to II. (“points” command at end
of file “Rtempered”)

— So, average of those h(z) with 7 =1 gives good estimate of E,(h).
e HOW TO FIND THE TEMPERED DENSITIES 7.7

e Usually won’t “know” about e.g. I, = £ N(0,72) + 5 N(20,72).

e Instead, can e.g. let m-(z) = ¢, (r(z))"". (

Sometimes write § = 1/7.)

— Then II; =1II, and 7, flatter for larger 7 — good.

— (e.g.if m(z) density of N (i, 0?), then c,(m(x))"/™ density of N(u, 70?).)
— Then temperature acceptance probability is:

) = min (1, %(W(m))(l/T,)_(l/T)>.

7T7-/(33)

min (1, (@)

This depends on the c¢,, which are usually unknown — bad.

e What to do?

PARALLEL TEMPERING:
e (a.k.a. Metropolis-Coupled MCMC, or MCMCMC)
e Alternative to tempered MCMC.

e Instead, use state space X, with m chains, i.e. one chain for each tem-
perature.

e So, state at time n is X,, = (X1, Xn2, ..., Xpm), where X, is “at”
temperature 7.

e Stationary distribution is now IT = TI; x IIy x ... x II,,, ie. TI(X; €
Sl, X2 € 52, . ,Xm - Sm) = Hl(Sl) HQ(SQ) . Hm(Sm)

e Then, can update the chain X,,_;, at temperature 7 (for each 1 < 7 <
m), by proposing e.g. Y, ~ N(X,_1,, 1), and accepting with probability
min (1, % .
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And, can also choose temperatures 7 and 7’ (e.g., at random), and propose
to “swap” the values X, . and X, -, and accept this with probability

min (1, T Tl

— Now, normalising constants cancel, e.g. if 7-(z) = ¢, (7(2))"", then
acceptance probability is:

CTTI'(Xn,T/)l/T CT/W(Xn’T)l/T/
e (X )Y Com (X )T

W(Xn,T’)l/T W(Xn,T)l/T, )

in (1
mln( ) ﬂ_(X’rL,T)l/T W(Xnﬂ-/)l/T/

) — min (1,

so ¢, and ¢,/ are not required.

EXAMPLE: suppose again that II, =
1,2,...,10.

SN(0,7%) + 2 N(20,72), for T =

— Can run parallel tempering ... works pretty well. (file “Rpara”)

TRANSDIMENSIONAL MCMC [skip?]:

(a.k.a. “reversible-jump MCMC”: Green, Biometrika 1995)

What if the state space is a union of parts of different dimension?

— Can we still apply Metropolis-Hastings then??

EXAMPLE: autoregressive process: suppose Y,, = a1Y,_1+a2Y, o+...+
arYn_r, but we don’t know what k should be.

END FRIDAY #5

EXAMPLE: suppose {y;}7_, are known data which are assumed to come
from a mixture distribution: (N (a1, 1) + N(as,1) + ... + N(ay, 1)).
Want to estimate the unknown k,ay, ..., ag.

— Here the number of parameters is also unknown, i.e. the dimension is
unknown and variable, which makes MCMC more challenging!

The state space is X = {(k,a) : k € N, a € RF}.
Prior distributions: k& — 1 ~ Poisson(2), and alk ~ MV N(0, I,) (say).

Define a reference measure A by: A({k} x A) = \;(A) for £ € N and
(measurable) A C R*, where ), is Lebesgue measure on R*.

— i.e., )\:(51 X)\1+52 X>\2+(53X)\3+...
Then the posterior density (with respect to \) is:

67221671 k 1

i=1 =1

m(k,a) = C = (2m) "% exp (—; > a?) (2m) =7/ 1 <Z ]1 exp (—E(yj—ai)
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So, on a log scale,

e 22kl k 1, J
lOg 7T(l€, CL) = lOgC + lOg W — 5 10g<271') — 5 E ai — 5 lOg(27T)+
: i=1

J F1 1 )
jz::llog (;kexp ( — 5(3/]- —a;) )) :
(Can ignore log C' and % log(2n), but not £ log(27).)

How to “explore” this posterior distribution??

For fixed k, can move around R¥ in usual way with RWM (say).
But how to change k7

Can propose to replace k with, say, ¥’ = k + 1 (prob % each).

Then have to correspondingly change a. One possibility:
— If k' = k+1, thena’ = (aq,...,ax, Z) where Z ~ N(0,1) (“elongate”).
— If k' =k —1, then ¢’ = (ay,...,a,_1) (“truncate”).

| ﬂ(k’,a’)q((kz’,a’),(k,a)))
’ W(k,a)q((k@),(k’,a’)) )
— Here if ¥ = k+1, then (K, '), (k,a)) = %, while ¢((k, a), (K, a’)) =
11 (a2
2 Vor :
— Or, if ¥ =k — 1, then q((k,a), (¥,d’)) = 1, while ¢((K,d'), (k,a)) =

1#6—(%)2/2
2 2n )

Then accept with usual probability, min (

Seems to work okay; final k£ usually between 5 and 9 ... (file “Rtrans”)

ALTERNATIVE method for the “correspondingly change a” step:

— If k' = k+1,thend = (ay,...,ax_1,ax—Z, ar,+Z) where Z ~ N(0, 1)
(“split”).

— Itk =k—1, then ¢ = (a,...,a,_9, %(ak,l + ag)) (“merge”).

— What about the densities q((k',a’), (k,a))?

— Well, if " = k+ 1, then ¢((K,d'), (k,a)) = %, while roughly speaking,

11 ey 101

— e i
2 \2r 2 V27

— One subtle additional point: The map (a, Z) — o' = (aq, ..., ax_1, a—
Z,a + Z) has “Jacobian” term:

o (3, —a})?/2

q((k,a), (K, a")) =

Iy 0 0
Oa’
det (57 ) = det 8 1 —11 = 1-(-1) = 2,

i.e. the split moves “spread out” the mass by a factor of 2.
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— So by Change-of-Variable Thm, actually

o((k,a), (K a) = + L

e~ B2 /g,

N | —
5
)

— Similarly, if & = k — 1, then ¢((k,a), (K',d’)) = %7 while
a((K,0), (k@) = 5 ——e(hloma)2 /2
) ) ) 9 o .

— Algorithm still seems to work okay ... (file “Rtrans2”)

e For more complicated transformations, need to include more complicated
“Jacobian” term (but above it equals 1 or 2).

e Check: if we start the algorithms with, say, k& = 24, then they don’t
manage to reduce k enough!

— They might be trying to remove the “wrong” a;.

e So, try another MODIFICATION, this time where any coordinate can be
added/removed, not just the last one.

— While we're at it, change “new a; distribution” from Z ~ N(0,1) to
Z ~ Uniform(—20, 30), with corresponding change to the ¢((k, a), (k',a’))
formulae.

— file “Rtrans3” — now works well even if started with k = 24.
— Seems to settle on k& = 6 regardless of starting value.

— This seems to indicate rapid mixing — good!

e SUMMARY: Monte Carlo can be used for nearly everything!
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