STA4502 (Monte Carlo Estimation) Lecture Notes, Jan—Feb 2013

by Jeffrey S. Rosenthal, University of Toronto

(Last updated: February 15, 2013.)

Note: I will update these notes regularly (on the course web page). However, they are
just rough, point-form notes, with no guarantee of completeness or accuracy. They should
in no way be regarded as a substitute for attending the lectures, doing the homework
exercises, or reading the reference books.

INTRODUCTION:

e Introduction to course, handout, references, prerequisites, etc.
— Course web page: probability.ca/sta4502
— Six weeks only; counts for QUARTER-credit only.
— Bahen Centre room 1200, Wednesdays 11-1, and Fridays 11-12.

— If not Stat Dept grad student, must REQUEST enrolment (by e-mail); need
advanced undergraduate probability /statistics background, plus basic computer

programming experience.

— Conversely, if you already know lots about MCMC etc., then this course might
not be right for you since it’s an INTRODUCTION to these topics.

— How many of you are stat grad students? undergrads? math? computer science?

physics? economics? management? engineering? other? Auditing??

e Theme of the course: use (pseudo)randomness on a computer to simulate (and hence

estimate) important /interesting quantities.

e Example: Suppose want to estimate m := E[Z* cos(Z)], where Z ~ Normal(0, 1).

— Monte Carlo solution: replicate a large number z1, ..., z, of Normal(0,1) random

variables, and let z; = 2} cos(2;).
— Their mean = 1 3" | z; is an (unbiased) estimate of E[X] = E[Z* cos(Z)].
— R: Z = rmorm(100); X = ZA4 * cos(Z); mean(X) [file “RMC”]

— unstable ... but if replace “100” with “1000000” then T close to —1.213 ...
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— Variability??

— Well, can estimate standard deviation of T by “standard error” of Z, which is:

se = n~Y%sd(z) ~ nY/?

[file “RMC”]

e Then what is, say, a 95% confidence interval for m?

var(z) = n~1/? ;Z(xz—T)Q

e Well, by central limit theorem (CLT), for large n, have T ~ N(m,v) ~ N(m, se?).

— (Strictly speaking, should use “t” distribution, not normal distribution ...

if n large that doesn’t really matter — ignore it for now.)

— So =% ~ N(0,1).

— So, P(—1.96 < ™=Z < 1.96) ~ 0.95.

se

— So, P(Z —1.96se <m < T+ 1.96se) ~ 0.95.

— i.e., approximate 95% confidence interval is [file “RMC”]

(T —1.96se, T+ 1.96se).

e Alternatively, could compute expectation as

/OO 4 e /2
2% cos(z) dz.
o V2T

Analytic? Numerical? Better? Worse? [file “RMC”: —1.213]

— What about higher-dimensional versions? (Can’t do numerical integration!)

but

e Note: In this course we will just use R to automatically sample from simple distribu-

tions like Normal, Uniform, Exponential, etc.

— (How does it work? Discussed in e.g. Statistical Computing course.)

e What if distribution too complicated to sample from?

— (MCMC! ... including Metropolis, Gibbs, tempered, trans-dimensional, ... )



MONTE CARLO INTEGRATION:

e How to compute an integral with Monte Carlo?

— Re-write it as an expectation!

e EXAMPLE: Want to compute fol fol g(z,y) dz dy.
— Regard this as E[g(X,Y)], where X, Y ii.d. ~ Uniform[0, 1].
— e.g. g(x,y) = cos( y/zy ). (file “RMCint”) Easy!
— Get about 0.88 4 0.003 ... Mathematica gives 0.879544.

e c.g. estimate I = f05 f04g(9:,y) dy dx, where g(z,y) = cos(/Zy ).

— Here

5 4 5 4
/ / g(z,y) dyde — / / 5-4-g(x,y) (1/4)dy (1/5)dz = B[5-4-g(X,Y)],
0 0 0 0

where X ~ Uniform|0, 5] and Y ~ Uniform|0, 4].
— So, let X; ~ Uniform[0, 5], and Y; ~ Uniform|0, 4] (all independent).
— Estimate I by & M (5-4-g(X,,Y))).
— Standard error: se = M~Y2 sd(5-4-g(X1,Y1), ..., 54 g(Xn, Yur)).
— With M = 10%, get about —4.11 £0.01 ... (file “RMCint2”)

e c.g. estimate fol I~ h(z,y) dy dz, where h(z,y) = eV cos( /7Y ).
— (Can’t use “Uniform” expectations.)
— Instead, write this as fol J (€¥ h(z,y)) e™Y dy dx.

— This is the same as E[e¥ h(X,Y)], where X ~ Uniform[0, 1] and Y ~ Exponential(1)
are independent.

— So, estimate it by ﬁzzj\il eYih(X;,Y;), where X; ~ Uniform[0,1] and Y; ~
Exponential(1) (i.i.d.).
— With M = 10° get about 0.767 & 0.0004 ... very accurate! (file “RMCint3”)
— (Check: Numerical integration [Mathematica] gives 0.767211.)
e Alternatively, could write this as fol 1S e h(z,y) (5e ™) dy de = E[1e® h(X,Y)]
where X ~ Uniform|0, 1] and Y ~ Exponential(5) (indep.).
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— Then, estimate it by 7 Zi\il tePVih(z;,y;), where z; ~ Uniform[0,1] and y; ~
Exponential(5) (i.i.d.).

— With M = 10°, get about 0.767 & 0.0016 ... larger standard error ... (file
“RMCint4”).

— If replace 5 by 1/5, get about 0.767 £ 0.0015 ... about the same.

e So which choice is best?

— Whichever one minimises the standard error! (A = 1.5, se ~ 0.000257)

END WEDNESDAY #1

e In general, to evaluate I = E[h(Y)] = [ h(y) n(y) dy, where Y has density , could
instead re-write this as I = [ h(x) % f(x)dz, where f is easily sampled from, with
f(z) > 0 whenever 7(x) > 0.

— Then I = E (h(X) }rgg), where X has density f. (“Importance Sampling”)

— Can then do classical (iid) Monte Carlo integration, get standard errors etc.

— Good if easier to sample from f than m, and/or if the function h(x) % is less

variable than h itself.

e In general, best to make h(x) % approximately constant.

— e.g. extreme case: if I = [~ e 3 dx, then I = [;7(1/3)(3¢3")dx = E[1/3]
where X ~ Exponential(3), so I = 1/3 (error = 0, no MC needed).

UNNORMALISED DENSITIES:

e Suppose now that w(y) = cg(y), where we know g but don’t know ¢ or 7. (“Unnor-
malised density”, e.g. Bayesian posterior.)

1
[ 9w dy

— Obviously, ¢ = , but this might be hard to compute.

_ fh(x) g(z) dz
f g(z) dz

— If sample {z;} ~ f (iid.), then [h(z)g(x)dx = [ <h(x)g(:l;) / f(:c)) f(z)de =
E[h(X) g(X) / f(X)] where X ~ f.

— So, [ h(x) g(a)du ~ 4 Y, (@) glas) / (1)),

— Still, I = [h(z)w(z)dx = [ h(z)cg(z) dx
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— Similarly, [ g(z)dz ~ 57 Zf\il (g(mz)/f(:vz)>

> (h(xng(xi)/f(xi))
> <g(mi)/f(wi)>

— (Not unbiased, standard errors less clear, but still consistent.)

— So, I ~ . (“Importance Sampling”: weighted average)

— (Good to use same sample {z;} for both numerator and denominator: easier

computationally, and smaller variance.)

e Example: compute I = E(Y?) where Y has density cy? sin(y*) cos(y®) Lo<y<1, where
¢ > 0 unknown (and hard to compute!).
— Here g(y) = y®sin(y*) cos(y®) Lo<y<1, and h(y) = y>.
— Let f(y) = 6y°Lo<y<1. [Fact (check): if U ~ Uniform[0, 1], then X = U6 ~ f]

SM (h(@i) g(ws) / f(22) S™M (sin(a?) cos(a?))

— Th I =~ i=1 = i=1

. S (9@ / £(@) S M (sin(z?) cos(a?) /22)
get about 0.766 ... )

. (file “Rimp” ...

— Or, let f(y) =4y*1o<y<1. [Then if U ~ Uniform|0, 1], then UY4 ~ f)]

W) a(@) [ fx) M (sina?) cos(a?) 2?)

> (
— Th I =~ i=1 _
en Ei‘il (sin(w;l) COS(”?))

SM (o) / fa0)

. (file “Rimp”)

END FRIDAY #1

e With importance sampling, is it important to use the same samples {z;} in both

numerator and denominator?
— What if independent samples are used instead?
— Let’s try it! (file “Rimpind”)
— Both ways work, but usually the same samples work better.

e What other methods are available to iid sample from 7?7

REJECTION SAMPLER:

e Assume 7(z) = cg(x), with 7 and ¢ unknown, g known but hard to sample from.

e Want to sample X ~ .

— Then if X1, Xo,..., X ~ 7 iid, then can estimate E.(h) by - Zf\il h(X;), etc.
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Find some other, easily-sampled density f, and known K > 0, such that K f(x) > g(z)

for all x.

Sample X ~ f, and U ~ Uniform|0, 1] (indep.).
— IfU < g(X)/Kf(X), then accept X (as a draw from 7).
— Otherwise, reject X and start over again.

Now, P(U < g(X)/Kf(X)|X = x) = g(z)/K f(z), so conditional on accepting, we
have that

9(XxX)
P<X<y, U< 2% ))
< < Q(X)>

fi’oof(@ K% dv_ Logwds /y

Kf(X

P(x<y|U< g()(())) =

m(x)dx .

— So, conditional on accepting, X ~ m. Good! iid!

— However, prob. of accepting may be very small, then get very few samples.
Example: 7 = N(0,1), i.e. g(z) = n(z) = (27) /% exp(—22/2).

— Want: E,(X*%), ie. h(z) = 2.

— Let f be double-exponential distribution, i.e. f(x) = %e_m.
If K =8, then:

— For |z| <2, Kf(z) =83 exp(—|z|) > 82 exp(—2) > (2m)~¥/2 > n(z) = g(z).

— For |z > 2, Kf(z) =81 exp(—|z|) > 83 exp(—2?/2) > (2r) "1/ 2 exp(—2?/2) =

m(z) = g(z).

So, can apply rejection sampler with this f and K, to get samples, estimate of E[X],
estimate of E[h(X)], estimate of P[X < —1], etc. (file “Rrej”)

For Rejection Sampler, P(accept) = E[P(accept|X)] = E[I?J(‘i()g)] =/ }gj(‘gga)c) f(z)de =
+ [g(z)dz = . (Only depends on K, not f.)

— So, in M attempts, get about M/cK iid samples.
— (“Rrej” example: ¢ =1, K =8, M = 10,000, so get about M /8 = 1250 samples.)

— Since c fixed, try to minimise K.



— Extreme case: f(x) = 7(z), so g(x) = w(z)/c = f(x)/c, and can take K = 1/¢,
whence P(accept) = 1, iid sampling: optimal.
e Note: these algorithms all work in discrete case too.

— Canlet 7, f, etc. be “probability functions”, i.e. probability densities with respect

to counting measure.

— Then the algorithms proceed exactly as before.

e AUXILIARY VARIABLE APPROACH: (related: “slice sampler”)
— Suppose 7(z) = cg(z), and (X,Y) chosen uniformly under the graph of g.
— e, (X,Y) ~ Uniform{(z,y) e R?*: 0 <y < g(x)}.

— Then X ~ 7, i.e. we have sampled from 7.

b
. x) dx
— Why? For a < b, P(a < X < b) = areawith a<X<b _ Jy g [’ m(z) dx.

total area —— — [> g(z)da a

— So, if repeat, get i.i.d. samples from m, can estimate E,(h) etc.

e Auxiliary Variable rejection sampler:

— If support of g contained in [L, R], and |g(z)| < K, then can first sample (X,Y") ~
Uniform([L, R] x [0, K]), then reject if Y > g(X), otherwise accept as sample with
(X,Y) ~ Uniform{(z,y) : 0 <y < g(x)}, hence X ~ .

e Example: g(y) = y°sin(y*) cos(y®) Lo<y<1-

— Then L=0,R=1, K =1.

— So, sample X,Y ~ Uniform[0, 1], then keep X iff Y < g(X).

— If h(y) = 42, could compute e.g. E;(h) as the mean of the squares of the accepted
samples. (file “Raux”)

e Can iid / importance / rejection / auxiliary sampling solve all problems? No!

— Many challenging cases arise, e.g. from Bayesian statistics (later).

— Some are high-dimensional, and the above algorithms fail.

— Alternative algorithm: MCMC!



MARKOV CHAIN MONTE CARLO (MCMCQC):

Suppose have complicated, high-dimensional density m = cg.
Want samples X7, Xs,... ~ 7. (Then can do Monte Carlo.)
Define a Markov chain (random process) Xo, X1, Xa, ..., so for large n, X,, ~ .
METROPOLIS ALGORITHM (1953):
— Choose some initial value X (perhaps random).
— Then, given X,,_1, choose a proposal move Y,, ~ MV N(X,,_1, 02 1) (say).
— Let A, =n(Y,,) /7n(Xn-1) =9(Yn) / 9(Xn-1), and U,, ~ Uniform|0, 1].
— Then, if U,, < A,, set X,, =Y, (“accept”), otherwise set X,, = X,,_1 (“reject”).
— Repeat, forn=1,2,3,..., M.
— (Note: only need to compute 7(Y,,) / (X, 1), so multiplicative constants cancel.)

Fact: Then, for large n, have X,, = w. (“rwm.html” Java applet)

END WEDNESDAY #2

Handouts: class homework, project, participation. (Also on course web page.)

Then can estimate E;(h) = [ h(z) 7(x) dz by:

E.(h) ~ Ml_B_Z h(X),

where B (“burn-in”) chosen large enough so Xp ~ 7, and M chosen large enough to

get good Monte Carlo estimates.

Aside: if accepted all proposals, then would have a “random walk” Markov chain.

— So, this is called the “random walk Metropolis” (RWM) algorithm.

How large B? Difficult to say! (Some theory ... active area of research [see e.g.
Rosenthal, “Quantitative convergence rates of Markov chains: A simple account”,

Elec Comm Prob 2002, on instructor’s web page] ... usually use trial-and-error ... )

What initial value X7



Virtually any one will do, but “central” ones best.

Ideal: “overdispersed starting distribution”, i.e. choose Xy randomly from some

distribution that “covers” the “important” part of the state space.

e EXAMPLE: g(y) = y®sin(y*) cos(y°) Lo<y<1.

Want to compute (again!) E,(h) where h(y) = y>.
Use Metropolis algorithm with proposal Y ~ N(X,1). [file “Rmet”]
Works pretty well, but lots of variability!

Plot: appears to have “good mixing” ...

e EXAMPLE: 7t(x1,22) = C'cos(/x122)| I(0 <21 <5,0<x9 <4).

Want to compute E,(h), where h(z1,z2) = €t + (22)2.

Metropolis algorithm ... works ... gets between about 34 and 44 ... but large
uncertainty ... (file “Rmet2”) (Mathematica gets 38.7044)

Individual plots appear to have “good mixing” ...

Joint plot shows fewer samples where z125 ~ (7/2)? =2.5 ...

END FRIDAY #2

e.g. if m(z) = exp (ZK]. |z; — :UZ|>, then log(m(z)) = >, [v; — 4.

e OPTIMAL SCALING:

Can change proposal distribution to Y,, ~ MV N(X,,_1, 02I) for any o > 0.
Which is best?

If o too small, then usually accept, but chain won’t move much.

If o too large, then will usually reject proposals, so chain still won’t move much.
Optimal: need o “just right” to avoid both extremes. (“Goldilocks Principle”)
Can experiment ... (“rwm.html” applet, files “Rmet”, “Rmet2”) ...

Some theory ... limited ... active area of research ...

General principle: the acceptance rate should be far from 0 and far from 1.

In a certain idealised high-dimensional limit, optimal acceptance rate is 0.234 (!).
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[Roberts et al., Ann Appl Prob 1997; Roberts and Rosenthal, Stat Sci 2001]

MCMC STANDARD ERROR:

e What about standard error, i.e. uncertainty?

— Tt’s usually larger than in iid case (due to correlations), and harder to quantify.

e Simplest: re-run the chain many times, with same M and B, with different initial
values drawn from some overdispersed starting distribution, and compute standard

error of the sequence of estimates.

— Then can analyse the estimates obtained as iid ...
e But how to estimate standard error from a single run?
e i.e., how to estimate v = Var (ﬁ Zf\iBH h(Xi)>?

— Let h(z) = h(z) — Ex(h), so Ex(h) = 0.

— And, assume B large enough that X; ~ 7 for i > B.

— Then, for large M — B,

e

1

- — (Varﬂ(h) 42 Covr (M(X:)h(Xis1)) + 2 Covn (B(X:)h(Xisa)) + ... )

~
~

=
e
SN—
=
_|_
[\
=
3
=
=
e
SN—
=
>
>
+
=
N—
SN—
_|_
[\
=
3
a3
=
e
=
e
_|_
N
_|_
N—

1

= ——— Vara(h) (1+2 Corrr (R(X:), h(Xit1))+2 Corrr (A(X:), h(Xit2)) +. . )

1 .. .
= 7B Var(h)(varfact) = (iid variance) (varfact),

where

varfact = 1+2§:Corrﬂ<h(X0),h(Xk)> = 1+2§:pk = i Pk
k=1

k=1 k=—o0
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(“integrated auto-correlation time”). Also varfact =2 (3", px) — 1.
— Then can estimate both iid variance, and varfact, from the sample run, as usual.

— Note: to compute varfact, don’t sum over all k, just e.g. until, say, |px| < 0.05 or

pr <0or...
— (Can use R’s built-in “acf” function, or can write your own — better.)

— Then standard error = se = /v = (iid-se) v/ varfact.

e c.g. the files Rmet and Rmet2 [modified]. (Recall: true answers are about 0.766 and
38.7, respectively.)

— Usually varfact > 1; try to get “better” chains so varfact smaller.

— Sometimes even try to design chain to get varfact < 1 (“antithetic”).

CONFIDENCE INTERVALS:

e Suppose we estimate u = E(h) by the quantity e = -7 & Z,?iBH h(X;), and obtain

an estimate e and an approximate variance (as above) v.
e Then what is, say, a 95% confidence interval for u?

e Well, if have central limit theorem (CLT), then for large M — B, e &~ N(u,v).
— So (e —u)v~2 =~ N(0,1).
— So, P(—1.96 < (e —u)v~2 < 1.96) ~ 0.95.
— So, P(~1.96 /v < e—u < 1.96/v) ~ 0.95.
— i.e., with prob 95%, the interval (¢ — 1.96 \/v, e + 1.96 \/v) will contain u.

— (Again, strictly speaking, should use “t” distribution, not normal distribution ...

but if M — B large that doesn’t really matter — ignore it for now.)

e c.g. the files Rmet and Rmet2 [modified]. (Recall: true answers are about 0.766 and
38.7, respectively.)

e But does a CLT even hold??

END WEDNESDAY #3
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e But does a CLT even hold??
— Does not follow from classical i.i.d. CLT. Does not always hold. But often does.

— For example, CLT holds if chain is “geometrically ergodic” (later!) and E(|h|?T?) <

oo for some 6 > 0.
— (If chain also reversible then don’t need 0: Roberts and Rosenthal, “Geometric
ergodicity and hybrid Markov chains”, ECP 1997.)
e So MCMC is more complicated than standard Monte Carlo.
— Why should we bother?

— Some problems too challenging for other methods. For example ...

BAYESIAN STATISTICS:

e Have unknown parameter(s) 6, and a statistical model (likelihood function) for how
the distribution of the data Y depends on 6: L(Y |6).

e Have a prior distribution, representing our “initial” (subjective?) probabilities for 6:

L(0).

e Combining these gives a full joint distribution for  and Y, i.e. £(6,Y).

e Then posterior distribution of 6, 7(f), is then the conditional distribution of 6,
conditioned on the observed data y, i.e. 7(0) = L(0|Y = y).

— In terms of densities, if have prior density fy(6), and likelihood fy4(y, ), then
joint density is fp v (0,y) = fo(6) fy|e(y,0), and posterior density is

() = % — e hov(By) = cfol6) fyp(u,0).

e Bayesian Statistics Example: VARIANCE COMPONENTS MODEL (a.k.a. “random

effects model”):
— Suppose some population has overall mean p (unknown).
— Population consists of K groups.
— Observe Yjy1, ..., Y, , from group i, for 1 <17 < K.

— Assume Y;; ~ N(60;,W) (cond. ind.), where 6; and W unknown.
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— Assume the different 6; are “linked” by 6; ~ N(u, V) (cond. ind.), with p and V

also unknown.
— Want to estimate some or all of VW, u,0,...,0k.

— Bayesian approach: use prior distributions, e.g. (“conjugate”):
VNIG<CL1,b1); WNIG(CLQ,bQ); MNN(G3,b3),

where a;, b; known constants, and IG(a, b) is “inverse gamma” distribution, with

density % e b/* g=a=1 for z > 0.

e Combining the above dependencies, we see that the joint density is (for V, W > 0):
f(V,I/I/,mHl, . ,QK,YH,YH, e ,YKJK)

— Cl (e—bl/VV—al—].) (e—bg/WW—CLQ—].) (e—(u—a3)2/2b3) X

K K J;
X <H V—1/2e—(9i—ﬂ)2/2v> HHW—1/26—(YU—91)2/2W
i=1 i=1j=1

_ C2e—b1/VV—a1—1e—bg/WW—ag—le—(u—a3)2/2b3V—K/2W*%Zf(:l VN

K

X exp | =Y (0; —p)?/2V =) Zi(Y;'j —0:;)*/2W

i=1 i=1 j=1

e Then
7T(V, Wvluaelv' - 70K>

— O <€—b1/Vv—a1—1> (e—bg/WW—a2—1> <€—(u—a3)2/2b3) %

K K J;
% <H V—1/2e—(9i—ﬂ)2/2v> HHW—1/2€—(YU—9¢)2/2W
=1

i=1j=1

e COMMENT: For big complicated 7, often better to work with the LOGARITHMS,
i.e. accept if log(U,,) < log(A,,) = log(n(Y,)) — log(m(X,—1))-

— Then only need to compute log(m(x)), which could be easier / finite.

END FRIDAY #3
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e Bayesian Statistics Example: VARIANCE COMPONENTS MODEL (cont’d):

e After a bit of simplifying,

ﬂ-(‘/am/u”ela"wgl()

— Ce 0 /Viy—ar—1,-ba /Wy —az—1,~(u—as)?/2bs 1/ —K/217 3 >, i X

K

K J
X oexp [ =Y (0:— p)?/2V =) ) (Vij — 60:)*/2W

i=1 i=1 j=1

Better to program on log scale: logm(V, W, u,01,...,0k) = ....

Dimension: d = K + 3, e.g. K =19, d = 22.

How to compute/estimate, say, E;(W/V)? Or sensitivity to choice of e.g. b;7
— Numerical integration? No, too high-dimensional!
— Importance sampling? Perhaps, but what “f”? Not very efficient!

— Rejection sampling? What “f”? What “K”? Virtually no samples!

Many applications, e.g.:
— Predicting success at law school (D. Rubin, JASA 1980), K = 82 schools.

— Melanoma recurrence (http://www.mssanz.org.au/modsim07/papers/52_s24/

Analysing_Clinicals24_Bartolucci_.pdf), K = 19 patient catagories.

— Comparing baseball home-run hitters (J. Albert, The American Statistician 1992),
K = 12 players.

— Analysing fabric dyes (Davies 1967; Box/Tiao 1973; Gelfand/Smith JASA 1990),
K = 6 batches of dyestuff. (data in file “Rdye”)

INDEPENDENCE SAMPLER:

e Recall: with “random-walk Metropolis”, propose Y,, ~ MV N (X, _1, 0%1;), then ac-
cept if U,, < A,, where U,, ~ Uniform|0,1] and A,, = n(Y,,) / 7(X,—1).

e One alternative (of many — later) is the “independence sampler”.

— Propose {Y,,} ~ ¢q(-), i.e. the {Y,, } are i.i.d. from some fixed density ¢, independent
of Xp_1. (e.g. Yy ~ MVN(0, I,))

14



. . o w(Yn) q¢(Xn—1)
— Then accept if U,, < A,, where U,, ~ Uniform[0, 1] and A,, = m.

— Special case of the “Metropolis-Hastings algorithm”, where Y;, ~ ¢(X,,_1, -), and

An = sy (later).

— Very special case: if q(y) = m(y), i.e. propose exactly from target density =, then

A, =1, i.e. make great proposals, and always accept them (iid).

e EXAMPLE: independence sampler with 7(z) = e~® and q(x) = ke **.
— Then if X,,_1 =z and Y,, = y, then A,, = % = e(k=D(y—12) (file “Rind”)
— k = 1: iid sampling (great).
— k = 0.01: proposals way too large (so-so).
— k = b: proposals somewhat too small (terrible).

— And with k& = 5, confidence intervals often miss 1. (file “Rind2”)

— Why is large k£ so much worse than small k7
MCMC CONVERGENCE RATES, PART I:
e {X,} : Markov chain on X, with stationary distribution II(-).
e Let P"(z,S) =P[X,, € S| X = z].
— Hope that for large n, P™(zx, S) ~ II(S).
o Let D(x,n) = [|P"(x, ) — ()| = supscx [P"(z,5) — II(5)].
e DEFN: chain is ergodic if lim, o D(z,n) = 0, for Il-a.e. x € X.

e DEFN: chain is geometrically ergodic if there is p < 1, and M : X — [0, oo] which is
IT-a.e. finite, such that D(z,n) < M(x) p™ for all z € X and n € N.

e DEFN: a quantitative bound on convergence is an actual number n* such that D(x,n*) <

0.01 (say). [Then sometimes say chain “converges in n* iterations”.]

e Quantitative bounds often difficult (though I've worked on them a lot), but “geometric

ergodicity” often easier to verify.

— Fact: CLT holds for 1 3" | h(X;) if chain is geometrically ergodic and E, (|r[?*%) <

oo for some § > 0.

— (If chain also reversible then don’t need §: Roberts and Rosenthal, “Geometric
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ergodicity and hybrid Markov chains”, ECP 1997.)
— If CLT holds, then have 95% confidence interval (e — 1.96 /v, e+ 1.96 /v).

e So what do we know about ergodicity?

e Theorem (later): if chain is irreducible and aperiodic and II(-) is stationary, then
chain is ergodic.
e What about convergence rates of independence sampler?
— By Thm, independence sampler is ergodic provided ¢(z) > 0 whenever m(z) > 0.
— But is that sufficient?

— No, e.g. previous “Rind” example with &k = 5: ergodic (of course), but not ge-
ometrically ergodic, CLT does not hold, confidence intervals often miss 1. (file
“Rind2”)

e FACT: independence sampler is geometrically ergodic IF AND ONLY IF thereis d > 0
such that g(x) > dn(x) for m-a.e. z € X, in which case D(z,n) < (1 — )™ for m-a.e.
rEeX.

— So, if 7(x) = e and q(x) = ke™** for x > 0, where 0 < k < 1, then can take
d=k,so D(x,n) <(1—k)".

— e.g. if K = 0.01, then D(z,459) < (0.99)%° = 0.0099 < 0.01 for all = > 0, i.e.

“converges” after 459 iterations.
— But if £ > 1, then not geometrically ergodic.

— Fact: if k = 5, then D(0,n) > 0.01 for all n < 4,000,000, while D(0,n) <
0.01 for all n > 14,000,000, i.e. “convergence” takes between 4 million and 14
million iterations. Slow! [Roberts and Rosenthal, “Quantitative Non-Geometric

Convergence Bounds for Independence Samplers”, MCAP 2011.]

e What about other chains (besides independence sampler)? (Coming soon!)

VARIABLE-AT-A-TIME MCMC:

e Propose to move just one coordinate at a time, leaving all the other coordinates fixed

(since changing all coordinates at once may be difficult).

— e.g. proposal Y, has Y, ; ~ N(X,_1,,0?), with Y, ;= Xn_1, for j #1i.
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— (Here Y, ; is the i*" coordinate of Y,,.)

e Then accept/reject with usual Metropolis rule (symmetric case: “Metropolis-within-

Gibbs”) or Metropolis-Hastings rule (general case: “Metropolis-Hastings-within-Gibbs”).

e Need to choose which coordinate to update each time ...
— Could choose coordinates in sequence 1,2,...,d,1,2,... (“systematic-scan”).
— Or, choose coordinate ~ Uniform{1,2,...,d} each time (“random-scan”).
— Note: one systematic-scan iteration corresponds to d random-scan ones ...
e EXAMPLE: again m(x1,22) = Clcos(y/T122)| I(0 < 21 < 5,0 < 29 < 4), and
h(z1,22) = €™ + (72)2. (Recall: Mathematica gives E(h) = 38.7044.)
— Works with systematic-scan (file “Rmwg”) or random-scan (file “Rmwg2”).
e GIBBS SAMPLER:
e (Special case of Metropolis-Hastings-within-Gibbs — later.)

e Proposal distribution for i*" coordinate is equal to the conditional distribution of
that coordinate (according to m), conditional on the current values of all the other

coordinates.
— Then, always accept. (Reason later.)

— Can use either systematic or random scan, just like above.

END WEDNESDAY +#4

e EXAMPLE: Variance Components Model:

— Update of u (say) should be from conditional density of y, conditional on current

values of all the other coordinates: L(u|V,W,01,...,0k,Y11,...,Y ) K).

— This conditional density is proportional to the full joint density, but with every-

thing except p treated as constant.
— Recall: full joint density is:
— Cefbl/vaal71€*b2/WW7a2*167(u7a3)2/2b3 V*K/QW_% Zfil Jz X

K

K J
X exp | = (6 — p)?/2V = > (Vi; — 6;)°/2W

=1 i=1 j=1
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— So, conditional density of u is

K
Cy e_(“_“3)2/2b3 exp[ Z /2V

=1

— This equals (verify this! HW!)

1 K a 1
2 3
LK L))
Cs exp (= 12(gp + gy7) + (G + 7 D_60)
— Side calculation: if 4 ~ N(m,v), then density o e~ (H=m)*/2v o o= (1/20)Fp(m/v)
— Hence, here p ~ N(m,v), where 1/2v = ﬁ + £ and m/v = =+ - Zfil 0;

— Solve: v =b3V/(V + Kbs), and m = (azV + b3 S, 6;) / (V + Kb).

— So, in Gibbs Sampler, each time p is updated, we sample it from N (m,v) for this

m and v (and always accept).

Similarly (HW!), conditional distribution for V is:

Cue 01/Vy—a-ly—K/2 o [ Z w)?/2v V>0.

e/ =1 for > 0.

— Recall that “IG(r,s)” has density & ( y €

— So, conditional distribution for V' equals IG(a1 + K/2, by + %Zfil(ﬁz —1)?).
Can similar compute conditional distributions for W and 6; (HW).

So, in this case, the systematic-scan Gibbs sampler proceeds (HW) by:

— Update V from its conditional distribution IG(..., ...).

— Update W from its conditional distribution IG(..., ...).

— Update p from its conditional distribution N (..., ...).

— Update 0; from its conditional distribution N (..., ...), fori=1,2,... K.

— Repeat all of the above M times.

Or, the random-scan Gibbs sampler proceeds by choosing one of V. W, 1, 01,...,0k
uniformly at random, and then updating that coordinate from its corresponding con-

ditional distribution.
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Then repeat this step M times [or M (K + 3) times?].

MCMC CONVERGENCE RATES, PART II:

e FACT: if state space is finite, and chain is irreducible and aperiodic, then always

geometrically ergodic.

e What about for “random-walk Metropolis algorithm” (RWM), i.e. where {Y;,—X,,_1} ~

q for some fixed symmetric density ¢7

e.g. Y, ~N(X,_1,0%]), or Y, ~ Uniform[X,, 1 — 6, X,,_1 + d].

e FACT: RWM is geometrically ergodic essentially if and only if 7 has exponential tails,

i.e. there are a,b,c > 0 such that 7w(x) < ae

~blzl whenever |z| > c. (Requires a few

technical conditions: m and ¢ continuous and positive; ¢ has finite first moment; and

7 non-increasing in the tails, with (in higher dims) bounded Gaussian curvature.)
[Mengersen and Tweedie, Ann Stat 1996; Roberts and Tweedie, Biometrika 1996]

e EXAMPLES: RWM on R with usual proposals: Y,, ~ N(X,,_1, 0?).

CASE #1: 11 = N(5,4%), and functional h(y) = 3%, so E;(h) = 5% + 4% = 41.

(file “Rnorm” ... o =1v.o0=4v.0=16)
Does CLT hold? Yes! (geometrically ergodic, and E, (|h|P) < oo for all p.)

Indeed, confidence intervals “usually” contain 41. (file “Rnorm2”)

CASE #2: 7(y) =c¢ m, and functional h(y) = 2, so

E.(h) = Lovmmd Ve
' ffooo (1—&—1y4) dy 7T/\/§

Not exponential tails, so no CLT}; estimates less stable, confidence intervals often
miss 1. (file “Rheavy”)

END FRIDAY #4

CASE #3: 7(y) = m (Cauchy), and functional h(y) = 1_1p<y<10, SO

E.(h) =1II(|X| < 10) = 2arctan(10) /7 = 0.93655. [II(0 < X < x) = arctan(z) /7]

Not geometrically ergodic.
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— Confidence intervals often miss 0.93655. (file “Rcauchy”)

— CASE #4: n(y) = m (Cauchy), and functional h(y) = min(y?, 100). [Nu-
merical integration: E(h) = 11.77]
— Again, not geometrically ergodic, and 95% CI often miss 11.77, though iid MC

does better. (file “Rcauchy?2”)
e NOTE: Even when CLT holds, it’s rather unstable, e.g. requires that chain has
converged to II, and might underestimate v.
— So, estimate of v is very important!
— “varfact” not always reliable?
— Repeated runs!

— Another approach is “batch means”, whereby chain is broken into m large “batches”,

which are assumed to be approximately i.i.d.,

SO WHY DOES MCMC WORK?:
e (Need Markov chain theory ... STA447/2006 ... already know?)

e Basic fact: if a Markov chain is “irreducible” and “aperiodic”, with “stationarity dis-

tribution” 7, then £(X,,) — m as n — oo. More precisely ...

e THEOREM: If Markov chain is irreducible, with stationarity probability density ,
then for m-a.e. initial value X¢ = =z,
(a) if Ex(|h]) < oo, then Jim L3 h(X;) =Er(h) = [ h(z) n(z) dz; and
(b) if chain aperiodic, then also lim P(X,, € S) = [ 7m(x)dz for all S C X.

n—oo S

— Let’s figure out what this all means ...
— Notation: P(i,j) = P(Xp41 = j| X,, = i) (discrete case), or P(x, A) = P(X,,11 €
A| X, = z) (general case). Also II(A) = [, n(x) d.

e Well, irreducible means that you have positive probability of eventually getting from

anywhere to anywhere else.

— Discrete case: for all i,j € X there is n € N such that P(X,, = j|Xo =1i) > 0.

(discrete case)

— General case: for all € X, and for all A C X with II(A) > 0, there isn € N
such that P(X,, € A| Xy =x) > 0.
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— Usually satisfied for MCMC.

e And, aperiodic means there are no forced cycles, i.e. there do not exist disjoint non-
empty subsets X7, Xo,..., Xy for d > 2, such that P(z,X;41) = 1 for all x € A;
(1<i<d-1),and P(z,X;) =1 for all z € X;. (Diagram.)

— This is true for virtually any Metropolis algorithm, e.g. it’s true if P(z,{z}) >0
for any one state x € X, e.g. if positive prob of rejection.

— Also true if P(z,-) has positive density throughout S, for all x € S, for some
S C X with TI(S) > 0.

— Not quite guaranteed, e.g. X = {0,1,2,3}, and 7 uniform on X, and Y, =
Xn—1 £1 (mod 4). But almost always holds.

What about II being a stationary distribution??

Begin with DISCRETE CASE (e.g. rwm.html).

Assume for simplicity that w(z) > 0 for all x € X.
— Let q(z,y) = P(Y,, = y| X,,—1 = x) be proposal distribution, e.g. ¢(z,x + 1) =
q(x,x — 1) = 1/2. Always chosen to be symmetric, i.e. ¢(z,y) = q(y, x).

— Acceptance probability is min(1, %)

— State space is X, e.g. X = {1,2,3,4,5,6}.

Then, for i,j € X with i # j,

P(’L,j) = Q(iaj) min(la

Follows that chain is “reversible”: for all 7,7 € X', by symmetry,
7(0) P(i.j) = q(i,§) min(r(i), 7(7)) = q(1) min(r(i), 7(j) = m(j) P(j,0).
— (Intuition: if Xg ~ 7, i.e. P(Xo =1i) = 7(i) for all i € X, then P(Xy =14, X; =
J)=P(Xo=j, X1 =1) ... “time reversible” ... )

e We then compute that if Xy ~ 7, i.e. that P(Xy =) = II(i) for all i € X, then:

P(X;=j) = Y P(Xo=i)P(i,j) = Y w(i)P(i,j) = > =(j)P(j,i)

1eX 1eEX ieX
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= 7(j) Y_PG,i) = 7(j),

i€X
i.e. X ~ 7 too!

— So, the Markov chain “preserves” w, i.e. 7 is a stationary distribution.

— This is true for any Metropolis algorithm!

e It then follows from the Theorem (i.e., “Basic Fact”) that as n — oo, L(X,,) — 7, i.e.
lim,, o0 P(X,, =14) = 7(3) for all i € X. (file “rwm.html”)

— Also follows that if E;(|h|) < oo, then ILm L3 h(X;) =Er(h) = [ h(z)n(z)da.
(“LLN”)
e SO WHAT ABOUT THE MORE GENERAL, CONTINUOUS CASE?

e Some notation:

— Let X be the state space of all possible values. (Usually X C R%, e.g. for Variance
Components Model, X = (0,00) x (0,00) x R x RE C RE+3))

— Let g(z,y) be the proposal density for y given z. (So, in above case, ¢(x,y) =
(2m0) =2 exp (— S, (i — 24)?/207).) Symmetric: q(z,y) = q(y, 7).

— Let a(z,y) be probability of accepting a proposed move from z to y, i.e.

alz,y) =PU, < Ap | X1 =2, Y, =y) = PU, < %) = min|[l, ﬂ—]

— Let P(x,S) =P(X; € S| Xy = x) be the transition probabilities.

e Then if x € S, then

P(z,5) = PY1e€S, Ui <A |Xo=2) = /Sq(x,y) min[l, 7(y)/7(x)] dy.

— Shorthand: for z # y, P(x,dy) = q(x,y) min[l, 7(y)/m(z)] dy.

— Then for z # y, P(x,dy)n(x)dx = q(z,y) min[l, 7(y)/n(z)]dy w(z)de =
q(z,y) min[r(z), 7(y)|dydzr = P(y,dz)n(y)dy. (symmetric)

— Follows that P(z,dy) n(z)dx = P(y,dz) w(y) dy for all x,y € X. (“reversible”)
— Shorthand: P(z,dy)II(dx) = P(y,dx) II(dy).
e How does “reversible” help?
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Well, suppose X ~ II, i.e. we “start in stationarity”. Then

P(X,€8) = /eXP(Xl €S| Xo=z)n(x)dx = /ex /es P(z,dy) 7(x) dx

— /:)JEX /yESP(y,dx)ﬂ(y)dy = /yES?T(y) dy = II(5),

so also X7 ~ m. So, chain “preserves” m, i.e. 7 is stationary distribution.
So, again, the Theorem applies.

Note: key facts about ¢(z,y) are symmetry, and irreducibility.

— So, could replace Y,, ~ N(0,1) by e.g. Y;, ~ Uniform[X,,_; — 1, X,,_1 + 1], or (on
discrete space) Y,, = X,,_1 £ 1 with prob. % each, etc.

METROPOLIS-HASTINGS ALGORITHMS:

(Hastings [Canadian!], Biometrika 1970; see www.probability.ca/hastings)
Now that we understand the theory, we can consider more general algorithms too ...

Previous Metropolis algorithm works provided proposal distribution is symmetric, i.e.

q(x,y) = q(y,z). But what if it isn’t?

For Metropolis, key was that ¢(x,y) a(z,y) 7(x) was symmetric (to make the Markov

chain be reversible).

If instead A,, = w?)gii)lg(g(/’}(’ff;;)n), i.e. acceptance prob. = a(z,y) = min [1, %} :

then:

@.y)ola.y)w(x) = qla.y) min [1, ZOND ] 20y — i [m(a) (o). 7(y) (v, )]
() q(,y)

So, still symmetric, even if ¢ wasn’t.

— So, for Metropolis-Hastings algorithm, replace “A,, = 7(Y,,) / 7(X,—1)” by A4, =
T(Yn) ¢(¥Yn,Xn-1)
7T(-)<'nfl) q(anl7Yn) ’

then still reversible, and everything else remains the same.

i.e., still accept if U,, < A,,, otherwise reject.

— (Intuition: if ¢(z,y) >> ¢q(y,x), then Metropolis chain would spend too much

time at y and not enough at z, so need to accept fewer moves = — y.)

— Do require that ¢(z,y) > 0 iff ¢(y,z) > 0.
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e INDEPENDENCE SAMPLER (mentioned earlier):
— Proposals {Y,,} i.i.d. from some fixed distribution (say, Y,, ~ MV N(0, I)).
— Another special case of Metropolis-Hastings algorithm.

— Then q(z,y) = q(y), depends only on y.

— So, now A,, = %. (files “Rind”, “Rind2” from before)

END WEDNESDAY #5

e GIBBS SAMPLER (mentioned earlier):

e Special case of Metropolis-Hastings-within-Gibbs.

th coordinate is equal to the conditional distribution of

e Proposal distribution for
that coordinate (according to m), conditional on the current values of all the other

coordinates.

— That is, ¢;(z,y) = C(z=) 7(y) whenever (=" = y(=9 where 2(~" means all

coordinates except the it one.

— Here C(x(=?) is the appropriate normalising constant (which depends on x(=%).
(So C(z=) = C(y=7).)

_ (V) @i (Ya,Xno1)  _ m(Ya) OV m(Xo1)
Then An = 2 S e R T = w() G D a(r)

— So, always accept.

e LANGEVIN ALGORITHM:

— Y, ~ MVN(X,—1+ 502 Vliogn(X,—1), 01).

— Special case of Metropolis-Hastings algorithm.

— Intuition: tries to move in direction where 7 increasing.

— Based on discrete approximation to Langevin diffusion.

— Usually more efficient, but requires knowledge and computation of V log . (Hard.)
e EXAMPLE: again m(x1,22) = Clcos(y/z122)| I(0 < 21 < 5,0 < 29 < 4), and

h(x1,x2) = €™ + (x2)%. (Recall: Mathematica gives E(h) = 38.7044.)
— Proposal distribution: Y,, ~ MVN(X,,_1, o (1 + |X,_1|*)* ).
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— (Intuition: larger proposal variance if farther from center.)
— 8o, q(z,y) = C (1 + |2*)7? exp(~|y — 2|* / 20%(1 + [2[*)?).
— So, can run Metropolis-Hastings algorithm for this example. (file “RMH”)

— Usually get between 34 and 43, with claimed standard error ~ 2. (Recall: Math-
ematica gets 38.7044.)

EXAMPLES RE WHY DOES MCMC WORK:

e EXAMPLE #1: Metropolis algorithm where X = Z, n(z) = 271°1/3, and ¢(z,y) = %

if |x — y| = 1, otherwise 0.

— Reversible? Yes, it’s a Metropolis algorithm!

7 stationary? Yes, follows from reversibility!
— Aperiodic? Yes, since P(z,{z}) > 0!
— Irreducible? Yes: 7(z) > 0 for all x € X, so can get from x to y in |z — y| steps.

— So, by theorem, probabilities and expectations converge to those of m — good.
e EXAMPLE #2: Same as #1, except now m(z) = 2~ 1#1=1 for  # 0, with 7(0) = 0.
— Still reversible, 7 stationary, aperiodic, same as before.

— Irreducible? No — can’t go from positive to negative!

e EXAMPLE #3: Same as #2, except now ¢(z,y) = % if 1 < |z —y| <2, otherwise 0.
— Still reversible, 7 stationary, aperiodic, same as before.

— Irreducible? Yes — can “jump over 0” to get from positive to negative, and back!

END FRIDAY #5

e EXAMPLE #4: Metropolis algorithm with X = R, and 7(z) = C e‘mG, and proposals
Y,, ~ Uniform[X,, 1 — 1, X,,—1 + 1].

— Reversible? Yes since ¢(x,y) still symmetric.
— 7 stationary? Yes since reversible!

— Irreducible? Yes since P"(z,dy) has positive density whenever |y — z| < n.
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— Aperiodic? Yes since if periodic, then if e.g. X3 N[0, 1] has positive measure, then
possible to go from X; directly to Xy, i.e. if z € X3 N[0,1], then P(x, X;) > 0.
(Or, even simpler: since P(z,{z}) > 0 for all x € X.)

— So, by theorem, probabilities and expectations converge to those of m — good.

e EXAMPLE #b5: Same as #4, except now 7(x) = C} e‘x6(1m<2 + 1p54)-
— Still reversible and stationary and aperiodic, same as before.
— But no longer irreducible: cannot jump from [4,00) to (—o0, 2] or back.
— So, does not converge.
e EXAMPLE #6: Same as #5, except now proposals are Y, ~ Uniform[X,,_; —
5, Xpn_1+5].
— Still reversible and stationary and aperiodic, same as before.

— And now irreducible, too: now can jump from [4,00) to (—oo, 2] or back.

e EXAMPLE #7: Same as #6, except now Y,, ~ Uniform[X,,_1 — 5, X,,_1 + 10].
— Makes no sense — proposals not symmetric, so not a Metropolis algorithm!

— (Not even symmetrically zero, for a Metropolis-Hastings algorithm.)

OPTIMAL RWM PROPOSALS:

e Consider RWM on X = R?, where Y,, ~ MVN(X,,_1, X) for some d x d proposal
covariance matrix .
e What is best choice of X7

— Usually we take ¥ = 02 I; for some o > 0, and then choose o so acceptance rate

not too small, not too large (e.g. 0.234).
— But can we do better?
e Suppose for now that II = MV N (ug, 3o) for some fixed pg and Xg, in dim=>5. Try
RWM with various proposal distributions (file “Ropt”):
— first version: Y,, ~ MV N (X, _1, I4). (acc = 0.06; varfact ~ 220)
— second version: Y,, ~ MV N(X,—1, 0.11;). (acc =~ 0.234; wvarfact ~ 300)
— third version: Y,, ~ MV N (X, _1, X9). (acc = 0.31; wvarfact =~ 15)
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— fourth version: Y,, ~ MV N(X,—1, 1.4%0). (acc =~ 0.234; wvarfact = 7)

Or in dim=20 (file “Ropt2”, with file “targ20”):
— Y, ~MVN(X,-1,0.025 ;). (acc ~ 0.234; varfact ~ 400 or more)
— Y, ~MVN(X,_1,0.283%)). (acc~ 0.234; wvarfact ~ 50)

e Conclusion: acceptance rates near 0.234 are better.

But also, proposals shaped like the target are better.

— This has been proved for targets which are orthogonal transformations of indepen-
dent components (Roberts et al., Ann Appl Prob 1997; Roberts and Rosenthal,
Stat Sci 2001; Bédard, Ann Appl Prob 2007).

— Is “approximately” true for most unimodal targets ...

Problem: ¥y would usually be unknown; then what?

— Can perhaps “adapt*!
ADAPTIVE MCMC:

e What if target covariance Yy is unknown??
e Can estimate target covariance based on run so far, to get empirical covariance ¥,,.

e Then update proposal covariance “on the fly”, by using proposal Y,, ~ MV N (X, _1, %,)
[or Y, ~ MVN(X,_1,1.4%,),or Y, ~ MVN(X,_1, ((2.38)%/d)%,.)].

— Hope that for large n, >, ~ ¥y, so proposals “nearly” optimal.

— (Usually also add el to proposal covariance, to improve stability, e.g. € = 0.05.)

e Try R version, for the same MVN example as in Ropt (file “Radapt”):
— Need much longer burn-in, e.g. B = 20, 000, for adaption to work.

— Get varfact of last 4000 iterations of about 18 ... “competitive” with Ropt

optimal ...

— The longer the run, the more benefit from adaptation.

— Can also compute “slow-down factor”, s, = d <Z§l:1 )\,;LZ (Z?Zl )\i_nl)2>, where
{Ain} eigenvals of w2 X /2 Starts large, should converge to 1. [Motivation: if
¥, = X, then \;,, =1, 50 s, = d(d/d?) = 1]

27



Higher dimensions: figure “plotAMx200.png” (dim=200).

— Works well, but it takes many iterations before the adaption is helpful.

BUT IS “ADAPTIVE MCMC” A VALID ALGORITHM??

Not in general: see e.g. “adapt.html”

Algorithm now non-Markovian, doesn’t preserve stationarity at each step.

However, still converges to II provided that the adaption (i) is “diminishing” and (ii)

satisfies a technical condition called “containment”.

— For details see e.g. Roberts & Rosenthal, “Coupling and Convergence of Adaptive
MCMC” (J. Appl. Prob. 2007).

TEMPERED MCMC:
e Suppose I1(-) is multi-modal, i.e. has distinct “parts” (e.g., Il = 3 N(0,1)+1 N(20,1))

e Usual RWM with Y;, ~ N(X,_1,1) (say) can explore well within each mode, but how

to get from one mode to the other?

o Idea: if II(-) were flatter, e.g. 3 N(0,10%) + % N(20,10%), then much easier to get

between modes.

e So: define a sequence II;, 15, ..., II,, where II; = II (“cold”), and II, is flatter for
larger 7 (“hot”). (e.g. IL, = 1 N(0,72) + § N (20, 72); file “Rtempered”)

e Then define joint Markov chain (z,7) on X x {1,2,...,m}. (How?)

e In the end, only “count” those samples where 7 = 1.

END WEDNESDAY #6

e Then define joint Markov chain (x,7) on X' x{1,2,...,m}, with stationary distribution
I defined by II(S x {7}) = = II.(S5).

— (Can also use other weights besides %)

e Define new Markov chain with both spatial moves (change ) and temperature moves

(change ).
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— e.g. perhaps chain alternates between:
(a) propose ' ~ N(x, 1), accept with prob min (1, M) = min <1 M)

7(x,T) ' ow.(x)
(b) propose 7" =17 £ 1 (prob % each), accept with prob
min (1 (2,7 )) = min (1 Lw))

D »om ()

e Chain should converge to II.
e In the end, only “count” those samples where 7 = 1.
e EXAMPLE: II = 1 N(0,1) + 3 N(20,1)

— Assume proposals are Y,, ~ N(X,,_1,1).

— Mixing for II: terrible! (file “Rtempered” with dotempering=FALSE and temp=1;

note the small claimed standard error!)
— Define I, = 1 N(0,7%) + 2 N(20,72), for 7 = 1,2,...,10.

— Mixing better for larger 7! (file “Rtempered” with dotempering=FALSE and
temp=1,2,34,...,10)

— (Compare graphs of 7 and 71¢: plot commands at bottom of “Rtempered” ...)

— So, use above “(a)—(b)” algorithm; converges fairly well to II. (file “Rtempered”,
with dotempering=TRUE)

— So, conditional on 7 = 1, converges to II. (“points” command at end of file
“Rtempered”)

— So, average of those h(z) with 7 = 1 gives good estimate of E(h).
e HOW TO FIND THE TEMPERED DENSITIES .7

e Usually won't “know” about e.g. I, = 2 N(0,7%) + N (20, 72%).

Al (Sometimes write § =1/7.)

e Instead, can e.g. let 7-(z) = ¢, (7(x))
— Then II; =1II, and 7, flatter for larger 7 — good.
— (e.g. if w(x) density of N(u,0?), then ¢, (m(x))"/T density of N(u,70?).)

— Then temperature acceptance probability is:

min (1, 7;:/—((5))> = min (1, CCTT/ (71'(1’))(1/7'/)*(1/7')).

— This depends on the c¢,, which are usually unknown — bad.
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What to do?

e PARALLEL TEMPERING:

e (a.k.a. Metropolis-Coupled MCMC, or MCMCMC)

Alternative to tempered MCMC.

Instead, use state space X', with m chains, i.e. one chain for each temperature.

So, state at time n is X,, = (Xn1, Xn2, ..., Xnm), where X,,; is “at” temperature 7.

Stationary distribution is now II = II; x Iy x ... x II,,, i.e. ﬁ(Xl e S, Xo €
SQ, ...,Xm c Sm) = Hl(Sl) HQ(SQ) A Hm(Sm).

e Then, can update the chain X,,_; ; at temperature 7 (for each 1 < 7 <m), by propos-
7T7— (Yn,‘r) >

ing e.g. Y, r ~ N(X,,_1,+, 1), and accepting with probability min (1, o)

And, can also choose temperatures 7 and 7/ (e.g., at random), and propose to “swap”

T (Xn,T/) Tt (Xnﬂ')
P e (X r) T (Xn,-r’)

the values X,, » and X, ;/, and accept this with probability min (1

— Now, normalising constants cancel, e.g. if 7, (z) = ¢, (W(m))l/ ", then acceptance

probability is:

T Xn T/ 1 T/ XnT 1/7—/ Xn ol 1z XnT 1/7/
min(1,0”( )T e (X r) ,):min<1,”( ) T (X ) )
CTW(Xn,T)l/T CT’W(Xn,T’)l/T W(Xnn')l/T W(Xn,f’)l/T
so ¢, and ¢,/ are not required.

e EXAMPLE: suppose again that I, = %N(O, 72) + %N(QO,TZ), forr=1,2,...,10.

— Can run parallel tempering ... works pretty well. (file “Rpara”)

END FRIDAY #6

e SUMMARY: Monte Carlo can be used for nearly everything!

e Good luck with your project, and with the rest of your studies.
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