
STA3431 (Monte Carlo Methods) Lecture Notes, Winter 2011

by Jeffrey S. Rosenthal, University of Toronto

(Last updated: April 4, 2011.)

Note: I will update these notes regularly (on the course web page). However, they are
just rough, point-form notes, with no guarantee of completeness or accuracy. They should
in no way be regarded as a substitute for attending the lectures, doing the homework
exercises, or reading the reference books.

INTRODUCTION:

• Introduction to course, handout, references, prerequisites, etc.

− Course web page: probability.ca/sta3431

− If not Stat Dept grad student, must REQUEST enrolment (by e-mail); need

strong probability/statistics background, plus some computer programming ex-

perience.

− Conversely, if you already know lots about MCMC etc., then this course might

not be right for you since it’s an INTRODUCTION to these topics.

− How many of you are stat grad students? undergrads? math? computer science?

physics? economics? management? engineering? other?

• Theme of the course: use (pseudo)randomness on a computer to simulate (and hence

estimate).

• Example: Suppose want to estimate m := E[Z4 cos(Z)], where Z ∼ Normal(0, 1).

− Monte Carlo solution: replicate a large number z1, . . . , zn of Normal(0,1) random

variables, and let xi = z4
i cos(zi).

− Their mean x ≡ 1
n

∑n
i=1 xi is an (unbiased) estimate of E[X] ≡ E[Z4 cos(Z)].

− R: Z = rnorm(100); X = Z∧4 ∗ cos(Z); mean(X) [file “RMC”]

− unstable . . . but if replace “100” with “1000000” then x close to −1.213 . . .

1

− Variability??

− Well, can estimate standard deviation of x by “standard error” of x, which is:

se = n−1/2 sd(x) = n−1/2
√

var(x) = n−1/2

√√√√ 1

n− 1

n∑
i=1

(xi − x)2 .

[file “RMC”]

• Then what is, say, a 95% confidence interval for m?

• Well, by central limit theorem (CLT), for large n, have x ≈ N(m, v) ≈ N(m, se2).

− Strictly speaking, should use “t” distribution, not normal distribution . . . but if

n large that doesn’t really matter (ignore it for now).

− So m−x
se ≈ N(0, 1).

− So, P(−1.96 < m−x
se < 1.96) ≈ 0.95.

− So, P(x− 1.96 se < m < x+ 1.96 se) ≈ 0.95.

− i.e., approximate 95% confidence interval is [file “RMC”]

(x− 1.96 se, x+ 1.96 se) .

• Alternatively, could compute expectation as∫ ∞
−∞

z4 cos(z)
e−z

2/2

√
2π

dz .

Analytic? Numerical? Better? Worse? [file “RMC”: −1.213]

− What about higher-dimensional versions? (Can’t do numerical integration!)

• How do we generate Normal(0,1) random variables, etc.? (pseudorandomness, random

variates . . . we’ll start here . . .)

• What if distribution too complicated to sample from?

− (MCMC! . . . including Metropolis, Gibbs, tempered, trans-dimensional, . . .)

2

HISTORICAL EXAMPLE – BUFFON’S NEEDLE:

− Have series of parallel lines . . . line spacing w, needle length ` ≤ w . . . what is

prob that needle lands touching line? [file buffon.html]

− Let θ be angle counter-clockwise from line direction, and h distance of top end

above nearest line.

− Then h ∼ Uniform[0, w] and θ ∼ Uniform[0, π].

− Touches line iff h < ` sin(θ).

− So, prob = 1
π

∫ π
0

1
w

∫ w
0

1h<` sin(θ) dh dθ = 1
π

∫ π
0

1
w ` sin(θ) dθ = 2`/wπ.

− Hence, by LLN, if throw needle n times, of which it touches a line m times, then

for n large, m/n ≈ 2`/wπ, so π ≈ 2n`/mw.

− [e.g. recuperating English Captain O.C. Fox, 1864: ` = 3, w = 4, n = 530,

m = 253, so π ≈ 2n`/mw
.
= 3.1423.]

− But for modern simulations, use computer. How to randomise??

PSEUDORANDOM NUMBERS:

• Goal: generate an i.i.d. sequence U1, U2, U3, . . . ∼ Uniform[0, 1].

• One method: LINEAR CONGRUENTIAL GENERATOR (LCG).

− Choose (large) positive integers m, a, and b.

− Start with a “seed” value, x0. (e.g., the current time in milliseconds)

− Then, recursively, xn = (axn−1 + b) mod m, i.e. xn = remainder when axn−1 + b

is divided by m.

− So, 0 ≤ xn ≤ m− 1.

− Then let Un = xn/m.

− Then {Un} will “seem” to be approximately i.i.d. ∼ Uniform[0, 1]. (file “Rrng”)

• Choice of m, a, and b?

3

• Many issues:

− need m large (so many possible values);

− need a large enough that no obvious “pattern” between Un−1 and Un.

− need b to avoid short “cycles” of numbers.

− many statistical tests, to try to see which choices provide good randomness,

avoid correlations, etc. (e.g. “diehard tests”, www.stat.fsu.edu/pub/diehard;

“dieharder”, www.phy.duke.edu/∼rgb/General/dieharder.php)

− One common “good” choice: m = 232, a = 69, 069, b = 23, 606, 797.

• Theorem: the LCG has full period (m) if and only if both (i) gcd(b,m) = 1, and (ii)

every “prime or 4” divisor of m also divides a− 1.

− So, if m = 232, then if b odd and a− 1 is a multiple of 4, then the LCG has full

period m = 232 .
= 4.3× 109; good.

− Many other choices, e.g. C programming language (glibc) uses m = 232, a =

1, 103, 515, 245, b = 12, 345.

− One bad choice: m = 231, a = 65539 = 216 + 3, b = 0 (“RANDU”) . . . used for

many years (esp. early 1970s) . . . but then xn+2 = 6xn+1 − 9xn mod m . . . too

much serial correlation. [Proof: xn+2 = (216 + 3)2xn = (232 + 6(216) + 9)xn ≡
(0 + 6(216 + 3)− 9)xn (mod 231) = 6xn+1 − 9xn.]

− (Microsoft Excel pre-2003: period < 106, too small . . . Excel 2003 used floating-

point “version” of LCG, which sometimes gave negative numbers – bad!)

• Not “really” random, just “pseudorandom” . . .

− Can cause problems!

− Will fail certain statistical tests . . .

− Some implementations also use external randomness, e.g. current temperature of

computer’s CPU / entropy of kernel (e.g. Linux’s “urandom”).

− Or the randomness of quantum mechanics, e.g. www.fourmilab.ch/hotbits.

4

− Or of atmospheric noise, e.g. random.org.

− But for most purposes, standard pseudorandom numbers are pretty good . . .

• We’ll consider LCG’s “good enough for now”, but:

− Other generators include “Multiply-with-Carry” [xn = (axn−r + bn−1) mod m

where bn = b(axn−r + bn−1)/mc; and ‘Kiss” [yn = (xn + Jn + Kn) mod 232,

where xn as above, and Jn and Kn are “shift register generators”, given in bit

form by Jn+1 = (I+L15)(I+R17)Jn mod 232, and Kn+1 = (I+L13)(I+R18)Kn

mod 231]; and “Mersenne Twister” [xn+k = xn+s ⊕ (x
(upper)
n |x(lower)

n+1)A, where

1 ≤ s < k where 2kw−r − 1 is Mersenne prime, and A is w×w (e.g. 32× 32) with

(w−1)× (w−1) identity in upper-right, with matrix mult. done bit-wise mod 2],

and many others too.

− (R implementation: see “?.Random.seed” . . . default is Mersenne Twister.)

• So, just need computer to do simple arithmetic. No problem, right?

LIMITATIONS OF COMPUTER ARITHMETIC:

• Consider the following computations in R:

− > 2 + 1 - 2

[1] 1

> 2∧10 + 1 - 2∧10

[1] 1

> 2∧100 + 1 - 2∧100

[1] 0

• Why??

• Homework question: for what values of n does:

> 2∧n + 1 - 2∧n

give 0 instead of 1??

———————— END WEEK #1————————

5

[Try new white-board pens, new Windows computer for projector.]

[Reminders: e-mail me if you’re from another dept (not Stats) and want to take this class

for credit. Course web page: probability.ca/sta3431]

[Show files RMC and Rrng, if computer projector working.]

Summary of Previous Class:

∗ Introduction to course

∗ Examples of Monte Carlo:

—— E[Z4 cos(Z)]

—— Buffon’s needle

∗ Pseudorandom number generation:

—— Want U1, U2, . . . ≈ i.i.d. Uniform[0, 1]

∗ e.g. linear congruential generator

—— xn = (axn−1 + b) mod m

—— Then Un = xn/m.

—— e.g. m = 232, a = 69, 069, b = 23, 606, 797.

—— THM: full period iff . . .

—— RNG tests . . .

—— Limitations of computer arithmetic . . .

• Computer arithmetic in R (cont’d):

> 2∧52 + 1 - 2∧52

[1] 1

> 2∧53 + 1 - 2∧53

[1] 0

> 2∧53 - 2∧53 + 1

[1] 1

• Similarly:

> 1 + 2∧(-52) - 1

[1] 2.220446e-16

> 1 + 2∧(-53) - 1

[1] 0

6

• Why these errors?? Well, computers use “double-precision floating point” numbers:

− Written as:

(−1)s 2e−1023 1.m1m2 . . .m52 (base 2) = (−1)s 2e−1023 (1 +
52∑
i=1

mi 2−i) ,

where:

—— the “sign” s = 0 or 1 (1 bit);

—— the “written exponent” e is between 0 and (211 − 1)− 1 = 2046 (11 bits);

—— (So, the “true exponent” equals e−1023, and is between −1023 and 1023.)

—— the “mantissa” consists of 52 bits mi, each 0 or 1 (52 bits).

∗ Total of 64 bits [i.e., 8 eight-bit “bytes”], where each “bit” is 0 or 1.

—— (single precision: 1 + 8 + 23 = 32 bits)

• For example, 5 = 1× 22 + 0× 21 + 1× 20 = 101 (base 2) = (−1)0 21025−1023 1.01.

− And, −14.75 = −1110.11 (base 2) = (−1)1 21026−1023 1.11011.

• (Also have a few special values, like Inf, −Inf, NaN, . . . ; the special case e = 211 − 1

is reserved for these; hence that final “−1” in the written exponent’s range.)

• (Special underflow trick: when e = 0, then the leading digit “1” is omitted, allowing

for even smaller values to be represented.)

• Then, addition is done by first adjusting the numbers to have the same exponent.

• So, the value “253 + 1” is computed as:

253 + 1 = 1.0× 253 + 1.0× 20 = 1.0× 253 + 0.00 . . . 01× 253

= 1.00 . . . 01× 253 = 1.0× 253

(lower order bit gets dropped!).

− Then if we subtract 253, we end up with 0 (!).

• So, numerical computations are just approximations, with their own errors!

• We’ll usually ignore this, but MUST BE CAREFUL! Then can simulate . . .

7

SIMULATING OTHER DISTRIBUTIONS:

• Once we have U1, U2, . . . i.i.d. ∼ Uniform[0, 1] (at least approximately), how do we

generate other distributions?

• With transformations, using “change-of-variable” theorem!

• e.g. to make X ∼ Uniform[L,R], set X = (R− L)U1 + L.

• e.g. to make X ∼ Bernoulli(p), set

X =

{
1, U1 ≤ p

0, U1 > p

• e.g. to make Y ∼ Binomial(n, p), either set Y = X1 + . . .+Xn where

Xi =

{
1, Ui ≤ p

0, Ui > p
,

or set

Y = max
{
j :

j−1∑
k=0

(
n

k

)
pk(1− p)n−k ≤ U1

}

(where by convention
−1∑
k=0

(· · ·) = 0).

• More generally, to make P(Y = xi) = pi for some x1 < x2 < x3 < . . ., where pi ≥ 0

and
∑
i pi = 1, simply set

Y = max{xj ;

j−1∑
k=1

pk ≤ U1} .

• e.g. to make Z ∼ Exponential(1), set Z = − log(U1).

− Then P(Z > x) = P(− log(U1) > x) = P(log(U1) < −x) = P(U1 < e−x) = e−x.

− Then, to make W ∼ Exponential(λ), set W = Z/λ = − log(U1)/λ.

• What if want X to have density 6x510<x<1.

− Let X = U
1/6
1 .

8

− Then for 0 < x < 1, P(X ≤ x) = P(U1/6 ≤ x) = P(U ≤ x6) = x6.

− Hence, fX(x) = d
dxx

6 = 6x5 for 0 < x < 1.

− More generally, for r > 1, if X = U
1/r
1 , then fX(x) = r xr−1 for 0 < x < 1.

• What about normal dist.? Fact: If

X =
√

2 log(1/U1) cos(2πU2) ,

Y =
√

2 log(1/U1) sin(2πU2) ,

then X,Y ∼ N(0, 1) (independent!). [“Box-Muller transformation”: Ann Math Stat

1958, 29, 610-611]

− Proof: By multidimensional change-of-variable theorem, if (x, y) = h(u1, u2) and

(u1, u2) = h−1(x, y), then fX,Y (x, y) = fU1,U2

(
h−1(x, y)

)
/ |J

(
h−1(x, y)

)
|. Here

fU1,U2
(u1, u2) = 1 for 0 < u1, u2 < 1 (otherwise 0), and

J(u1, u2) = det

(∂x
∂u1

∂x
∂u2

∂y
∂u1

∂y
∂u2

)

= det

(
− cos(2πu2) / u1

√
2 log(1/u1) −2π sin(2πu2)

√
2 log(1/u1)

− sin(2πu2) / u1

√
2 log(1/u1) 2π cos(2πu2)

√
2 log(1/u1)

)
= −2π /u1 .

But u1 = e−(x2+y2)/2, so density of (X,Y) is

fX,Y (x, y) = 1/|J(h−1(x, y))| = 1/
∣∣− 2π / e−(x2+y2)/2

∣∣ = e−(x2+y2)/2/2π

=
(1√

2π
e−x

2/2
)(1√

2π
e−y

2/2
)
,

i.e. X ∼ N(0, 1) and Y ∼ N(0, 1) are independent.

• Another approach: “INVERSE CDF METHOD”:

− Suppose want P(X ≤ x) = F (x). (“CDF”)

− For 0 < t < 1, set F−1(t) = min{x ; F (x) ≥ t}. (“inverse CDF”)

− Then set X = F−1(U1).

− Then X ≤ x if and only if U1 ≤ F (x).

9

− So, P(X ≤ x) = P
(
U1 ≤ F (x)

)
= F (x).

− Very general, but computing F−1(t) could be difficult . . .

• So, generating (pseudo)random numbers for most “standard” one-dimensional distri-

butions is pretty easy . . .

− So, can get Monte Carlo estimates of expectations involving standard one-dimensional

distributions, e.g. E[Z4 cos(Z)] where Z ∼ Normal(0, 1).

• But what if distribution is complicated, multidimensional, etc.?

SIMULATION EXAMPLE: QUEUEING THEORY:

− Q(t) = number of people in queue at time t ≥ 0.

• Suppose service times∼ Exponential(µ) [mean 1/µ], and interarrival times∼ Exponential(λ)

(“M/M/1 queue”), so {Q(t)} Markovian. Then well known:

− If µ ≤ λ, then Q(t)→∞ as t→∞.

− If µ > λ, then Q(t) converges in distribution as t→∞:

− P(Q(t) = i)→ (1− λ
µ)(λµ)i, for i = 0, 1, 2,

− Easy! (e.g. µ = 3, λ = 2, t = 1000) [file “Rqueue”]

• Now suppose instead that service times ∼ Uniform[0, 1], and interarrival times have

distribution of |Z| where Z ∼ Normal(0, 1). Limits not easily computed. Now what?

− Simulate it! [file “Rqueue2”]

• Or, to make the means the same as the first example, suppose service times ∼
Uniform[0, 2/3], and interarrival times have distribution of Z2/2 where Z ∼ Normal(0, 1).

Now what? [file “Rqueue3”]

———————— END WEEK #2————————

10

[Hand out HW#1, due Feb 14 at 2:10pm sharp. Q5: “−|y|3 + 6” → “−|y|3 − 2”.]

Summary of Previous Class:

∗ Limits of computer arithmetic

—— double-precision floating point numbers

∗ Transforming uniforms to binomial, exponential, normal, . . .

—— Inverse CDF method.

∗ Example: simulation of queues

MONTE CARLO INTEGRATION:

• How to compute an integral with Monte Carlo?

− Re-write it as an expectation!

• EXAMPLE: Want to compute
∫ 1

0

∫ 1

0
g(x, y) dx dy.

− Regard this as E[g(X,Y)], where X,Y i.i.d. ∼ Uniform[0, 1].

− e.g. g(x, y) = cos(
√
xy). (file “RMCint”) Easy!

− Get about 0.88± 0.003 . . . Mathematica gives 0.879544.

• e.g. estimate I =
∫ 5

0

∫ 4

0
g(x, y) dy dx, where g(x, y) = cos(

√
xy).

− Here∫ 5

0

∫ 4

0

g(x, y) dy dx =

∫ 5

0

∫ 4

0

5 · 4 · g(x, y) (1/4)dy (1/5)dx = E[5 · 4 · g(X,Y)] ,

where X ∼ Uniform[0, 5] and Y ∼ Uniform[0, 4].

− So, let Xi ∼ Uniform[0, 5], and Yi ∼ Uniform[0, 4] (all independent).

− Estimate I by 1
M

∑M
i=1(5 · 4 · g(Xi, Yi)).

− Standard error: se = M−1/2 sd
(
5 · 4 · g(X1, Y1), . . . , 5 · 4 · g(XM , YM)

)
.

− With M = 106, get about −4.11± 0.01 . . . (file “RMCint2”)

• e.g. estimate
∫ 1

0

∫∞
0
h(x, y) dy dx, where h(x, y) = e−y

2

cos(
√
xy).

− (Can’t use “Uniform” expectations.)

11

− Instead, write this as
∫ 1

0

∫∞
0

(ey h(x, y)) e−y dy dx.

− This is the same as E[eY h(X,Y)], whereX ∼ Uniform[0, 1] and Y ∼ Exponential(1)

are independent.

− So, estimate it by 1
M

∑M
i=1 e

Yih(Xi, Yi), where Xi ∼ Uniform[0, 1] and Yi ∼
Exponential(1) (i.i.d.).

− With M = 106 get about 0.767± 0.0004 . . . very accurate! (file “RMCint3”)

− (Check: Numerical integration [Mathematica] gives 0.767211.)

• Alternatively, could write this as
∫ 1

0

∫∞
0

(1
5 e

5y h(x, y)) (5 e−5y) dy dx = E[1
5e

5Y h(X,Y)]

where X ∼ Uniform[0, 1] and Y ∼ Exponential(5) (indep.).

− Then, estimate it by 1
M

∑M
i=1

1
5e

5yih(xi, yi), where xi ∼ Uniform[0, 1] and yi ∼
Exponential(5) (i.i.d.).

− With M = 106, get about 0.767 ± 0.0016 . . . larger standard error . . . (file

“RMCint4”).

− If replace 5 by 1/5, get about 0.767± 0.0015 . . . about the same.

• So which choice is best?

− Whichever one minimises the standard error! (λ ≈ 1.5, se ≈ 0.00025?)

• In general, to evaluate I ≡ E[h(Y)] =
∫
h(y)π(y) dy, where Y has density π, could

instead re-write this as I =
∫
h(x) π(x)

f(x) f(x) dx, where f is easily sampled from, with

f(x) > 0 whenever π(x) > 0.

− Then I = E
(
h(X) π(X)

f(X)

)
, where X has density f . (“Importance Sampling”)

− Can then do classical (iid) Monte Carlo integration, get standard errors etc.

− Good if easier to sample from f than π, and/or if the function h(x) π(x)
f(x) is less

variable than h itself.

• In general, best to make h(x) π(x)
f(x) approximately constant.

− e.g. extreme case: if I =
∫∞

0
e−3x dx, then I =

∫∞
0

(1/3)(3e−3x)dx = E[1/3]

12

where X ∼ Exponential(3), so I = 1/3 (error = 0, no MC needed).

UNNORMALISED DENSITIES:

• Suppose now that π(y) = c g(y), where we know g but don’t know c or π. (“Unnor-

malised density”, e.g. Bayesian posterior.)

− Obviously, c = 1∫
g(y) dy

, but this might be hard to compute.

− Still, I =
∫
h(x)π(x) dx =

∫
h(x) c g(x) dx =

∫
h(x) g(x) dx∫
g(x) dx

.

− If sample {xi} ∼ f (i.i.d.), then
∫
h(x) g(x) dx =

∫ (
h(x) g(x) / f(x)

)
f(x) dx =

E[h(X) g(X) / f(X)] where X ∼ f .

− So,
∫
h(x) g(x) dx ≈ 1

M

∑M
i=1

(
h(xi) g(xi) / f(xi)

)
.

− Similarly,
∫
g(x) dx ≈ 1

M

∑M
i=1

(
g(xi) / f(xi)

)
.

− So, I ≈
∑M

i=1

(
h(xi) g(xi) / f(xi)

)
∑M

i=1

(
g(xi) / f(xi)

) . (“Importance Sampling”: weighted average)

− (Not unbiased, standard errors less clear, but still consistent.)

• Example: compute I ≡ E(Y 2) where Y has density c y3 sin(y4) cos(y5)10<y<1, where

c > 0 unknown (and hard to compute!).

− Here g(y) = y3 sin(y4) cos(y5)10<y<1, and h(y) = y2.

− Let f(y) = 6 y510<y<1. [Recall: if U ∼ Uniform[0, 1], then X ≡ U1/6 ∼ f .]

− Then I ≈
∑M

i=1

(
h(xi) g(xi) / f(xi)

)∑M

i=1

(
g(xi) / f(xi)

) =

∑M

i=1

(
sin(x4

i) cos(x5
i)
)∑M

i=1

(
sin(x4

i
) cos(x5

i
) / x2

i

) . (file “Rimp” . . .

get about 0.766 . . .)

− Or, let f(y) = 4 y310<y<1. [Then if U ∼ Uniform[0, 1], then U1/4 ∼ f .]

− Then I ≈
∑M

i=1

(
h(xi) g(xi) / f(xi)

)∑M

i=1

(
g(xi) / f(xi)

) =

∑M

i=1

(
sin(x4

i) cos(x5
i) x

2
i

)∑M

i=1

(
sin(x4

i
) cos(x5

i
)
) . (file “Rimp”)

• What other methods to iid sample from π?

13

REJECTION SAMPLER:

• Assume π(x) = c g(x), with π and c unknown, g known but hard to sample from.

• Want to sample X ∼ π.

− Then if X1, X2, . . . , XM ∼ π iid, then can estimate Eπ(h) by 1
M

∑M
i=1 h(Xi), etc.

• Find some other, easily-sampled density f , and knownK > 0, such thatK f(x) ≥ g(x)

for all x.

• Sample X ∼ f , and U ∼ Uniform[0, 1] (indep.).

− If U ≤ g(X)/Kf(X), then accept X (as a draw from π).

− Otherwise, reject X and start over again.

• Now, P(U ≤ g(X)/Kf(X) |X = x) = g(x)/Kf(x), so conditional on accepting, we

have that

P
(
X ≤ y

∣∣∣U ≤ g(X)

Kf(X)

)
=

P
(
X ≤ y, U ≤ g(X)

Kf(X)

)
P
(
U ≤ g(X)

Kf(X)

)

=

∫ y
−∞ f(x) g(x)

Kf(x) dx∫∞
−∞ f(x) g(x)

Kf(x) dx
=

∫ y
−∞ g(x) dx∫∞
−∞ g(x) dx

=

∫ y

−∞
π(x) dx .

− So, conditional on accepting, X ∼ π. Good! iid!

− However, prob. of accepting may be very small, then get very few samples.

• Example: π = N(0, 1), i.e. g(x) = π(x) = (2π)−1/2 exp(−x2/2).

− Want: Eπ(X4), i.e. h(x) = x4.

− Let f be double-exponential distribution, i.e. f(x) = 1
2 e
−|x|.

• If K = 8, then:

− For |x| ≤ 2, Kf(x) = 8 1
2 exp(−|x|) ≥ 8 1

2 exp(−2) ≥ (2π)−1/2 ≥ π(x) = g(x).

− For |x| ≥ 2, Kf(x) = 8 1
2 exp(−|x|) ≥ 8 1

2 exp(−x2/2) ≥ (2π)−1/2 exp(−x2/2) =

π(x) = g(x).

14

• So, can apply rejection sampler with this f and K, to get samples, estimate of E[X],

estimate of E[h(X)], estimate of P[X < −1], etc. (file “Rrej”)

• For Rejection Sampler, P (accept) = E[P (accept|X)] = E[g(X)
Kf(X)] =

∫ g(x)
Kf(x) f(x) dx =

1
K

∫
g(x) dx = 1

cK . (Only depends on K, not f .)

− So, in M attempts, get about M/cK iid samples.

− (“Rrej” example: c = 1, K = 8, M = 10, 000, so get about M/8 = 1250 samples.)

− Since c fixed, try to minimise K.

− Extreme case: f(x) = π(x), so g(x) = π(x)/c = f(x)/c, and can take K = 1/c,

whence P (accept) = 1, iid sampling: optimal.

———————— END WEEK #3————————

[HW#1 due Feb 14 at 2:10pm sharp. Q5: “−|y|3 + 6” → “−|y|3 − 2”.]

[For Thursday: Kung Hei Fat Choi!]

[Office hours? This Thursday 11:00? 2:00? This Friday 11:00? Next Monday 12:00? Next

Thursday (Feb 10) at 11:00? Next Friday (Feb 11) at 2:00?]

Summary of Previous Class:

∗ Monte Carlo integration

—— e.g. I ≡
∫ 1

0

∫∞
0
h(x, y) dy dx = E[eY h(X,Y)] where X ∼ Uniform[0, 1] and Y ∼

Exponential(1), indep.

∗ Unnormalised densities: π(x) = c g(x)

—— Importance Sampling

∗ Rejection sampler:

—— Need K f(x) ≥ g(x) ∀x
—— Then accept X w.p. g(X)/Kf(X).

• Note: these algorithms all work in discrete case too.

− Can let π, f , etc. be “probability functions”, i.e. probability densities with respect

to counting measure.

− Then the algorithms proceed exactly as before.

15

• AUXILIARY VARIABLE APPROACH: (related: “slice sampler”)

− Suppose π(x) = c g(x), and (X,Y) chosen uniformly under the graph of g.

− i.e., (X,Y) ∼ Uniform{(x, y) ∈ R2 : 0 ≤ y ≤ g(x)}.

− Then X ∼ π, i.e. we have sampled from π.

− Why? For a < b, P(a < X < b) = area with a<X<b
total area =

∫ b
a
g(x) dx∫∞

−∞
g(x) dx

=
∫ b
a
π(x) dx.

− So, if repeat, get i.i.d. samples from π, can estimate Eπ(h) etc.

• Auxiliary Variable rejection sampler:

− If support of g contained in [L,R], and |g(x)| ≤ K, then can first sample (X,Y) ∼
Uniform([L,R]×[0,K]), then reject if Y > g(X), otherwise accept as sample with

(X,Y) ∼ Uniform{(x, y) : 0 ≤ y ≤ g(x)}, hence X ∼ π.

• Example: g(y) = y3 sin(y4) cos(y5)10<y<1.

− Then L = 0, R = 1, K = 1.

− So, sample X,Y ∼ Uniform[0, 1], then keep X iff Y ≤ g(X).

− If h(y) = y2, could compute e.g. Eπ(h) as the mean of the squares of the accepted

samples. (file “Raux”)

• Can iid / importance / rejection / auxiliary sampling solve all problems? No!

− Many challenging cases arise, e.g. from Bayesian statistics (later).

− Alternative algorithm: MCMC!

MARKOV CHAIN MONTE CARLO (MCMC):

• Suppose have complicated, high-dimensional density π = c g.

• Want samples X1, X2, . . . ∼ π. (Then can do Monte Carlo.)

• Define a Markov chain (random process) X0, X1, X2, . . ., so for large n, Xn ≈ π.

• METROPOLIS ALGORITHM (1953):

16

− Choose some initial value X0 (perhaps random).

− Then, given Xn−1, choose a proposal move Yn ∼MVN(Xn−1, σ
2 I) (say).

− Let An = π(Yn) / π(Xn−1) = g(Yn) / g(Xn−1), and Un ∼ Uniform[0, 1].

− Then, if Un < An, set Xn = Yn (“accept”), otherwise set Xn = Xn−1 (“reject”).

− Repeat, for n = 1, 2, 3, . . . ,M .

− (Note: only need to compute π(Yn) / π(Xn−1), so multiplicative constants cancel.)

• Fact: Then, for large n, have Xn ≈ π. (“rwm.html” Java applet)

• Then can estimate Eπ(h) ≡
∫
h(x)π(x) dx by:

Eπ(h) ≈ 1

M −B

M∑
i=B+1

h(Xi) ,

where B (“burn-in”) chosen large enough so XB ≈ π, and M chosen large enough to

get good Monte Carlo estimates.

• Aside: if accepted all proposals, then would have a “random walk” Markov chain.

− So, this is called the “random walk Metropolis” (RWM) algorithm.

• How large B? Difficult to say! (Some theory . . . active area of research [see e.g.

Rosenthal, “Quantitative convergence rates of Markov chains: A simple account”,

Elec Comm Prob 2002, on instructor’s web page] . . . usually use trial-and-error . . .)

• What initial value X0?

− Virtually any one will do, but “central” ones best.

− Ideal: “overdispersed starting distribution”, i.e. choose X0 randomly from some

distribution that “covers” the “important” part of the state space.

• COMMENT: For big complicated π, often better to work with the LOGARITHMS,

i.e. accept if log(Un) < log(An) = log(π(Yn))− log(π(Xn−1)).

− Then only need to compute log(π(x)), which could be easier.

− e.g. if π(x) = exp
(∑

i<j |xj − xi|
)

, then log(π(x)) =
∑
i<j |xj − xi|.

17

• EXAMPLE: g(y) = y3 sin(y4) cos(y5)10<y<1.

− Want to compute (again!) Eπ(h) where h(y) = y2.

− Use Metropolis algorithm with proposal Y ∼ N(X, 1). [file “Rmet”]

− Works pretty well, but lots of variability!

− Plot: appears to have “good mixing” . . .

• EXAMPLE: π(x1, x2) = C | cos(
√
x1 x2)| I(0 ≤ x1 ≤ 5, 0 ≤ x2 ≤ 4).

− Want to compute Eπ(h), where h(x1, x2) = ex1 + (x2)2.

− Metropolis algorithm . . . works . . . gets between about 34 and 44 . . . but large

uncertainty . . . (file “Rmet2”) (Mathematica gets 38.7044)

− Individual plots appear to have “good mixing” . . .

− Joint plot shows fewer samples where x1x2 ≈ (π/2)2 .
= 2.5 . . .

• OPTIMAL SCALING:

− Can change proposal distribution to Yn ∼MVN(Xn, σ
2I) for any σ > 0.

− Which is best?

− If σ too small, then usually accept, but chain won’t move much.

− If σ too large, then will usually reject proposals, so chain still won’t move much.

− Optimal: need σ “just right” to avoid both extremes. (“Goldilocks Principle”)

− Can experiment . . . (“rwm.html” applet, files “Rmet”, “Rmet2”) . . .

− Some theory . . . limited . . . active area of research . . .

− General principle: the acceptance rate should be far from 0 and far from 1.

− In a certain idealised high-dimensional limit, optimal acceptance rate is 0.234 (!).

[Roberts et al., Ann Appl Prob 1997; Roberts and Rosenthal, Stat Sci 2001]

18

MCMC STANDARD ERROR:

• What about standard error, i.e. uncertainty?

− It’s usually larger than in iid case (due to correlations), and harder to quantify.

• Simplest: re-run the chain many times, with same M and B, with different initial

values drawn from some overdispersed starting distribution, and compute standard

error of the sequence of estimates.

− Then can analyse the estimates obtained as iid . . .

• But how to estimate standard error from a single run?

• i.e., how to estimate v ≡ Var
(

1
M−B

∑M
i=B+1 h(Xi)

)
?

− Let h(x) = h(x)−Eπ(h), so Eπ(h) = 0.

− And, assume B large enough that Xi ≈ π for i > B.

− Then, for large M −B,

v ≈ Eπ

[((1

M −B

M∑
i=B+1

h(Xi)
)
−Eπ(h)

)2]
= Eπ

[(1

M −B

M∑
i=B+1

h(Xi)
)2]

=
1

(M −B)2

[
(M −B)Eπ(h(Xi)

2) + 2(M −B − 1)Eπ(h(Xi)h(Xi+1))

+2(M −B − 2)Eπ(h(Xi)h(Xi+2)) + . . .
]

≈ 1

M −B

(
Eπ(h

2
) + 2Eπ(h(Xi)h(Xi+1)) + 2Eπ(h(Xi)h(Xi+2)) + . . .

)
=

1

M −B
Eπ(h

2
)
(

1+2 Corrπ(h(Xi), h(Xi+1))+2 Corrπ(h(Xi), h(Xi+2))+ . . .
)

≡ 1

M −B
Varπ(h)

(
varfact

)
= (iid variance) (varfact) ,

where

varfact = 1 + 2
∞∑
k=1

Corrπ

(
h(X0), h(Xk)

)
≡ 1 + 2

∞∑
k=1

ρk =
∞∑

k=−∞

ρk

(“integrated auto-correlation time”). (Included in previous R files.)

19

− Then can estimate both iid variance, and varfact, from the sample run, as usual.

− e.g. the “acf” and “varfact” commands in files Rmet, Rmet2, etc.

− Note: to compute varfact, don’t sum over all k, just e.g. until, say, |ρk| < 0.05 or

ρk < 0 or . . .

− (Previous R programs used built-in “acf” function, but can also write your own

– better.)

− Usually varfact� 1; try to get “better” chains so varfact smaller.

− Sometimes even try to design chain to get varfact < 1 (“antithetic”).

———————— END WEEK #4————————

[HW#1 due Feb 14 at 2:10pm sharp. Q5: “−|y|3 + 6” → “−|y|3 − 2”.]

[For last Thursday: Kung Hei Fat Choi!]

[Office hours? This Tuesday 3:30–4:30? Wednesday 11:30–12:30? Friday 2:30–3:30?]

Summary of Previous Class:

∗ Auxiliary variable rejection sampler.

∗ MCMC: Metropolis algorithm

—— Examples, proposal scaling, initial distribution

—— Standard error: v ≈ (iid variance) (varfact), where

varfact = 1 + 2
∞∑
k=1

Corrπ

(
h(X0), h(Xk)

)
.

—— Just sum a certain finite, amount, e.g. until Corrπ(· · ·) is very small . . .

—— (R’s “acf” sums 10 log10(M −B) terms . . .)

CONFIDENCE INTERVALS:

• Suppose we estimate u ≡ Eπ(h) by 1
M−B

∑M
i=B+1 h(Xi), and obtain an estimate e

and an approximate variance (as above) v.

• Then what is, say, a 95% confidence interval for u?

20

• Well, if have central limit theorem (CLT), then for large M −B, e ≈ N(u, v).

− So (e− u) v−1/2 ≈ N(0, 1).

− So, P(−1.96 < (e− u) v−1/2 < 1.96) ≈ 0.95.

− So, P(−1.96
√
v < e− u < 1.96

√
v) ≈ 0.95.

− i.e., with prob 95%, u is in the interval (e− 1.96
√
v, e+ 1.96

√
v).

− Strictly speaking, should use “t” distribution, not normal distribution . . . but if

M −B large that doesn’t really matter (ignore it for now).

• But does a CLT even hold??

− Does not follow from classical CLT. Does not always hold. But often does.

− For example, CLT holds if chain is “geometrically ergodic” (later!) and Eπ(|h|2+δ) <

∞ for some δ > 0.

− (If chain also reversible then don’t need δ: Roberts and Rosenthal, “Geometric

ergodicity and hybrid Markov chains”, ECP 1997.)

• So MCMC is more complicated than standard Monte Carlo.

− Why should we bother?

− Some problems too challenging for other methods. For example . . .

BAYESIAN STATISTICS:

• Have unknown parameter(s) θ, and a statistical model (likelihood function) for how

the distribution of the data Y depends on θ: L(Y | θ).

• Have a prior distribution, representing our “initial” (subjective?) probabilities for θ:

L(θ).

• Combining these gives a full joint distribution for θ and Y , i.e. L(θ, Y).

• Then posterior distribution of θ, π(θ), is then the conditional distribution of θ,

conditioned on the observed data y, i.e. π(θ) = L(θ |Y = y).

21

− In terms of densities, if have prior density fθ(θ), and likelihood fY |θ(y, θ), then

joint density is fθ,Y (θ, y) = fθ(θ) fY |θ(y, θ), and posterior density is

π(θ) =
fθ,Y (θ, y)

fY (y)
= c fθ,Y (θ, y) = c fθ(θ) fY |θ(y, θ) .

• Bayesian Statistics Example: VARIANCE COMPONENTS MODEL (a.k.a. “random

effects model”):

− Suppose some population has overall mean µ (unknown).

− Population consists of K groups.

− Observe Yi1, . . . , YiJi from group i, for 1 ≤ i ≤ K.

− Assume Yij ∼ N(θi,W) (cond. ind.), where θi and W unknown.

− Assume the different θi are “linked” by θi ∼ N(µ, V) (cond. ind.), with µ and V

also unknown.

− Want to estimate some or all of V,W, µ, θ1, . . . , θK .

− Bayesian approach: use prior distributions, e.g. (“conjugate”):

V ∼ IG(a1, b1); W ∼ IG(a2, b2); µ ∼ N(a3, b3) ,

where ai, bi known constants, and IG(a, b) is “inverse gamma” distribution, with

density ba

Γ(a) e
−b/x x−a−1 for x > 0.

• Many applications, e.g.:

− Predicting success at law school (D. Rubin, JASA 1980), K = 82 schools.

− Melanoma recurrence (http://www.mssanz.org.au/modsim07/papers/52 s24/

Analysing Clinicals24 Bartolucci .pdf), K = 19 patient catagories.

− Comparing baseball home-run hitters (J. Albert, The American Statistician 1992),

K = 12 players.

− Analysing fabric dyes (Davies 1967; Box/Tiao 1973; Gelfand/Smith JASA 1990),

K = 6 batches of dyestuff.

22

• Combining the above dependencies, we see that the joint density is (for V,W > 0):

f(V,W, µ, θ1, . . . , θK , Y11, Y12, . . . , YKJK)

= C1

(
e−b1/V V −a1−1

)(
e−b2/WW−a2−1

)(
e−(µ−a3)2/2b3

)
×

×

(
K∏
i=1

V −1/2e−(θi−µ)2/2V

) K∏
i=1

Ji∏
j=1

W−1/2e−(Yij−θi)2/2W


= C2e

−b1/V V −a1−1e−b2/WW−a2−1e−(µ−a3)2/2b3V −K/2W−
1
2

∑K

i=1
Ji ×

× exp

− K∑
i=1

(θi − µ)2/2V −
K∑
i=1

Ji∑
j=1

(Yij − θi)2/2W

 .
• Then

π(V,W, µ, θ1, . . . , θK)

= C3

(
e−b1/V V −a1−1

)(
e−b2/WW−a2−1

)(
e−(µ−a3)2/2b3

)
×

×

(
K∏
i=1

V −1/2e−(θi−µ)2/2V

) K∏
i=1

Ji∏
j=1

W−1/2e−(Yij−θi)2/2W


• After a bit of simplifying,

π(V,W, µ, θ1, . . . , θK)

= Ce−b1/V V −a1−1e−b2/WW−a2−1e−(µ−a3)2/2b3V −K/2W−
1
2

∑K

i=1
Ji ×

× exp

− K∑
i=1

(θi − µ)2/2V −
K∑
i=1

Ji∑
j=1

(Yij − θi)2/2W

 .
• Dimension: d = K + 3, e.g. K = 19, d = 22.

• How to compute/estimate, say, Eπ(W/V)? Or sensitivity to choice of e.g. b1?

− Numerical integration? No, too high-dimensional!

− Importance sampling? Perhaps, but what “f”? Not very efficient!

− Rejection sampling? What “f”? What “K”? Virtually no samples!

23

SO WHY DOES MCMC WORK?:

• (Need Markov chain theory . . . STA447/2006 . . . already know?)

• Basic fact: if a Markov chain is “irreducible” and “aperiodic”, with “stationarity dis-

tribution” π, then L(Xn)→ π as n→∞.

− Let’s figure out what this all means . . .

• BEGIN WITH DISCRETE CASE, FROM JAVA APPLET EXAMPLE (rwm.html):

− Here proposal is q(x, x+ 1) = q(x, x− 1) = 1/2.

− Acceptance probability is min(1, π(y)
π(x)).

− State space is X ≡ {1, 2, 3, 4, 5, 6}.

• So, for i, j ∈ X with |j − i| = 1,

P (i, j) ≡ P (i, {j}) = (1/2) min(1,
π(j)

π(i)
) = min(

1

2
,
π(j)

2π(i)
) .

• Follows that chain is “reversible”: for all i, j ∈ X ,

π(i)P (i, j) = min(π(i)/2, π(j)/2) = π(j)P (j, i) . (by symmetry)

− (Intuition: if X0 ∼ π, i.e. P(X0 = i) = π(i) for all i ∈ X , then P(X0 = i, X1 =

j) = P(X0 = j, X1 = i) . . . “time reversible” . . .)

• We then compute that if X0 ∼ π, then:

P(X1 = j) =
∑
i∈X

P(X0 = i)P (i, j) =
∑
i∈X

π(i)P (i, j) =
∑
i∈X

π(j)P (j, i)

= π(j)
∑
i∈X

P (j, i) = π(j) ,

i.e. X1 ∼ π too!

− So, the Markov chain “preserves” π, i.e. π is a stationary distribution.

− This is true for any Metropolis algorithm!

24

• Also, in this case it’s irreducible, meaning that you can eventually get from anywhere

to anywhere else with positive probability, i.e. for all i, j ∈ X there is n ∈ N such that

P (Xn = j |X0 = i) > 0.

• And, it’s aperiodic, meaning there are no forced cycles, i.e. there do not exist disjoint

non-empty subsets X1,X2, . . . ,Xd for d ≥ 2, such that P (x,Xi+1) = 1 for all x ∈ Xi
(1 ≤ i ≤ d− 1), and P (x,X1) = 1 for all x ∈ Xd. (Diagram.)

− This is true for virtually any Metropolis algorithm, e.g. it’s true if P (i, i) > 0

for any one state i ∈ X , which is true provided there’s a positive probability of

rejecting a proposed move.

• It then follows from the “Basic fact” that as n→∞, L(Xn)→ π, i.e. limn→∞ P (Xn =

i) = π(i) for all i ∈ X . (file “rwm.html”)

− Also follows that if Eπ(|h|) <∞, then lim
n→∞

1
n

∑n
i=1 h(Xi) = Eπ(h) ≡

∫
h(x)π(x) dx.

(“LLN”)

• What about the more general, continuous case? (Next week!)

———————— END WEEK #5————————

[HW#1 due right now. Assign project! No class next week (Reading Week); back Feb 28.]

Summary of Previous Class:

∗ MCMC confidence intervals (remember varfact!)

∗ Bayesian statistics: π(θ) ∝ fθ(θ) fY |θ(y, θ)
—— Example: variance components model

∗ MCMC theory (discrete case)

—— Metropolis alg. always makes π stationary

—— So, if also irreducible (usually) and aperiodic (“always”), then L(Xn)→ π etc.

• SO WHAT ABOUT THE MORE GENERAL, CONTINUOUS CASE?

• Some notation:

− Let X be the state space of all possible values. (Usually X ⊆ Rd, e.g. for Variance

Components Model, X = (0,∞)× (0,∞)×R×RK ⊆ RK+3.)

25

− Let q(x, y) be the proposal density for y given x. (So, in above case, q(x, y) =

(2πσ)−d/2 exp
(
−
∑d
i=1(yi − xi)2/2σ2

)
.) Symmetric: q(x, y) = q(y, x).

− Let α(x, y) be probability of accepting a proposed move from x to y, i.e.

α(x, y) = P(Un < An |Xn−1 = x, Yn = y) = P(Un <
π(y)

π(x)
) = min[1,

π(y)

π(x)
] .

− Let P (x, S) = P(X1 ∈ S |X0 = x) be the transition probabilities.

• Then if x 6∈ S, then

P (x, S) = P(Y1 ∈ S, U1 < A1 |X0 = x) =

∫
S

q(x, y) min[1, π(y)/π(x)] dy .

− Shorthand: for x 6= y, P (x, dy) = q(x, y) min[1, π(y)/π(x)] dy.

− Then for x 6= y, P (x, dy)π(x) dx = q(x, y) min[1, π(y)/π(x)] dy π(x) dx =

q(x, y) min[π(x), π(y)] dy dx = P (y, dx)π(y) dy. (symmetric)

− Follows that P (x, dy)π(x) dx = P (y, dx)π(y) dy for all x, y ∈ X . (“reversible”)

− Shorthand: P (x, dy) Π(dx) = P (y, dx) Π(dy).

• How does “reversible” help?

• Well, suppose X0 ∼ Π, i.e. we “start in stationarity”. Then

P(X1 ∈ S) =

∫
x∈X

P(X1 ∈ S |X0 = x)π(x) dx =

∫
x∈X

∫
y∈S

P (x, dy)π(x) dx

=

∫
x∈X

∫
y∈S

P (y, dx)π(y) dy =

∫
y∈S

π(y) dy ≡ Π(S) ,

so also X1 ∼ π. So, chain “preserves” π, i.e. π is stationary distribution.

• Also irreducible, i.e. possible to eventually get anywhere.

− More precisely: for every x ∈ X , and every S ⊆ X with Π(S) > 0, there is n such

that Pn(x, S) > 0, i.e. P(Xn ∈ S |X0 = 0) > 0. (Here, can even take n = 1.)

− (Makes sense on discrete space, too; then requires ability to eventually reach every

point of positive stationary measure; here “density” is with respect to “counting

measure”.)

26

• Also aperiodic, i.e. there do not exist disjoint subsets X1,X2, . . . ,Xj for j ≥ 2, with

Π(Xi) > 0, such that P (x,Xi+1) = 1 for all x ∈ Xi (where Xj+1 ≡ X1). (Diagram.)

− Aperiodicity always holds if P (x, {x}) > 0, e.g. if positive prob of rejection.

− Or if P (x, ·) has positive density throughout S, for all x ∈ S, for some S ⊆ X
with Π(S) > 0.

− Not quite guaranteed, e.g. X = {0, 1, 2, 3}, and π uniform on X , and Yn =

Xn−1 ± 1 (mod 4). But almost always holds.

• THEOREM: If Markov chain is irreducible, with stationarity probability density π,

then for π-a.e. initial value X0 = x,

(a) if Eπ(|h|) <∞, then lim
n→∞

1
n

∑n
i=1 h(Xi) = Eπ(h) ≡

∫
h(x)π(x) dx; and

(b) if chain aperiodic, then also lim
n→∞

P(Xn ∈ S) =
∫
S
π(x) dx for all S ⊆ X .

• Note: key facts about q(x, y) are symmetry, and irreducibility.

− So, could replace Yn ∼ N(0, 1) by e.g. Yn ∼ Uniform[Xn−1− 1, Xn−1 + 1], or (on

discrete space) Yn = Xn−1 ± 1 with prob. 1
2 each.

• EXAMPLE #1: Metropolis algorithm where X = Z, π(x) = 2−|x|/3, and q(x, y) = 1
2

if |x− y| = 1, otherwise 0.

− Reversible? Yes, it’s a Metropolis algorithm!

− π stationary? Yes, follows from reversibility!

− Aperiodic? Yes, since P (x, {x}) > 0!

− Irreducible? Yes: π(x) > 0 for all x ∈ X , so can get from x to y in |x− y| steps.

− So, by theorem, probabilities and expectations converge to those of π – good.

• EXAMPLE #2: Same as #1, except now π(x) = 2−|x|−1 for x 6= 0, with π(0) = 0.

− Still reversible, π stationary, aperiodic, same as before.

− Irreducible? No – can’t go from positive to negative!

• EXAMPLE #3: Same as #2, except now q(x, y) = 1
4 if 1 ≤ |x− y| ≤ 2, otherwise 0.

27

− Still reversible, π stationary, aperiodic, same as before.

− Irreducible? Yes – can “jump over 0” to get from positive to negative, and back!

• EXAMPLE #4: Metropolis algorithm with X = R, and π(x) = C e−x
6

, and proposals

Yn ∼ Uniform[Xn−1 − 1, Xn−1 + 1].

− Reversible? Yes since q(x, y) still symmetric.

− π stationary? Yes since reversible!

− Irreducible? Yes since Pn(x, dy) has positive density whenever |y − x| ≤ n.

− Aperiodic? Yes since if periodic, then if e.g. if X1 ∩ [0, 1] has positive measure,

then possible to go from X1 directly to X1, i.e. if x ∈ X1∩[0, 1], then P (x,X1) > 0.

(Or, even simpler: since P (x, {x}) > 0 for all x ∈ X .)

− So, by theorem, probabilities and expectations converge to those of π – good.

• EXAMPLE #5: Same as #4, except now π(x) = C1 e
−x6

(1x<2 + 1x>4).

− Still reversible and stationary and aperiodic, same as before.

− But no longer irreducible: cannot jump from [4,∞) to (−∞, 2] or back.

− So, does not converge.

• EXAMPLE #6: Same as #5, except now proposals are Yn ∼ Uniform[Xn−1 −
5, Xn−1 + 5].

− Still reversible and stationary and aperiodic, same as before.

− And now irreducible, too: now can jump from [4,∞) to (−∞, 2] or back.

• EXAMPLE #7: Same as #6, except now Yn ∼ Uniform[Xn−1 − 5, Xn−1 + 10].

− Makes no sense – proposals not symmetric, so not a Metropolis algorithm!

• Next question: Why does Theorem say “π-a.e.” X0 = x?

———————— END WEEK #6————————

28

[Return HW#1: mean=53.4/70. Don’t worry, I graded tough! mean=53.4; > 50 = good]

[Common: Insufficient explanation / no multiple runs / no accuracy (std err) / no analysis.]

[Q1: easy by linearity (not indep)! Q2: NNYN. Q3: range! Q7–9: can all succeed!]

[Reminder: Project due April 4 at 2:10pm. HW#2 will be assigned next week.]

Summary of Previous Class:

∗ MCMC theory!

∗ THEOREM: If Markov chain is irreducible, with stationarity probability density π (e.g.

reversible), then for π-a.e. initial value X0 = x,

(a) if Eπ(|h|) <∞, then lim
n→∞

1
n

∑n
i=1 h(Xi) = Eπ(h) ≡

∫
h(x)π(x) dx; and

(b) if chain aperiodic, then lim
n→∞

P(Xn ∈ S) =
∫
S
π(x) dx for all S ⊆ X .

—— Examples.

• QUESTION: Why does Theorem say “π-a.e.” X0 = x?

• Example: X = {1, 2, 3, . . .}, and P (1, {1}) = 1, and for x ≥ 2, P (x, {1}) = 1/x2 and

P (x, {x+ 1}) = 1− (1/x2).

− Stationary distribution: Π(·) = δ1(·), i.e. Π(S) = 11∈S for S ⊆ X .

− Irreducible, since if Π(S) > 0 then 1 ∈ S so P (x, S) ≥ P (x, {1}) > 0 for all

x ∈ X .

− Aperiodic since P (1, {1}) > 0.

− So, by Theorem, for π-a.e. X0, have limn→∞P(Xn ∈ S) = Π(S), i.e.

limn→∞P(Xn = 1) = 1.

− But if X0 = x ≥ 2, then P[Xn = x + n for all n] =
∏∞
j=x(1 − (1/j2)) > 0, so

limn→∞P(Xn = 1) 6= 1.

− Convergence holds if X0 = 1, which is π-a.e. since Π(1) = 1, but not from

X0 = x ≥ 2.

• So, convergence subtle. But usually holds from any x ∈ X . (“Harris recurrent”)

• Now that we understand the theory, we can consider more general algorithms too . . .

29

METROPOLIS-HASTINGS ALGORITHM:

• (Hastings [Canadian!], Biometrika 1970; see www.probability.ca/hastings)

• Previous Metropolis algorithm works provided proposal distribution is symmetric, i.e.

q(x, y) = q(y, x). But what if it isn’t?

• For Metropolis, key was that q(x, y)α(x, y)π(x) was symmetric (to make the Markov

chain be reversible).

• If instead α(x, y) = min
[
1, π(y) q(y,x)

π(x) q(x,y)

]
, then

q(x, y)α(x, y)π(x) = q(x, y) min
[
1,

π(y) q(y, x)

π(x) q(x, y)

]
π(x) = min

[
π(x) q(x, y), π(y) q(y, x)

]
.

So, still symmetric, even if q wasn’t.

− So, for Metropolis-Hastings algorithm, replace “An = π(Yn) / π(Xn−1)” by An =
π(Yn) q(Yn,Xn−1)

π(Xn−1) q(Xn−1,Yn) , then still reversible, and everything else remains the same.

− i.e., still accept if Un < An, otherwise reject.

− (Intuition: if q(x, y) >> q(y, x), then Metropolis chain would spend too much

time at y and not enough at x, so need to accept fewer moves x→ y.)

• EXAMPLE: again π(x1, x2) = C | cos(
√
x1 x2)| I(0 ≤ x1 ≤ 5, 0 ≤ x2 ≤ 4), and

h(x1, x2) = ex1 + (x2)2.

− Proposal distribution: Yn ∼MVN(Xn−1, σ
2 (1 + |Xn−1|2)2 I).

− (Intuition: larger proposal variance if farther from center.)

− So, q(x, y) = C (1 + |x|2)−2 exp(−|y − x|2 / 2σ2(1 + |x|2)2).

− So, can run Metropolis-Hastings algorithm for this example. (file “RMH”)

− Usually get between 34 and 43, with claimed standard error ≈ 2. (Recall: Math-

ematica gets 38.7044.)

• INDEPENDENCE SAMPLER:

− Proposals {Yn} i.i.d. from some fixed distribution (say, Yn ∼MVN(0, I)). (Easy.)

− Another special case of Metropolis-Hastings algorithm.

30

− Then q(x, y) = q(y), depends only on y.

− So, now An = π(Yn) q(Xn−1)
π(Xn−1) q(Yn) .

− Very special case: if q(y) ≡ π(y), i.e. propose exactly from target density π, then

An ≡ 1, i.e. make great proposals, and always accept them (iid).

• EXAMPLE: independence sampler with π(x) = e−x and q(x) = ke−kx.

− Then if Xn−1 = x and Yn = y, then An = e−y ke−kx

e−x ke−ky
= e(k−1)(y−x). (file “Rind”)

− k = 1: iid sampling (great).

− k = 0.01: proposals way too large (so-so).

− k = 5: proposals somewhat too small (terrible).

− And with k = 5, confidence intervals often miss 1. (file “Rind2”)

− Why is large k so much worse than small k?

• LANGEVIN ALGORITHM:

− Yn ∼MVN
(
Xn−1 + 1

2 σ
2∇ log π(Xn−1), σ2I

)
.

− Special case of Metropolis-Hastings algorithm.

− Intuition: tries to move in direction where π increasing.

− Based on discrete approximation to Langevin diffusion.

− Usually more efficient, but requires knowledge and computation of∇ log π. (Hard.)

MCMC CONVERGENCE RATES:

• {Xn} : Markov chain on X , with stationary distribution Π(·).

• Let Pn(x, S) = P[Xn ∈ S |X0 = x].

− Hope that for large n, Pn(x, S) ≈ Π(S).

• Let D(x, n) = ‖Pn(x, ·)−Π(·)‖ ≡ supS⊆X |Pn(x, S)−Π(S)|.

• DEFN: chain is ergodic if limn→∞D(x, n) = 0, for Π-a.e. x ∈ X .

31

• DEFN: chain is geometrically ergodic if there is ρ < 1, and M : X → [0,∞] which is

Π-a.e. finite, such that D(x, n) ≤M(x) ρn for all x ∈ X and n ∈ N.

• DEFN: a quantitative bound on convergence is an actual number n∗ such thatD(x, n∗) <

0.01 (say). [Then sometimes say chain “converges in n∗ iterations”.]

• Quantitative bounds often difficult (though I’ve worked on them a lot), but “geometric

ergodicity” often easier to verify.

− Fact: CLT holds for 1
n

∑n
i=1 h(Xi) if chain is geometrically ergodic and Eπ(|h|2+δ) <

∞ for some δ > 0.

− (If chain also reversible then don’t need δ: Roberts and Rosenthal, “Geometric

ergodicity and hybrid Markov chains”, ECP 1997.)

− If CLT holds, then have 95% confidence interval (e− 1.96
√
v, e+ 1.96

√
v).

• So what do we know about ergodicity?

• Previous theorem: if chain is irreducible and aperiodic and Π(·) is stationary, then

chain is ergodic.

———————— END WEEK #7————————

[Reminder: I graded HW#1 tough: mean=53.4/70 ≈ A−. Don’t worry!]

[Assign HW#2 now, due March 28 at 2:10pm sharp.]

[Reminder: Project due April 4 at 2:10pm. For topic, think of any quantity of interest

(e.g. from another course, or a paper, or a research project, or . . .), and convert it (e.g.

with a Bayesian approach?) to a problem that can be solved using Monte Carlo, and solve

it! Be creative! (And thorough.)]

Summary of Previous Class:

∗ Discussion of “π-a.e.”.

∗ Metropolis-Hastings algorithm, with q(x, y) 6= q(y, x)

—— Variable σ, Independence sampler, Langevin

∗ MCMC convergence rates: D(x, n), ergodic, geometrically ergodic, quantitative bounds

—— Thm: MCMC is ergodic if irreducible & aperiodic

32

• What about convergence rates of independence sampler?

− By Thm, independence sampler is ergodic provided q(x) > 0 whenever π(x) > 0.

− But is that sufficient?

− No, e.g. previous “Rind” example with k = 5: ergodic (of course), but not ge-

ometrically ergodic, CLT does not hold, confidence intervals often miss 1. (file

“Rind2”)

• FACT: independence sampler is geometrically ergodic IF AND ONLY IF there is δ > 0

such that q(x) ≥ δπ(x) for π-a.e. x ∈ X , in which case D(x, n) ≤ (1 − δ)n for π-a.e.

x ∈ X .

− So, if π(x) = e−x and q(x) = ke−kx for x > 0, where 0 < k ≤ 1, then can take

δ = k, so D(x, n) ≤ (1− k)n.

− e.g. if k = 0.01, then D(x, 459) ≤ (0.99)459 .
= 0.0099 < 0.01 for all x > 0, i.e.

“converges” after 459 iterations.

− But if k > 1, then not geometrically ergodic.

− Fact: if k = 5, then D(0, n) > 0.01 for all n ≤ 4, 000, 000, while D(0, n) <

0.01 for all n ≥ 14, 000, 000, i.e. “convergence” takes between 4 million and 14

million iterations. Slow! [Roberts and Rosenthal, “Quantitative Non-Geometric

Convergence Bounds for Independence Samplers”, MCAP, to appear.]

• What about other chains (besides independence sampler)?

• FACT: if state space is finite, and chain is irreducible and aperiodic, then always

geometrically ergodic.

• What about for “random-walk Metropolis algorithm” (RWM), i.e. where {Yn−Xn−1} ∼
q for some fixed symmetric density q?

− e.g. Yn ∼ N(Xn−1, σ
2I), or Yn ∼ Uniform[Xn−1 − δ, Xn−1 + δ].

• FACT: RWM is geometrically ergodic essentially if and only if π has exponential tails,

i.e. there are a, b, c > 0 such that π(x) ≤ ae−b|x| whenever |x| > c. (Requires a few

technical conditions: π and q continuous and positive; q has finite first moment; and

33

π non-increasing in the tails, with (in higher dims) bounded Gaussian curvature.)

[Mengersen and Tweedie, Ann Stat 1996; Roberts and Tweedie, Biometrika 1996]

• EXAMPLES: RWM on R with usual proposals: Yn ∼ N(Xn−1, σ
2).

− CASE #1: Π = N(5, 42), and functional h(y) = y2, so Eπ(h) = 52 + 42 = 41.

(file “Rnorm” . . . σ = 1 v. σ = 4 v. σ = 16)

− Does CLT hold? Yes! (geometrically ergodic, and Eπ(|h|p) <∞ for all p.)

− Indeed, confidence intervals “usually” contain 41. (file “Rnorm2”)

− CASE #2: π(y) = c 1
(1+y4) , and functional h(y) = y2, so

Eπ(h) =

∫∞
−∞ y2 1

(1+y4) dy∫∞
−∞

1
(1+y4) dy

=
π/
√

2

π/
√

2
= 1 .

− Not exponential tails, so no CLT; estimates less stable, confidence intervals often

miss 1. (file “Rheavy”)

− CASE #3: π(y) = 1
π(1+y2) (Cauchy), and functional h(y) = 1−10<y<10, so

Eπ(h) = Π(|X| < 10) = 2 arctan(10)/π = 0.93655. [Π(0 < X < x) = arctan(x)/π]

− Not geometrically ergodic.

− Confidence intervals often miss 0.93655. (file “Rcauchy”)

− CASE #4: π(y) = 1
π(1+y2) (Cauchy), and functional h(y) = min(y2, 100). [Nu-

merical integration: Eπ(y)
.
= 11.77]

− Again, not geometrically ergodic, and 95%CI often miss 11.77, though iid MC

does better. (file “Rcauchy2”)

• NOTE: Even when CLT holds, it’s rather unstable, e.g. requires that chain has

converged to Π, and might underestimate v.

− So, estimate of v is very important!

− “varfact” not always reliable?

− Repeated runs!

34

− Another approach is “batch means”, whereby chain is broken intom large “batches”,

which are assumed to be approximately i.i.d., thus leading to usual i.i.d. variance

estimates . . .

VARIABLE-AT-A-TIME MCMC:

• Propose to move just one coordinate at a time, leaving all the other coordinates fixed

(since changing all coordinates at once may be difficult).

− e.g. proposal Yn has Yn,i ∼ N(Xn−1,i, σ
2), with Yn,j = Xn−1,j for j 6= i.

− (Here Yn,i is the ith coordinate of Yn.)

• Then accept/reject with usual Metropolis rule (symmetric case: “Metropolis-within-

Gibbs”) or Metropolis-Hastings rule (general case: “Metropolis-Hastings-within-Gibbs”).

• Need to choose which coordinate to update each time . . .

− Could choose coordinates in sequence 1, 2, . . . , d, 1, 2, . . . (“systematic-scan”).

− Or, choose coordinate ∼ Uniform{1, 2, . . . , d} each time (“random-scan”).

− Note: one systematic-scan iteration corresponds to d random-scan ones . . .

• EXAMPLE: again π(x1, x2) = C | cos(
√
x1 x2)| I(0 ≤ x1 ≤ 5, 0 ≤ x2 ≤ 4), and

h(x1, x2) = ex1 + (x2)2. (Recall: Mathematica gives Eπ(h)
.
= 38.7044.)

− Works with systematic-scan (file “Rmwg”) or random-scan (file “Rmwg2”).

———————— END WEEK #8————————

[Do course evals.]

[Reminders: HW#2 due March 28 at 2:10pm. Project due April 4 at 2:10pm.]

Summary of Previous Class:

∗ MCMC convergence rates / bounds / CIs

—— independence sampler

—— finite state space

—— RWM

∗ Variable-at-a-time / Metropolis-Hastings-within-Gibbs

35

• GIBBS SAMPLER:

• Special case of Metropolis-Hastings-within-Gibbs.

• Proposal distribution for ith coordinate is equal to the conditional distribution of

that coordinate (according to π), conditional on the current values of all the other

coordinates.

− That is, qi(x, y) = C(x(−i))π(y) whenever x(−i) = y(−i), where x(−i) means all

coordinates except the ith one.

− Here C(x(−i)) is the appropriate normalising constant (which depends on x(−i)).

(So C(x(−i)) = C(y(−i)).)

− Then An = π(Yn) qi(Yn,Xn−1)
π(Xn−1) qi(Xn−1,Yn) =

π(Yn)C(Y (−i)
n)π(Xn−1)

π(Xn−1)C(X
(−i)
n−1

)π(Yn)
= 1.

− So, always accept.

− Can use either systematic or random scan.

• EXAMPLE: Variance Components Model:

− Update of µ (say) should be from conditional density of µ, conditional on current

values of all the other coordinates: L(µ |V,W, θ1, . . . , θK , Y11, . . . , YJKK).

− This conditional density is proportional to the full joint density, but with every-

thing except µ treated as constant.

− Recall: full joint density is:

= Ce−b1/V V −a1−1e−b2/WW−a2−1e−(µ−a3)2/2b3V −K/2W−
1
2

∑K

i=1
Ji ×

× exp

− K∑
i=1

(θi − µ)2/2V −
K∑
i=1

Ji∑
j=1

(Yij − θi)2/2W

 .
− So, conditional density of µ is

C2 e
−(µ−a3)2/2b3 exp

[
−

K∑
i=1

(θi − µ)2/2V

]
.

36

− This equals (verify this! HW#2!)

C3 exp
(
− µ2(

1

2b3
+

K

2V
) + µ(

a3

b3
+

1

V

K∑
i=1

θi)
)
.

− Side calculation: if µ ∼ N(m, v), then density∝ e−(µ−m)2/2v ∝ e−µ2(1/2v)+µ(m/v).

− Hence, here µ ∼ N(m, v), where 1/2v = 1
2b3

+ K
2V and m/v = a3

b3
+ 1

V

∑K
i=1 θi.

− Solve: v = b3V/(V +Kb3), and m = (a3V + b3
∑K
i=1 θi) / (V +Kb3).

− So, in Gibbs Sampler, each time µ is updated, we sample it from N(m, v) for this

m and v (and always accept).

• Similarly (HW#2!), conditional distribution for V is:

C4e
−b1/V V −a1−1V −K/2 exp

[
−

K∑
i=1

(θi − µ)2/2V

]
, V > 0 .

− Recall that “IG(r, s)” has density sr

Γ(r) e
−s/x x−r−1 for x > 0.

− So, conditional distribution for V equals IG(a1 +K/2, b1 + 1
2

∑K
i=1(θi − µ)2).

• Can similar compute conditional distributions for W and θi (HW#2).

• So, in this case, the systematic-scan Gibbs sampler proceeds (HW#2) by:

− Update V from its conditional distribution IG(. . . , . . .).

− Update W from its conditional distribution IG(. . . , . . .).

− Update µ from its conditional distribution N(. . . , . . .).

− Update θi from its conditional distribution N(. . . , . . .), for i = 1, 2, . . . ,K.

− Repeat all of the above M times.

• Or, the random-scan Gibbs sampler proceeds by choosing one of V,W, µ, θ1, . . . , θK

uniformly at random, and then updating that coordinate from its corresponding con-

ditional distribution.

− Then repeat this step M times [or M(K + 3) times?].

37

TEMPERED MCMC:

• Suppose Π(·) is multi-modal, i.e. has distinct “parts” (e.g., Π = 1
2 N(0, 1)+ 1

2 N(20, 1))

• Usual RWM with Yn ∼ N(Xn−1, 1) (say) can explore well within each mode, but how

to get from one mode to the other?

• Idea: if Π(·) were flatter, e.g. 1
2 N(0, 102) + 1

2 N(20, 102), then much easier to get

between modes.

• So: define a sequence Π1,Π2, . . . ,Πm where Π1 = Π (“cold”), and Πτ is flatter for

larger τ (“hot”).

• Then define Markov chain on X ×{1, 2, . . . ,m}, with stationary distribution Π defined

by Π(S × {τ}) = 1
m Πτ (S).

− (Can also use other weights besides 1
m .)

• Define new Markov chain with both spatial moves (change x) and temperature moves

(change τ).

− e.g. perhaps chain alternates between:

(a) propose x′ ∼ N(x, 1), accept with prob min
(

1, π(x′,τ)
π(x,τ)

)
= min

(
1, πτ (x′)

πτ (x)

)
.

(b) propose τ ′ = τ ± 1 (prob 1
2 each), accept with prob

min
(

1, π(x,τ ′)
π(x,τ)

)
= min

(
1, πτ′ (x)

πτ (x)

)
.

• Chain should converge to Π.

• In the end, only “count” those samples where τ = 1.

• EXAMPLE: Π = 1
2 N(0, 1) + 1

2 N(20, 1)

− Assume proposals are Yn ∼ N(Xn−1, 1).

− Mixing for Π: terrible! (file “Rtempered” with dotempering=FALSE and temp=1;

note the small claimed standard error!)

− Define Πτ = 1
2 N(0, τ2) + 1

2 N(20, τ2), for τ = 1, 2, . . . , 10.

− Mixing better for larger τ ! (file “Rtempered” with dotempering=FALSE and

temp=1,2,3,4,...,10)

38

− (Compare graphs of π1 and π10: plot commands at bottom of “Rtempered” . . .)

− So, use above “(a)–(b)” algorithm; converges fairly well to Π. (file “Rtempered”,

with dotempering=TRUE)

− So, conditional on τ = 1, converges to Π. (“points” command at end of file

“Rtempered”)

− So, average of those h(x) with τ = 1 gives good estimate of Eπ(h).

———————— END WEEK #9————————

[Reminders: HW#2 due March 28 at 2:10pm. Project due April 4 at 2:10pm.]

Summary of Previous Class:

∗ Gibbs sampler:

—— Special case of Metropolis-Hastings-within-Gibbs

—— Propose from current conditional dist., always accept

—— e.g. Variance Components Model: cond. dists. are N and IG (HW#2)

∗ Tempered MCMC:

—— sequence Π1 = Π,Π2, . . . ,Πm getting “flatter”

—— Define new chain which alternates x and τ moves

—— Then, only “count” samples where τ = 1

—— e.g. Πτ = 1
2 N(0, τ2) + 1

2 N(20, τ2): works well (file “Rtempered”)

• HOW TO FIND THE TEMPERED DENSITIES πτ?

• Usually won’t “know” about e.g. Πτ = 1
2 N(0, τ2) + 1

2 N(20, τ2).

• Instead, can e.g. let πτ (x) = cτ
(
π(x)

)1/τ
. (Sometimes write β = 1/τ .)

− Then Π1 = Π, and πτ flatter for larger τ – good.

− (e.g. if π(x) density of N(µ, σ2), then cτ (π(x))1/τ density of N(µ, τσ2).)

− Then temperature acceptance probability is:

min
(

1,
πτ ′(x)

πτ (x)

)
= min

(
1,

cτ ′

cτ

(
π(x)

)(1/τ ′)−(1/τ)
)
.

− This depends on the cτ , which are usually unknown – bad.

39

• What to do?

• PARALLEL TEMPERING:

• (a.k.a. Metropolis-Coupled MCMC, or MCMCMC)

• Alternative to tempered MCMC.

• Instead, use state space Xm, with m chains, i.e. one chain for each temperature.

• So, state at time n is Xn = (Xn1, Xn2, . . . , Xnm), where Xnτ is “at” temperature τ .

• Stationary distribution is now Π = Π1 × Π2 × . . . × Πm, i.e. Π(X1 ∈ S1, X2 ∈
S2, . . . , Xm ∈ Sm) = Π1(S1) Π2(S2) . . . Πm(Sm).

• Then, can update the chain at temperature τ (for each 1 ≤ τ ≤ m), by proposing e.g.

Yn,τ ∼ N(Xn−1,τ , 1), and accepting with probability min
(

1,
πτ (Yn,τ)

πτ (Xn−1,τ)

)
.

• And, can also choose temperatures τ and τ ′ (e.g., at random), and propose to “swap”

the valuesXn,τ andXn,τ ′ , and accept this with probability min
(

1,
πτ (Xn,τ′)πτ′ (Xn,τ)

πτ (Xn,τ)πτ′ (Xn,τ′)

)
.

− Now, normalising constants cancel, e.g. if πτ (x) = cτ
(
π(x)

)1/τ
, then acceptance

probability is:

min
(

1,
cτπ(Xn,τ ′)

1/τ cτ ′π(Xn,τ)1/τ ′

cτπ(Xn,τ)1/τ cτ ′π(Xn,τ ′)1/τ ′

)
= min

(
1,

π(Xn,τ ′)
1/τ π(Xn,τ)1/τ ′

π(Xn,τ)1/τ π(Xn,τ ′)1/τ ′

)
,

so cτ and cτ ′ are not required.

• EXAMPLE: suppose again that Πτ = 1
2 N(0, τ2) + 1

2 N(20, τ2), for τ = 1, 2, . . . , 10.

− Can run parallel tempering . . . works pretty well. (file “Rpara”)

MONTE CARLO IN FINANCE:

• Xt = stock price at time t

• Assume that X0 = a > 0, and dXt = bXtdt + σXtdBt, where {Bt} is Brownian

motion.

− i.e., for small h > 0,

(Xt+h−Xt |Xt) ≈ bXt(t+h−t)+σXt(Bt+h−Bt) ∼ bXt(t+h−t)+σXtN(0, h) ,

40

so

(Xt+h |Xt) ∼ N
(
Xt + bXth, σ

2(Xt)
2h
)
. (∗)

• A “European call option” is the option to purchase one share of the stock at a fixed

time T > 0 for a fixed price q > 0.

• Question: what is a fair price for this option?

− At time T , its value is max(0, XT − q).

− So, at time 0, its value is e−rT max(0, XT − q), where r is the “risk-free interest

rate”.

− But at time 0, XT is unknown! So, what is fair price??

• FACT: the fair price is equal to E
(
e−rT max(0, XT − q)

)
, but only after replacing b

by r.

− (Proof: transform to risk-neutral martingale measure . . .)

− Intuition: if b very large, might as well just buy stock itself.

• If σ and r constant, then there’s a formula (“Black-Scholes eqn”) for this price, in

terms of Φ = cdf of N(0, 1):

a Φ

(
1

σ
√
T

(
log(a/q) + T (r +

1

2
σ2)
))
− qe−rTΦ

(
1

σ
√
T

(
log(a/q) + T (r − 1

2
σ2)
))

• But we can also estimate it through (iid) Monte Carlo!

− Use (∗) above (for fixed small h > 0, e.g. h = 0.05) to generate samples from the

difusion.

− Any one run is highly variable. (file “RBS”, with M = 1)

− But many runs give good estimate. (file “RBS”, with M = 1000)

− Note that it’s iid replications, so varfact ≡ 1.

• An “Asian call option” is similar, but with XT replaced by Xk,t ≡ 1
k

∑k
i=1XiT/k, for

some fixed positive integer k (e.g., k = 8).

41

− Above “FACT” still holds (again with XT replaced by Xk,t).

− Now there is no simple formula . . . but can still simulate! (file “RAO”)

MONTE CARLO MAXIMISATION (OPTIMISATION):

• EXAMPLE #1: CODE BREAKING, e.g. “decipherit oliver”. [“decipher.c”]

− “substitution cipher”.

• Data is the coded message text: s1s2s3 . . . sN , where si ∈ A = {A,B,C, . . . , Z, space}.

• State space X is set of all bijections of A, i.e. one-to-one onto mappings f : A → A,

subject to f(space) = space.

• Use reference text (e.g. “War and Peace”) to get matrix M(x, y) = 1+ number of

times y follows x, for x, y ∈ A.

• Then for f ∈ X , let π(f) =
∏N−1
i=1 M

(
f(si), f(si+1)

)
.

− (Or raise this all to a power, e.g. 0.25.)

• Idea: if π(f) is larger, then f leads to pair frequencies which more closely match the

reference text, so f is a “better” choice.

• Would like to find f which maximises π(f).

• To do this, run a Metropolis algorithm for π:

− Choose a, b ∈ A \ {space}, uniformly at random.

− Propose to replace f by g, where g(a) = f(b), g(b) = f(a), and g(x) = f(x) for

all x 6= a, b.

− Accept with probability min
(

1, π(g)
π(f)

)
.

• Easily seen to be irreducible, aperiodic, reversible.

• So, converges (quickly!) to correct answer, breaking the code. (e.g. “decipheroutput”)

• References: S. Conner (2003), “Simulation and solving substitution codes”. P. Diaco-

nis (2008), “The Markov Chain Monte Carlo Revolution”. J. Chen and J.S. Rosenthal

42

(2010), “Decrypting Classical Cipher Text Using Markov Chain Monte Carlo” (Statis-

tics and Computing, to appear).

• EXAMPLE #2: COMPUTER VISION, e.g. “faces” Java applet. [“faces.html”]

• Data is an image, given in terms of a grid of pixels (each on or off).

• Define the face location by a vector θ of various parameters (face center, eye width,

nose height, etc.).

• Then define a score function S(θ) indicating how well the image agrees with having a

face in the location corresponding to the parameters θ.

• Then run a “mixed” Monte Carlo search (sometimes updating by small RWM moves,

sometimes starting fresh from a random vector) over the entire parameter space,

searching for argmaxθ S(θ), i.e. for the parameter values which maximise the score

function.

− Keep track of best θ so far – this allows for greater flexibility in trying different

search moves without needing to preserve a stationary distribution.

− Works pretty well, and fast! (“faces.html” Java applet)

− For details, see Java applet source code, “faces.java” (or the related paper).

———————— END WEEK #10————————

[Note: the course project is officially due at 2:10pm on April 4, but I have decided that

I will not impose late penalties provided it is handed in to me by 2:10pm on April 14.

(Students handing it in by the original due date will receive a bonus of 2/50.)]

Summary of Previous Class:

∗ MC in finance:

∗ European call option:

—— Can compute (BS) or estimate (MC) this – good.

∗ Asian call option:

—— Can still estimate by MC.

∗ Code breaking:

—— Choose substitution cipher function f to maximise π(f).

43

—— (Review this.)

∗ Face identification:

—— Choose face parameters θ to maximise S(θ).

—— (Review this.)

• In both of these examples, wanted to MAXIMISE π rather than SAMPLE from π.

− General method?

• SIMULATED ANNEALING:

• General method to find highest mode of π.

• Idea: mode of π is same as mode of flatter version πτ , for any τ > 0. (e.g. πτ ≡ π1/τ)

− For large τ , MCMC explores a lot; good at beginning of search.

− For small τ , MCMC narrows in on local mode; good at end of search.

• So, use tempered MCMC, but where τ = τn ↘ 0, so πτn becomes more and more

concentrated at mode as n→∞.

• Need to choose {τn}, the “cooling schedule”.

− e.g. geometric (τn = τ0 r
n for some r < 1).

− or linear (τn = τ0 − dn for some d > 0, chosen so that τM = τ0 − dM ≥ 0).

− or logarithmic (τn = c/ log(1 +n)). [Thm: if c ≥ supπ, then simulated annealing

with τn = c/ log(1 + n) will converge to global maximum as n→∞.]

− or . . .

• EXAMPLE: Πτ = 0.3N(0, τ2) + 0.7N(20, τ2). (file “Rsimann”)

− Highest mode is at 20 (for any τ).

− If run usual Metropolis algorithm, it will either jump forever between modes (if

τ large), or get stuck in one mode or the other with equal probability (if τ small)

– bad.

− But if τn ↘ 0 slowly, then can usually find the highest mode (20) – good.

44

− Try both exponential and linear (better?) cooling . . . (file “Rsimann”)

OPTIMAL RWM PROPOSALS:

• Consider RWM on X = Rd, where Yn ∼ MVN(Xn−1, Σ) for some d × d proposal

covariance matrix Σ.

• What is best choice of Σ?

− Usually we take Σ = σ2 Id for some σ > 0, and then choose σ so acceptance rate

not too small, not too large (e.g. 0.234).

− But can we do better?

• Suppose for now that Π = MVN(µ0, Σ0) for some fixed µ0 and Σ0, in dim=5. Try

RWM with various proposal distributions (file “Ropt”):

− first version: Yn ∼MVN(Xn−1, Id). (acc ≈ 0.06; varfact ≈ 220)

− second version: Yn ∼MVN(Xn−1, 0.1 Id). (acc ≈ 0.234; varfact ≈ 300)

− third version: Yn ∼MVN(Xn−1, Σ0). (acc ≈ 0.31; varfact ≈ 15)

− fourth version: Yn ∼MVN(Xn−1, 1.4 Σ0). (acc ≈ 0.234; varfact ≈ 7)

• Or in dim=20 (file “Ropt2”):

− Yn ∼MVN(Xn−1, 0.025 Id). (acc ≈ 0.234; varfact ≈ 400 or more)

− Yn ∼MVN(Xn−1, 0.283 Σ0). (acc ≈ 0.234; varfact ≈ 50)

• Conclusion: acceptance rates near 0.234 are better.

• But also, proposals shaped like the target are better.

− This has been proved for targets which are orthogonal transformations of indepen-

dent components (Roberts et al., Ann Appl Prob 1997; Roberts and Rosenthal,

Stat Sci 2001; Bédard, Ann Appl Prob 2007).

− Is “approximately” true for most unimodal targets . . .

• Problem: Σ0 would usually be unknown; then what?

45

− Can perhaps “adapt“!

ADAPTIVE MCMC:

• What if target covariance Σ0 is unknown??

• Can estimate target covariance based on run so far, to get empirical covariance Σn.

• Then update proposal covariance “on the fly”, by using proposal Yn ∼MVN(Xn−1, Σn)

[or Yn ∼MVN(Xn−1, 1.4Σn), or Yn ∼MVN(Xn−1, ((2.38)2/d)Σn)].

− Hope that for large n, Σn ≈ Σ0, so proposals “nearly” optimal.

− (Usually also add εId to proposal covariance, to improve stability, e.g. ε = 0.05.)

• Resulting “adaptive Metropolis (AM) algorithm” seems to work well in practice (e.g.

figure “plotAMx200.png”, dim=200).

− But it takes many iterations before the adaption is helpful.

• Try R version, for the same MVN example as in Ropt (file “Radapt”):

− Need much longer burn-in, e.g. B = 20, 000, for adaption to work.

− Get varfact of last 4000 iterations of about 18 . . . “competitive” with Ropt

optimal . . .

− The longer the run, the more benefit from adaptation.

− Can also compute “slow-down factor”, sn ≡ d
(∑d

i=1 λ
−2
in / (

∑d
i=1 λ

−1
in)2

)
, where

{λin} eigenvals of Σ
1/2
n Σ

−1/2
0 . Starts large, should converge to 1. [Motivation: if

Σn = Σ0, then λin ≡ 1, so sn = d(d/d2) ≡ 1.]

• BUT IS “ADAPTIVE MCMC” A VALID ALGORITHM??

• Not in general: see e.g. “adapt.html”

• Algorithm now non-Markovian, doesn’t preserve stationarity at each step.

• However, still converges to Π provided that the adaption (i) is “diminishing” and (ii)

satisfies a technical condition called “containment”.

46

− For details see e.g. Roberts & Rosenthal, “Coupling and Convergence of Adaptive

MCMC” (J. Appl. Prob. 2007).

———————— END WEEK #11————————

[Got your HW#2 . . . not graded yet . . . will soon . . .]

[Project due today at 2:10pm (+2), or by 2:10pm on April 14.]

Summary of Previous Class:

∗ Mode-finding (maximising)

—— Examples: code-breaking, face-finding

—— Simulated tempering: like tempered MCMC, but τn ↘ 0

∗ Optimal RWM proposals

—— acc rate 0.234 good

—— But also good if shape of proposal similar to shape of target

—— Problem: might not KNOW shape of target

∗ Adaptive MCMC

—— Learn shape/size/etc of target as you go.

—— After many iterations, becomes efficient MCMC – good.

—— But requires certain conditions or else it might fail to converge – Java applet.

TRANSDIMENSIONAL MCMC:

• (a.k.a. “reversible-jump MCMC”: Green, Biometrika 1995)

• What if the state space is a union of parts of different dimension?

− Can we still apply Metropolis-Hastings then??

• EXAMPLE: autoregressive process: suppose Yn = a1Yn−1 + a2Yn−2 + . . . + akYn−k,

but we don’t know what k should be.

• EXAMPLE: suppose {yj}Jj=1 are known data which are assumed to come from a

mixture distribution: 1
k

(
N(a1, 1) +N(a2, 1) + . . .+N(ak, 1)

)
.

• Want to estimate the unknown k, a1, . . . , ak.

− Here the number of parameters is also unknown, i.e. the dimension is unknown

47

and variable, which makes MCMC more challenging!

• The state space is X = {(k, a) : k ∈ N, a ∈ Rk}.

• Prior distributions: k − 1 ∼ Poisson(2), and a|k ∼MVN(0, Ik) (say).

• Define a reference measure λ by: λ({k} × A) = λk(A) for k ∈ N and (measurable)

A ⊆ Rk, where λk is Lebesgue measure on Rk.

− i.e., λ = δ1 × λ1 + δ2 × λ2 + δ3 × λ3 + . . .

• Then the posterior density (with respect to λ) is:

π(k, a) = C
e−22k−1

(k − 1)!
(2π)−k/2 exp

(
−1

2

k∑
i=1

a2
i

)
(2π)−J/2

J∏
j=1

(k∑
i=1

1

k
exp

(
−1

2
(yj−ai)2

))
.

• So, on a log scale,

log π(k, a) = logC + log
e−22k−1

(k − 1)!
− k

2
log(2π)− 1

2

k∑
i=1

a2
i −

J

2
log(2π)+

J∑
j=1

log

(k∑
i=1

1

k
exp

(
− 1

2
(yj − ai)2

))
.

(Can ignore logC and J
2 log(2π), but not k

2 log(2π).)

• How to “explore” this posterior distribution??

• For fixed k, can move around Rk in usual way with RWM (say).

• But how to change k?

• Can propose to replace k with, say, k′ = k ± 1 (prob 1
2 each).

• Then have to correspondingly change a. One possibility:

− If k′ = k + 1, then a′ = (a1, . . . , ak, Z) where Z ∼ N(0, 1) (“elongate”).

− If k′ = k − 1, then a′ = (a1, . . . , ak−1) (“truncate”).

• Then accept with usual probability, min
(

1,
π(k′,a′) q

(
(k′,a′),(k,a)

)
π(k,a) q

(
(k,a),(k′,a′)

)).

48

− Here if k′ = k+1, then q
(
(k′, a′), (k, a)

)
= 1

2 , while q
(
(k, a), (k′, a′)

)
= 1

2
1√
2π
e−(a′

k′)
2/2.

− Or, if k′ = k−1, then q
(
(k, a), (k′, a′)

)
= 1

2 , while q
(
(k′, a′), (k, a)

)
= 1

2
1√
2π
e−(ak)2/2.

• Seems to work okay; final k usually between 5 and 9 . . . (file “Rtrans”)

• ALTERNATIVE method for the “correspondingly change a” step:

− If k′ = k+1, then a′ = (a1, . . . , ak−1, ak−Z, ak+Z) where Z ∼ N(0, 1) (“split”).

− If k′ = k − 1, then a′ = (a1, . . . , ak−2,
1
2 (ak−1 + ak)) (“merge”).

− What about the densities q
(
(k′, a′), (k, a)

)
?

− Well, if k′ = k + 1, then q
(
(k′, a′), (k, a)

)
= 1

2 , while roughly speaking,

q
(
(k, a), (k′, a′)

)
=

1

2

1√
2π
e−z

2/2 =
1

2

1√
2π
e−(1

2 (a′
k′−a

′
k))2/2 .

− One subtle additional point: The map (a, Z) 7→ a′ = (a1, . . . , ak−1, ak−Z, ak+Z)

has “Jacobian” term:

det
(

∂a′

∂(a,Z)

)
= det

 Ik−1 0 0
0 1 −1
0 1 1

 = 1− (−1) = 2 ,

i.e. the split moves “spread out” the mass by a factor of 2.

− So by Change-of-Variable Thm, actually

q
(
(k, a), (k′, a′)

)
=

1

2

1√
2π
e−(1

2 (a′
k′−a

′
k))2/2

/
2 .

− Similarly, if k′ = k − 1, then q
(
(k, a), (k′, a′)

)
= 1

2 , while

q
(
(k′, a′), (k, a)

)
=

1

2

1√
2π
e−(1

2 (ak−ak′))
2/2
/

2 .

− Algorithm still seems to work okay . . . (file “Rtrans2”)

• For more complicated transformations, need to include more complicated “Jacobian”

term (but above it equals 1 or 2).

49

• Check: if we start the algorithms with, say, k = 24, then they don’t manage to reduce

k enough!

− They might be trying to remove the “wrong” ai.

• So, try another MODIFICATION, this time where any coordinate can be added/removed,

not just the last one.

− While we’re at it, change “new ai distribution” from Z ∼ N(0, 1) to Z ∼
Uniform(−20, 30), with corresponding change to the q

(
(k, a), (k′, a′)

)
formulae.

− file “Rtrans3” – now works well even if started with k = 24.

− Seems to settle on k = 6 regardless of starting value.

− This seems to indicate rapid mixing – good!

———————— END WEEK #12————————

• SUMMARY: Monte Carlo can be used for nearly everything!

• Good luck on your exams, etc., and have a nice summer.

50

