STA3431 (Monte Carlo Methods) Lecture Notes, Winter 2011

by Jeffrey S. Rosenthal, University of Toronto
(Last updated: April 4, 2011.)
Note: I will update these notes regularly (on the course web page). However, they are
just rough, point-form notes, with no guarantee of completeness or accuracy. They should

in no way be regarded as a substitute for attending the lectures, doing the homework
exercises, or reading the reference books.

INTRODUCTION:

e Introduction to course, handout, references, prerequisites, etc.
— Course web page: probability.ca/sta3431

— If not Stat Dept grad student, must REQUEST enrolment (by e-mail); need
strong probability /statistics background, plus some computer programming ex-

perience.

— Conversely, if you already know lots about MCMC etc., then this course might
not be right for you since it’s an INTRODUCTION to these topics.

— How many of you are stat grad students? undergrads? math? computer science?

physics? economics? management? engineering? other?

e Theme of the course: use (pseudo)randomness on a computer to simulate (and hence

estimate).

e Example: Suppose want to estimate m := E[Z* cos(Z)], where Z ~ Normal(0, 1).

Monte Carlo solution: replicate a large number z1, ..., z, of Normal(0,1) random

variables, and let x; = 2} cos(z;).
— Their mean =1 3" | z; is an (unbiased) estimate of E[X] = E[Z* cos(Z)].
— R: Z = rnorm(100); X = ZA4 * cos(Z); mean(X) [file “RMC”]
— unstable ... but if replace “100” with “1000000” then T close to —1.213 ...
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— Variability??

— Well, can estimate standard deviation of T by “standard error” of x, which is:

1
_ o —1/2 _ o —1/2 o —1/2 =2
se = n sd(z) = n var(z) = n — E_l(azz z)?.

[file “RMC”]
e Then what is, say, a 95% confidence interval for m?
e Well, by central limit theorem (CLT), for large n, have T ~ N(m,v) ~ N(m, se?).

— Strictly speaking, should use “t” distribution, not normal distribution ... but if

n large that doesn’t really matter (ignore it for now).

— So ™=Z ~ N(0,1).

se

— So, P(—1.96 < ™=% < 1.96) ~ 0.95.
— So, P(Z —1.96se <m < T+ 1.96se) ~ 0.95.

— i.e., approximate 95% confidence interval is [file “RMC”]

(x —1.96 se, T+ 1.96 se) .

e Alternatively, could compute expectation as

/°° 4 e /2
2% cos(z) dz.
oo V2T

Analytic? Numerical? Better? Worse? [file “RMC”: —1.213]

— What about higher-dimensional versions? (Can’t do numerical integration!)

e How do we generate Normal(0,1) random variables, etc.? (pseudorandomness, random

variates ... we'll start here ...)
e What if distribution too complicated to sample from?

— (MCMC! ... including Metropolis, Gibbs, tempered, trans-dimensional, ... )



HISTORICAL EXAMPLE — BUFFON’S NEEDLE:

— Have series of parallel lines ... line spacing w, needle length ¢ < w ... what is

prob that needle lands touching line? [file buffon.html]

— Let 0 be angle counter-clockwise from line direction, and h distance of top end

above nearest line.
— Then h ~ Uniform[0, w] and 6 ~ Uniform|0, 7].
— Touches line iff A < ¢sin(0).
— So, prob = 2 [T L [F1, yune dhdd =L [T Lisin(9)do = 2¢/wn.

— Hence, by LLN, if throw needle n times, of which it touches a line m times, then

for n large, m/n ~ 2¢/wn, so m = 2nf/muw.

— le.g. recuperating English Captain O.C. Fox, 1864: ¢ = 3, w = 4, n = 530,
m = 253, so ™ ~ 2nl/mw = 3.1423]

— But for modern simulations, use computer. How to randomise??

PSEUDORANDOM NUMBERS:
e Goal: generate an i.i.d. sequence Uy, Us, Us, ... ~ Uniform[0, 1].
e One method: LINEAR CONGRUENTIAL GENERATOR (LCG).
— Choose (large) positive integers m, a, and b.
— Start with a “seed” value, xg. (e.g., the current time in milliseconds)

— Then, recursively, x,, = (ax,_1 +b) mod m, i.e. x,, = remainder when az,_1 + b

is divided by m.
— S0, 0<z,, <m—1.
— Then let U,, = x,,/m.
— Then {U,} will “seem” to be approximately i.i.d. ~ Uniform[0, 1]. (file “Rrng”)

e Choice of m, a, and b?



e Many issues:

need m large (so many possible values);
need a large enough that no obvious “pattern” between U,,_; and U,.
need b to avoid short “cycles” of numbers.

many statistical tests, to try to see which choices provide good randomness,
avoid correlations, etc. (e.g. “diehard tests”, www.stat.fsu.edu/pub/diehard;

“dieharder”, www.phy.duke.edu/~rgh/General/dieharder.php)

One common “good” choice: m = 232, a = 69,069, b = 23,606, 797.

e Theorem: the LCG has full period (m) if and only if both (i) ged(b, m) = 1, and (ii)

every “prime or 4” divisor of m also divides a — 1.

e Not

So, if m = 232, then if b odd and a — 1 is a multiple of 4, then the LCG has full
period m = 232 = 4.3 x 10; good.

Many other choices, e.g. C programming language (glibc) uses m = 232, a =
1,103,515, 245, b = 12, 345.

One bad choice: m = 23!, a = 65539 = 216 + 3, b = 0 (“RANDU”) ... used for
many years (esp. early 1970s) ... but then x, 5 = 6x,41 — 92, mod m ... too
much serial correlation. [Proof: z,12 = (2!¢ + 3)%z, = (232 4 6(2'6) + 9)z,, =

(0+6(2'% +3) — 9)z,, (mod 231) = 62,41 — 97,

(Microsoft Excel pre-2003: period < 10%, too small ... Excel 2003 used floating-

point “version” of LCG, which sometimes gave negative numbers — bad!)
“really” random, just “pseudorandom” ...

Can cause problems!

Will fail certain statistical tests ...

Some implementations also use external randomness, e.g. current temperature of

computer’s CPU / entropy of kernel (e.g. Linux’s “urandom”).

Or the randomness of quantum mechanics, e.g. www.fourmilab.ch/hotbits.



— Or of atmospheric noise, e.g. random. org.
— But for most purposes, standard pseudorandom numbers are pretty good ...
e We'll consider LCG’s “good enough for now”, but:

— Other generators include “Multiply-with-Carry” [z, = (axy— + bp—1) mod m
where b, = |(axn_r + bp_1)/m]; and ‘Kiss” [y, = (z, + Jn + K,) mod 232
where x,, as above, and J,, and K,, are “shift register generators”, given in bit
form by J,11 = (I+LY)(I+R'7)J, mod 232, and K,,;1 = (I+L'3)(I+R¥®)K,
mod 231]; and “Mersenne Twister” [T,i1 = Tnis (x%upper)\xSivi'er))A, where
1 < s < k where 28*~" — 1 is Mersenne prime, and A is w x w (e.g. 32 x 32) with
(w—1) X (w—1) identity in upper-right, with matrix mult. done bit-wise mod 2],

and many others too.
— (R implementation: see “?.Random.seed” ... default is Mersenne Twister.)

e So, just need computer to do simple arithmetic. No problem, right?

LIMITATIONS OF COMPUTER ARITHMETIC:

e Consider the following computations in R:

— >2+4+1-2
[1]1
> 2A10 + 1 - 2A10
[1]1
> 2A100 + 1 - 2A100
[1] 0

o Why??

e Homework question: for what values of n does:
>2An + 1-2An

give 0 instead of 177

END WEEK #1



[Try new white-board pens, new Windows computer for projector.]

[Reminders: e-mail me if you're from another dept (not Stats) and want to take this class

for credit. Course web page: probability.ca/sta3431 |
[Show files RMC and Rrng, if computer projector working, |

Summary of Previous Class:

* Introduction to course

x Examples of Monte Carlo:

—— E[Z%*cos(Z)]

—— Buffon’s needle

* Pseudorandom number generation:

—— Want Uy, Us, ... =~ i.i.d. Uniform|0, 1]

* e.g. linear congruential generator

Tp = (axp—1 +b) mod m

—— Then U,, = z,/m.

e.g. m = 232, a = 69,069, b = 23,606, 797.
—— THM: full period iff ...

—— RNG tests ...

—— Limitations of computer arithmetic ...

e Computer arithmetic in R (cont’d):

> 2A52 + 1 - 2A52

1] 1
> 2A53 + 1 - 2A53
[1] 0
> 2753 - 2A53 + 1
[1] 1

e Similarly:
> 1+ 2A(-52) - 1
1] 2.220446¢-16
> 14+ 2A(-53) - 1
[1] 0



e Why these errors?? Well, computers use “double-precision floating point” numbers:

— Written as:
52
(—1)°2°7 19 Lmymy .. .msy  (base 2) = (=1)°2°7 10 (14 "m;27),
=1
where:

—— the “sign” s =0 or 1 (1 bit);

—— the “written exponent” e is between 0 and (2'! — 1) — 1 = 2046 (11 bits);
—— (So, the “true exponent” equals e — 1023, and is between —1023 and 1023.)
—— the “mantissa” consists of 52 bits m;, each 0 or 1 (52 bits).

« Total of 64 bits [i.e., 8 eight-bit “bytes”], where each “bit” is 0 or 1.

(single precision: 1 + 8 + 23 = 32 bits)

e For example, 5 =1 x 22 + 0 x 2! +1 x 2° = 101 (base 2) = (—1)9 2102571023 1 (1,
— And, —14.75 = —1110.11 (base 2) = (—1)! 21026-1023 1 11011,

e (Also have a few special values, like Inf, —Inf, NaN, ... ; the special case e = 211 — 1

is reserved for these; hence that final “—1” in the written exponent’s range.)

e (Special underflow trick: when e = 0, then the leading digit “1” is omitted, allowing

for even smaller values to be represented.)
e Then, addition is done by first adjusting the numbers to have the same exponent.

e So, the value “2°3 + 17 is computed as:
2% 11 = 1.0x2%4+1.0x2° = 1.0x2°40.00...01 x 2°

= 1.00...01 x 2°% = 1.0 x 2%
(lower order bit gets dropped!).
— Then if we subtract 2°3, we end up with 0 (!).

e So, numerical computations are just approximations, with their own errors!

e We’ll usually ignore this, but MUST BE CAREFUL! Then can simulate ...



SIMULATING OTHER DISTRIBUTIONS:

e Once we have Uy, Us,... i.i.d. ~ Uniform|0,1] (at least approximately), how do we

generate other distributions?
e With transformations, using “change-of-variable” theorem!
e c.g. to make X ~ Uniform[L, R], set X = (R — L)U; + L.

e e.g. to make X ~ Bernoulli(p), set

17 Ulép
X =
0, U1>p

e c.g. to make Y ~ Binomial(n, p), either set Y = X7 4+ ... 4+ X,, where
Xi - )

or set

—1
(where by convention »_ (---) = 0).
k=0

e More generally, to make P(Y = x;) = p; for some =1 < x5 < 3 < ..., where p; > 0
and ), p; = 1, simply set
j—1

Y = max{z;; Zpk < Ui}.
k=1

e c.g. to make Z ~ Exponential(1), set Z = —log(Uy).
— Then P(Z > z) = P(—log(Uy) > z) = P(log(U1) < —z) =P(U; < e ) =e™ ",
— Then, to make W ~ Exponential(\), set W = Z/\ = —log(Uy)/ .

e What if want X to have density 6 2519 p<1.

— Let X =U,/°.



— Then for 0 <z <1, P(X <) =P(UY6 <) =P(U < 25) = 25,
— Hence, fx(z) = L£z5 =625 for 0 <z < 1.
1/r

— More generally, for r > 1, if X = U,’", then fx(x) =rz" ! for 0 <z < 1.

e What about normal dist.? Fact: If
X = /2log(1/Uy) cos(2nUs),

Y = /2log(1/Uy) sin(2nU,),

then X,Y ~ N(0,1) (independent!). [“Box-Muller transformation”: Ann Math Stat
1958, 29, 610-611]

— Proof: By multidimensional change-of-variable theorem, if (z,y) = h(u1,us) and

(u1,u2) = h=1(x,y), then fxy(x,y) = fu,,vu, (h_l(x,y)) / |J(h_1(x,y))]. Here
fu, v, (ur,uz) =1 for 0 < uq,us <1 (otherwise 0), and

9y Oy

Oz Oz
J(uy,uz) = det (8“1 Guz )
8’1}4 8’LL2

— det (— cos(2mug) [ uiy/2log(1/uy) —2msin(2wu2) 210g(1/u1)>
—sin(2mug) /ui/2log(1/uy) 2w cos(2mu2)+/2log(1/uq)

= =27 /uy.
But u; = e~ @ +°)/2 50 density of (X,Y) is
Fxy(@y) = VT @)l = 1| =2m/e” @2 = om0/ or
_ (Le—x2/2> <Le—y2/2>
V2r vor ’
ie. X ~ N(0,1) and Y ~ N(0,1) are independent.
e Another approach: “INVERSE CDF METHOD”:

— Suppose want P(X < z) = F(x). (“CDE”)
— For0<t<1,set F71(t) = min{z; F(x) >t}. (“inverse CDF”)
— Then set X = F~Y(Uy).
— Then X <z if and only if Uy < F(z).
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— So,P(X <z) = P(U; < F(z)) = F(a).
— Very general, but computing F~1(¢) could be difficult ...

e So, generating (pseudo)random numbers for most “standard” one-dimensional distri-

butions is pretty easy ...

— So, can get Monte Carlo estimates of expectations involving standard one-dimensional
distributions, e.g. E[Z* cos(Z)] where Z ~ Normal(0, 1).

e But what if distribution is complicated, multidimensional, etc.?

SIMULATION EXAMPLE: QUEUEING THEORY:

— Q(t) = number of people in queue at time ¢t > 0.

e Suppose service times ~ Exponential(y) [mean 1/pu], and interarrival times ~ Exponential(\)
(“M/M/1 queue”), so {Q(t)} Markovian. Then well known:

— If p < A, then Q(t) — o0 as t — oc.

If > A, then Q(t) converges in distribution as t — oo:
- PQ)=1) = (1= 2)(3)), for i =0,1,2,....
— Easy! (e.g. p =3, A =2, ¢t=1000) [file “Rqueue”]

e Now suppose instead that service times ~ Uniform[0, 1], and interarrival times have

distribution of |Z| where Z ~ Normal(0, 1). Limits not easily computed. Now what?
— Simulate it! [file “Rqueue2”]

e Or, to make the means the same as the first example, suppose service times ~
Uniform|[0, 2/3], and interarrival times have distribution of Z? /2 where Z ~ Normal(0, 1).
Now what? [file “Rqueue3”]

END WEEK #2
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[Hand out HW#1, due Feb 14 at 2:10pm sharp. Q5: “—|y|> + 67 — “—|y|> — 2".]

Summary of Previous Class:

* Limits of computer arithmetic

—— double-precision floating point numbers

x Transforming uniforms to binomial, exponential, normal, ...
—— Inverse CDF method.

x Example: simulation of queues

MONTE CARLO INTEGRATION:

e How to compute an integral with Monte Carlo?
— Re-write it as an expectation!
e EXAMPLE: Want to compute fol fol g(z,y) dz dy.
— Regard this as E[g(X,Y)], where X, Y i.i.d. ~ Uniform]0, 1].
— e.g. g(x,y) = cos( y/zy ). (file “RMCint”) Easy!
— Get about 0.88 +0.003 ... Mathematica gives 0.879544.
e c.g. estimate [ = f05 f04g(ac,y) dy dx, where g(z,y) = cos(/zy ).

— Here

5 4 5 4
| [ swmayas = [ [ 5eagw) (/0dy (1/5)de = Bls-4-9(X.Y)].
0 0 0 0

where X ~ Uniform[0,5] and Y ~ Uniform|0, 4].
— So, let X; ~ Uniform[0, 5], and Y; ~ Uniform|0, 4] (all independent).
— Estimate I by & S0 (5-4-g(X,,Y;)).
— Standard error: se = M~1/2 sd(5-4- g(X1,Y1), ..., 5-4-g(X, Yar)).
— With M = 10°, get about —4.11 £0.01 ... (file “RMCint2”)
e c.g. estimate fol I h(,y) dy dz, where h(z,y) = eV cos( /T ).
— (Can’t use “Uniform” expectations.)
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— Instead, write this as fol Jo (¥ h(z,y)) e ¥ dy du.

— This is the same as E[e¥ h(X,Y)], where X ~ Uniform[0, 1] and Y ~ Exponential(1)

are independent.

— So, estimate it by M Z 1 eYih(X;,Y;), where X; ~ Uniform[0,1] and Y; ~
Exponential(1) (i.i.d.).

— With M = 10° get about 0.767 4- 0.0004 ... very accurate! (file “RMCint3”)
— (Check: Numerical integration [Mathematica] gives 0.767211.)

Le™ h(x,y)) (5¢~) dy dz = B[Le™ h(X, V)

where X ~ Uniform|0, 1] and Y ~ Exponential(5) (indep.).

e Alternatively, could write this as fol fooo(

LebYih(x;,y;), where x; ~ Uniform[0,1] and y; ~

— Then, estimate it by - i Zz 15

Exponential(5) (i.i.d.).

— With M = 106, get about 0.767 + 0.0016 ... larger standard error ... (file
“RMCint4”).

— If replace 5 by 1/5, get about 0.767 £ 0.0015 ... about the same.
e So which choice is best?
— Whichever one minimises the standard error! (A = 1.5, se ~ 0.000257)

e In general, to evaluate I = E[h(Y)] = [ h(y) n(y) dy, where Y has density 7, could
instead re-write this as I = [ h(x) E ; f(x )da:, Where f is easily sampled from, with
f(x) > 0 whenever 7(z) > 0.

— Then I = E (h(X) ”(X)>, where X has density f. (“Importance Sampling”)
— Can then do classical (iid) Monte Carlo integration, get standard errors etc.

— Good if easier to sample from f than m, and/or if the function h(x) E g less

variable than h itself.

e In general, best to make h(x) 7}%3 approximately constant.

— e.g. extreme case: if I = [J~e 3 dx, then I = [;°(1/3)(3e3")dz = E[1/3]
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where X ~ Exponential(3), so I = 1/3 (error = 0, no MC needed).

UNNORMALISED DENSITIES:

e Suppose now that 7(y) = cg(y), where we know g but don’t know ¢ or 7. (“Unnor-

malised density”, e.g. Bayesian posterior.)

1
[ 9w dy’

— Obviously, ¢ = but this might be hard to compute.

_ fh(:n) g(z) dz
[o@)yda

— If sample {x;} ~ f (ii.d.), then [h(z)g(z)dz = [ <h(x)g(x) / f(x)) f(z)dz =
E[h(X) g(X) / £(X)] where X ~ .

= So, [ h(z) glw) do ~ 7 Y, (hlws) gwi) / f(wi)).

— Still, I = [h(z)n(z)dz = [ h(z)cg(z)dx

— Similarly, [ g(z)dz ~ 57 Zf\il (g(mz)/f(:cz)>

> (h(wng(wi)/f(mi))
> (a(a:i)/f(cci))

— (Not unbiased, standard errors less clear, but still consistent.)

— So, I ~ . (“Importance Sampling”: weighted average)

e Example: compute I = E(Y?) where Y has density cy?sin(y?) cos(y®) 1o<y<1, where

¢ > 0 unknown (and hard to compute!).

— Here g(y) = y®sin(y?) cos(y®) Lo<y<1, and h(y) = y>.

— Let f(y) = 6y510<y<1. [Recall: if U ~ Uniform]0, 1], then X = Ul/e f]
S (g /f@)) M (sin(@d) cos(a?))

Zj\il (g(mi)/f(mi)) N Zj\il (sin(x;‘) cos(xf)/x?)
get about 0.766 ... )

— Then I =~ . (file “Rimp” ...
— Or, let f(y) = 4y*1o<y<1. [Then if U ~ Uniform[0, 1], then U4 ~ f]

Zj\il (h(xi)g(ﬂfi)/f(wi)) _ Zi\il (sin(:r?) cos(z?) mf)
Zi]\il (g(iri)/f(ﬂfi)) Zj\il (sin(m?) Cos(m?))

e What other methods to iid sample from 77

— Then I ~ . (file “Rimp”)
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REJECTION SAMPLER:
e Assume 7(z) = cg(z), with 7 and ¢ unknown, g known but hard to sample from.
e Want to sample X ~ 7.

— Then if X1, Xo,..., X ~ 7 iid, then can estimate E.(h) by - Zf\il h(X;), etc.

Find some other, easily-sampled density f, and known K > 0, such that K f(x) > g(z)

for all z.

Sample X ~ f, and U ~ Uniform|0, 1] (indep.).

— IfU < g(X)/Kf(X), then accept X (as a draw from 7).
— Otherwise, reject X and start over again.

Now, P(U < g(X)/Kf(X)|X = x) = g(x)/K f(x), so conditional on accepting, we
have that

g(X) P<X<y, U< g}f)))
) =)

Sl f@) By dv [P g(@)dn _ /y

0 7 do — dz.
[ N iy ST BN

— So, conditional on accepting, X ~ m. Good! iid!
— However, prob. of accepting may be very small, then get very few samples.
e Example: 7 = N(0,1), i.e. g(x) = 7(z) = (2m) /2 exp(—22/2).
— Want: E,(X1?), i.e. h(z) = 2.
— Let f be double-exponential distribution, i.e. f(z) = e~/
o If K =8, then:
— For |z| <2, Kf(z) =83 exp(—|z|) > 83 exp(—2) > (2m) V2 > n(z) = g(z).

— For |z > 2, Kf(z) =81 exp(—|z|) > 82 exp(—2?/2) > (2m) "1/ 2 exp(—2?/2) =
m(z) = g(x).
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e So, can apply rejection sampler with this f and K, to get samples, estimate of E[X],
estimate of E[h(X)], estimate of P[X < —1], etc. (file “Rrej”)

e For Rejection Sampler, P(accept) = E[P(accept|X)] = E[Kgﬁ(})] = I Sie) f(x)de =

+ [ g(xz)dz = 2. (Only depends on K, not f.)

— So, in M attempts, get about M/cK iid samples.
— (“Rrej” example: ¢ =1, K =8, M = 10,000, so get about M /8 = 1250 samples.)
— Since ¢ fixed, try to minimise K.

— Extreme case: f(x) = 7(z), so g(x) = w(z)/c = f(x)/c, and can take K = 1/¢,

whence P(accept) = 1, iid sampling: optimal.

END WEEK #3

[HW#1 due Feb 14 at 2:10pm sharp. Q5: “—|y|> + 6" — “—|y|> — 27 ]
[For Thursday: Kung Hei Fat Choi!]

[Office hours? This Thursday 11:00? 2:007 This Friday 11:00? Next Monday 12:007 Next
Thursday (Feb 10) at 11:007 Next Friday (Feb 11) at 2:007]

Summary of Previous Class:

x Monte Carlo integration

eg. I = fol I° h(z,y) dyde = E[e¥ h(X,Y)] where X ~ Uniform[0,1] and ¥ ~
Exponential(1), indep.

« Unnormalised densities: 7(z) = cg(x)
—— Importance Sampling

* Rejection sampler:

—— Need K f(x) > g(z) Vx

—— Then accept X w.p. g(X)/K f(X).

e Note: these algorithms all work in discrete case too.

— Can let 7, f, etc. be “probability functions”, i.e. probability densities with respect

to counting measure.

— Then the algorithms proceed exactly as before.
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e AUXILIARY VARIABLE APPROACH: (related: “slice sampler”)
— Suppose 7(x) = cg(x), and (X,Y) chosen uniformly under the graph of g.
— e, (X,Y) ~ Uniform{(z,y) e R?*: 0 <y < g(x)}.

— Then X ~ m, i.e. we have sampled from 7.

b
. ) dx
— Why? For a < b, P(CL <X < b) = areat‘(;\icl;{l acllre<aX<b - ffo‘é g:;(a):) dx - f:

m(x) dx.
— So, if repeat, get i.i.d. samples from 7, can estimate E(h) etc.

e Auxiliary Variable rejection sampler:

— If support of g contained in [L, R], and |g(x)| < K, then can first sample (X,Y) ~
Uniform([L, R] x [0, K]), then reject if Y > ¢g(X), otherwise accept as sample with
(X,Y) ~ Uniform{(z,y) : 0 <y < g(x)}, hence X ~ 7.

e Example: g(y) = y®sin(y*) cos(y®) Lo<y<1-
— Then L=0,R=1, K =1.
— So, sample X,Y ~ Uniform[0, 1], then keep X iff Y < g(X).

— If h(y) = %2, could compute e.g. E;(h) as the mean of the squares of the accepted

samples. (file “Raux”)
e Can iid / importance / rejection / auxiliary sampling solve all problems? No!
— Many challenging cases arise, e.g. from Bayesian statistics (later).

— Alternative algorithm: MCMC!

MARKOV CHAIN MONTE CARLO (MCMCQ):
e Suppose have complicated, high-dimensional density © = cg.
e Want samples X1, Xo,... ~ m. (Then can do Monte Carlo.)
e Define a Markov chain (random process) Xo, X1, Xo, ..., so for large n, X,, ~ 7.
¢ METROPOLIS ALGORITHM (1953):
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— Choose some initial value Xy (perhaps random).
— Then, given X,,_1, choose a proposal move Y,, ~ MV N(X,,_1, 02 I) (say).

— Let A, =7(Yy,) /7(Xn-1) = 9(Yn) / 9(Xn-1), and U,, ~ Uniform|0, 1].

Then, if U,, < 4, set X,, =Y, (“accept”), otherwise set X,, = X,,_1 (“reject”).
— Repeat, forn=1,2,3,..., M.
— (Note: only need to compute 7(Y,,) / 7(X,,—1), so multiplicative constants cancel.)

Fact: Then, for large n, have X,, ~ w. (“rwm.html” Java applet)

Then can estimate E;(h) = [ h(z) 7(x) dz by:

where B (“burn-in”) chosen large enough so Xp ~ 7, and M chosen large enough to

get good Monte Carlo estimates.
Aside: if accepted all proposals, then would have a “random walk” Markov chain.
— So, this is called the “random walk Metropolis” (RWM) algorithm.

How large B? Difficult to say! (Some theory ... active area of research [see e.g.
Rosenthal, “Quantitative convergence rates of Markov chains: A simple account”,

Elec Comm Prob 2002, on instructor’s web page] ... usually use trial-and-error ... )
What initial value Xg?
— Virtually any one will do, but “central” ones best.

— Ideal: “overdispersed starting distribution”, i.e. choose X randomly from some

distribution that “covers” the “important” part of the state space.

COMMENT: For big complicated 7, often better to work with the LOGARITHMS,
i.e. accept if log(U,,) < log(A,,) = log(n(Y,)) — log(m(X,-1))-

— Then only need to compute log(m(x)), which could be easier.
— eg. if m(x) = exp (Z,Kj |z; — $Z|>, then log(m(x)) = >, lzj — 4.
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e EXAMPLE: g(y) = y?sin(y*) cos(y°) Lo<y<1-
— Want to compute (again!) E.(h) where h(y) = y>.
— Use Metropolis algorithm with proposal Y ~ N (X, 1). [file “Rmet”]
— Works pretty well, but lots of variability!
— Plot: appears to have “good mixing” ...
o EXAMPLE: m(z1,22) = C|cos(\/z122)| I(0 <z <5,0<zy < 4).

— Want to compute E,(h), where h(xy, z2) = e*t + (z2)2.

— Metropolis algorithm ... works ... gets between about 34 and 44 ... but large
uncertainty ... (file “Rmet2”) (Mathematica gets 38.7044)

— Individual plots appear to have “good mixing” ...
— Joint plot shows fewer samples where z122 &~ (1/2)% = 2.5 ...
e OPTIMAL SCALING:
— Can change proposal distribution to Y,, ~ MV N(X,, 0I) for any o > 0.
— Which is best?
— If o too small, then usually accept, but chain won’t move much.
— If o too large, then will usually reject proposals, so chain still won’t move much.
— Optimal: need o “just right” to avoid both extremes. (“Goldilocks Principle”)
— Can experiment ... (“rwm.html” applet, files “Rmet”, “Rmet2”) ...
— Some theory ... limited ... active area of research ...

— General principle: the acceptance rate should be far from 0 and far from 1.

— In a certain idealised high-dimensional limit, optimal acceptance rate is 0.234 (!).
[Roberts et al., Ann Appl Prob 1997; Roberts and Rosenthal, Stat Sci 2001]
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MCMC STANDARD ERROR:
e What about standard error, i.e. uncertainty?
— It’s usually larger than in iid case (due to correlations), and harder to quantify.

e Simplest: re-run the chain many times, with same M and B, with different initial
values drawn from some overdispersed starting distribution, and compute standard

error of the sequence of estimates.
— Then can analyse the estimates obtained as iid ...
e But how to estimate standard error from a single run?
e i.e., how to estimate v = Var (ﬁ 271;\134—1 h(Xi)>?
— Let h(z) = h(z) — Ex(h), so E.(h) = 0.
— And, assume B large enough that X; ~ 7 for ¢ > B.

— Then, for large M — B,

1 5 2 1 Mo 2
v ~ B, [((M ~ H;lh(xz)) - E,T(h)) | = & [(M — Z_Bﬂh(xl)) }
= I i By [(M — B)E;(h(X;)?) + 2(M — B — )E.(h(X;)R(Xi41))
+2(M = B = 2)E (A(X))h(Xiy2)) + . . |
o (B () + 2 B (BOXR(X10) + 2B (R (X (Xi2)) 5 .
= M 1_ B Eﬂ'(ﬁ2) <1+2 COFI‘W(E(XZ'),E(XZ‘+1)) +2 COI‘I‘W(E<XZ'),E(X@'+2)) +4.. >
1 .o .
= 5 Var, (h) (varfact) = (iid variance) (varfact) ,

where

varfact = 1+2iCorr7r<h(X0),h(Xk)> = 1—|—2ipk = i Pk
k=1

k=1 k=—o0

(“integrated auto-correlation time”). (Included in previous R files.)
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— Then can estimate both iid variance, and varfact, from the sample run, as usual.
— e.g. the “acf” and “varfact” commands in files Rmet, Rmet2, etc.

— Note: to compute varfact, don’t sum over all k, just e.g. until, say, |px| < 0.05 or

pr <0Oor...

— (Previous R programs used built-in “acf” function, but can also write your own

— better.)
— Usually varfact > 1; try to get “better” chains so varfact smaller.
— Sometimes even try to design chain to get varfact < 1 (“antithetic”).

END WEEK #4

[HW#1 due Feb 14 at 2:10pm sharp. Q5: “—|y|> + 6" — “—|y|> — 27 ]
[For last Thursday: Kung Hei Fat Choi!|
[Office hours? This Tuesday 3:30-4:307 Wednesday 11:30-12:307 Friday 2:30-3:307]

Summary of Previous Class:

x Auxiliary variable rejection sampler.

x* MCMC: Metropolis algorithm

—— Examples, proposal scaling, initial distribution

—— Standard error: v = (iid variance) (varfact), where

varfact = 1+ 2 i Corr, <h(X0), h(Xk)> .
k=1

—— Just sum a certain finite, amount, e.g. until Corr,(---) is very small ...

— (R’s “acf” sums 10log,,(M — B) terms ... )

CONFIDENCE INTERVALS:

e Suppose we estimate u = E.(h) by /-5 Zi]\iBH h(X;), and obtain an estimate e

and an approximate variance (as above) v.
e Then what is, say, a 95% confidence interval for u?
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e Well, if have central limit theorem (CLT), then for large M — B, e =~ N(u,v).
— So (e —u)v~Y2 = N(0,1).
— So, P(—1.96 < (e — u)v~Y/? < 1.96) ~ 0.95.
— So, P(—=1.96 /v <e—u < 1.96+/v) ~ 0.95.
— i.e., with prob 95%, w is in the interval (e — 1.96 y/v, e + 1.96 ,/v).

— Strictly speaking, should use “t” distribution, not normal distribution ... but if

M — B large that doesn’t really matter (ignore it for now).
e But does a CLT even hold??
— Does not follow from classical CLT. Does not always hold. But often does.

— For example, CLT holds if chain is “geometrically ergodic” (later!) and E(|h|>*%) <

oo for some § > 0.

— (If chain also reversible then don’t need §: Roberts and Rosenthal, “Geometric
ergodicity and hybrid Markov chains”, ECP 1997.)

e So MCMC is more complicated than standard Monte Carlo.
— Why should we bother?

— Some problems too challenging for other methods. For example ...

BAYESIAN STATISTICS:

e Have unknown parameter(s) 6, and a statistical model (likelihood function) for how
the distribution of the data Y depends on 6: L(Y |0).

e Have a prior distribution, representing our “initial” (subjective?) probabilities for 6:

L(0).
e Combining these gives a full joint distribution for § and Y, i.e. £(6,Y).

e Then posterior distribution of @, 7(f), is then the conditional distribution of 6,
conditioned on the observed data y, i.e. 7(0) = L(0|Y = y).
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— In terms of densities, if have prior density fp(¢), and likelihood fy9(y, ), then
joint density is fo v (0,y) = fo(6) fy|e(y,0), and posterior density is

m(0) = %(ey’)‘y) = cfoy(0,y) = cfo(0) fyio(y,0).

e Bayesian Statistics Example: VARIANCE COMPONENTS MODEL (a.k.a. “random

effects model”):
— Suppose some population has overall mean p (unknown).
— Population consists of K groups.
— Observe Yjy1, ..., Y, from group i, for 1 <17 < K.
— Assume Y;; ~ N(6;,W) (cond. ind.), where §; and W unknown.

— Assume the different 6; are “linked” by 6; ~ N(u, V) (cond. ind.), with p and V'

also unknown.
— Want to estimate some or all of V, W, u,0,...,0k.

— Bayesian approach: use prior distributions, e.g. (“conjugate”):
V ~ 1G(a1,b1); W ~ IG(az,bs); p~ N(as,b3),

where a;, b; known constants, and IG(a, b) is “inverse gamma” distribution, with

density % e b/* g=a=1 for z > 0.

e Many applications, e.g.:

— Predicting success at law school (D. Rubin, JASA 1980), K = 82 schools.

— Melanoma recurrence (http://www.mssanz.org.au/modsim07/papers/52_s24/

Analysing_Clinicals24_Bartolucci_.pdf), K = 19 patient catagories.

— Comparing baseball home-run hitters (J. Albert, The American Statistician 1992),
K = 12 players.

— Analysing fabric dyes (Davies 1967; Box/Tiao 1973; Gelfand/Smith JASA 1990),
K = 6 batches of dyestuff.
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e Combining the above dependencies, we see that the joint density is (for V, W > 0):
f(V,VV,u,Hl, Ce ,QK,YH,Ylg, ce ,YKJK)

— O (e—bl/Vv—a1—1> (6—b2/WW—a2—1> (e—(y—a3)2/2b3> %
K K J;
> <H V—1/2e—(9i—u)2/2v> HHW_1/26_(nj_9i)2/2W
i=1 i=1j=1

— Cze—bl/VV—al—16—b2/WW—CL2—16—(u—a3)2/2b3V—K/ZW—%Zf(zl Ji X
K K J;
X exp | =Y (0; = p)?/2V = > ) (Vij — 6:)°/2W

i=1 i=1 j=1

e Then
7T(VaWa/%91a---79K)

— CB <€_b1/VV_a1_1> <e—b2/WW—CL2—1) (e—(u—a3)2/2b3) X
K K J;
% <H V—l/Ze—(Oi—u)2/2V> HHW—l/ze—(Yu—ei)QmW
i=1 i=1j=1
e After a bit of simplifying,

W(‘/:M/,,U,,el,...,gk')

— Ce—bl/VV—al—1e—b2/WW—Gg—le—(u—a3)2/2b3V—K/2W—% f:l J; X

K

K J;
xexp | = (6 — p)?/2V = >3 (Vi; — 6;)°/2W
i=1 i=1 j=1
e Dimension: d = K 4+ 3, e.g. K =19, d = 22.
e How to compute/estimate, say, E.(W/V)? Or sensitivity to choice of e.g. by?
— Numerical integration? No, too high-dimensional!
— Importance sampling? Perhaps, but what “f”? Not very efficient!

— Rejection sampling? What “f”? What “K”? Virtually no samples!
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SO WHY DOES MCMC WORK?:
e (Need Markov chain theory ... STA447/2006 ... already know?)

e Basic fact: if a Markov chain is “irreducible” and “aperiodic”, with “stationarity dis-

tribution” 7, then £(X,) — 7 as n — oo.
— Let’s figure out what this all means ...
e BEGIN WITH DISCRETE CASE, FROM JAVA APPLET EXAMPLE (rwm.html):
— Here proposal is ¢(z,z + 1) = q(z,x — 1) = 1/2.
— Acceptance probability is min(1, %)

— State space is X = {1,2,3,4,5,6}.

e So, fori,j € X with |j —i| =1,

PG.3) = PGY = (1/2) minl, T = min(g, 290,

e Follows that chain is “reversible”: for all i,j € X,

7(i) P(i,j) = min(n(i)/2, 7(j)/2) = 7() P(i).  (by symmetry)
— (Intuition: if Xg ~ 7, i.e. P(Xo =1i) = 7(i) for all i € X, then P(Xy =14, X; =
J)=P(Xo =4, X1 =1) ... “time reversible” ... )

e We then compute that if Xy ~ m, then:

P(X;=j) = Y P(Xo=i)P(i,j) = Y w(i)P(i,j) = > =(j)P(j,i)

1eX 1eEX ieX

= 7(j) Y_PG,i) = (),

1€EX

1.e. X1 ~ 7 too!

— So, the Markov chain “preserves” w, i.e. 7 is a stationary distribution.

— This is true for any Metropolis algorithm!
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e Also, in this case it’s irreducible, meaning that you can eventually get from anywhere
to anywhere else with positive probability, i.e. for all 7, j € X there is n € N such that
P(X,=j|Xo=1)>0.

e And, it’s aperiodic, meaning there are no forced cycles, i.e. there do not exist disjoint
non-empty subsets X7, Xa, ..., Xy for d > 2, such that P(x,X;11) = 1 for all x € &;
(1<i<d-—1),and P(x,X;) =1 for all z € A;. (Diagram.)

— This is true for virtually any Metropolis algorithm, e.g. it’s true if P(i,7) > 0
for any one state ¢ € X', which is true provided there’s a positive probability of

rejecting a proposed move.

e It then follows from the “Basic fact” that as n — oo, L(X,,) — 7, i.e. lim, o P(X, =
i) =m(i) for all i € X. (file “rwm.html”)

— Also follows that if E(|h|) < oo, then lim 3"  h(X;) = Ex(h) = [ h(z)7(z) dz.
n—oo
(“LLN”)

e What about the more general, continuous case? (Next week!)

END WEEK #5
[HW+#1 due right now. Assign project! No class next week (Reading Week); back Feb 28.]

Summary of Previous Class:

* MCMC confidence intervals (remember varfact!)
* Bayesian statistics: 7(6) o< fp(0) fyo(y,0)

—— Example: variance components model

* MCMC theory (discrete case)

—— Metropolis alg. always makes 7 stationary

—— So, if also irreducible (usually) and aperiodic (“always”), then £(X,,) — 7 etc.
e SO WHAT ABOUT THE MORE GENERAL, CONTINUOUS CASE?
e Some notation:

— Let X be the state space of all possible values. (Usually X C R?, e.g. for Variance
Components Model, X = (0,0) x (0,00) x R x RE C RE+3))
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— Let g(x,y) be the proposal density for y given x. (So, in above case, q(x,y) =
(2m0) =2 exp (— Y0, (yi — 74)%/20%).) Symmetric: q(z,y) = q(y, ).

— Let a(z,y) be probability of accepting a proposed move from x to y, i.e.

3
<

(
(z

)

Oz(m,y) = P(U’ﬂ < A’I’L ’Xn—l =, Yn == y) == P(Un < @) = min[17

m(z)

I,

3

~—

— Let P(z,S) =P(X; € S| Xo = z) be the transition probabilities.
e Then if x € S, then

P(z,S) = PY1e€S, Ui <A |Xo=2) = /Sq(ac,y) min[l, 7(y)/7(x)] dy.

— Shorthand: for z # y, P(x,dy) = q(x,y) min[l, 7(y)/m(z)] dy.

— Then for z # y, P(x,dy)w(x)dx = q(z,y) min[l, 7(y)/m(z)]dy n(z)dz =
q(z,y) min[r(z), 7(y)|dydr = P(y,dz)n(y)dy. (symmetric)

Follows that P(z,dy) n(x)dx = P(y,dx) n(y) dy for all z,y € X. (“reversible”)
— Shorthand: P(x,dy)II(dx) = P(y,dx) II(dy).
e How does “reversible” help?

e Well, suppose Xy ~ 11, i.e. we “start in stationarity”. Then

P(X;e€9) = /

reX

- /IGX /yeSP(y,dx)W(y) dy = /yesﬂ(y) dy = II(S),

so also X7 ~ m. So, chain “preserves” m, i.e. 7 is stationary distribution.

P(X; eS| Xo=a)n(zx)de = /GX /es P(x,dy) m(z) dx

e Also irreducible, i.e. possible to eventually get anywhere.

— More precisely: for every x € X, and every S C X with II(S) > 0, there is n such
that P"(x,S) > 0, i.e. P(X,, € S| Xg =0) > 0. (Here, can even take n = 1.)

— (Makes sense on discrete space, too; then requires ability to eventually reach every
point of positive stationary measure; here “density” is with respect to “counting

measure”.)
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e Also aperiodic, i.e. there do not exist disjoint subsets X, &s,..., &} for j > 2, with
II(X;) > 0, such that P(z, X;41) =1 for all z € X; (where X1 = X;). (Diagram.)

— Aperiodicity always holds if P(x,{z}) > 0, e.g. if positive prob of rejection.

— Or if P(z,-) has positive density throughout S, for all x € S, for some S C X
with TI(S) > 0.

— Not quite guaranteed, e.g. X = {0,1,2,3}, and 7 uniform on X, and Y,, =
Xp—1 £1 (mod 4). But almost always holds.

e THEOREM: If Markov chain is irreducible, with stationarity probability density 7,
then for m-a.e. initial value Xg = =z,
(a) if Ex(|h]) < oo, then Jim. LS h(X;) =Er(h) = [ h(z) n(z) dz; and
(b) if chain aperiodic, then also lim P(X,, € S) = [, n(x)dx for all S C X.

n—oo

e Note: key facts about ¢(z,y) are symmetry, and irreducibility.

— So, could replace Y,, ~ N(0,1) by e.g. Y;, ~ Uniform[X,,_; — 1, X,,_1 + 1], or (on
discrete space) Y,, = X,,_1 £ 1 with prob. % each.

e EXAMPLE #1: Metropolis algorithm where X = Z, n(z) = 271#1/3, and q(z,y) = %

if |x — y| = 1, otherwise 0.
— Reversible? Yes, it’s a Metropolis algorithm!
— m stationary? Yes, follows from reversibility!
— Aperiodic? Yes, since P(x,{z}) > 0!
— Irreducible? Yes: 7(z) > 0 for all x € X, so can get from x to y in |z — y| steps.
— So, by theorem, probabilities and expectations converge to those of m — good.
e EXAMPLE #2: Same as #1, except now 7(z) = 2~1#1=1 for  # 0, with 7(0) = 0.
— Still reversible, 7 stationary, aperiodic, same as before.
— Irreducible? No — can’t go from positive to negative!

e EXAMPLE #3: Same as #2, except now g(z,y) = 1 if 1 < |z — y| < 2, otherwise 0.
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— Still reversible, 7 stationary, aperiodic, same as before.
— Irreducible? Yes — can “jump over 0” to get from positive to negative, and back!

e EXAMPLE #4: Metropolis algorithm with X = R, and n(z) = C e“”ﬁ, and proposals
Y,, ~ Uniform[X,,_; — 1, X,,_1 + 1].

— Reversible? Yes since ¢(x,y) still symmetric.
— 7 stationary? Yes since reversible!
— Irreducible? Yes since P™(x,dy) has positive density whenever |y — z| < n.

— Aperiodic? Yes since if periodic, then if e.g. if X3 N[0, 1] has positive measure,
then possible to go from A directly to X7, i.e. if z € X1N[0, 1], then P(x, X7) > 0.
(Or, even simpler: since P(z,{z}) > 0 for all x € X.)

— So, by theorem, probabilities and expectations converge to those of m — good.

EXAMPLE #b5: Same as #4, except now 7(x) = Cy e*m6(1w<2 +1,54).

— Still reversible and stationary and aperiodic, same as before.
— But no longer irreducible: cannot jump from [4,00) to (—o0, 2] or back.

— So, does not converge.

EXAMPLE #6: Same as #5, except now proposals are Y, ~ Uniform[X,,_; —
5, Xpn_1+5].

— Still reversible and stationary and aperiodic, same as before.

— And now irreducible, too: now can jump from [4,00) to (—oo, 2] or back.

EXAMPLE #7: Same as #6, except now Y,, ~ Uniform[X,,_; — 5, X,,_1 + 10].

— Makes no sense — proposals not symmetric, so not a Metropolis algorithm!

Next question: Why does Theorem say “m-a.e.” Xg = x7

END WEEK #6

28



[Return HW+#1: mean=>53.4/70. Don’t worry, I graded tough! mean=>53.4; > 50 = good|
[Common: Insufficient explanation / no multiple runs / no accuracy (std err) / no analysis.]
[Q1: easy by linearity (not indep)! Q2: NNYN. Q3: range! Q7-9: can all succeed!]
[Reminder: Project due April 4 at 2:10pm. HW#2 will be assigned next week.]

Summary of Previous Class:

* MCMC theory!

x THEOREM: If Markov chain is irreducible, with stationarity probability density 7 (e.g.
reversible), then for 7-a.e. initial value Xy = z,

(a) if Ex(|h]) < oo, then lim LS h(X;) = Er(h) = [ h(z) n(z) dz; and

(b) if chain aperiodic, then hm P(X, € 5) = [yn(x)dx for all S CX.

—— Examples.
e QUESTION: Why does Theorem say “m-a.e.” Xg = x?

e Example: X = {1,2,3,...}, and P(1,{1}) = 1, and for = > 2, P(z,{1}) = 1/2? and
P(x,{z+1}) =1— (1/2?).

— Stationary distribution: II(-) = 01(+), i.e. II(S) = 11¢5 for S C X.

— Irreducible, since if II(S) > 0 then 1 € S so P(z,S) > P(z,{1}) > 0 for all
reX.

— Aperiodic since P(1,{1}) >0

— So, by Theorem, for m-a.e. Xg, have lim, ., P(X,, € S) =II(S), i.e.
limy oo P(X, = 1) = 1.

— But if Xo = x > 2, then P[X,, = x +n for all n] = [[;Z (1 - (1/4%)) > 0, so
limy, o P(Xn = 1) # 1.

— Convergence holds if Xy = 1, which is m-a.e. since II(1) = 1, but not from

X() = Z 2.
e So, convergence subtle. But usually holds from any x € X. (“Harris recurrent”)

e Now that we understand the theory, we can consider more general algorithms too ...
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METROPOLIS-HASTINGS ALGORITHM.:

e (Hastings [Canadian!], Biometrika 1970; see www.probability.ca/hastings)

e Previous Metropolis algorithm works provided proposal distribution is symmetric, i.e.

q(z,y) = q(y,z). But what if it isn’t?

e For Metropolis, key was that ¢(z,y) a(z,y) 7(z) was symmetric (to make the Markov

chain be reversible).
o If instead a(x,y) = min [1, %], then

m(y) q(y, x)

(2) gz y)] m(x) = min |7(z)q(x,y), 7(y) q(y,a:)] _

a(@.y) alz,y) n(x) = qla,y) min |1,

So, still symmetric, even if ¢ wasn'’t.

— So, for Metropolis-Hastings algorithm, replace “A,, = 7(Y,,) / 7(X,,—1)” by 4,, =

71'(}/n) Q(Yan—l)
Tr(Xn—l) q(Xn—laYn) )

then still reversible, and everything else remains the same.
— i.e., still accept if U,, < A,,, otherwise reject.

— (Intuition: if ¢(z,y) >> q(y,x), then Metropolis chain would spend too much

time at y and not enough at z, so need to accept fewer moves = — y.)

e EXAMPLE: again m(z1,22) = C|cos(y/z1x2)| I(0 < 27 < 5,0 < 29 < 4), and
h(zy,z2) = €™t + (22)2.

— Proposal distribution: Y,, ~ MVN(X,,_1, 0% (1 + | X,,—1|*)? ).

— (Intuition: larger proposal variance if farther from center.)

— So, q(z,y) = C (1 +[z[?) 7 exp(—|y — 2> /20%(1 + [z[*)?).

— So, can run Metropolis-Hastings algorithm for this example. (file “RMH”)

— Usually get between 34 and 43, with claimed standard error ~ 2. (Recall: Math-
ematica gets 38.7044.)

e INDEPENDENCE SAMPLER:
— Proposals {Y,,} i.i.d. from some fixed distribution (say, Y,, ~ MV N(0, I)). (Easy.)
— Another special case of Metropolis-Hastings algorithm.
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— Then ¢(z,y) = q(y), depends only on y.

T(Yn) g(Xn—1)

_ S()7 now An = T(Xn_1)q(Yn)"

— Very special case: if q(y) = 7(y), i.e. propose exactly from target density 7, then

A, =1, i.e. make great proposals, and always accept them (iid).
e EXAMPLE: independence sampler with 7(z) = e~ and q(x) = ke~ 2.
— Then if X,, 1 =x and Y,, =y, then A,, = % = ek=D=2) (file “Rind”)
— k = 1: iid sampling (great).
— k = 0.01: proposals way too large (so-so).
— k = 5: proposals somewhat too small (terrible).
— And with k& = 5, confidence intervals often miss 1. (file “Rind2”)
— Why is large k so much worse than small k7
e LANGEVIN ALGORITHM:
— Y, ~ MVN(X,—1+ 502 Viogn(X,—1), 01).
— Special case of Metropolis-Hastings algorithm.
— Intuition: tries to move in direction where 7 increasing.

— Based on discrete approximation to Langevin diffusion.

— Usually more efficient, but requires knowledge and computation of Vlog 7. (Hard.)

MCMC CONVERGENCE RATES:
e {X,} : Markov chain on X, with stationary distribution TI(-).
e Let P"(x,5)=P[X, € S| Xy = x|
— Hope that for large n, P"(z, S) ~ II(S).
o Let D(z,n) = | P"(z,) — ()| = supsc.x |P"(z, 5) — TI(S).
e DEFN: chain is ergodic if lim,,_, o, D(z,n) = 0, for [T-a.e. z € X
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e DEFN: chain is geometrically ergodic if there is p < 1, and M : X — [0, o] which is
IT-a.e. finite, such that D(z,n) < M(x) p™ for all z € X and n € N.

e DEFN: a quantitative bound on convergence is an actual number n* such that D(z,n*) <

0.01 (say). [Then sometimes say chain “converges in n* iterations”.]

e Quantitative bounds often difficult (though I've worked on them a lot), but “geometric

ergodicity” often easier to verify.

— Fact: CLT holds for 1 37 | h(X;) if chain is geometrically ergodic and E, (|r[?*°) <

oo for some § > 0.

— (If chain also reversible then don’t need §: Roberts and Rosenthal, “Geometric

ergodicity and hybrid Markov chains”, ECP 1997.)
— If CLT holds, then have 95% confidence interval (e — 1.96 \/v, e+ 1.96 /v).
e So what do we know about ergodicity?

e Previous theorem: if chain is irreducible and aperiodic and II(-) is stationary, then
chain is ergodic.

END WEEK #T7
[Reminder: I graded HW#1 tough: mean=>53.4/70 ~ A—. Don’t worry!]
[Assign HW+#2 now, due March 28 at 2:10pm sharp.|

[Reminder: Project due April 4 at 2:10pm. For topic, think of any quantity of interest
(e.g. from another course, or a paper, or a research project, or ... ), and convert it (e.g.
with a Bayesian approach?) to a problem that can be solved using Monte Carlo, and solve

it! Be creative! (And thorough.)]

Summary of Previous Class:

x Discussion of “m-a.e.”.

* Metropolis-Hastings algorithm, with ¢(z,y) # q(y, x)

—— Variable o, Independence sampler, Langevin

* MCMC convergence rates: D(z,n), ergodic, geometrically ergodic, quantitative bounds

—— Thm: MCMC is ergodic if irreducible & aperiodic

32



e What about convergence rates of independence sampler?

By Thm, independence sampler is ergodic provided ¢(x) > 0 whenever m(z) > 0.
But is that sufficient?

No, e.g. previous “Rind” example with & = 5: ergodic (of course), but not ge-
ometrically ergodic, CLT does not hold, confidence intervals often miss 1. (file
“Rind2”)

e FACT: independence sampler is geometrically ergodic IF AND ONLY IF thereis d > 0

i.e. there are a,b,c¢ > 0 such that w(z) < ae

such that g(x) > dn(x) for m-a.e. z € X, in which case D(z,n) < (1 — )™ for m-a.e.
re k.

So, if () = €% and q(x) = ke™** for x > 0, where 0 < k < 1, then can take
d=k,so D(x,n) <(1—k)™.

e.g. if k = 0.01, then D(x,459) < (0.99)*° = 0.0099 < 0.01 for all z > 0, i.e.

“converges” after 459 iterations.
But if £ > 1, then not geometrically ergodic.

Fact: if & = 5, then D(0,n) > 0.01 for all n < 4,000,000, while D(0,n) <
0.01 for all n > 14,000,000, i.e. “convergence” takes between 4 million and 14
million iterations. Slow! [Roberts and Rosenthal, “Quantitative Non-Geometric

Convergence Bounds for Independence Samplers”, MCAP, to appear.]

What about other chains (besides independence sampler)?

FACT: if state space is finite, and chain is irreducible and aperiodic, then always

geometrically ergodic.

What about for “random-walk Metropolis algorithm” (RWM), i.e. where {Y,,—X,,_1} ~

q for some fixed symmetric density ¢?
— eg. Y, ~N(X,_1,0%I), or Y,, ~ Uniform[X,, 1 — §, X,,_1 + 4]

FACT: RWM is geometrically ergodic essentially if and only if 7 has exponential tails,

~blzl whenever || > ¢. (Requires a few

technical conditions: 7 and ¢ continuous and positive; ¢ has finite first moment; and
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7 non-increasing in the tails, with (in higher dims) bounded Gaussian curvature.)
[Mengersen and Tweedie, Ann Stat 1996; Roberts and Tweedie, Biometrika 1996]

e EXAMPLES: RWM on R with usual proposals: Y, ~ N(X,_1, 0?).

— CASE #1: 11 = N(5,4?), and functional h(y) = y?, so E.(h) = 5% + 42 = 41.

(file “Rnorm” ... o0 =1v.o=4v. o =16)
— Does CLT hold? Yes! (geometrically ergodic, and E(|h|P) < oo for all p.)
— Indeed, confidence intervals “usually” contain 41. (file “Rnorm?2”)

— CASE #2: n(y) =c¢ m, and functional h(y) = 2, so

o0 1
_ eV mm W _nve

E, () ] - -
o dy V2

— Not exponential tails, so no CLT; estimates less stable, confidence intervals often
miss 1. (file “Rheavy”)

— CASE #3: w(y) = m (Cauchy), and functional h(y) = 1_19<y<i0, SO

E.(h) =1II(|X]| < 10) = 2arctan(10) /7 = 0.93655. [II(0 < X < x) = arctan(z) /7|
— Not geometrically ergodic.
— Confidence intervals often miss 0.93655. (file “Rcauchy”)

— CASE #4: n(y) = m (Cauchy), and functional h(y) = min(y?, 100). [Nu-
merical integration: E(y) = 11.77]

— Again, not geometrically ergodic, and 95%CI often miss 11.77, though iid MC
does better. (file “Rcauchy2”)

e NOTE: Even when CLT holds, it’s rather unstable, e.g. requires that chain has
converged to II, and might underestimate v.

— So, estimate of v is very important!
— “varfact” not always reliable?

— Repeated runs!
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— Another approach is “batch means”, whereby chain is broken into m large “batches”,
which are assumed to be approximately i.i.d., thus leading to usual i.i.d. variance

estimates . ..

VARIABLE-AT-A-TIME MCMC:

e Propose to move just one coordinate at a time, leaving all the other coordinates fixed

(since changing all coordinates at once may be difficult).
— e.g. proposal Y, has Y, ; ~ N(X,,—1,,0%), with Y,, ; = X, ; for j # .
— (Here Y, ; is the i'" coordinate of Y,,.)

e Then accept/reject with usual Metropolis rule (symmetric case: “Metropolis-within-

Gibbs”) or Metropolis-Hastings rule (general case: “Metropolis-Hastings-within-Gibbs”).
e Need to choose which coordinate to update each time ...
— Could choose coordinates in sequence 1,2,...,d,1,2,... (“systematic-scan”).
— Or, choose coordinate ~ Uniform{1,2,...,d} each time (“random-scan”).
— Note: one systematic-scan iteration corresponds to d random-scan ones ...

e EXAMPLE: again 7(z1,22) = C|cos(/x1x2)| I(0 < x1 < 5,0 < 29 < 4), and
h(z1,22) = €™ + (72)2. (Recall: Mathematica gives E(h) = 38.7044.)

— Works with systematic-scan (file “Rmwg”) or random-scan (file “Rmwg2”).

END WEEK #8

[Do course evals.]
[Reminders: HW#2 due March 28 at 2:10pm. Project due April 4 at 2:10pm.]

Summary of Previous Class:
x MCMC convergence rates / bounds / CIs

independence sampler

—— finite state space

—— RWM

* Variable-at-a-time / Metropolis-Hastings-within-Gibbs
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e GIBBS SAMPLER:
e Special case of Metropolis-Hastings-within-Gibbs.

e Proposal distribution for i*" coordinate is equal to the conditional distribution of
that coordinate (according to m), conditional on the current values of all the other

coordinates.

— That is, ¢;(z,y) = C(z=) 7(y) whenever (=" = y(=9 where 2(~" means all

coordinates except the i*" one.

— Here C(2(~%) is the appropriate normalising constant (which depends on 2(=%).
(So C(z=) = C(y=?).)

_ (V) @i (Ya, Xno1)  _ m(Ya) CVST N m(Xoa)
Then An = 2G5 &Y = w0 6D ae)

— So, always accept.
— Can use either systematic or random scan.
e EXAMPLE: Variance Components Model:

— Update of u (say) should be from conditional density of y, conditional on current

values of all the other coordinates: L(u|V,W,01,...,0k,Y11,...,Y k).

— This conditional density is proportional to the full joint density, but with every-

thing except i treated as constant.

— Recall: full joint density is:

— O bV —ar—1,=ba/Wy—az =1~ (u—as)? /2631, — K/2 )~ % SE %

K

K
X exp |— 2(91 — p)?/2V — Z Z(Yij —0,)%/2W

i=1 i=1 j=1

— So, conditional density of u is

K
Co e (1=a3)"/2bs oy [— (0; — p)?/2V
i=1

36



— This equals (verify this! HW#2!)

1 K a 1
P e Wl 234 - ,
CgeXp< “<2b3+2v)+“( +V§ 91)>.

— Side calculation: if g ~ N(m,v), then density o e~ (n=m)*/2v o g=u® (1/20)Fp(m/v)
a K

— Hence, here y ~ N(m,v), where 1/2v = ﬁ + £ and m/v = 7+ T b

— Solve: v = b3V/(V + Kbs), and m = (azV + b3 3., 6;) / (V + Kbs).

— So, in Gibbs Sampler, each time p is updated, we sample it from N (m,v) for this

m and v (and always accept).

Similarly (HW#2!), conditional distribution for V' is:

K
Cpe t1/Vy o=ty —K/Zoyp [— Z(Gl —p)?/2v

=1

. V>o0.

— Recall that “IG(r, s)” has density % e=s/T ==L for z > 0.
— So, conditional distribution for V equals IG(a1 + K/2, by + 3 Zfil(ﬁi —1)?).
Can similar compute conditional distributions for W and 6; (HW#2).

So, in this case, the systematic-scan Gibbs sampler proceeds (HW+#2) by:

— Update V from its conditional distribution IG(..., ...).

— Update W from its conditional distribution IG(..., ...).

— Update p from its conditional distribution N (..., ...).

— Update 6; from its conditional distribution N(...,...), fori=1,2,... K.

— Repeat all of the above M times.

Or, the random-scan Gibbs sampler proceeds by choosing one of V. W, 1,64, ...,0k
uniformly at random, and then updating that coordinate from its corresponding con-

ditional distribution.
— Then repeat this step M times [or M (K + 3) times?].
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TEMPERED MCMC:
e Suppose I1(-) is multi-modal, i.e. has distinct “parts” (e.g., Il = 5 N(0,1)+4 N(20,1))

e Usual RWM with Y;, ~ N(X,_1,1) (say) can explore well within each mode, but how

to get from one mode to the other?

e Idea: if II(-) were flatter, e.g. %N(O, 102) + %N(ZO, 10%), then much easier to get

between modes.

e So: define a sequence Iy, 11, ..., II,, where II; = II (“cold”), and II, is flatter for
larger 7 (“hot”).

e Then define Markov chain on X x {1,2,...,m}, with stationary distribution IT defined
by II(S x {r}) = = 1II,(5).

— (Can also use other weights besides =.)

e Define new Markov chain with both spatial moves (change ) and temperature moves

(change 7).

— e.g. perhaps chain alternates between:
(a) propose ' ~ N(z,1), accept with prob min (1, ﬁ(”/’7)> = min <1 ”T(m/)>.

7(x,T) ' owe(x)

(b) propose 7" =7+ 1 (prob % each), accept with prob
min (1, (@7 )) = min (1 WT’(m)>.

7(x,T) ' (x)

e Chain should converge to II.
e In the end, only “count” those samples where 7 = 1.
e EXAMPLE: II = 1 N(0,1) + 3 N(20,1)

— Assume proposals are Y,, ~ N(X,_1,1).

— Mixing for IT: terrible! (file “Rtempered” with dotempering=FALSE and temp=1;

note the small claimed standard error!)
— Define I, = 1 N(0,7%) +  N(20,72), for 7 = 1,2,...,10.

— Mixing better for larger 7! (file “Rtempered” with dotempering=FALSE and
temp=1,2,3,4,...,10)
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— (Compare graphs of m; and m1¢: plot commands at bottom of “Rtempered” ... )

— So, use above “(a)-(b)” algorithm; converges fairly well to II. (file “Rtempered”,
with dotempering=TRUE)

— So, conditional on 7 = 1, converges to II. (“points” command at end of file

“Rtempered”)

— So, average of those h(z) with 7 = 1 gives good estimate of E.(h).

END WEEK #9
[Reminders: HW#2 due March 28 at 2:10pm. Project due April 4 at 2:10pm.]

Summary of Previous Class:

x Gibbs sampler:

—— Special case of Metropolis-Hastings-within-Gibbs

—— Propose from current conditional dist., always accept

e.g. Variance Components Model: cond. dists. are N and IG (HW#2)
x Tempered MCMC:

sequence 11y = II, I, ..., IL,, getting “flatter”

—— Define new chain which alternates x and 7 moves
—— Then, only “count” samples where 7 =1
e.g. Il = 1 N(0,72) + 1 N(20,72): works well (file “Rtempered”)

e HOW TO FIND THE TEMPERED DENSITIES .7

e Usually won't “know” about e.g. I, = 2 N(0,7%) + N (20, 72%).

e Instead, can e.g. let 7. (x) = ¢, (W(x))l/T. (Sometimes write 5 =1/7.)
— Then II; =1I, and 7, flatter for larger 7 — good.
— (e.g. if w(x) density of N(u,0?), then ¢, (m(x))"/™ density of N(u,70?).)
— Then temperature acceptance probability is:

min (1, WT/($)> = min (1, o (W(x))(l/T/)_(l/T)> .

cr

— This depends on the c¢,, which are usually unknown — bad.
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e What to do?

e PARALLEL TEMPERING:

e (a.k.a. Metropolis-Coupled MCMC, or MCMCMC)

e Alternative to tempered MCMC.

e Instead, use state space X™, with m chains, i.e. one chain for each temperature.

e So, state at time n is X,, = (X1, Xn2, ..., Xpm), where X,,; is “at” temperature 7.

e Stationary distribution is now II = II; x Iy x ... x II,,, i.e. ﬁ(Xl e S, Xo €
Sz, ooy Xm € Sm) =11 (S1) I12(S2) - .. ILn(Sm).

e Then, can update the chain at temperature 7 (for each 1 < 7 < m), by proposing e.g.

WT(YTL,T) >'

Y, -~ N(X,_1r-, 1), and accepting with probability min (1, b

e And, can also choose temperatures 7 and 7’ (e.g., at random), and propose to “swap”
T(-T(X'VL,T/) T/ (XTL,T)>

the values X,, ; and X, ;/, and accept this with probability min (1, X o ()

— Now, normalising constants cancel, e.g. if 7, (z) = ¢, (W(x))l/ ", then acceptance

probability is:

’ 1/T ’ 1/7-/ , 1/7 1/7—/
min <1, CTT((Xnﬂ' ) Cr W(Xnﬂ—) /) — 1nin (17 ﬂ-(XnaT ) W(Xn»T) /) 7
(X, )V crpm(Xp o )V7 (X )V m( Xy )T
so ¢, and ¢,/ are not required.

e EXAMPLE: suppose again that IL. = 3 N(0,72) + £ N(20,72), for 7 =1,2,...,10.

— Can run parallel tempering ... works pretty well. (file “Rpara”)

MONTE CARLO IN FINANCE:

e X, = stock price at time t

e Assume that Xg = a > 0, and dX; = bXydt + 0XdB;, where {B;} is Brownian

motion.
— 1i.e., for small h > 0,
(Xt+h_Xt |Xt) ~ bXt(t+h—t)+JXt(Bt+h—Bt) ~ bXt(t+h—t)+UXt N(O, h) N
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SO

(Xetn | Xe) ~ N (Xi+bXih, 0°(Xs)?h) . (%)
e A “European call option” is the option to purchase one share of the stock at a fixed
time T' > 0 for a fixed price ¢ > 0.
e Question: what is a fair price for this option?
— At time T, its value is max(0, X1 — q).

rT

— So, at time 0, its value is e™"" max(0, X7 — q), where r is the “risk-free interest

rate”.
— But at time 0, X7 is unknown! So, what is fair price??

e FACT: the fair price is equal to E(e_rT max(0, Xp — q)), but only after replacing b
by 7.

— (Proof: transform to risk-neutral martingale measure ... )
— Intuition: if b very large, might as well just buy stock itself.

e If o and r constant, then there’s a formula (“Black-Scholes eqn”) for this price, in
terms of ® = cdf of N(0,1):

o (o (tog(a/a) + T+ 30%) ) = a0 (o (tota/a) + 70 - 50)

e But we can also estimate it through (iid) Monte Carlo!

— Use (x) above (for fixed small h > 0, e.g. h = 0.05) to generate samples from the

difusion.
— Any one run is highly variable. (file “RBS”, with M = 1)
— But many runs give good estimate. (file “RBS”, with M = 1000)
— Note that it’s iid replications, so varfact = 1.

e An “Asian call option” is similar, but with Xt replaced by Xy ; = %Zle Xk, for
some fixed positive integer k (e.g., k = 8).
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— Above “FACT” still holds (again with X7 replaced by X ;).

— Now there is no simple formula ... but can still simulate! (file “RAO”)

MONTE CARLO MAXIMISATION (OPTIMISATION):
e EXAMPLE #1: CODE BREAKING, e.g. “decipherit oliver”. [“decipher.c”]
— “substitution cipher”.
e Data is the coded message text: s15253...sy, wheres; € A ={A,B,C,..., 7, space}.

e State space X is set of all bijections of A, i.e. one-to-one onto mappings f : A — A,

subject to f(space) = space.

e Use reference text (e.g. “War and Peace”) to get matrix M (z,y) = 1+ number of

times y follows x, for z,y € A.
e Then for f € X, let 7(f) = [V7" M(f(si), f(sm)).
— (Or raise this all to a power, e.g. 0.25.)

e Idea: if w(f) is larger, then f leads to pair frequencies which more closely match the

reference text, so f is a “better” choice.
e Would like to find f which maximises 7(f).
e To do this, run a Metropolis algorithm for 7:

— Choose a,b € A\ {space}, uniformly at random.

— Propose to replace f by g, where g(a) = f(b), g(b) = f(a), and g(x) = f(x) for
all x # a,b.

— Accept with probability min (1, %)
e Easily seen to be irreducible, aperiodic, reversible.

e So, converges (quickly!) to correct answer, breaking the code. (e.g. “decipheroutput”)

e References: S. Conner (2003), “Simulation and solving substitution codes”. P. Diaco-
nis (2008), “The Markov Chain Monte Carlo Revolution”. J. Chen and J.S. Rosenthal
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(2010), “Decrypting Classical Cipher Text Using Markov Chain Monte Carlo” (Statis-

tics and Computing, to appear).
e EXAMPLE #2: COMPUTER VISION, e.g. “faces” Java applet. [“faces.html”]
e Data is an image, given in terms of a grid of pixels (each on or off).

e Define the face location by a vector 6 of various parameters (face center, eye width,

nose height, etc.).

e Then define a score function S(#) indicating how well the image agrees with having a

face in the location corresponding to the parameters 6.

e Then run a “mixed” Monte Carlo search (sometimes updating by small RWM moves,
sometimes starting fresh from a random vector) over the entire parameter space,
searching for argmax, S(#), i.e. for the parameter values which maximise the score

function.

— Keep track of best 6 so far — this allows for greater flexibility in trying different

search moves without needing to preserve a stationary distribution.
— Works pretty well, and fast! (“faces.html” Java applet)

— For details, see Java applet source code, “faces.java” (or the related paper).

END WEEK #10

[Note: the course project is officially due at 2:10pm on April 4, but I have decided that
I will not impose late penalties provided it is handed in to me by 2:10pm on April 14.
(Students handing it in by the original due date will receive a bonus of 2/50.)]

Summary of Previous Class:

x MC in finance:

x European call option:

—— Can compute (BS) or estimate (MC) this — good.
x Asian call option:

—— Can still estimate by MC.

x Code breaking:

—— Choose substitution cipher function f to maximise 7(f).
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—— (Review this.)

* Face identification:

—— Choose face parameters 6 to maximise S(6).
—— (Review this.)

In both of these examples, wanted to MAXIMISE 7 rather than SAMPLE from .
— General method?

SIMULATED ANNEALING:

General method to find highest mode of .

Idea: mode of 7 is same as mode of flatter version ,, for any 7 > 0. (e.g. 7, = 7/7)

— For large 7, MCMC explores a lot; good at beginning of search.

— For small 7, MCMC narrows in on local mode; good at end of search.

So, use tempered MCMC, but where 7 = 7, N\, 0, so 7, becomes more and more

concentrated at mode as n — oco.

Need to choose {7}, the “cooling schedule”.
— e.g. geometric (7, = 79" for some r < 1).
— or linear (7, = 79 — dn for some d > 0, chosen so that Tp; = 79 — dM > 0).

— or logarithmic (7, = ¢/log(1+n)). [Thm: if ¢ > sup 7, then simulated annealing

with 7,, = ¢/log(1 4+ n) will converge to global maximum as n — o0.]
— or...
e EXAMPLE: II, = 0.3 N(0,7%) + 0.7 N (20, 72). (file “Rsimann”)
— Highest mode is at 20 (for any 7).

— If run usual Metropolis algorithm, it will either jump forever between modes (if
T large), or get stuck in one mode or the other with equal probability (if 7 small)
— bad.

— But if 7, N\, 0 slowly, then can usually find the highest mode (20) — good.
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— Try both exponential and linear (better?) cooling ... (file “Rsimann”)

OPTIMAL RWM PROPOSALS:

e Consider RWM on X = R, where Y,, ~ MV N(X,_1, %) for some d x d proposal

covariance matrix X.
e What is best choice of X7

— Usually we take ¥ = 02 I for some o > 0, and then choose o so acceptance rate

not too small, not too large (e.g. 0.234).
— But can we do better?

e Suppose for now that IT = MV N (ug, o) for some fixed pg and g, in dim=>5. Try
RWM with various proposal distributions (file “Ropt”):

— first version: Y, ~ MV N(X,,_1, I4). (acc = 0.06; wvarfact ~ 220)
— second version: Y, ~ MV N(X,,_1, 0.11;). (acc =~ 0.234; warfact ~ 300)
— third version: Y;,, ~ MV N(X,,_1, £9). (acc~ 0.31; varfact ~ 15)
— fourth version: Y,, ~ MV N (X, -1, 1.4%0). (acc =~ 0.234; wvarfact = 7)
e Or in dim=20 (file “Ropt2”):
- Y, ~MVN(X,,-1,0.0251;). (acc ~ 0.234; wvarfact ~ 400 or more)
— Y, ~MVN(X,,-1,0.283%). (acc ~ 0.234; wvarfact = 50)
e Conclusion: acceptance rates near 0.234 are better.
e But also, proposals shaped like the target are better.

— This has been proved for targets which are orthogonal transformations of indepen-
dent components (Roberts et al., Ann Appl Prob 1997; Roberts and Rosenthal,
Stat Sci 2001; Bédard, Ann Appl Prob 2007).

— Is “approximately” true for most unimodal targets ...

e Problem: Y3 would usually be unknown; then what?
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— Can perhaps “adapt“!

ADAPTIVE MCMC:
e What if target covariance ¥y is unknown??
e Can estimate target covariance based on run so far, to get empirical covariance ¥,,.

e Then update proposal covariance “on the fly”, by using proposal Y,, ~ MV N (X, 1, %,)
[or Y, ~ MVN(X,,_1,1.4%,), or Y,, ~ MV N(X,_1, ((2.38)%/d)%,,)].

— Hope that for large n, >, &~ ¥, so proposals “nearly” optimal.
— (Usually also add €l to proposal covariance, to improve stability, e.g. € = 0.05.)

e Resulting “adaptive Metropolis (AM) algorithm” seems to work well in practice (e.g.
figure “plotAMx200.png”, dim=200).

— But it takes many iterations before the adaption is helpful.
e Try R version, for the same MVN example as in Ropt (file “Radapt”):
— Need much longer burn-in, e.g. B = 20,000, for adaption to work.

— Get varfact of last 4000 iterations of about 18 ... “competitive” with Ropt

optimal ...
— The longer the run, the more benefit from adaptation.

— Can also compute “slow-down factor”, s, = d <Zd A2 (5 )\-_1)2>, where

=1 ""in =1 ""in
{Ain} eigenvals of s/ X /2 Starts large, should converge to 1. [Motivation: if
¥, = X, then \;;, =1, s0 s, = d(d/d?) = 1]

e BUT IS “ADAPTIVE MCMC” A VALID ALGORITHM??
e Not in general: see e.g. “adapt.html”
e Algorithm now non-Markovian, doesn’t preserve stationarity at each step.

e However, still converges to II provided that the adaption (i) is “diminishing” and (ii)

satisfies a technical condition called “containment”.
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— For details see e.g. Roberts & Rosenthal, “Coupling and Convergence of Adaptive
MCMC” (J. Appl. Prob. 2007).

END WEEK #11
[Got your HW#2 ... not graded yet ... will soon ... |
[Project due today at 2:10pm (+2), or by 2:10pm on April 14.]

Summary of Previous Class:

* Mode-finding (maximising)

—— Examples: code-breaking, face-finding

—— Simulated tempering: like tempered MCMC, but 7,, \ 0
x Optimal RWM proposals

acc rate 0.234 good

—— But also good if shape of proposal similar to shape of target
—— Problem: might not KNOW shape of target

*x Adaptive MCMC

—— Learn shape/size/etc of target as you go.

—— After many iterations, becomes efficient MCMC — good.

—— But requires certain conditions or else it might fail to converge — Java applet.

TRANSDIMENSIONAL MCMC:
e (a.k.a. “reversible-jump MCMC”: Green, Biometrika 1995)

What if the state space is a union of parts of different dimension?

— Can we still apply Metropolis-Hastings then??

EXAMPLE: autoregressive process: suppose Y, = a1Y,_ 1+ a2Y, o+ ...+ arY, g,
but we don’t know what k should be.

EXAMPLE: suppose {y; }3]:1 are known data which are assumed to come from a

mixture distribution: 3 (N(a1,1) + N(as,1) + ...+ N(ag, 1)).

Want to estimate the unknown k,aq,...,ag.

— Here the number of parameters is also unknown, i.e. the dimension is unknown
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and variable, which makes MCMC more challenging!
The state space is X = {(k,a) : k € N, a € RF}.
Prior distributions: k — 1 ~ Poisson(2), and alk ~ MV N(0, I},) (say).

Define a reference measure \ by: A({k} x A) = Ax(A) for k£ € N and (measurable)

A C RF, where )\ is Lebesgue measure on R”.
—de, A=01 XA+ X Ag+0d3 X A3+ ...
Then the posterior density (with respect to A) is:
—29k—1

m(k,a) = C’e(k_—l)!(%r)_k/2 exp <—% Zaf) (2m) =712 H (zi:% (—%(yj—aif)) :

1=1

So, on a log scale,

—29k—1

logﬂ(k,a) = IOgC—f-lOgm — 5

ilog (i%@@(- %(?Jj —ai)2>) :

j=1 i=1

(Can ignore log C and 2 log(27), but not £ log(27).)
How to “explore” this posterior distribution??
For fixed k, can move around R¥ in usual way with RWM (say).
But how to change k7
Can propose to replace k with, say, ¥ = k£ 1 (prob % each).
Then have to correspondingly change a. One possibility:
— If ¥ =k+1, then o’ = (ay,...,ax, Z) where Z ~ N(0,1) (“elongate”).

— If k' =k —1, then @’ = (a1,...,axr_1) (“truncate”).

wunawq(umaq(maﬁ>

Then accept with usual probability, min (1,
P p Y w(k,a) q((k‘,a),(k’,a’))
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— Hereif k' = k+1, then ¢((k',d’), (k,a)) = %, while ¢((k,a), (¥, d’)) = e~ (@)?/2,

N~
5
3

— Or,if k' = k—1, then q((k,a), (',a’)) = 1, while ¢((¥,d’), (k,a)) = %\/%76_(“’“)2/2.
e Seems to work okay; final k usually between 5 and 9 ... (file “Rtrans”)
e ALTERNATIVE method for the “correspondingly change a” step:
— If k' =k+1, thend = (ay,...,ak-1,ar — Z,ar + Z) where Z ~ N(0,1) (“split”).
— If k¥’ =k —1, then @’ = (a1,...,a5-2, 3 (ax—1 + ax)) (“merge”).

— What about the densities ¢((k',a’), (k,a))?

— Well, if ¥’ =k + 1, then q((k’, a), (k, a)) = %, while roughly speaking,

1 722/2 _

1
- e
2 V27

1 (e —af?/2

q((k:,a),(k:’,a’)) = Nir

DN | =

— One subtle additional point: The map (a,Z) — a’ = (ay,...,ax—1,ax—Z,ar+Z)

has “Jacobian” term:

/ I 00
det (5tzy) = det 8 }—11 =1-(-1) = 2,

i.e. the split moves “spread out” the mass by a factor of 2.

— So by Change-of-Variable Thm, actually

1 1 / / 2
—(5(a},,—ay))"/2
e ‘2\% 2.
oz /

N | —

q(<k7 a)7 (klv CL/)) =

— Similarly, if ¥/ = k — 1, then q((k,a), (k’,a')) = %, while

1
V2T

Q((k/,&/),(k7a,)) - % 6_(%(ak—ak/))2/2/2.

— Algorithm still seems to work okay ... (file “Rtrans2”)

e For more complicated transformations, need to include more complicated “Jacobian”

term (but above it equals 1 or 2).

49



e Check: if we start the algorithms with, say, & = 24, then they don’t manage to reduce
k enough!

— They might be trying to remove the “wrong” a;.

e So, try another MODIFICATION, this time where any coordinate can be added /removed,

not just the last one.

— While we're at it, change “new a; distribution” from Z ~ N(0,1) to Z ~
Uniform(—20, 30), with corresponding change to the q((k, a), (K, a’)) formulae.

— file “Rtrans3” — now works well even if started with & = 24.
— Seems to settle on k = 6 regardless of starting value.

— This seems to indicate rapid mixing — good!

END WEEK #12

e SUMMARY: Monte Carlo can be used for nearly everything!

e Good luck on your exams, etc., and have a nice summer.
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