
STA261 LECTURES NOTES, SPRING 2004

Jeffrey Rosenthal, University of Toronto

(Last updated: March 31, 2004.)

Note: I have decided to make these lecture notes available for STA261 students, for
their convenience. I will update them regularly. However, they are just rough, point-form
notes, with no guarantee of completeness or accuracy. They should in no way be regarded
as a substitute for attending the lectures and tutorials, or for doing the weekly homework
exercises.

• Introduction to course, handout, web page, etc.

• How many in Statistics Specialist program? Statistics Major? Actuarial Science?

Math? Computer Science? Physics/Chemistry? Economics? Management? Life

Sciences? Engineering? Other?

• IDEA OF STATISTICAL INFERENCE: Drawing inference about unknown quantities

in the presence of randomness. Uses lots of probability theory!

• INFERENCE WHEN PROBABILITY DISTRIBUTION IS KNOWN (Sect. 5.2):

− Example (text): X = machine’s lifetime in years. Suppose X ∼ Exp(1). This

means P (X > x) = e−x for x ≥ 0. Then P (X > 5) = e−5 ≈ 0.0067. Small!

So, machine usually won’t last five years. But P (X > 2) = e−2 ≈ 0.1353, not so

small. [“Machine lasting 2 years is feasible, lasting 5 years is infeasible”]

− Example: Suppose patients with disease “Statitus” have 50% chance of dying.

[Like flipping coin, with heads=live, tails=die; do experiment.] Then given 8

patients, probability they ALL live is (1/2)8 = 1/256 ≈ 0.0039. So, they probably

won’t all live! But, probability first three live is (1/2)3 = 1/8 = 0.125, not so

small. [“First three surviving is feasible, first eight surviving is infeasible”]

− Example: Roll 6-sided die, patient dies if get 1 or 2 (do experiment). Then

probability first two patients die is (2/6)2 = 1/9 ≈ 0.1111. Not so unlikely; might

happen. But probability first five patients die is (2/6)5 = 1/243 ≈ 0.0041, very

small. [“First two surviving is feasible, first five surviving is infeasible”]

• INFERENCE WHEN PROBABILITY DISTRIBUTION UNKNOWN (Sect. 5.3):
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− Example: Suppose patients with disease “Statitus” are given a new treatment.

They then either have 50% chance of dying, or they will all live, but we’re not sure

which. [Like flipping either regular or two-headed coin; do experiment.] Suppose

first 4 patients all live. Does that mean all patients will live? [Probability it

happened by chance is (1/2)4 = 1/16 = 0.0625.] “Hypothesis testing”.

− Example: Suppose we roll a 6-sided die, patient dies if get one of “certain num-

bers” (secret). [Do experiment.] What is prob that patient dies? Unknown!

Given some observations, how can we ESTIMATE this probability?? “Estima-

tion”.

− Example: Suppose you’re shooting foul shots in basketball. Your probability p of

scoring a basket is unknown. How to estimate it? e.g. Suppose you shoot 10 shots

and score 7 times; does that mean p = 0.7? Exactly? Are you sure? “Confidence

Intervals”.

• STATISTICAL MODELS (Sect. 5.3):

− If probability distribution is unknown, then need to consider various possible

probability distributions.

− Write collection of possible probability distributions as {Pθ : θ ∈ Ω}, where θ is

a parameter, Ω is the set of possible parameter values, and for each θ ∈ Ω, Pθ is

a probability distribution on the set S of possible outcomes (or, “responses”).

− For “Statitus treatment” example, could let S = {live, die}, and Ω = {1, 2}, and

P1(die) = P1(live) = 1/2, and P2(live) = 1.

− For “secret list” 6-sided die example, could let S = {live, die}, and Ω = {0, 1, 2, 3, 4, 5, 6},
and for θ ∈ Ω, Pθ(die) = θ/6 and Pθ(live) = 1− θ/6.

− For basketball example, could let S = {score, miss}, and Ω = [0, 1], and for θ ∈ Ω,

Pθ(score) = θ and Pθ(miss) = 1− θ.

• Also need to collect and describe data, with e.g. histograms, etc. (Sect. 5.4 – not

emphasised now; maybe later.)

• SOME BASIC METHODS OF INFERENCE (Sect. 5.5.1)

2



− Suppose we have a random response X whose distribution is unknown. We collect

some observations (“data”) x1, . . . , xn.

− Example: Suppose we’re measuring student heights (in centimeters), and we

observe: 170, 160, 165, 160, 150, 170.

− Could estimate FX(x) = P (X ≤ x) by F̂X(x) ≡ 1
n

∑n
i=1 I(−∞,x](xi), i.e. the

fraction of observations which are ≤ x. (Accurate?) [In above example, could

estimate that 2/3 of students have height ≤ 165.]

− Could estimate the mean (“location parameter”) of X by the “sample mean”

x ≡ 1
n

∑n
i=1 xi. [In above example, average student height is about x = 162.5.]

—— END MONDAY 1 ——

[Offer extra handouts as needed.]

[Remind students about suggested homework, posted on website on Thursdays.]

Previous Class:

∗ Inference when probability distribution KNOWN

—— What outcomes are “feasible”?

∗ Introduction to inference when probability distribution UNKNOWN

—— hypothesis testing (e.g. statitus treatment: 50-50 or 100%?)

—— estimation (e.g. # numbers on secret list, when 2/8 die. 2!!)

—— confidence (if you score 7/10 foul shots, how close to 0.7 is p?)

∗ Statistical Models

—— Collection {Pθ : θ ∈ Ω} of possible probability distributions on outcome space S.

—— e.g. S = {live, die}, Ω = {0, 1, 2, 3, 4, 5, 6}, Pθ(die) = θ/6, Pθ(live) = 1− θ/6.

• Some Basic Methods of Inference (Continued)

− Have a random response X (distribution unknown). Have observations (“data”)

x1, . . . , xn.

− Example: Measuring student heights (in cm), and observe: 170, 160, 165, 160,

150, 170.

− Could estimate FX(x) = P (X ≤ x) by F̂X(x) ≡ 1
n

∑n
i=1 I(−∞,x](xi). [In above
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example, estimate that 2/3 of students have height ≤ 165.]

− Could estimate the mean (“location parameter”) of X, i.e. µX = E[X], by the

“sample mean” x ≡ 1
n

∑n
i=1 xi. [In above example, average student height esti-

mated by x = 162.5.]

− Could estimate the variance (“scale”) of X, i.e. Var(X) = E[(X − µX)2], by the

“sample variance” s2 ≡ 1
n−1

∑n
i=1(xi− x)2. [Why n− 1 instead of n? Later!] [In

above example, variance of student heights estimated by s2 = 57.5.]

− Then estimate standard deviation by “sample standard deviation” s ≡
√
s2. [In

above example, standard deviation estimated by s = 7.6.]

− If X is discrete, could estimate fX(x) = P (X = x) by f̂X(x) ≡ 1
n

∑n
i=1 Ix(xi),

i.e. the fraction of observations which are = x. [In above example, should prob-

ably not conclude that 1/3 of students have height exactly 160, since heights are

continuous . . .]

− Example: Suppose three candidates (A, B, and C) are running for student presi-

dent. We select students at random and ask who they will vote for, and observe:

A, C, A, B, A, C, A. Then could estimate popularity of candidate A as 4/7, B as

1/7, and C as 2/7. [Here mean, etc. do not make sense, since data are catagorical,

i.e. not quantitative.]

− Example: Suppose a random sample of residents are asked to preview a movie

and rate it on a scale from 1 to 5. We observe ratings of 4, 2, 1, 3, 2, 1, 4, 2.

Then we might estimate that in the general population, 2/8 of people will rate

the movie a 1, while 5/8 of people will rate the movie a 1 or 2, and 6/8 of people

will rate the movie a 1 or 2 or 3, etc. Also mean rating ≈ x = 2.375, with variance

≈ s2
.= 1.41, and standard deviation ≈ s

.= 1.19. [Movie probably won’t be a

hit!]

− [Quantile estimation? Omit for now.]

− But how “good” are these estimates??

—— END WEDNESDAY 1 ——
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[Announce tutorial rooms.]

[Reminder re homework to discuss in tutorial: 5.1.1, 5.1.5, 5.1.7, 5.2.4, 5.2.6, 5.2.10, 5.3.1,

5.3.2, 5.3.3, 5.3.5 (model only), 5.5.1 (omit (e)), 5.5.2 (omit (d)).]

[Note: My lecture notes are now on the web page.]

Previous Class:

∗ Examples of basic inference from data:

—— estimate mean by sample mean x

—— estimate variance by sample variance s2

—— estimate probabilities and/or cdfs by “fraction of observations”

• LIKELIHOOD FUNCTIONS and MLE (Sect. 6.1, 6.2).

− Let {Pθ : θ ∈ Ω} be a statistical model on some outcome space S. Suppose we

observe some outcome s ∈ S.

• If S is discrete, then the Likelihood Function is the function L(· | s) on Ω defined

by L(θ | s) = Pθ(s), i.e. the probability of observing s if Pθ is the true probability

distribution.

− L is function of parameter θ, given the (fixed) observation s.

− L(θ | s) provides some indication (?) of how “likely” the distribution Pθ is, given

the observation s.

− Example (text): S = {1, 2, 3, . . .}, Ω = {1, 2}, P1 = Uniform{1, 2, . . . , 1000}, and

P2 = Uniform{1, 2, . . . , 1000000}. Observe s = 10. Then L(1 | 10) = 1/1000, and

L(2 | 10) = 1/1000000. Suggests that P1 much more likely than P2, even though

both values very small.

− Definition: The Maximum Likelihood Estimator” (MLE) of θ is the value of θ

which maximises L(θ | s). In above example, MLE is θ̂ = 1.

− Example: “Statitus treatment” example: S = {live, die}, Ω = {1, 2}, P1(live) =

P1(die) = 1/2, P2(live) = 1. If we observe s = live, then L(1 | live) = 1/2,

L(2 | live) = 1, so P2 more likely (in fact, twice!). But if we observe s = die, then

L(1 |die) = 1/2, L(2 | live) = 0, so P1 more likely (in fact, infinitely more!). So, if
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s = live then MLE is θ̂ = 2, but if s = die then MLE is θ̂ = 1.

− Can also compute likelihood under multiple observations. In “Statitus treatment”

example, if observation s corresponds to three patients who all live, then P1(s) =

(1/2)3 = 1/8, while P2(s) = 1. So can write L(1 | s) = 1/8, L(2 | s) = 1, so P2 is

eight times more likely, and MLE is θ̂ = 2.

− e.g. “secret list” 6-sided die example, where S = {live, die}, Ω = {0, 1, 2, 3, 4, 5, 6},
and Pθ(die) = θ/6. If observe one patient die, then L(θ |die) = θ/6 for θ ∈ Ω,

largest at θ̂ = 6. If observe one patient live, then L(θ | live) = 1− θ/6 for θ ∈ Ω,

largest at θ̂ = 0.

− If instead observation s is that 2 out of 8 patients died, then L(θ | s) =
(
8
2

)
(θ/6)2(1−

θ/6)6 = 28(θ/6)2(1 − θ/6)6. Thus, L(0 | s) = 0, L(1 | s) = 28(1/6)2(1 − 1/6)6 .=

0.260, L(2 | s) .= 0.273, L(3 | s) .= 0.109, L(4 | s) .= 0.017, L(5 | s) .= 0.0004,

L(6 | s) .= 0. Suggests θ = 2 is most likely (was actually true!), so MLE is θ̂ = 2,

though θ = 1 fairly likely too. (θ = 3 less so.)

− Comment: Two different likelihood functions are equivalent (i.e., just as good)

if one is a positive constant times the other [since we only care about the ratios

L(θ1 | s) /L(θ2 | s)]. So, in above example, could have ignored the “28” if we

wanted. More generally, can ignore any positive factor which does not depend on

θ (even if it depends on the observation s).

• If S is continuous, so each Pθ has a density fθ, then can define likelihood function by

L(θ | s) = fθ(s) = value of density function. (Note: In discrete case, sometimes also

write fθ(s) for pθ(s), i.e. for Pθ[s].)

− Example (“one Normal observation”): Suppose S = R, and Ω = R, and Pθ =

N(θ, 1) = normal distribution. Thus fθ(s) = 1√
2π
e−(s−θ)2/2. If we observe s ∈

S, then L(θ | s) = 1√
2π
e−(s−θ)2/2. Equivalently, can take L(θ | s) = e−(s−θ)2/2.

Largest when θ = s, so MLE is θ̂ = s. (Makes sense . . .)

− Example (“one Exponential observation”): Suppose S = (0,∞) and Ω = (0,∞),

with Pθ = Exp(θ), and we observe one outcome s > 0. Then L(θ | s) = fθ(s) =

θe−sθ. How to maximise?
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− Well,
∂

∂θ
L(θ | s) = e−s/θ − θe−s/θ(s)

which equals 0 iff 1 − sθ = 0, i.e. θ = 1/s. This appears to maximise L(θ | s),
so that MLE is θ̂ = s. (Makes sense since mean of Exp(θ) is 1/θ, so mean of

Exp(1/s) is s . . .)

− Easier is to consider logarithm of likelihood; since logarithm is an increasing

function, maximising log-likelihood is same as maximising likelihood. Compute:

`(θ | s) = log[L(θ | s)] = log[θe−s/θ] = log(θ)− sθ .

Then derivative of this is the score function:

S(θ | s) =
∂

∂θ
`(θ | s) =

∂

∂θ
[log(θ)− sθ] = 1/θ − s ,

and this equals 0 [“Score Equation”] if and only if (1/θ)− s = 0, i.e. θ = 1/s.

− As a check, the second derivative is ∂
∂θ `(θ | s) = −θ−2. At θ = θ̂ = s, this equals

s−2 < 0. Hence, θ = θ̂ is indeed a local maximum, and then easily seen to be a

global maximum.

− Example (“multiple Exponential observations”): Again S = (0,∞) and Ω =

(0,∞), with Pθ = Exp(θ), and we observe n outcomes x1, x2, . . . , xn > 0. Then

L(θ |x1, . . . , xn) =
n∏

i=1

[θe−xiθ] = θne−
∑n

i=1
xiθ = θne−nxθ .

Then

`(θ |x1, . . . , xn) = log[L(θ | s)] = n log(θ)− nxθ .

Hence, score function is

S(θ |x1, . . . , xn) =
∂

∂θ
`(θ |x1, . . . , xn) = n/θ − nx ,

which equals 0 iff (1/θ) − x = 0, i.e. θ = 1 / x. (Makes sense, since could also

estimate mean 1/θ by x, equivalent to estimating θ by 1/x.)

—— END MONDAY 2 ——
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[Reminder about tutorials today, after lecture.]

Previous Class:

∗ Likelihood function L(θ | s).
—— Indicates relative likelihood of Pθ being true, given observation s.

∗ Discrete case: L(θ | s) = Pθ(s) (probability). [Examples.]

∗ (Absolutely) continuous case: L(θ | s) = fθ(s) (density). [Examples.]

∗ MLE is value of θ which maximises L(θ | s).
∗ Two likelihood functions are equivalent if L1(θ | s) = KL2(θ | s) for all θ ∈ Ω, for some

K > 0 which does not depend on θ.

• Aside about likelihood equivalence: L1 and L2 are equivalent iff the ratio L1/L2 does

not depend on θ. For example, suppose L1(θ | s) = θ2, L2(θ | s) = 15θ2, L3(θ | s) =

s3θ2, L4(θ | s) = θ. Which are equivalent? Answer: L1, L2, and L3 are equivalent,

but L4 is not. So, can’t just erase a constant (like 2) from the exponent. Similarly, if

L5(θ | s) = e−θ and L6(θ | s) = e−θ/2, then L5(θ | s)/L6(θ | s) = e−θ/2, which depends

on θ, so L5 and L6 not equivalent.

• Likelihood functions, continuous case (continued).

− Example (“multiple Normal observations”): Suppose observe multiple data x1, x2, . . . , xn

from N(θ, 1). Then can take L(θ |x1, . . . , xn) =
∏n

i=1 e
−(xi−θ)2/2 = exp

(
−

1
2

∑n
i=1(xi − θ)2

)
.

− In fact, above likelihood function is equivalent to L2(θ |x1, . . . , xn) = exp
(
−

n
2 (x− θ)2

)
. Proof:
n∑

i=1

(xi − θ)2 =
n∑

i=1

(x2
i − 2xiθ + θ2) = (

n∑
i=1

x2
i )− 2nxθ + nθ2

while

n(x− θ)2 = nx2 − 2nxθ + nθ2

so difference between them is

(
n∑

i=1

x2
i )− nx2

which does not depend on θ. So,

L(θ | s)
L2(θ | s)

= exp
(
− 1

2
((

n∑
i=1

x2
i )− nx2)

)
,
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which does not depend on n.

− Hence, MLE is θ̂ = x.

− “Uniform” Example (text): Suppose model is S = [0,∞), Ω = (0,∞), and

Pθ = Uniform[0, θ], and we observe x1, x2, . . . , xn ≥ 0. How to estimate θ? Here

L(θ |x1, . . . , xn) = 1/θn if 0 ≤ xi ≤ θ for all i, otherwise L(θ |x1, . . . , xn) = 0.

By observation (not differentiation!), this is maximised at θ = θ̂ = max{xi; 1 ≤
i ≤ n}. This is the MLE.

− If instead S = (−∞,∞), Ω = (0,∞), and Pθ = Uniform[−θ, θ], and observe

x1, x2, . . . , xn, then MLE is θ̂ = max{|xi|; 1 ≤ i ≤ n}. (exercise)

− Example (“Multinomial Model”): Suppose individual responses can take one of

the values S = {1, 2, . . . , k} (e.g. election preference; perhaps k = 3), with various

probabilities (unknown). [“Catagorical response”.] Statistical model is

Ω = {θ = (θ1, θ2, . . . , θk) ; θi ≥ 0, θ1 + . . .+ θk = 1} ,

and Pθ(i) = θi. If we observe responses x1, x2, . . . , xn (perhaps n is large), then

likelihood function is

L(θ |x1, x2, . . . , xn) = θx1θx2 . . . θxn
.

This is equal to θc2
1 θ

c2
2 . . . θck

k , where ci = #{j : xj = i} = count of num-

ber of responses of type i. Hence, likelihood only depends on the count data

(c1, c2, . . . , ck), not on the full response list (x1, x2, . . . , xn).

—— END WEDNESDAY 2 ——

[Some office hours now posted on web site (TA’s, plus New College). Also a few ”extra”

hours available per TA. However, these office hours are to SUPPLEMENT the tutorials,

not REPLACE them!]

Previous Class:

∗ Example re likelihood equivalence.

∗ MLE for Multiple Normal observations.

∗ MLE for Multiple Uniform observations.

∗ Multinomial Model: Pθ(i) = θi, L(θ |x1, . . . , xn) = θx1 . . . θxn
= (θ1)c1 . . . (θk)ck
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− Numerical example for Multinomial Model: Suppose k = 3, and n = 7, and

observations are 1, 2, 3, 2, 2, 1, 2. Then

L(θ | 1, 2, 3, 2, 2, 1) = θ1θ2θ3θ2θ2θ1θ2 = (θ1)2(θ2)4(θ3)1 ,

so here c1 = 2, c2 = 4, and c3 = 1. Can thus summarise the full observation list

(1, 2, 3, 2, 2, 1, 2) by the count data (2, 4, 1).

• SUFFICIENT STATISTICS (6.1.1).

− Definition: A statistic is some function T of the data (x1, . . . , xn), e.g. x, s2,
1
n

∑n
i=1 I(∞,5](xi), the count data (c1, c2, . . . , ck), etc.

− Definition: A statistic T is sufficient if different observations, with the same value

of the statistic, always have equivalent likelihood functions. i.e., if whenever

T (s1) = T (s2), then L(θ | s1) = K L(θ | s2) for all θ ∈ Ω, for some constant K > 0

(which may depend on s1 and s2).

− In above “Multinomial Model” example, the statistic of “count data”, i.e.

T (x1, x2, . . . , xn) = (c1, c2, . . . , ck), is sufficient, since the likelihood function only

depends on (c1, c2, . . . , ck).

− In “Normal Observations” example, likelihood function is equivalent to L(θ |x1, . . . , xn) =

exp
(
− n

2 (x− θ)2
)
, so L only depends on the data through x, hence the statistic

x is sufficient.

− “a-b Example” (text): Let S = {1, 2, 3, 4}, and Ω = {a, b}, with Pa(1) = 1/2 and

Pa(2) = Pa(3) = Pa(4) = 1/6, and with Pb(1) = Pb(2) = Pb(3) = Pb(4) = 1/4.

What is a sufficient statistic? Well, note that L(θ | s) = Pθ(s) is the same if s

equals 2, 3, or 4. Hence, likelihood “does not care” if observation is 2, 3, or 4.

So, let T : S → {0, 1} by T (1) = 0, and T (2) = T (3) = T (4) = 1. Then if

T (s1) = T (s2), then L(θ | s1) = L(θ | s2). Hence, T is sufficient statistic.

• FACTORISATION THEOREM: Let fθ(s) be probability (or density function) for a

statistical model, and let T be a statistic. Suppose can “factor” fθ(s) as fθ(s) =

h(s) gθ(T (s)) for some positive functions gθ and h. [Often take h(s) ≡ 1.] Then T is

a sufficient statistic.
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− Proof: If T (s1) = T (s2), then

L(θ | s1) = fθ(s1) = h(s1)gθ(T (s1)) = h(s1)gθ(T (s2))

=
h(s1)
h(s2)

h(s2)gθ(T (s2)) =
h(s1)
h(s2)

L(θ | s2) = K L(θ | s2) ,

where K = h(s1)/h(s2) does not depend on θ.

− In above “a-b Example”, can write fθ(s) = 1 · gθ(T (s)) where ga(0) = 1/2,

ga(1) = 1/6, gb(0) = gb(1) = 1/4. So T is sufficient statistic.

• A statistic T is a minimal sufficient statistic if T (s1) = T (s2) if and only if L(θ | s1) =

L(θ | s2) ∀θ ∈ Ω, i.e. we can calculate T (s) once we know the mapping θ 7→ L(θ | s).

− Intuitively, this means T is a “best possible” sufficient statistic.

− In above “a-b Example”, L(a | s) = 1/2 if T (s) = 0, while L(a | s) = 1/6 if

T (s) = 1, so T is minimal sufficient statistic.

− Similarly, for Multinomial Model, (c1, . . . , ck) is minimal sufficient statistic; and

for Normal Observations example, x is minimal sufficient statistic. (Exercise.)

• REPARAMETERIZATION (6.2): Given statistical model {Pθ : θ ∈ Ω}, suppose

Ψ : Ω → Ω′ is 1–1, Then MLE of new parameter ψ ≡ Ψ(θ) is given by ψ̂ ≡ Ψ(θ̂(s)).

[“Plug-in estimator”]

− Multiple Uniform Example: S = [0,∞), Ω = (0,∞), Pθ = Uniform[0, θ], observe

x1, . . . , xn. We know MLE of θ is θ̂ = max1≤i≤n{xi}. Thus, since θ 7→ eθ is 1–1,

MLE of eθ is êθ = eθ̂ = exp
(
max1≤i≤n{xi}

)
= max1≤i≤n{exi}. Also, θ 7→ θ2

is 1-1 on Ω, so MLE of θ2 is θ̂2 = (θ̂)2 = max1≤i≤n{(xi)2}. However, MLE of

(θ − 5)2 is unclear since function is not 1–1.

• ESTIMATOR BIAS (6.3.1):

− Given estimator θ̂ of θ, how good is it?

− Write Eθ(θ̂) for the expected value of θ̂, under the distribution Pθ, i.e. assuming

that θ is the true parameter value.

− The bias of the estimator is Biasθ(θ̂) = Eθ(θ̂)− θ.
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− Example: Suppose S = [0, 1], Ω = {1, 2}, and f1(s) = 1 and f2(s) = 2s for s ∈ S.

The MLE of θ is θ̂ = 1 if s < 1/2, while θ̂ = 2 if s > 1/2. [If s = 1/2, MLE

is either 1 or 2.] Now, P1[s < 1/2] = P2[s > 1/2] = 1/2, so E1(θ̂) = 3/2, so

Bias1(θ̂) = (3/2) − 1 = +1/2. Also P2[s < 1/2] =
∫ 1/2

0
2s ds = (1/2)2 = 1/4

and P2[s > 1/2] =
∫ 1

1/2
2s ds = 3/4, so E2(θ̂) = (1/4)(1) + (3/4)(2) = 7/4, and

Bias2(θ̂) = (7/4)− 0.5 = −1/4.

—— END MONDAY 3 ——

[Kung Hay Fat Choy!]

Previous Class:

∗ Sufficient Statistics

∗ Factorisation Theorem

∗ Minimal Sufficient Statistics

∗ Reparameterisation

∗ Estimator Bias

• Another example re Factorisation Theorem & Minimal Sufficient Statistics: S = Ω =

R, Pθ = N(θ, 1), and L(θ |x1, . . . , xn) = exp(−(n/2)(x− θ)2).

− Then L(θ |x1, . . . , xn) = h(x1, . . . , xn) gθ(T (x1, . . . , xn)), where T (x1, . . . , xn) =
1
n (x1 + . . .+xn) = x, h(x1, . . . , xn) ≡ 1, and gθ(r) = exp(−(n/2)(r−θ)2). Hence,

by Factorisation Theorem, x is sufficient statistic.

− Is x minimal?

− Suppose have two sets of observations, (x1, . . . , xn) and (y1, . . . , yn). Suppose that

L(θ |x1, . . . , xn) ∝ L(θ | y1, . . . , yn), i.e. exp(−(n/2)(x−θ)2) = K exp(−(n/2)(y−
θ)2), ∀θ ∈ Ω, some K > 0. Does this mean that x = y, i.e. T (x1, . . . , xn) =

T (y1, . . . , yn)?

− Yes! Theorem: x is a minimal sufficient statistic.

− Proof #1 (“constructive”): If exp(−(n/2)(x − θ)2) = K exp(−(n/2)(y − θ)2),

∀θ ∈ Ω, for some K > 0, then both functions must take their maximum at the

same value of θ. But LHS takes maximum at x, while RHS takes maximum at y.

So, must have x = y.
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− Proof #2 (by “contraposition”, a form of contradiction): Suppose theorem is

false. That means we sometimes have x 6= y, even though exp(−(n/2)(x− θ)2) =

K exp(−(n/2)(y − θ)2), ∀θ ∈ Ω. Is this possible?? If so, then setting θ = x

gives 1 = K exp(−(n/2)(y − x)2) < K, i.e. K > 1. But setting θ = y gives

exp(−(n/2)(x − y)2) = K, i.e. K < 1. Contradiction! i.e., if x 6= y, then we

cannot have exp(−(n/2)(x− θ)2) = K exp(−(n/2)(y− θ)2), ∀θ ∈ Ω. So, theorem

must be true, i.e. x must be a minimal sufficient statistic.

− Aside re logic: The principle of “contraposition” states: “P implies Q” is equiva-

lent to “not-Q implies not-P”; indeed, both mean it is impossible to have both P

true and Q false, at the same time. [Example: “x > 5 implies x > 4” is equivalent

to “x ≤ 4 implies x ≤ 5”. But not equivalent to “x > 4 implies x > 5”.]

− Note that for θ = (x+ y)/2, we do have exp(−(n/2)(x− θ)2) = exp(−(n/2)(y −
θ)2). But not true for all θ ∈ Ω.

− Similarly, x1 + . . . + xn is also minimal sufficient statistic, but just x1 is not

sufficient.

− By contrast, if we consider the pair w = (x1, x2 + . . . + xn), then w is still

sufficient (since can compute x from it), but w is not minimal (since from the

likelihood function there is no way to compute x1, just x or x1 + . . .+ xn).

• Estimator Bias, continued:

− More generally, any parameter ψ = Ψ(θ) with estimator ψ̂ has bias given by

Biasθ(ψ̂) = Eθ(ψ̂)−Ψ(θ).

− Example: Suppose Pθ has mean ψ = Ψ(θ) [or just θ], and we estimate ψ by

x. Then Eθ(Xi) = ψ, so Eθ(X) = ψ, so Biasθ(ψ̂) = 0 no matter what θ is.

[“Unbiased Estimator”]

− Multiple Normal Example: Suppose Ω = R, and Pθ = N(θ, 1). Then MLE of θ

is θ̂ = x. Then Eθ(X) = θ, so Biasθ(θ̂) = 0 for all θ ∈ Ω. [Good.]

− Multiple Uniform Example: Here Pθ = Uniform[0, θ], and MLE is θ̂ = max1≤i≤n{xi}.
Is it unbiased? No, since Pθ[θ̂ < θ] = 1, so Eθ[θ̂] < θ, so Biasθ(θ̂) < 0. (How

much less?) [“Biased Estimator”] (Bad??)

13



—— END WEDNESDAY 3 ——

[New info available on web.]

Previous Class:

∗ Detailed example of sufficient statistics, factorisation theorem, minimal sufficiency.

∗ More examples about Estimator Bias.

• YET MORE ABOUT BIAS:

• Multiple Uniform Example (cont’d): Pθ = Uniform[0, θ], θ̂ = max1≤i≤n{xi}. Then

Pθ[θ̂ < θ] = 1, so Eθ[θ̂] < θ, so Biasθ(θ̂) < 0. (How much less?) [“Biased Estimator”]

(Bad??)

− Alternate estimator: θ̂2 = 2x. Then Eθ(θ̂2) = 2Eθ(x) = 2(θ/2) = θ, so unbiased.

(Good??) But could have θ̂2 < xi for some i. (Crazy??)

• “Location-Scale Normal Model”: Suppose Ω = R× (0,∞), where for θ = (µ, σ2) ∈ Ω,

we have Pθ = P(µ,σ2) = N(µ, σ2). i.e. both µ and σ2 unknown.

− FACT (Text Example 6.2.6): Here MLE of (µ, σ2) is
(
x, 1

n

∑n
i=1(xi − x)2

)
.

[Requires solving a two-dimensional Score Equation.]

− Thus, µ̂ = x, which is unbiased.

− What about estimator of σ2? Fact (Text Corollary 4.6.2): Eθ[ 1
n

∑n
i=1(xi−x)2] =

n−1
n σ2. Thus, always have Eθ[ 1

n

∑n
i=1(xi − x)2] < σ2 – biased! [Bad??]

− If instead use S2 = 1
n−1

∑n
i=1(xi − x)2, then Eθ[S2] = n

n−1
n−1

n σ2 = σ2. Thus,

S2 is unbiased estimator of σ2. [This is why, in S2, we divide by n− 1 instead of

n.] [In fact, (n− 1)S2/σ2 ∼ χ2(n− 1), and S2 independent of x . . .]

• MEAN SQUARED ERROR (6.3.1):

• Defn: Let Ψ be a function of a parameter θ, with estimator ψ̂. The mean squared error

of ψ̂ is

MSEθ(ψ̂) = Eθ[(ψ̂ −Ψ(θ))2] , θ ∈ Ω .

(Best if small!)
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• Theorem (text Thm 6.3.1): MSEθ(ψ̂) = Varθ(ψ̂) + (Biasθ(ψ̂))2.

− Proof:

Eθ

((
ψ̂ − ψ (θ)

)2
)

= Eθ

((
ψ̂ − Eθ

(
ψ̂

)
+ Eθ

(
ψ̂

)
− ψ (θ)

)2
)

= Eθ

((
ψ̂ − Eθ

(
ψ̂

))2
)

+2Eθ

((
ψ̂ − Eθ

(
ψ̂

)) (
Eθ

(
ψ̂

)
− ψ (θ)

))
+

(
Eθ

(
ψ̂

)
− ψ (θ)

)2

= Varθ

(
ψ̂

)
+ 2(0) +

(
Biasθ(ψ̂)

)2

,

since

Eθ

((
ψ̂ − Eθ

(
ψ̂

)) (
Eθ

(
ψ̂

)
− ψ (θ)

))
=

(
Eθ

(
ψ̂

)
− ψ (θ)

)
Eθ

((
ψ̂ − Eθ

(
ψ̂

)))
=

(
Eθ

(
ψ̂

)
− ψ (θ)

)
(0) = 0 .

• Example: Pθ = N(θ, 1). Then MLE is θ̂ = x. Know Biasθ(x) = 0. Hence MSEθ(x) =

Varθ(x) = 1/n. [Gets smaller as n→∞.]

• Example: Conducting referendum. S = {yes,no}. Ω = [0, 1]. Pθ(yes) = θ, Pθ(no) =

1 − θ. [Just like basketball example.] Observe x1, . . . , xn. What is MLE? What is

MSE of MLE?

− Likelihood is L(θ |x1, . . . , xn) = θc(1− θ)n−c, where c = #{i; xi = yes}.

− Then `(θ |x1, . . . , xn) = c log(θ) + (n− c) log(1− θ).

− Then S(θ |x1, . . . , xn) = (c/θ)− ((n− c)/(1− θ)).

− Score Equation solved when c(1− θ)− (n− c)θ = 0, i.e. c− nθ = 0, i.e. θ = c/n.

So, MLE is θ̂ = c/n. [Makes sense.]

− Also, under Pθ, c ∼ Binomial(n, θ), so Eθ(c) = nθ, so Eθ(c/n) = θ, so θ̂ unbiased.

− Hence, MSEθ(θ̂) = Varθ(θ̂) = nθ(1− θ)/n2 = θ(1− θ)/n.

− Problem: θ unknown!! What to do?

− Option #1: Note that always have θ(1 − θ) ≤ 1/4, so must have MSEθ(θ̂) ≤
(1/4)/n = 1/4n. [Conservative estimate; what most polling companies do!]
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− Option #2: Instead use the estimated mean squared errorMSEθ̂(θ̂), i.e.MSEθ̂(θ̂) =

θ̂(1− θ̂)/n = (c/n)(1− c/n)/n = c(1− c/n)/n2. [Less conservative.]

− Corresponding standard error is then Sdθ̂(θ̂) =
√
MSEθ̂(θ̂) =

√
c(1− c/n)/n2 =√

c(1− c/n) / n.

• Aside: Predicting weather. Suppose Environment Canada says, “20% chance of rain

tomorrow”, and then it rains. Are they wrong? How to judge??

− Using idea of MSE, their “error” equals (80%)2, i.e. 0.64 error.

− More generally, if they predict probability p of precipitation (POP), then if it

rains or snows their “error” is (1 − p)2, otherwise their “error” is p2. [“Brier

Score” . . .]

− Without the square, error is minimised by always predicting either 0% or 100%

POP. But with square, error is minimised by best estimate p̂ of true probability.

• Example: Suppose Pθ = Uniform[0, θ], and θ̂ = max1≤i≤n xi. What is MSEθ(θ̂)?

− Well, Pθ[(θ̂ − θ)2 ≥ r] = Pθ[θ̂ ≤ θ −
√
r] = ((θ −

√
r)/θ)n. So, use trick:

MSEθ(θ̂) = Eθ[(θ̂ − θ)2] =
∫ θ

0

Pθ[(θ̂ − θ)2 ≥ r] dr =
∫ θ

0

((θ −
√
r)/θ)n dr .

[Messy to compute, use computer . . .]

− Suppose θ̂2 = 2x. Then Biasθ(θ̂2) = 0, while Varθ(θ̂2) = (4/n)Varθ(xi) = θ2/3n,

so MSEθ(θ̂2) = 00 + θ2/3n = θ2/3n.

− e.g. θ = 5, n = 10: MSEθ(θ̂)
.= 0.38, MSEθ(θ̂2)

.= 0.84.

− e.g. θ = 5, n = 100: MSEθ(θ̂)
.= 0.005, MSEθ(θ̂2)

.= 0.084. [“θ̂ better”?]

• CONSISTENCY: Say an estimator θ̂ of a parameter θ is consistent if, as the number

of observations n goes to infinity, θ̂ converges to θ in probability, i.e. for all ε > 0,

limn→∞ Pθ[|θ̂ − θ| ≥ ε] = 0. [Good.]

• Example: Pθ = Uniform[0, θ], θ̂ = max1≤i≤n xi, θ̂2 = 2x. Are they consistent?

− By WLLN, as n→∞, x→ θ/2 (mean) in probability. So, θ̂2 → θ in probability.

Consistent!
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− What about θ̂? Well, given ε > 0, Pθ[|θ̂−θ| ≥ ε] = Pθ[θ̂ ≤ θ−ε] = ((θ−ε)/θ)n → 0

as n→ 0. So, θ̂ also consistent.

—— END MONDAY 4 ——

Previous Class:

∗ More about bias, S2.

∗ Mean Squared Error: MSEθ(θ̂) = Varθ(θ̂) + (Biasθ(θ̂))2.

—— Examples: Normal, Referendum, Weather, Uniform

∗ Consistency: θ̂ → θ in probability, as n→∞.

—— Uniform: Both θ̂ and θ̂2 consistent.

• Theorem: If limn→∞MSEθ(θ̂) = 0, then θ̂ is a consistent estimator for θ.

− Proof: By Markov’s inequality,

Pθ[|θ̂ − θ| ≥ ε] = Pθ[(θ̂ − θ)2 ≥ ε2] ≤ Eθ[(θ̂ − θ)2] / ε2 = MSEθ(θ̂) / ε2 ,

so if MSEθ(θ̂) → 0 then Pθ[|θ̂ − θ| ≥ ε] → 0.

• Corollary: If limn→∞ Biasθ(θ̂) = 0, and limn→∞Varθ(θ̂) = 0, then θ̂ is consistent.

− Proof: In this case,

lim
n→∞

MSEθ(θ̂) = lim
n→∞

[Varθ(θ̂) + (Biasθ(θ̂))2] = 0 .

• Example: If Pθ = N(θ, 1), and θ̂ = x, then Biasθ(θ̂) = 0, and Varθ(θ̂) = 1/n → 0, so

θ̂ is consistent.

− If instead try θ̂ = x1, then still Biasθ(θ̂) = 0, but now Varθ(θ̂) = 1 6→ 0. In fact,

this θ̂ is not consistent since P [|θ̂ − θ| ≥ ε] does not change with n and so does

not → 0.

• Referendum Example: Estimate θ by θ̂ = c/n. Then Biasθ(θ̂) = 0, and Varθ(θ̂) =

θ(1− θ) / n→ 0 as n→∞. So, θ̂ is consistent.

• For any model, if observe x1, . . . , xn, and estimate cdf Fθ(z) = Pθ(X ≤ z) by F̂ (z) =
1
n

∑n
i=1 I(−∞,z](xi), then since Pθ(xi ≤ z) = Fθ(z), it follows from the WLLN that

F̂ (z) → Fθ(z) in probability as n→∞, so F̂ (z) is a consistent estimator of Fθ(z).
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− Similarly, 1
n

∑n
i=1 Iz(xi) is consistent estimator of Pθ(X = z), again by WLLN.

• CONFIDENCE INTERVALS (6.3.2):

• Example: Suppose Pθ = N(θ, 1), and estimate θ by x. How close are we?

− Well, MSE is 1/n. So, if e.g. n = 16, and x = 5, then on average (θ− 5)2 ≈ 1/16,

so |θ− 5| ≈ 1/4, so perhaps θ is likely to be between 4.75 and 5.25. But how sure

can we be?

− Well, x ∼ N(θ, 1/n), so that
√
n(x− θ) ∼ N(0, 1), with cdf Φ(z).

− Fact: Φ(−1.96) .= 0.025. [Text Table D.2.] Hence, if Z ∼ N(0, 1), then P (Z <

−1.96) .= 0.025. Similarly P (Z > +1.96) .= 0.025. So, P (−1.96 < Z < 1.96) .=

0.95. [Note: The figure 1.96 is so important that you should remember it.]

− Thus, P (−1.96 <
√
n(x − θ) < 1.96) .= 0.95. So, P (−1.96/

√
n < x − θ <

1.96/
√
n) .= 0.95. So, P (x − 1.96/

√
n < θ < x + 1.96/

√
n) .= 0.95. [“(x −

1.96/
√
n, x+ 1.96/

√
n) is 95% confidence interval for θ.”]

− e.g. n = 16, x = 5, then 1.96/
√
n
.= 0.49, so P (5 − 0.49 < θ < 5 + 0.49) .= 0.95.

Roughly speaking, we’re 95% sure that θ is between 4.5 and 5.5. [“19 times out

of 20”]

− Error gets smaller as n→∞. [Not surprising since θ̂ is consistent.]

− If instead want to be 99% sure, then just replace “1.96” by “2.57”, since Φ(2.57) .=

0.995. [Or, if replace “1.96” by “1”, then 68% sure.]

• If instead Pθ = N(θ, σ2
0) (with σ2

0 known), then instead
√
n/σ2

0(x − θ) ∼ N(0, 1), so

instead P (x− 1.96
√
σ2

0/n < θ < x+ 1.96
√
σ2

0/n) .= 0.95.

—— END WEDNESDAY 4 ——
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[Test #1 from 3–5 on Wednesday Feb 11: Surnames A–Li in Medical Sciences Building

(1 King’s College Circle) room 3153; Surnames Ll–Z in Canadiana Gallery (14 Queen’s

Park Crescent, behind Sig Sam Library) room 150. No aids allowed. Bring your T-Card!]

[Lots of TA office hours [and more] available on web.]

• Exercise 6.1.18: Ω = {1, 2}, T (s) = f1(s)/f2(s), show T is minimal sufficient statistic.

[I’ve gotten many questions about this . . . and there are many different approaches . . .

but here’s the most direct.] [Assume fi(s) > 0∀s ∈ S to avoid complications.] Note

that

L(θ | s1) = K L(θ | s2) ∀θ ∈ Ω ⇔ L(θ | s1)/L(θ | s2) = K ∀θ ∈ Ω

⇔ L(1 | s1)/L(1 | s2) = L(2 | s1)/L(2 | s2) ⇔ L(1 | s1)/L(2 | s1) = L(1 | s2)/L(2 | s2)

⇔ T (s1) = T (s2) .

• [Also, don’t worry too much about Exercise 6.2.14.]

Previous Class:

∗ θ̂ consistent if MSEθ(θ̂) → 0.

∗ Estimation of probabilities by corresponding “fraction of data” is consistent, by WLLN

(Text Thm 4.2.1).

∗ Confidence intervals.

—— Example: if Pθ = N(θ, 1), then 95% C.I. given by x± 1.96 /
√
n.

—— If instead Pθ = N(θ, σ2
0), then instead get x± 1.96

√
σ2

0/n.

• CONFIDENCE INTERVALS, continued.

• Location-Scale Model: Suppose θ = (µ, σ2), and Pθ = N(µ, σ2), i.e. µ and σ2 both

unknown. Then what is 95% confidence interval for µ?

− Well, can estimate σ2 by S2, so might hope that P (x − 1.96
√
S2/n < µ <

x+ 1.96
√
S2/n) ≈ 0.95.

− However, actually the uncertainty in σ2 requires a larger confidence interval.

− Recall that
√
n(x− µ)/σ ∼ N(0, 1) and (n− 1)S2/σ2 ∼ χ2(n− 1), indep., so

√
n/S2 (x− µ) =

√
n(x− µ)/σ√

(n− 1)S2/σ2(n− 1)
∼ t(n− 1) ,
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a t distribution with n−1 degrees of freedom. Hence, if an is such that P (−an <

Tn < an) = 0.95 whenever Tn ∼ t(n), then P (x − an−1

√
S2/n < µ < x +

an−1

√
S2/n) .= 0.95.

− Always have an > 1.96, i.e. confidence intervals larger because of uncertainty in

σ2. However, an ≈ 1.96 if n is large.

− e.g. a3 = 3.18, a10 = 2.23, a50 = 2.01. [Text Table D.4. You do not need to

memorise these values.]

− Can similarly get confidence intervals for σ2 in terms of S2, using χ2(n − 1)

distribution.

• Example: Election poll, candidates A, B, C. Ask n people who they will vote for; c of

them say A. Find confidence interval for θ = fraction of votes A will get.

− Let θ̂ = c/n.

− Know c ∼ Binomial(n, θ), so Eθ(θ̂) = θ, and MSEθ(θ̂) = Varθ(θ̂) = θ(1− θ) / n.

But how to get confidence interval?

− If n small, can perhaps compute with Binomial(n, θ) directly. But what if n large?

− Use CLT! If n large, then (θ̂−θ) /
√

Varθ(θ̂) ∼ N(0, 1), i.e.
√
n/θ(1− θ) (θ̂−θ) ∼

N(0, 1).

− Hence, like above, P (θ̂−δn < θ < θ̂+δn) ≈ 0.95, where δn = 1.96
√
θ(1− θ)/n =

“95% margin of error”.

− Another problem: θ unknown! Two options: (1) “Plug-In Estimate”: replace θ

by its estimate, θ̂. (2) “Conservative Option”: Use that always θ(1−θ) ≤ 1/4, so

if δn = 1.96
√

(1/4)/n = 1.96 / 2
√
n = 0.98 /

√
n, then P (θ̂ − δn < θ < θ̂ + δn) ≥

0.95. [Good, but conservative.]

• What do real polling companies do?

− e.g. Ipsos-Reid mayor’s poll, November 3, 2003 (one week before mayoral election).

Phoned 700 adult Torontonians. Got estimate Miller 37%, Tory 31%, “accurate

within ±3.7%, 19 times out of 20”.
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− Check: 0.98 /
√

700 .= 0.03704052 .= 3.7%. i.e. polling companies usually use

option (2) above.

− If instead wanted 99% certainty, then replace 1.96 by 2.57, get error 2.57 / 2
√

700 .=

0.04856843 .= 4.9%.

• Basketball Example: Score 7 out of 10 foul shots. What is approximate 95% confidence

interval for p? Here 0.98 /
√

10 .= 0.31, so p could be anywhere in (0.7 − 0.31, 0.7 +

0.31) = (0.39, 1.01). Large interval! [Also crazy, since must have p < 1, i.e. n = 10 is

too small to accurately use normal approximation.]

− If instead score 70 out of 100, then 0.98 /
√

100 = 0.098 ≈ 0.1, so 95% confidence

interval for p is approx. (0.6, 0.8).

− If use Plug-In Estimate instead, then for n = 10 case get margin of error =

1.96
√
θ̂(1− θ̂)/n = 1.96

√
0.7(0.3)/10 .= 0.28, and for n = 100 case get margin of

error = 1.96
√
θ̂(1− θ̂)/n = 1.96

√
0.7(0.3)/100 .= 0.090. [In both cases, margin

of error a little smaller.]

− SAMPLE SIZE calculation (6.3.4): How many shots must we observe to get 95%

sure of being within, say, 0.02 of the true value of p? Want 95% margin of error

≤ 0.02, i.e. 0.98 /
√
n ≤ 0.02, i.e. n ≥ (0.98/0.02)2 = 2401. So, would require at

least 2401 shots.

• Note: Can use this CLT in many cases. If you can find (say) C1 and C2 such that,

under Pθ, Z = C1(x− C2) has mean 0 and variance 1, then for large n, Z ∼ N(0, 1),

so P [|Z| ≥ 1.96] · 0.95.

• HYPOTHESIS TESTING (6.3.3)

• “Statitus” Example: Have either fair coin or two-headed coin. Get three heads in a

row. Are we sure we have two-headed coin?

• Have “null hypothesis” H0 that coin is fair, versus “alternative hypothesis” H1 that

coin is two-headed.

• Defn: The P-value of an experiment, is the probability that we would observe that

result, or a result “at least as surprising”, if the null hypothesis H0 is true.
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• “Statitus”: P-value is (1/2)3 = 1/8 = 0.125. Small enough to conclude that H0 is

false??

− No! Usually require P-value < 0.05 to conclude H0 false. [“Three heads is not

statistically significant.”]

− If instead get five heads in a row, then P-value = (1/2)5 = 1/32 .= 0.031 < 0.05,

enough to conclude that H0 is false and we must have the two-headed coin. [“Five

heads is statistically significant.”]

− Suppose we demand 99% significance instead, i.e. require P-value < 0.01. Then

need seven heads in a row, to get P-value = (1/2)7 = 1/128 .= 0.008 < 0.01.

—— END MONDAY 5 ——

• Example: Pθ = N(θ, 1). Suppose have hypothesis H0: θ = θ0 = 5 (say), compared

to H1 : θ 6= 5. Then observe x1, . . . , xn, and compute x = 5.1 (say). Can we be sure

that H0 is wrong?

− Well, here P-value is P5[|x− 5| ≥ 0.1].

− But under P5, x has distribution N(5, 1/n), so
√
n(x − 5) ∼ N(0, 1). Hence,

P-value is

P5[|x− 5| ≥ 0.1] = P5[|
√
n(x− 5)| ≥ 0.1

√
n] = P [|Z| ≥ 0.1

√
n]

= P [Z ≤ −0.1
√
n] + P [Z ≥ 0.1

√
n] = 2P [Z ≤ −0.1

√
n] = 2 Φ(−0.1

√
n) ,

where Z ∼ N(0, 1). [“Z-test”]

− e.g. [Using text Table D.2, to be supplied if needed for tests.] n = 1: P-value
.= 0.92; n = 10: P-value .= 0.75; n = 100: P-value .= 0.32; n = 200: P-value
.= 0.16; n = 400: P-value .= 0.046; n = 700: P-value .= 0.0082.

− Conclude that to distinguish between H0 : θ = 5, and H1 : θ 6= 5, when x = 5.1,

requires SAMPLE SIZE (Sect. 6.3.4) of about 400 at 95% level, or about 700 at

99% level.

• If instead Pθ = N(θ, σ2
0), with σ2

0 > 0 known, then instead obtain P-value of 2Φ(−|x−
θ0|

√
n/σ2

0). [Exercise!]
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• Bernoulli Model (Text Example 6.3.11): Suppose again that Ω = [0, 1], and Pθ(die) =

θ, Pθ(live) = 1− θ. Suppose “usually” θ = θ0 (known), but environment has changed.

Question: Do we still have θ = θ0?

− Here H0 : θ = θ0, while H1 : θ 6= θ0.

− Suppose observe n patients, of whom c die. Assume n large. Let δ = |(c/n)− θ0|,
observed deviation from θ0.

− Then P-value is Pθ0 [|(c/n)− θ| ≥ δ].

− Under Pθ0 , c ∼ Binomial(n, θ0), with mean nθ0 and variance nθ0(1 − θ0). So,

x = c/n has mean θ0 and variance θ0(1 − θ0)/n. [Here θ0 known, so don’t need

to bound variance by 1/4n.]

− Hence if Z =
√
n/θ0(1− θ0) (x− θ0), then for large n, Z ∼ N(0, 1).

− So, P-value is given by

Pθ0 [|(c/n)− θ| ≥ δ] = Pθ0 [|Z| ≥ δ
√
n/θ0(1− θ0)] = 2 Φ

(
− δ

√
n/θ0(1− θ0)

)
.

− e.g. θ0 = 0.2, observe n = 1000, c = 250. Can we conclude the new environment

is more dangerous? Here δ = |(250/1000)− 0.2| = 0.05, and P-value is

2 Φ
(
−δ

√
n/θ0(1− θ0)

)
= 2Φ

(
−0.05

√
1000/0.2(0.8)

) .= 2Φ(−3.95) .= 0.000077 .

So yes, there is a (highly) statistically significant change: it’s gotten more dan-

gerous!

− Suppose instead had n = 4 and c = 1. Then still c/n = 0.25, and δ = |(c/n) −
0.2| = 0.05. But would the change still be statistically significant? (No!)

—— END WEDNESDAY 5 ——
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[Reminder: Test #1 on Wednesday, 3–5: Surnames A–Li in MS 3153; Surnames Ll–Z in

CG 150. No aids allowed. Bring your T-Card!]

[No classes next week (Reading Week).]

Previous Class:

∗ Examples re P-values:

—— Case Pθ = N(θ, 1), H0 : θ = θ0, H1 : θ 6= θ0, P-value = Pθ0 [|X − θ0| ≥ δ] =

2 Φ(−δ
√
n), where δ = |x − θ0| (observed value, as opposed to random variable X in

prob).

—— Case Pθ = N(θ, σ2
0), P-value = 2Φ(−δ

√
n/σ2

0).

—— Bernoulli Model, P-value ≈ 2 Φ(−δ
√
n/θ0(1− θ0)), because of CLT (for n large).

• Bernoulli Model revisited: Ω = [0, 1], Pθ(die) = θ, Pθ(live) = 1 − θ, H0 : θ = θ0,

observe n patients of whom c die, set δ = |(c/n) − θ0| (observed difference), then

P-value equals

Pθ0 [|(C/n)− θ0| ≥ δ] = 2 Φ
(
− δ

√
n/θ0(1− θ0)

)
.

− One-Sided Tests: Suppose instead that we’re only worried about one “side” of the

change in θ, namely θ getting larger. i.e. still H0 : θ = θ0, but now H1 : θ > θ0

instead of H1 : θ 6= θ0.

− In that case, replace P-value Pθ0 [|(C/n)− θ| ≥ δ] by just Pθ0 [(C/n)− θ ≥ δ].

− This change removes the factor of “2” in P-value calculation, i.e. gives P-value

= Φ
(
− δ

√
n/θ0(1− θ0)

)
which is half as large.

− Whether to use Two-Sided (usual) or One-Sided test is a matter of judgement,

depending on the problem. [Usually just assume Two-Sided.]

• Location-Scale Model P-values [Text Example 6.3.13]: Pθ = N(µ, σ2) with µ and σ2

both unknown. Have hypothesis H0 : µ = µ0. Observe x1, . . . , xn with deviation

δ = |x− µ0|. What is P-value?

− Recall that T ≡
√
n/S2 (X − µ) ∼ t(n− 1). So, P-value is

Pθ[|X − µ| ≥ δ] = P [|T | ≥ δ
√
n/S2] = 2P [T ≤ −δ

√
n/S2] .
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[Can find from statistical package. Will be provided as needed on the class tests.]

[“t-test”]

− e.g. µ0 = 5, x = 5.1, S2 = 1, n = 100: Get P-value equal to 0.3197, compared to

0.3173 if σ2 = 1 is known. [i.e. P-value slightly larger due to uncertainty in σ2.]

− If instead use one-sided test, i.e. test H0 : µ = µ0 versus H1 : µ > µ0, then remove

factor of “2”, get P-value equal to 0.1599.

• Statitus partial-treatment: Suppose statitus is usually 50% fatal. Company claims

that with their treatment, it’s “less” fatal. We observe 8 patients, of whom just 1

dies. Are we sure the company is correct?

− Let Ω = [0, 1], Pθ[die] = θ, Pθ[live] = 1− θ. Then H0 : θ = 0.5, and H1 : θ < 0.5.

What is P-value?

− Since n = 8 is small, don’t use CLT. Also, since they claim it is less fatal, use

one-sided test. So, P-value is P [≤ 1 die].

− Under H0,

P [≤ 1 die] = P0.5[≤ 1 die] = P0.5[0 die] + P0.5[1 die]

= (0.5)8 +
(

8
1

)
(0.5)7(0.5)1 = 9/28 .= 0.035 < 0.05 .

So, 95% confident that treatment helps. [Not 99% confident, though!]

− If instead just observed five patients, of whom one died, then compute [Exercise!]

that P-value = 6/25 .= 0.19. In this case, we’re not sure if it helped.

• METHOD OF MOMENTS (6.4.1)

• Another way to estimate θ is to find the value θ̂ such that mean of Pθ̂ equals x. [And,

if necessary, Eθ̂[X
2] = 1

n

∑n
i=1(xi)2, etc.] [“Method of Moments (MoM) Estimator”]

• Example: Pθ = N(θ, 1). Then mean of Pθ is θ. So, for MoM Estimator, want θ̂ = x.

[Same as MLE.]

• Example: Pθ = Exp(θ). Then mean of Pθ is 1/θ. So, for MoM Estimator, want

1/θ̂ = x, i.e. θ̂ = 1/x.
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• Example: Pθ = Uniform[0, θ]. MLE is max1≤i≤n xi. What is MoM Estimator?

− Well, mean of Pθ is θ/2. So, must have θ̂/2 = x, i.e. θ̂ = 2x.

− We’ve seen this before! [“θ̂2”] We know it’s consistent, has MSEθ(θ̂) → 0, etc.

• Example: Pθ = Uniform[−θ, θ]. MLE is max1≤i≤n |xi|. What is MoM Estimator?

− Here mean of Pθ is 0, which doesn’t help. So, must consider second moment.

− Second moment of Pθ is (2θ)2/12 = θ2/3. So, want θ̂2/3 = 1
n

∑n
i=1(xi)2, i.e.

θ̂ =
√

(3/n)
∑n

i=1(xi)2.

—— END MONDAY 6 ——

[Held Test #1, then week off for Reading Week . . .]

• SUMMARY SO FAR: Have learned basics of “classical statistics”:

− Inference when prob dist known or unknown.

− Statistical Models, likelihood functions.

− Maximum Likelihood Estimators, Score Equation.

− (Minimal) Sufficient Statistics.

− Bias, MSE, Consistency.

− Confidence intervals, hypothesis testing.

− Method-of-Moments estimators

• INTRODUCTION TO BAYESIAN INFERENCE (7.1)

• COIN EXAMPLE: Suppose I have either regular or two-headed coin.

− What is probability I have two-headed coin? (Undefined?)

− Suppose I flip it once, and get heads. Now what is probability I have two-headed

coin? (Still undefined?)

− In “classical” statistics, these probabilities are undefined. However, an alterna-
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tive approach, “Bayesian statistics”, says that every unknown has probabilities

associated with it.

− Bayesian statistics says start with a prior distribution of what you think at the

beginning. e.g. Π(regular) = Π(two-headed) = 1/2.

− Then if get one head, then new probability of two-headed coin is equal to old

probability, conditional on seeing one head:

P (two-headed |head) =
P (two-headed, head)

P (head)

=
P (two-headed, head)

P (two-headed, head) + P (regular, head)
=

(1/2)(1)
(1/2)(1) + (1/2)(1/2)

=
1/2
3/4

= 2/3 .

− If get k heads in a row, then

P (two-headed | k heads) =
P (two-headed, k heads)

P (k heads)

=
P (two-headed, k heads)

P (two-headed, k heads) + P (regular, k heads)

=
(1/2)(1)k

(1/2)(1)k + (1/2)(1/2)k
=

1
1 + (1/2)k

.

This → 1 as k →∞.

− Suppose instead had prior Π(regular) = 1/3, Π(two-headed) = 2/3. Then if get

k heads in a row, then

P (two-headed | k heads) =
P (two-headed, k heads)

P (k heads)

=
P (two-headed, k heads)

P (two-headed, k heads) + P (regular, k heads)

=
(2/3)(1)k

(2/3)(1)k + (1/3)(1/2)k
=

2
2 + (1/2)k

.

This still → 1 as k →∞.
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• A Bayesian Model consists of Statistical Model {Pθ : θ ∈ Ω} together with a prior distribution

Π on Ω.

− Discrete case: Π has probability function π(θ) = probability that θ is true.

− Absolutely continuous case: Π has density function π(θ), so that probability θ

between a and b is
∫ b

a
π(θ) dθ.

• Then pair (θ, s) has prior joint probability (or density) function π(θ) fθ(s).

• Hence, prior marginal distribution for s is m(s) =
∑

θ∈Ω π(θ) fθ(s) [discrete case], or

m(s) =
∫

θ∈Ω
π(θ) fθ(s) dθ [absolutely continuous case]. “Prior Predictive Distribu-

tion”

• Then once we observe some data s, then get conditional probability (or density)

function for θ:

π(θ | s) =
π(θ) fθ(s)
m(s)

.

“Posterior Distribution” [“Posterior equals prior times likelihood, normalised.”]

• Coin Example again:

− Here π(two-headed) = π(regular) = 1/2.

− ftwo-headed(head) = 1; ftwo-headed(tail) = 0; fregular(head) = fregular(tail) = 1/2.

− m(head) = π(two-headed) ftwo-headed(head)+π(regular) fregular(head) = (1/2)(1)+

(1/2)(1/2) = 3/4. Also m(tail) = π(two-headed) ftwo-headed(tail)

+π(regular) fregular(tail) = (1/2)(0) + (1/2)(1/2) = 1/4.

− Then

π(two-headed |head) =
π(two-headed) ftwo-headed(head)

m(head)
=

(1/2) (1)
3/4

= 2/3 .

[Same as before.]

− Also

π(regular |head) =
π(regular) fregular(head)

m(head)
=

(1/2) (1/2)
3/4

= 1/3 .

− Also

π(two-headed | tail) =
π(two-headed) ftwo-headed(tail)

m(tail)
=

(1/2) (0)
3/4

= 0 .
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− If instead observe k heads, thenm(k heads) = π(two-headed) ftwo-headed(k heads)+

π(regular) fregular(k heads) = (1/2)(1)k + (1/2)(1/2)k = (1/2) + (1/2)k+1. Then

π(two-headed | k heads) =
π(two-headed) ftwo-headed(k heads)

m(k heads)

=
(1/2) (1)k

(1/2) + (1/2)k+1
=

1
1 + (1/2)k

.

[Same as before.]

• EXAMPLE: BERNOULLI MODEL. (Text p. 354.)

− Here S = {0, 1}, Ω = [0, 1], and Pθ(1) = θ, Pθ(0) = 1 − θ. Suppose prior is

UNIFORM on Ω, so that π(θ) ≡ 1. Suppose observe x1, . . . , xn ∈ S. What is

posterior?

− Here fθ(x1, . . . , xn) = θc(1− θ)n−c, where c = #{i; xi = 1} = nx.

− Thenm(x1, . . . , xn) =
∫

θ∈Ω
π(θ) fθ(x1, . . . , xn) dθ =

∫ 1

0
(1)θc(1−θ)n−cdθ =

∫ 1

0
yc(1−

y)n−cdy. Hard! [FACT: This equals Γ(c + 1) Γ(n − c + 1) /Γ(n + 2), or c! (n −
c)! / (n+ 1)!. But never mind that!]

− Then posterior density is given by

π(θ |x1, . . . , xn) =
π(θ) fθ(x1, . . . , xn)
m(x1, . . . , xn)

=
(1) θc(1− θ)n−c∫ 1

0
yc(1− y)n−cdy

.

In fact, this is a Beta distribution, Beta(c+ 1, n− c+ 1). [Text pp. 60, 654.]

− Posterior provides our best understanding, given our prior Π and the data x1, . . . , xn,

of all the probabilities for θ.

− Once we have posterior, then we might estimate θ by the posterior mean esti-

mator. Now, the mean of the Beta(c+ 1, n − c+ 1) distribution is (c+ 1)/[(c+

1) + (n− c+ 1)] = (c+ 1)/(n+ 2). Hence, the posterior mean estimator for θ is

θ̂ = (c + 1)/(n + 2). This is close to our “usual” estimator c/n, but a bit closer

to 1/2.

—— END MONDAY 7 ——
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Previous Class:

∗ Quick review of classical statistics.

∗ Bayesian inference:

∗ Coin Example (two-headed or regular).

∗ Prior distribution Π, with prob/dens fn π(θ).

∗ Prior predictive distribution m(s) =
∑

θ∈Ω π(θ)fθ(s).

∗ Posterior prob/dens fn π(θ | s) = π(θ)fθ(s) /m(s).

∗ Bernoulli Model: π(θ) = 1 (Uniform), then π(θ |x1, . . . , xn) ∝ θc(1−θ)n−c, i.e. Π(θ |x1, . . . , xn) =

Beta(c+ 1, n− c+ 1).

—— Then can e.g. estimate θ by posterior mean θ̂ = (c+ 1)/(n+ 2).

− Note that the variance of the Beta(c+ 1, n− c+ 1) distribution is (c+ 1)(n− c+

1) / (n + 3)(n + 2)2, and this provides a measure of how uncertain we are about

the estimate (c + 1)/(n + 2). As n → ∞, since 0 ≤ c ≤ n, we see that variance

→ 0, i.e. we’re more and more sure.

• Consider again Bernoulli model, but this time with prior density π(θ) = 4 θ3 for

θ ∈ Ω ≡ [0, 1]. [i.e. we think it’s more likely that θ is larger]

− Still have fθ(x1, . . . , xn) = θc(1− θ)n−c, where c = #{i; xi = 1} = nx.

− m(x1, . . . , xn) still hard to compute.

− Posterior density is given by

π(θ |x1, . . . , xn) =
π(θ) fθ(x1, . . . , xn)
m(x1, . . . , xn)

=
4(θ3) θc(1− θ)n−c

m(x1, . . . , xn)
=

4θc+3(1− θ)n−c

m(x1, . . . , xn)
.

− We observe that this is a Beta(c + 4, n − c + 1) distribution. [Text pp. 60, 654.]

(Don’t need to bother computing normalisation constants.)

− Posterior mean equals (c+4) / [(c+4)+(n−c+1)] = (c+4) / (n+5). [“a/(a+b)”]

A bit larger than previous posterior mean of (c+ 1) / (n+ 2).

• LOCATION NORMAL MODEL. Suppose S = Ω = R, and Pθ = N(θ, 1). Sup-

pose prior is Π = N(µ0, τ
2
0 ) for some fixed, known µ0 and τ2

0 . Suppose we observe

x1, . . . , xn. Then we know (from before) that

fθ(x1, . . . , xn) = K exp
(
− n

2
(x− θ)2

)
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Also here

π(θ) =
1√
2πτ2

0

exp
(
− (θ − µ0)2/2τ2

0

)
.

Also m(x1, . . . , xn) =
∫
π(θ) fθ(x1, . . . , xn) dθ. [Don’t worry about this for now.]

− Then

π(θ |x1, . . . , xn) =
π(θ) fθ(x1, . . . , xn)
m(x1, . . . , xn)

=
exp

(
− (θ − µ0)2/2τ2

0

)
K exp

(
− n

2 (x− θ)2
)√

2πτ2
0 m(x1, . . . , xn)

.

− We compute (text pp. 355–356) that this is the density of a normal distribution

with mean ((µ0/τ
2
0 ) + nx)/((1/τ2

0 ) + n), and variance 1 / ((1/τ2
0 ) + n).

− Hence, posterior mean estimator is θ̂ = ((µ0/τ
2
0 ) + nx)/((1/τ2

0 ) + n).

− Note that θ̂ is a weighted average of prior mean µ0, and sample mean x. As

n→∞, θ̂ → x. (“The data swamps the prior.”)

• SUMMARY OF BAYESIAN STATISTICS:

− Adds new information, the “prior distribution”, to the model.

− Then can compute a “posterior distribution” which gives a full probability dis-

tribution (not just estimate) for the unknown θ.

− Can then e.g. estimate θ by the posterior mean.

− Advantages: Get full distribution for θ, so can estimate probabilities, etc. Also,

can encorporate “prior information”, e.g. if experts “believe” certain things.

− Disadvantages: Computations can get difficult, even for simple models. [Though

not too difficult for simple discrete models, like Coin Example. For harder exam-

ples, entire subject of “Markov Chain Monte Carlo algorithms” devoted to trying

to do computations!] Also, result depends on prior and so is perhaps “subjective”.

− Very controversial: Some statisticians are die-hard Bayesians, others are anti-

Bayesian!

—— END WEDNESDAY 7 ——
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Previous Class:

∗ More examples re Bayesian inference and posterior distributions.

• MODEL CHECKING (9.1).

• A statistical model {Pθ : θ ∈ Ω} is just a model; how do we know if it’s appropriate?

• We hope the data approximately fits some Pθ, but we don’t know which one; how to

check?

• Idea: Find some statistic (i.e. function of the data) which is ancilliary, i.e. whose

distribution does not depend on θ. Then see if that statistic approximately follows its

distribution.

• Example: Ω = S = R, and Pθ = N(θ, 1).

− Then Xi ∼ N(θ, 1), which depends on θ – not ancilliary.

− Also X ∼ N(θ, 1/n), which depends on θ – not ancilliary.

− But (n− 1)S2 ∼ χ2(n− 1) which does not depend on θ – ancilliary! So can check

(n − 1)s2 =
∑n

i=1(xi − x)2 to see if its value is “reasonable” for the χ2(n − 1)

distribution.

− e.g. suppose n = 101, then
∑n

i=1(Xi−X)2 ∼ χ2(100). Hence E[
∑n

i=1(Xi−X)2] =

100, and in fact P [74.22 <
∑n

i=1(Xi − X)2 < 129.56] .= 0.95. So, if
∑n

i=1(xi −
x)2 < 74.22, or

∑n
i=1(xi − x)2 > 129.56], then perhaps have incorrect model.

• If instead Pθ = N(θ, σ2
0) with σ2

0 known, then instead n−1
σ2
0
S2 = 1

σ2
0

∑n
i=1(Xi−X)2 ∼

χ2(n− 1), so use this value instead.

• However, if P(µ,σ2) = N(µ, σ2) [both unknown], then more complicated! Requires

simulation to approximate. [See text Example 9.1.2.]

• Example: Suppose Ω = S = R, with Pθ = Uniform[θ − 3, θ + 3].

− Then under Pθ, Xi − θ ∼ Uniform[−3, 3], which does not depend on θ, however

it is not a statistic [depends on unknown value, θ].

− On the other hand, (Xi − θ)− (Xj − θ) = Xi −Xj is an ancilliary statistic.
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− Hence, so is D = maxi,j(Xi − Xj) = (maxiXi) − (minj Xj). [“discrepancy

statistic”]

− Precise distribution of D is tricky. However, if D > 6 then model must be wrong.

Also, for large n, expect D ≈ 6, otherwise model wrong.

• Example: S = Ω = (0,∞), with Pθ({θ}) = 4/5 and Pθ({2θ}) = 1/5. Observe

x1, . . . , xn.

− Let Di = Xi+1/Xi (1 ≤ i ≤ n− 1).

− Then Pθ[Di = 1] = Pθ[Xi = Xi+1] = (4/5)2 +(1/5)2 = 17/25. Also Pθ[Di = 2] =

Pθ[Di = 1/2] = (4/5)(1/5) = 4/25.

− Hence, Di is an ancilliary statistic.

• Example: S = Ω = (0,∞), with Pθ = Exp(θ). Observe x1, . . . , xn. What is a good

ancilliary statistic?

− Claim: Di = Xi+1 /Xi is ancilliary (1 ≤ i ≤ n− 1).

− Proof #1: Use multivariable change-of-variable formula (text Theorem 2.9.2) to

get exact distribution of Di, and observe that it does not depend on θ.

− Proof #2: Can writeXi = Yi / θ, where Yi ∼ Exp(1). ThenDi = (Yi/θ)/(Yi+1/θ) =

Yi/Yi+1 whose distributions do not depend on θ.

• CHI-SQUARED GOODNESS OF FIT TEST (9.1.2)

• Suppose election has k candidates, {1, 2, . . . , k}. Suppose we think that candidate i

has support pi, so p1 + . . .+ pk = 1. We then observe preferences x1, . . . , xn, and let

ci = #{j : xj = i} be count data. (So c1 + . . .+ ck = n.)

− If we’re right about the values of pi, then should have

(C1, . . . , Ck) ∼ Multinomial(n, p1, . . . , pk). How to test this?

− Well, Ci would have mean npi, and variance npi(1− pi). So, for large n, should

have

Ri ≡
Ci − npi√
npi(1− pi)

≈ N(0, 1) .
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[“i’th residual”] Ancillary statistic (approx.).

− How to combine them? Intuition: for large n,
∑

i(Ri)2 =
∑

i(Ci−npi)2/npi(1−
pi) ∼ χ2(k). Not quite due to restriction C1 + . . . + Ck = n. Instead, X2 ≡∑

i(Ci − npi)2/npi ≈ χ2(k − 1). [“Chi-squared statistic”]

− Observed value is x2 ≡
∑

i(ci − npi)2/npi. [Text: X2
0 .]

− Then P-value is P [X2 ≥ x2], where X2 ∼ χ2(k − 1). [One-sided test, since only

concerned if too far off.]

• Example: Three candidates 1, 2, 3. We think p1 = 0.6, p2 = 0.3, p3 = 0.1. We then

poll n = 100 people, and observe counts c1 = 45, c2 = 40, c3 = 15. What is P-value?

− Here

x2 =
(45− 60)2

60
+

(40− 30)2

30
+

(15− 10)2

10
= 115/12 .= 9.58 .

− Also if X2 ∼ χ2(2), then P [X2 ≥ 9.58] .= 0.0083. Small! So, we conclude that

our pi values are wrong.

—— END MONDAY 8 ——

Previous Class:

∗ Model Testing:

—— Can use ancilliary statistic to see if model is appropriate.

—— e.g. Pθ = N(θ, σ2
0), use n−1

σ2
0
S2 ∼ χ2(n− 1).

—— Other examples: Uniform, Discrete, Exponential.

∗ Chi-Squared Goodness of Fit Test

—— THM: If (C1, . . . , Ck) ∼ Multinomial(n, p1, . . . , pk), thenX2 ≡
∑k

i=1(Ci−npi)2/npi ≈
χ2(k − 1).

—— Proof: See e.g. Theory of Statistics, by M.J. Schervish, pages 461–462. Uses matrix

analysis and normal distribution theory.

—— This gives P-value P [X2 ≥ x2] for hypothesis that {pi} are correct.

• Chi-Squared Goodness of Fit Test can also be used for CONTINUOUS data, by first

breaking it up into discrete regions.

• Example: Suppose we think the true distribution is Exp(1), and we observe values
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x1, . . . , x100.

− Suppose we break up [0,∞) into, say, the intervals I1 = [0, 1], I2 = (1, 2], I3 =

(2, 5], and I4 = (5,∞). Let Ci = #{j : Xj ∈ Ii} for i = 1, 2, 3, 4.

− Then P (Xj ∈ I1) =
∫ 1

0
e−xdx = 1 − e−1 .= 0.632. P (Xj ∈ I2) =

∫ 2

1
e−xdx =

e−1 − e−2 .= 0.232. P (Xj ∈ I3) =
∫ 5

2
e−xdx = e−2 − e−5 .= 0.129. P (Xj ∈ I4) =∫∞

5
e−xdx = e−5 .= 0.007.

− Then should have (C1, C2, C3, C4) ∼ Multinomial(100, 0.632, 0.232, 0.129, 0.007).

− Suppose we observe c1 = 60, c2 = 25, c3 = 14, c4 = 1. Then

x2 =
(60− 63.2)2

63.2
+

(25− 23.2)2

23.2
+

(14− 12.9)2

12.9
+

(1− 0.7)2

0.7
.= 0.524 .

− If X2 ∼ χ2(3), then P [X2 ≥ 0.524] .= 0.914. Big! So, no evidence against

assumption that Xi ∼ Exp(1).

− Comment: Here np4 = 0.7 is quite small, so test is very sensitive to value of c4.

Best to have npi “not too small” (say, ≥ 1, or ≥ 5) if possible.

• RELATIONSHIPS AMONG VARIABLES (Chapter 10)

− Given various quantities Xi and Yi, are they related, i.e. does the distribution of

one depend on the value of the other, or not? [Equivalently: Are they dependent

or independent?]

• CATAGORICAL RESPONSE MODELS (Section 10.2.1).

• Suppose we take a survey of 100 U of T graduates, and find the following count data

{cij}:
Doctor Lawyer Scientist Unemployed

Have taken STA261 23 13 15 5

Have NOT taken STA261 12 10 8 14

• Question: Does taking STA261 have effect on your future?

• Here have predictor variable X ∈ {Taken, Not}. Also outcome variable Y ∈ {Doctor,

Lawyer, Scientist, Unemployed}. Are they dependent or independent?
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• Let θij = P [X = i, Y = j]; θi· = P [X = i] =
∑

j θij ; θ·j = P [Y = j] =
∑

i θij .

− Then X,Y independent iff θij = θi·θ·j for all i, j. Is it true? How to test?

• If we knew values of θi· = qi and θ·j = rj , then could use chi-squared statistic

X2 =
∑
i,j

(Cij − nqirj)2

nqirj
∼ χ2(2 · 4− 1) = χ2(7) ,

and do usual chi-squared test.

• But here θi· and θ·j are unknown!

• Instead, could substitute MLE: qi = 1
n

∑
j cij ≡

1
nci·, rj = 1

n

∑
i cij ≡

1
nc·j . But then

qi and rj depend on the data {cij}. How does this affect the distribution?

• THEOREM (e.g. Schervish, pages 463–467): For large n,

X2 =
∑
i,j

(Cij − Ci·C·j/n)2

Ci·C·j/n
∼ χ2((2− 1)(4− 1)) = χ2(3) .

In general, if a catagories for X, and b catagories for Y , then X2 ∼ χ2((a− 1)(b− 1)).

− This is because (a− 1)(b− 1) = [ab− 1]− [(a− 1)+ (b− 1)] = “k− 1”−“dim(Ω)”.

• Using this, can compute P-value for no relationship, as P [X2 ≥ x2], where X2 ∼
χ2((a− 1)(b− 1)), and x2 is the observed value of X2.

—— END WEDNESDAY 9 ——

Previous Class:

∗ Applying chi-squared test to continuous data, by “partitioning”.

∗ Suppose have predictor variable X ∈ {1, . . . , a} [e.g. {Taken STA261, Not Taken}], and

response variable Y ∈ {1, . . . , b} [e.g. {Doctor, Lawyer, Scientist, Unemployed}.
—— Are the variables X and Y “related”, i.e. dependent?

—— Null hypothesis: independent, i.e. P [X = i, Y = j] ≡ θij = θi·θ·j.
—— Use χ2 statistic X2, replacing npi by n(Ci·/n)(C·j/n) = Ci·C·j/n, i.e.

X2 =
∑
i,j

(Cij − Ci·C·j/n)2

Ci·C·j/n
.

∗ THEOREM: For large n, X2 ≈ χ2((a− 1)(b− 1)).
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—— This is because (a − 1)(b − 1) = [ab − 1] − [(a − 1) + (b − 1)] = “k − 1”−“dim(Ω)”;

see Text Theorem 9.1.2.

• Back to “U of T graduates” example:

Doctor Lawyer Scientist Unemployed

Have taken STA261 23 13 15 5

Have NOT taken STA261 12 10 8 14

• In this example, the observed value is

x2 =
(23− (35)(56)/100)2

(35)(56)/100
+

(13− (23)(56)/100)2

(23)(56)/100
+

(15− (23)(56)/100)2

(23)(56)/100
+

(5− (19)(56)/100)2

(19)(56)/100

+
(12− (35)(44)/100)2

(35)(44)/100
+

(10− (23)(44)/100)2

(23)(44)/100
+

(8− (23)(44)/100)2

(23)(44)/100
+

(14− (19)(44)/100)2

(19)(44)/100
.= 8.93

But we expect X2 ∼ χ2((4 − 1)(2 − 1)) = χ2(3). Now, if X2 ∼ χ2(3), then P [X2 ≥
8.93] .= 0.030. So, P-value is 0.030 – small!

• Conclusion: Taking STA261 has a significant effect on your future!

• LEAST SQUARES ESTIMATES (10.3.1):

• Unconditioned case: Suppose want to estimate E(Y ) based on a sample y1, y2, . . . , yn.

• Least Squares Principle: Estimate E(Y ) by ê, chosen to minimise SE ≡
∑n

i=1(yi−e)2.

− Well, ∂
∂e SE = −

∑n
i=1 2(yi − e) [differentiable everywhere], which equals 0 iff

e = y.

− Also, ( ∂
∂e )2 SE =

∑n
i=1 2 = 2n > 0.

− So, if all values in R are possible for e, then must have ê = y. [Makes sense.]

− On the other hand, if only certain values possible for e, then ê is the possible

value of e which is closest to y. [See Text Example 10.3.1.]

• What if Y depends on some other variable X?

− Need to assume some model for the dependence.

• LINEAR REGRESSION (10.3.2):
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• Suppose X,Y related variables, and we assume E(Y |X = x) = β1 +β2x for some un-

known β1, β2, and we observe independent draws (x1, y1), (x2, y2), . . . , (xn, yn). How

to estimate β1 and β2?

− Example: xi = grade in STA261, yi = salary when you graduate. Are they

related? How? Is β2 zero, or positive, or negative??

• Principle of Least Squares says choose β1, β2 to minimise SE ≡
∑n

i=1(yi−β1−β2xi)2.

How? [DRAW GRAPH.]

− Well, SE differentiable everywhere, and →∞ as β1, β2 → ±∞. Hence, minimis-

ing value must be critical point (if unique).

− Hence, want to solve ∂
∂β1

SE = ∂
∂β2

SE = 0.

− ∂
∂β1

SE = −
∑

i 2(yi − β1 − β2xi), which equals 0 iff β1 = y − β2x.

− ∂
∂β2

SE = −
∑

i 2xi(yi − β1 − β2xi). Substituting in β1 = y − β2x, we see this

equals −
∑

i 2xi(yi − y − β2(xi − x)).

− This equals 0 iff β2 =
∑

i xi(yi − y) /
∑

i xi(xi − x).

− Since
∑

i x(yi − y) = 0 =
∑

i x(xi − x), this is the same as β2 =
∑

i(xi − x)(yi −
y) /

∑
i(xi − x)2 ≡ b2.

− Then β1 = y − b2x ≡ b1.

− Thus, (b1, b2) is the least-squares estimate of (β1, β2).

• Then the line y = b1 + b2x is the “line of best fit” of the data {(xi, yi)}. Also,

b1 + b2x is the least-squares estimate of E(Y |X = x). [Draw graph.] [See e.g. Text

Figure 10.3.4.]

− Can also use b1 + b2x to estimate the actual value of Y , given X = x.

− If the xi are all equal, then
∑

i(xi − x)2 = 0, so b2 is undefined. [Makes sense

since then cannot determine how E(Y |X = x) varies with x.]

—— END MONDAY 9 ——
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Previous Class:

∗ Chi-Squared test for Catagorical Response Models:

—— X2 =
∑

i,j
(Cij−Ci·C·j/n)2

Ci·C·j/n ≈ χ2((a− 1)(b− 1)).

—— Then P-value against independence is P [X2 ≥ x2].

—— Example with a = 2, b = 4.

∗ Least Squares Principle.

—— Unconditioned case: Estimate E[Y ] by y, or the possible value which is closest to y.

∗ Linear Regression:

—— If E[Y |X = x] = β1+β2x, then estimate β2 by b2 =
∑

i(xi−x)(yi−y) /
∑

i(xi−x)2,
and β1 by b1 = y − b2x.

• Are these estimators unbiased? That is, suppose E(Y |X = x) = β1 + β2x, with β1

and β2 unknown. We observe (x1, y1), . . . , (xn, yn), and estimate (β1, β2) by (b1, b2)

as above. Does E(Bi) = βi?

− Hard to compute E(B2), since involves E(XY ), etc.

− Trick: Compute conditional probability, E(Bi |X1 = x1, . . . , Xn = xn):

E(B2 |X1 = x1, . . . , Xn = xn)

= E(
∑

i(Xi −X)(Yi − Y )∑
i(Xi −X)2

|X1 = x1, . . . , Xn = xn)

=
∑

i(xi − x)[(β1 + β2xi)− (β1 + β2x)]∑
i(xi − x)2

=
∑

i(xi − x)β2(xi − x)∑
i(xi − x)2

= β2 .

− Then by double-expectation formula (Text Theorem 3.5.2),

E(B2) = E[E(B2 |X1, . . . , Xn)] = E[β2] = β2. Unbiased!

− Then E(B1 |X1 = x1, . . . , Xn = xn) = E(Y − B2X |X1 = x1, . . . , Xn = xn) =

(β1 + β2x) − β2x = β1. Hence, E(B1) = E[E(B1 |X1, . . . , Xn)] = E[β1] = β1.

Also unbiased!

• What about UNCERTAINTY in estimates b1, b2?
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− Text Theorem 10.3.3: If E(Y |X = x) = β1 + β2x, and Var(Y |X = x) = σ2 for

all x ∈ R, then

Var(B2 |X1 = x1, . . . , Xn = xn) =
σ2∑

i(xi − x)2
,

Var(B1 |X1 = x1, . . . , Xn = xn) = σ2

(
1
n

+
(x)2∑

i(xi − x)2

)
,

Var(B1 +B2x |X1 = x1, . . . , Xn = xn) = σ2

(
1
n

+
(x− x)2∑
i(xi − x)2

)
.

As n → ∞,
∑

i(xi − x)2 ≈ nVar(X) → ∞, provided V ar(X) > 0, so all these

variances → 0. Hence, in this case [technically, using Text Theorem 3.5.6 to

remove the conditioning], the biases are zero, and the variances → 0, so the

MSE → 0, so the estimates are consistent (as well as being unbiased).

—— END WEDNESDAY 9 ——

[Test #2 from 3–5 on Wednesday March 24, in Canadiana Gallery (14 Queen’s Park

Crescent, behind Sig Sam Library). Surnames A–Li in room 150, surnames Ll–Z in room

250. No aids allowed. Bring your T-Card!]

[Test #2 will cover everything covered in lectures up to the end of this week, with emphasis

on material not covered on Test #1.]

[More TA office hours posted on web site.]

Previous Class:

∗ Linear Regression Model: E[Y |X = x] = β1 + β2x.

—— Here β1, β2 are true (unknown) values. [Analogous to σ2, etc.]

∗ Then least squares estimate for β2 is b2 =
∑

i(xi − x)(yi − y) /
∑

i(xi − x)2; and for β1

is b1 = y − b2x.

—— Here b1, b2 are observed values of estimators, depending on the observed values

(x1, y1), . . . , (xn, yn). [Analogous to s2, etc.]

∗ Considered sampling properties of B2 =
∑

i(Xi − X)(Yi − Y ) /
∑

i(Xi − X)2, and

B1 = Y − b2X.

—— Here B1, B2 are the estimators, viewed as random variables depending on the random

data (X1, Y1), . . . , (Xn, Yn). [Analogous to S2, etc.]

∗ Proved that B1, B2 are unbiased, i.e. E[B1] = β1 and E[B2] = β2. Good.
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—— Used trick: First computed conditional expectation, conditional onX1 = x1, . . . , Xn =

xn. Then used double-expectation formula.

∗ Also showed (using theorem from text) that variances → 0, so that MSE → 0, and

estimators are consistent. Good.

—— Aside: Formally, we described conditional variances Var[Bi |X1 = x1, . . . , Xn = xn].

Then can recover usual (unconditional) variances, Var[Bi], using Text Theorem 3.5.6.

• If E(Y |X = x) = β1 +β2x for all x ∈ R, then E[B1 +B2x |X1 = x1, . . . , Xn = xn] =

β1 + β2x. Hence E[B1 + B2x] = β1 + β2x = E[Y |X = x]. Thus, B1 + B2x is an

unbiased estimator of E[Y |X = x]. [For interpolation / extrapolation.]

• Can also compute (Text Corollary 10.3.1) that if E(Y |X = x) = β1 + β2x, and

Var(Y |X = x) = σ2 for all x ∈ R, then

Var(B1 +B2x |X1 = x1, . . . , Xn = xn) = σ2

(
1
n

+
(x− x)2∑
i(xi − x)2

)
.

This is the MSE when estimating E[Y |X = x] by B1 +B2x (since unbiased).

− The square-root of this MSE is then the “standard error” of estimating E[Y |X =

x] by B1 +B2x. [Don’t need to memorise formula, but need it for homework.]

− Assuming Var(X) > 0, this MSE → 0 as n→∞. Thus, B1 +B2x is a consistent

(and unbiased) estimator of E[Y |X = x].

• What if σ2 is unknown? Can estimate σ2 by

s2 =
1

n− 2

n∑
i=1

(yi − b1 − b2xi)2 .

[Don’t need to subtract any mean, since already E[Y −B1 −B2X] = 0.]

− Text Theorem 10.3.4: If E(Y |X = x) = β1 + β2x, and Var(Y |X = x) = σ2 for

all x ∈ R, then E[S2 |X1 = x1, . . . , Xn = xn] = σ2, and E(S2) = σ2. [Unbiased

estimator.]

− Analagous to 1
n−1

∑n
i=1(xi − x)2.

− Intuition: We got to choose b1, b2, so that reduces “dimension” by 2, from n to

n− 2. [Under additional assumptions (later), (n− 2)S2/σ2 ∼ χ2(n− 2).]
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• How to test if X and Y are related? [e.g. does grade in STA261 really affect future

income? does age really affect blood pressure?]

− They’re unrelated (actually “uncorrelated”) iff β2 = 0.

− Our estimate b2 may be “close” to 0. How close does it have to be? Is b2 = 0.1

small enough? How to test? P-value?

− Trick: Let

F =
(B2)2

∑
i(Xi −X)2

S2
.

[“F statistic”]

− Why? Well, we know E[S2 |X1 = x1, . . . , Xn = xn] = σ2. Also

E[(B2)2 |X1 = x1, . . . , Xn = xn]

= E[B2 |X1 = x1, . . . , Xn = xn]2 + Var[B2 |X1 = x1, . . . , Xn = xn]

= (β2)2 +
σ2∑

i(xi − x)2
.

Hence, E[(B2)2
∑

i(Xi −X)2 |X1 = x1, . . . , Xn = xn] = (β2)2
∑

i(xi − x)2 + σ2.

− Conclusion: If β2 = 0, then E[(B2)2
∑

i(xi−x)2 |X1 = x1, . . . , Xn = xn] = σ2, in

which case F ≈ 1. But if F large, then probably β2 6= 0. [How large?? P-value??

More later.]

• ANOVA (“Analysis of Variance”):

• THEOREM (Text Lemma 10.3.1): If observe (x1, y1), . . . , (xn, yn), and if b1, b2 are

linear regression coefficients as above, then

n∑
i=1

(yi − y)2 = (b2)2
n∑

i=1

(xi − x)2 +
n∑

i=1

(yi − b1 − b2xi)2 ≡ RSS + ESS ,

where RSS = regression sum of squares = amount of variation of the {yi} due to

variation in the {xi}, and ESS = error sum of squares = amount of variation of the

{yi} due to deviations from the model Y = b1 + b2X (due to randomness in Y so that

Y 6= E[Y |X], and/or deviations from the model so that E[Y |X] 6= b1 + b2X).

− Thus, our F statistic equals RSS/[ESS/(n− 2)]. [Distribution??]
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− Also, S2 = ESS/(n− 2).

—— END MONDAY 10 ——

[Reminder: Test #2 is 3–5 next Wednesday. Surnames A–Li in room CG 150, surnames

Ll–Z in room CG 250. No aids allowed. Bring your T-Card!]

Previous Class:

∗ Linear Regression Model, with E[Y |X = x] = β1 + β2x, and Var[Y |X = x] = σ2.

—— B1 +B2x is unbiased, consistent estimate of β1 + β2x ≡ E[Y |X = x].

—— S2 ≡ 1
n−2

∑n
i=1(Yi −B1 −B2Xi)2 is unbiased estimator of σ2.

—— If F = (B2)2
∑n

i=1(Xi−X)2 / S2, then F ≈ 1 if β2 ≈ 0, while F � 1 if β2 far from 0.

∗ ANOVA:
∑n

i=1(yi − y)2 = RSS + ESS, where RSS ≡ (b2)2
∑n

i=1(xi − x)2 and ESS ≡∑n
i=1(yi − b1 − b2xi)2.

—— Thus, S2 = ESS/(n− 2), and F = RSS/[ESS/(n− 2)].

• Can also define R2 = RSS/
∑

i(yi − y)2 = RSS/(RSS + ESS) = COEFFICIENT

OF DETERMINATION. Thus 0 ≤ R2 ≤ 1.

− If R2 ≈ 1, then ESS is small, so model Y = b1 +b2X is accurate, i.e. Y is heavily

influenced by X.

− If R2 ≈ 0, then RSS is small, so Y depends more on random effects than on

b1 + b2X, i.e. Y isn’t influenced much by X.

− THEOREM (Text Theorem 10.3.5): R2 is the natural estimate of [Corr(X,Y )]2 =

[Cov(X,Y )]2 /Var(X)Var(Y ). Indeed,

R2 =
(b2)2

∑n
i=1(xi − x)2∑n

i=1(yi − y)2
=

[
1

n−1

∑n
i=1(xi − x)(yi − y)

]2

1
n−1

∑n
i=1(xi − x)2 1

n−1

∑n
i=1(yi − y)2

=
Estimate of [Cov(X,Y )]2

Estimate of Var(X) Var(Y )
.

—— END WEDNESDAY 10 ——
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[Reminder: Test #2 is 3–5 this Wednesday. Surnames A–Li in room CG 150, surnames

Ll–Z in room CG 250. No aids allowed. Bring your T-Card!]

Previous Class:

∗ Reviewed Linear Regression, B1, B2, B1 +B2x, S2, F , RSS, ESS.

∗ Introduced “coefficient of determination”, R2 = RSS/(RSS + ESS).

• NORMAL LINEAR REGRESSION:

• So far, we have generally assumed that E[Y |X = x] = β1 + β2x, and (sometimes)

that Var[Y |X = x] = σ2.

• We now make a stronger assumption, that the conditional distribution of Y , given

that X = x, is equal to N(β1 + β2x, σ
2). [“Normal Linear Regression”, or “Linear

Regression with Normal Errors”.]

• In that case, we can determine many other distributions precisely [since linear com-

binations of normals are normal, etc.].

• Text Theorem 10.3.6: Under these assumptions, conditional onX1 = x1, . . . , Xn = xn,

B1 ∼ N
(
β1, σ

2
( 1
n

+
(x)2∑n

i=1(xi − x)2
))

;

B2 ∼ N
(
β2,

σ2∑n
i=1(xi − x)2

)
;

n− 2
σ2

S2 ∼ χ2(n− 2) ,

with S2 independent of (B1, B2).

− So, ESS/σ2 ≡ n−2
σ2 S2 ∼ χ2(n− 2).

− By C.L.T., these distributions are approximately true for large n, even with other

(non-normal) error distributions . . .

• Then what about our F statistic?

− Well, if β2 = 0, then conditional on X1 = x1, . . . , Xn = xn,

(B2)

√√√√ n∑
i=1

(xi − x)2/σ2 ∼ N(0, 1) ,
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so
RSS

σ2
≡ (B2)2

n∑
i=1

(xi − x)2 / σ2 ∼ χ2(1) .

But ESS
σ2 ≡ n−2

σ2 S2 ∼ χ2(n− 2), so

F =
(B2)2

∑n
i=1(xi − x)2

S2
=

[(B2)2
∑n

i=1(xi − x)2 / σ2]
/

(1)
n−2
σ2 S2 / (n− 2)

∼ F (1, n−2) .

− But if β2 6= 0, then F should be larger.

− Hence, P-value for alternative hypothesis β2 6= 0, versus null hypothesis that

β2 = 0, is given by

P [W ≥
(b2)2

∑n
i=1(xi − x)2

s2
] ,

where W ∼ F (1, n− 2). [Can compute from statistical package.]

− Note that mean of F (a, b) is b/(b− 2), so mean of F (1, n− 2) is (n− 2)/(n− 4) =

1 + 2/(n− 4) [if n > 4], a little more than 1. [Makes sense, since we know that if

β2 = 0, then F ≈ 1.]

− [Aside: Variance of F (1, n − 2) is 2(n − 2)2(n − 3) / (n − 4)2(n − 6) = O(1) as

n→∞.]

• Example: Suppose observe pairs (3, 1), (5, 2), (7, 2), (9, 3). [DRAW GRAPH.]

− Does Y increase with X (on average), or not? We want to test the null hypothesis

that β2 = 0 against the alternative hypothesis that β2 6= 0.

− Compute (messy!) that b1 = 1/5, b2 = 3/10, s2 = 1/10, and F = 18. [Exercise:

Verify these!]

− But expect that F ∼ F (1, n− 2) = F (1, 2).

− Then P-value against null hypothesis (β2 = 0) is given by P [W ≥ F ] = P [W ≥
18], where W ∼ F (1, 2).

− We compute (from statistical package) that this P-value .= 0.0513. Thus, not quite

95% confident that observed increase wasn’t just from chance. (But almost!)

− [P-value would be smaller if n were larger.]
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—— END MONDAY 11 ——

[Held Test #2.]

Previous Class:

∗ Normal Linear Regression:

—— Distribution of Y , conditional on X = x, is N(β1 + β2x, σ
2).

—— Then B2 ∼ N
(
β2, σ

2 /
∑

i(xi − x)2
)
.

—— Also B1 ∼ N
(
β1, σ

2[(1/n) + (x)2 /
∑

i(xi − x)2]
)
.

—— Also (n− 2)S2/σ2 ∼ χ2(n− 2), indep. of B1, B2.

∗ Then ESS/σ2 ∼ χ2(n− 2).

—— And RSS/σ2 ∼ χ2(1) if β2 = 0.

∗ Thus F ∼ F (1, n− 2) if β2 = 0.

∗ Then P-value for H0 : β2 = 0 versus H1 : β2 6= 0 is given by P [W ≥ F ], where F is

observed value of F-statistic, and W ∼ F (1, n− 2).

∗ Example: Observe (3, 1), (5, 2), (7, 2), (9, 3).

—— Compute b1 = 1/5, b2 = 3/10, s2 = 1/10, and F = 18.

—— Then P-value against β2 = 0 is P [W ≥ 18] .= 0.0513, whereW ∼ F (1, n−2) = F (1, 2).

• Can also get confidence intervals for B1 and B2. [Here we focus on B2.]

− Since

B2 ∼ N
(
β2,

σ2∑n
i=1(xi − x)2

)
,

therefore

B2 − β2 ∼ N
(
0,

σ2∑n
i=1(xi − x)2

)
,

so

(B2 − β2)

√√√√ n∑
i=1

(xi − x)2
/
σ2 ∼ N(0, 1) .

− But also n−2
σ2 S

2 ∼ χ2(n− 2), independent of B2. Hence,

(B2 − β2)
√∑n

i=1(xi − x)2
/
σ2√

(n−2
σ2 S2)/(n− 2)

∼ t(n− 2) ,
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i.e.

(B2 − β2)

√√√√ n∑
i=1

(xi − x)2/S2 ∼ t(n− 2) .

− So, if an is such that P (−an < Tn < an) = 0.95 whenever Tn ∼ t(n), then

P
[
B2−an−2

√√√√S2 /
n∑

i=1

(xi − x)2 < β2 < B2+an−2

√√√√S2 /
n∑

i=1

(xi − x)2
]
.= 0.95 .

− i.e., b2 ± an−2

√
s2 /

∑n
i=1(xi − x)2 is a 95% confidence interval for value of β2.

• Above example continued:

− Here b2 = 3/10, s2 = 1/10, and
∑n

i=1(xi − x)2 = 20.

− Also, n = 4, and if T2 ∼ t(2), then P [T2 ≤ −4.3] .= 0.025, so (by symmetry)

P [T2 ≥ +4.3] .= 0.025, and P [−4.3 < T2 < +4.3] .= 1− 0.025− 0.025 = 0.95, i.e.

a2
.= 4.3.

− Hence, 95% confidence interval for β2 is (3/10)±4.3
√

(1/10) / 20 = 0.3±4.3/
√

200 .=

0.3± 0.304 = (−0.004, 0.604).

− This interval just barely contains 0. [Makes sense since β2 = 0 is just barely

possible at 95% confidence level.]

• B1 is similar, since [Text Corollary 10.3.2]:

B1 − β1√
S2

(
1
n + (x)2∑n

i=1
(xi−x)2

) ∼ t(n− 2) .

• ONE CATEGORICAL PREDICTOR (10.4.1):

• Context:

− In Categorical Response Models: both X and Y are categorical.

− In Linear Regression: both X and Y are quantitative (i.e. numerical).
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• Suppose now that Y is quantitative, but X takes values in one of a different catagories,

{1, 2, . . . , a}.

− Example: Y = height, while X = gender (male or female).

− For i ∈ {1, 2, . . . , a}, let βi = E[Y |X = i]. Want to estimate the βi.

• Suppose for each i ∈ {1, 2, . . . , a}, we observe ni different values of Y corresponding

to X = i, namely yi1, yi2, . . . , yini
. Assume that ni ≥ 1 for all i.

− Let N = n1 + n2 + . . .+ na be total number of observations.

• How to estimate the βi?

− Use principle of least squares.

− Here squared error is SE =
∑a

i=1

∑ni

j=1(yij − βi)2.

− Differentiable everywhere, goes to ∞ as any one βi → ±∞. So, SE is minimised

at a critical point (if unique).

− Critical point requires that ∂
∂βi

SE = 0 for each i.

− But ∂
∂βi

SE = −
∑ni

j=1 2(yij − βi).

− This equals 0 iff niβi =
∑ni

j=1 yij , i.e. βi = (1/ni)
∑ni

j=1 yij ≡ yi, the average of

the observations corresponding to X = i.

• Hence, estimate each βi by the corresponding yi. [Makes sense.]

− E[Y i] = (1/ni)
∑ni

j=1E[Yij ] = (1/ni)
∑ni

j=1 βi = βi. [Unbiased estimator.]

• What about variance? Suppose Var[Y |X = i] = σ2 for all i, but σ2 is unknown. How

to estimate?

− Fact (Text Theorem 10.3.10): Unbiased estimate of σ2 is given by

S2 =
1

N − a

a∑
i=1

ni∑
j=1

(yij − yi)
2 .

[Like 1
n−1 originally, and 1

n−2 for linear regression. This time get to choose a

values (y1, . . . , ya) based on data, which leads to the factor of 1
N−a .]
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• NORMAL ASSUMPTION: Assume now that the law of Y , given that X = i, is

N(βi, σ
2).

− Then Y i ∼ N(βi, σ
2/ni).

− Also (Text Theorem 10.3.11), (N − a)S2/σ2 ∼ χ2(N − a), with S2 independent

of the Y i.

− It follows that Y i−βi√
S2/ni

∼ t(N − a).

—— END MONDAY 12 ——

Previous Class:

∗ Normal Linear Regression:

—— Review.

—— Confidence Interval for β2.

∗ One Categorical Predictor (10.4.1):

—— X ∈ {1, 2, . . . , a}, Y ∈ R.

—— Observe ni ≥ 1 observations with X = i; let N = n1 + . . .+ na.

—— Least-squares estimate of βi ≡ E[Y |X = i] is yi ≡ (1/ni)
∑ni

j=1 yij . [Unbiased.]

—— Estimate σ2 ≡ Var[Y |X = i] by s2 = (1/(N − a))
∑

i

∑
j(yij − yi)2. [Unbiased.]

∗ Normal assumption: Given X = i, Y ∼ N(βi, σ
2).

—— Then Y i ∼ N(βi, σ
2/ni).

—— Also (N − a)S2/σ2 ∼ χ2(N − a) [assuming N > a].

—— Also Y i−βi√
S2/ni

∼ t(N − a).

• CONFIDENCE INTERVALS:

− Let an (again) be such that P [−an < Tn < an] = 0.95 whenever Tn ∼ t(n).

− Then P [−aN−a <
Y i−βi√

S2/ni

< aN−a] = 0.95.

− Re-arranging, P [Y i − aN−a

√
S2/ni < βi < Y i + aN−a

√
S2/ni] = 0.95.

− i.e., 95% confidence interval for βi is yi ± aN−a

√
s2/ni, where now

s2 = 1
N−a

∑a
i=1

∑ni

j=1(yij − yi)2. [Interval depends on values of ykj for k 6= i,

too.]

• DIFFERENCES OF MEANS:
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• What about differences βi − βj (j 6= i)?

− Well, Y i ∼ N(βi, σ
2/ni), and Y j ∼ N(βj , σ

2/nj), independent.

− Therefore, Y i − Y j ∼ N(βi − βj , σ
2((1/ni) + (1/nj)).

− So,
(Y i − Y j)− (βi − βj)√
σ2((1/ni) + (1/nj))

∼ N(0, 1) .

− Here σ2 is unknown (as usual). But we know that (N − a)S2/σ2 ∼ χ2(N − a).

− So, T ∼ t(N − a), where

T =

(Y i−Y j)−(βi−βj)√
σ2((1/ni)+(1/nj))√

((N − a)S2/σ2)/(N − a)
=

(Y i − Y j)− (βi − βj)√
S2((1/ni) + (1/nj))

.

− Then P [−aN−a < T < aN−a] = 0.95.

− Hence,

P [−aN−a <
(Y i − Y j)− (βi − βj)√
S2((1/ni) + (1/nj))

< aN−a] = 0.95 .

− Re-arranging, P [(Y i−Y j)−aN−a

√
S2((1/ni) + (1/nj)) < βi−βj < (Y i−Y j)+

aN−a

√
S2((1/ni) + (1/nj))] = 0.95.

− Thus, 95% confidence interval for βi−βj is (yi−yj)±aN−a

√
s2((1/ni) + (1/nj)).

• EXAMPLE:

− Suppose measuring IQs of students at U of T and at York. U of T students: 130,

150, 140, 150, 170, 160. York students: 130, 140, 135.

− Then y1 = (130 + 150 + 140 + 150 + 170 + 160)/6 = 150. And y2 = (130 + 140 +

135)/3 = 135. Also n1 = 6 and n2 = 3, and N = 6 + 3 = 9, and a = 2.

− Then s2 = 1
N−a

∑2
i=1

∑ni

j=1(yij−yi)2 = 1
9−2

(
(130−150)2 +(150−150)2 +(140−

150)2 +(150−150)2 +(170−150)2 +(160−150)2 +(130−135)2 +(140−135)2 +

(135− 135)2
)

= 1
7 (400 + 0 + 100 + 0 + 400 + 100 + 25 + 25 + 0) = 1050/7.

− Also, if T7 ∼ t(7), then P [−2.36 < T7 < 2.36] .= 0.95.
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− Thus, 95% confidence interval for mean of U of T IQs (i.e., β1) is given by

y1 ± 2.36
√
s2/n1 = 150± 2.36

√
(1050/7)/6 .= (138.2, 161.8).

− And, 95% confidence interval for mean of York IQs (i.e., β2) is given by y2 ±
2.36

√
s2/n2 = 135± 2.36

√
(1050/7)/3 .= (123.2, 146.8).

− Some overlap in these intervals. What about difference?

− Here 95% confidence interval for difference β1 − β2 is given by (y1 − y2) ±
2.36

√
s2((1/n1) + (1/n2)) = (150−135)±2.36

√
(1050/7)[(1/6) + (1/3)] .= (−5.4, 35.4).

− So, probably β1 > β2, i.e. average IQ at U of T is larger than average IQ at York,

but we’re not quite 95% sure that it is.

• Final Exam is Monday, May 3, 9:00 a.m. – 12:00 noon, in University College, East

Hall (surnames A-Li) and West Hall (surnames Ll-Z).

• FINAL COMMENT: Statistics courses for next year.

− STA 302, STA 322, STA 322: More about applied statistics techniques.

[regression analysis / sample surveys / experimental design]

− STA 352: More about the mathematical theory of statistical inference.

− STA 347: More about probability theory (expand on STA 257).
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