STA261 LECTURES NOTES, SPRING 2004

Jeffrey Rosenthal, University of Toronto
(Last updated: March 31, 2004.)

Note: I have decided to make these lecture notes available for STA261 students, for
their convenience. I will update them regularly. However, they are just rough, point-form
notes, with no guarantee of completeness or accuracy. They should in no way be regarded
as a substitute for attending the lectures and tutorials, or for doing the weekly homework
exercises.

e Introduction to course, handout, web page, etc.

e How many in Statistics Specialist program? Statistics Major? Actuarial Science?
Math? Computer Science? Physics/Chemistry? Economics? Management? Life

Sciences? Engineering? Other?

e IDEA OF STATISTICAL INFERENCE: Drawing inference about unknown quantities

in the presence of randomness. Uses lots of probability theory!
e INFERENCE WHEN PROBABILITY DISTRIBUTION IS KNOWN (Sect. 5.2):

— Example (text): X = machine’s lifetime in years. Suppose X ~ Exp(1). This
means P(X > z) = e @ for z > 0. Then P(X > 5) = ¢~® ~ 0.0067. Small!
So, machine usually won’t last five years. But P(X > 2) = e~2? ~ 0.1353, not so

small. [“Machine lasting 2 years is feasible, lasting 5 years is infeasible”|

— Example: Suppose patients with disease “Statitus” have 50% chance of dying.
[Like flipping coin, with heads=live, tails=die; do experiment.] Then given 8
patients, probability they ALL live is (1/2)® = 1/256 ~ 0.0039. So, they probably
won’t all live! But, probability first three live is (1/2)% = 1/8 = 0.125, not so

small. [“First three surviving is feasible, first eight surviving is infeasible”|

— Example: Roll 6-sided die, patient dies if get 1 or 2 (do experiment). Then
probability first two patients die is (2/6)* = 1/9 ~ 0.1111. Not so unlikely; might
happen. But probability first five patients die is (2/6)° = 1/243 ~ 0.0041, very

small. [“First two surviving is feasible, first five surviving is infeasible” |
e INFERENCE WHEN PROBABILITY DISTRIBUTION UNKNOWN (Sect. 5.3):
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— Example: Suppose patients with disease “Statitus” are given a new treatment.
They then either have 50% chance of dying, or they will all live, but we’re not sure
which. [Like flipping either regular or two-headed coin; do experiment.| Suppose
first 4 patients all live. Does that mean all patients will live? [Probability it
happened by chance is (1/2)* = 1/16 = 0.0625.] “Hypothesis testing”.

— Example: Suppose we roll a 6-sided die, patient dies if get one of “certain num-
bers” (secret). [Do experiment.] What is prob that patient dies? Unknown!
Given some observations, how can we ESTIMATE this probability?? “Estima-

tion”.

— Example: Suppose you’re shooting foul shots in basketball. Your probability p of
scoring a basket is unknown. How to estimate it? e.g. Suppose you shoot 10 shots
and score 7 times; does that mean p = 0.77 Exactly? Are you sure? “Confidence

Intervals”.
e STATISTICAL MODELS (Sect. 5.3):

— If probability distribution is unknown, then need to consider various possible

probability distributions.

— Write collection of possible probability distributions as {Pp : § € 2}, where 6 is
a parameter, {2 is the set of possible parameter values, and for each 0 € 2, Py is

a probability distribution on the set S of possible outcomes (or, “responses”).

— For “Statitus treatment” example, could let S = {live, die}, and 2 = {1,2}, and
Py (die) = Py (live) = 1/2, and Py(live) = 1.

— For “secret list” 6-sided die example, could let S = {live, die}, and Q = {0, 1,2, 3,4,5,6},
and for 6 € Q, Py(die) = 0/6 and Py(live) =1 — 6/6.

— For basketball example, could let S = {score, miss}, and Q = [0, 1], and for § € Q,
Py(score) = 0 and Py(miss) =1 — 6.

e Also need to collect and describe data, with e.g. histograms, etc. (Sect. 5.4 — not

emphasised now; maybe later.)

e SOME BASIC METHODS OF INFERENCE (Sect. 5.5.1)



— Suppose we have a random response X whose distribution is unknown. We collect

some observations (“data”) x1,...,T,.

— Example: Suppose we're measuring student heights (in centimeters), and we
observe: 170, 160, 165, 160, 150, 170.

— Could estimate Fy(z) = P(X < ) by Fx(z) = LS I(—ooz)(zi), ie. the
fraction of observations which are < x. (Accurate?) [In above example, could
estimate that 2/3 of students have height < 165.]

— Could estimate the mean (“location parameter”) of X by the “sample mean”

z=1%" =, [In above example, average student height is about Z = 162.5.]

—— END MONDAY 1 ——
[Offer extra handouts as needed.|
[Remind students about suggested homework, posted on website on Thursdays.|

Previous Class:

x Inference when probability distribution KNOWN

—— What outcomes are “feasible”?

* Introduction to inference when probability distribution UNKNOWN
—— hypothesis testing (e.g. statitus treatment: 50-50 or 100%7?)

estimation (e.g. # numbers on secret list, when 2/8 die. 2!!)

confidence (if you score 7/10 foul shots, how close to 0.7 is p?)

* Statistical Models

—— Collection {Py : 0 € Q} of possible probability distributions on outcome space S.
e.g. S ={live, die}, Q ={0,1,2,3,4,5,6}, Py(die) = /6, Py(live) =1 — 6/6.

e Some Basic Methods of Inference (Continued)

— Have a random response X (distribution unknown). Have observations (“data”)

Llyee.y L.

— Example: Measuring student heights (in cm), and observe: 170, 160, 165, 160,
150, 170.

— Could estimate Fx(z) = P(X < z) by Fx(z) = %Zﬁ_l I(_oo,z(x;). [In above



example, estimate that 2/3 of students have height < 165.]

— Could estimate the mean (“location parameter”) of X, i.e. ux = E[X], by the
“sample mean” T = %Z?:l x;. [In above example, average student height esti-
mated by T = 162.5.]

— Could estimate the variance (“scale”) of X, i.e. Var(X) = E[(X — ux)?], by the

“sample variance” s* = - 3" (z; — )% [Why n— 1 instead of n? Later!] [In

above example, variance of student heights estimated by s = 57.5.]

— Then estimate standard deviation by “sample standard deviation” s = vs2. [In

above example, standard deviation estimated by s = 7.6.]

— If X is discrete, could estimate fx(z) = P(X = ) by fx(z) = LS L(w),
i.e. the fraction of observations which are = z. [In above example, should prob-
ably not conclude that 1/3 of students have height exactly 160, since heights are

continuous . . .]

— Example: Suppose three candidates (A, B, and C) are running for student presi-
dent. We select students at random and ask who they will vote for, and observe:
A, C, A, B, A, C, A. Then could estimate popularity of candidate A as 4/7, B as
1/7, and C as 2/7. [Here mean, etc. do not make sense, since data are catagorical,

i.e. not quantitative.|

— Example: Suppose a random sample of residents are asked to preview a movie
and rate it on a scale from 1 to 5. We observe ratings of 4, 2, 1, 3, 2, 1, 4, 2.
Then we might estimate that in the general population, 2/8 of people will rate
the movie a 1, while 5/8 of people will rate the movie a 1 or 2, and 6/8 of people
will rate the movie a 1 or 2 or 3, etc. Also mean rating ~ r = 2.375, with variance
~ s = 1.41, and standard deviation ~ s = 1.19. [Movie probably won’t be a
hit!]

— [Quantile estimation? Omit for now.|
— But how “good” are these estimates??

—— END WEDNESDAY 1 ——



[Announce tutorial rooms.]

[Reminder re homework to discuss in tutorial: 5.1.1, 5.1.5, 5.1.7, 5.2.4, 5.2.6, 5.2.10, 5.3.1,
5.3.2, 5.3.3, 5.3.5 (model only), 5.5.1 (omit (e)), 5.5.2 (omit (d)).]

[Note: My lecture notes are now on the web page.]

Previous Class:

x Examples of basic inference from data:

estimate mean by sample mean T
2

estimate variance by sample variance s

Y

estimate probabilities and/or cdfs by “fraction of observations’
e LIKELIHOOD FUNCTIONS and MLE (Sect. 6.1, 6.2).

— Let {Py : 0 € Q} be a statistical model on some outcome space S. Suppose we

observe some outcome s € S.

e If S is discrete, then the Likelihood Function is the function L(-|s) on € defined
by L(0|s) = Py(s), i.e. the probability of observing s if Py is the true probability

distribution.
— L is function of parameter 6, given the (fixed) observation s.

— L(6]s) provides some indication (?7) of how “likely” the distribution Pp is, given

the observation s.

— Example (text): S ={1,2,3,...}, @ = {1,2}, P, = Uniform{1,2,...,1000}, and
P, = Uniform{1,2,...,1000000}. Observe s = 10. Then L(1]10) = 1/1000, and
L(2]10) = 1/1000000. Suggests that P; much more likely than Ps, even though

both values very small.

— Definition: The Maximum Likelihood Estimator” (MLE) of 6 is the value of

which maximises L(0|s). In above example, MLE is 6 = 1.

— Example: “Statitus treatment” example: S = {live, die}, Q@ = {1,2}, P (live) =
Py(die) = 1/2, Py(live) = 1. If we observe s = live, then L(1|live) = 1/2,
L(2|live) = 1, so P, more likely (in fact, twice!). But if we observe s = die, then

L(1]|die) = 1/2, L(2|live) = 0, so P; more likely (in fact, infinitely more!). So, if



s = live then MLE is # = 2, but if s = die then MLE is § = 1.

— Can also compute likelihood under multiple observations. In “Statitus treatment”
example, if observation s corresponds to three patients who all live, then P;(s) =
(1/2)3 = 1/8, while Py(s) = 1. So can write L(1|s) = 1/8, L(2]s) =1, so P, is
eight times more likely, and MLE is 6 =2.

— e.g. “secret list” 6-sided die example, where S = {live, die}, @ = {0,1,2,3,4,5,6},
and Py(die) = 6/6. If observe one patient die, then L(6|die) = 0/6 for 6 € ,
largest at 6 = 6. If observe one patient live, then L(f|live) = 1 — 0/6 for 6 € Q,
largest at 6=0.

— If instead observation s is that 2 out of 8 patients died, then L(0 | s) = (g) (0/6)*(1—
0/6)% = 28(6/6)%(1 — 6/6)5. Thus, L(0]s) = 0, L(1|s) = 28(1/6)%(1 —1/6)¢ =
0.260, L(2|s) = 0.273, L(3|s) = 0.109, L(4|s) = 0.017, L(5|s) = 0.0004,
L(6]s) = 0. Suggests 0 = 2 is most likely (was actually true!), so MLE is 6 = 2,
though 6 = 1 fairly likely too. (6 = 3 less so.)

— Comment: Two different likelihood functions are equivalent (i.e., just as good)
if one is a positive constant times the other [since we only care about the ratios
L(01|s)/ L(02]|s)]. So, in above example, could have ignored the “28” if we
wanted. More generally, can ignore any positive factor which does not depend on

0 (even if it depends on the observation s).

e If S is continuous, so each Py has a density fy, then can define likelihood function by
L(0]s) = fo(s) = value of density function. (Note: In discrete case, sometimes also

write fo(s) for pg(s), i.e. for Pyls].)

— Example (“one Normal observation”): Suppose S = R, and 2 = R, and Py =
N(0,1) = normal distribution. Thus fy(s) = \/%76_(5_9)2/2. If we observe s €
S, then L(f|s) = \/%76_(8_9)2/?. Equivalently, can take L(f|s) = e~ (=9°/2,
Largest when 6 = s, so MLE is § = s. (Makes sense .. .)

— Example (“one Exponential observation”): Suppose S = (0,00) and Q = (0, c0),
with Py = Exp(#), and we observe one outcome s > 0. Then L(0|s) = fo(s) =

fe—%?. How to maximise?



— Well,

0
— ,—8/0 _ pn,—s/0
_89L(9 |s)=¢e fe (s)

which equals 0 iff 1 — s@ = 0, i.e. # = 1/s. This appears to maximise L(f|s),
so that MLE is § = s. (Makes sense since mean of Exp(6) is 1/6, so mean of
Exp(1/s)is s ...)

— Easier is to consider logarithm of likelihood; since logarithm is an increasing

function, maximising log-likelihood is same as maximising likelihood. Compute:
0(0]s) = log[L(f] 5)] = log[fe™*/%] = log(#) — s6.

Then derivative of this is the score function:

0 0
S(015) = S-0(015) = S flog(8) — s6) = 1/0 — s,
and this equals 0 [“Score Equation”] if and only if (1/0) — s =0, i.e. 0 = 1/s.
— As a check, the second derivative is 2¢(6|s) = —072. At 6 = 0 = s, this equals

572 < 0. Hence, 0 = 0 is indeed a local maximum, and then easily seen to be a

global maximum.

— Example (“multiple Exponential observations”): Again S = (0,00) and Q =

(0,00), with Py = Exp(f), and we observe n outcomes x1,xs,...,x, > 0. Then

L(H ’ T1y... ,:Un) = H[ee—mzﬂ] — Qe j:1 ;60 _ Hne_ngg .
=1
Then

Hence, score function is

0

S(g‘xl,...,$n):%

00| x1,...,x,) =n/0 —nT,

which equals 0 iff (1/0) — 7 = 0, i.e. § = 1 /7. (Makes sense, since could also

estimate mean 1/6 by Z, equivalent to estimating 6 by 1/7.)

—— END MONDAY 2 ——



[Reminder about tutorials today, after lecture.]

Previous Class:

* Likelihood function L(@ | s).

—— Indicates relative likelihood of Py being true, given observation s.

« Discrete case: L(0|s) = Py(s) (probability). [Examples.]

* (Absolutely) continuous case: L(0|s) = fo(s) (density). [Examples.]

« MLE is value of § which maximises L(f | s).

« Two likelihood functions are equivalent if L1 (6 ]s) = KL2(0|s) for all § € Q, for some
K > 0 which does not depend on 6.

e Aside about likelihood equivalence: L and Lo are equivalent iff the ratio L1/Ls does
not depend on . For example, suppose Li(0|s) = 6%, La(0|s) = 1502, L3(0]s) =
s302, L4(0|s) = 6. Which are equivalent? Answer: Lj, Lo, and L3 are equivalent,
but L, is not. So, can’t just erase a constant (like 2) from the exponent. Similarly, if
L5(0]s) =e % and Lg(0|s) = e~ %2, then Ls(0|s)/Le(6|s) = e~?/2, which depends

on 6, so L5 and Lg not equivalent.
e Likelihood functions, continuous case (continued).

— Example (“multiple Normal observations”): Suppose observe multiple data x1,zs, ..., z,
from N(#,1). Then can take L(f|x1,...,2,) = ], e~ (@=0%/2 — oxp (-
3 2 (i = 0)?).

— In fact, above likelihood function is equivalent to Lo(0|z1,...,2,) = eXp( —
2(z — 6)?). Proof:

Z(% —6)* = Z(x? — 22,0 4+ 6°) = (zn: z?) — 2nT6 + nb?

while

n(T — 6)? = nz* — 2nTH 4 nh*
so difference between them is
n
(Z x?) — nT?
i=1

which does not depend on 6. So,

L(0]s) _ 1 2 —2
m = exp(——((in)—nx ))»



which does not depend on n. W
— Hence, MLE is 6 =7.

— “Uniform” Example (text): Suppose model is S = [0,00), 2 = (0,00), and
Py = Uniform|0, 0], and we observe x1,xs,...,2x, > 0. How to estimate §7 Here
LO|xy,...,z,) = 1/0" if 0 < x; < 0 for all i, otherwise L(0|z1,...,2,) = 0.
By observation (not differentiation!), this is maximised at 6 = § = max{z;; 1 <
i <n}. This is the MLE.

— If instead S = (—o00,00), 2 = (0,00), and Py = Uniform[—0, 0], and observe

T1,Z9,..., &y, then MLE is § = max{|z;]; 1 <i < n}. (exercise)

— Example (“Multinomial Model”): Suppose individual responses can take one of
the values S = {1,2,...,k} (e.g. election preference; perhaps k = 3), with various

probabilities (unknown). [“Catagorical response”.| Statistical model is
Q:{QZ (917‘927“-79]@)5 0; >0, 01+---+9k:1}7

and Py(i) = 6;. If we observe responses x1,xs,...,Z, (perhaps n is large), then

likelihood function is

LO|x1,22,...,20) = 04,04, ...0, .

n

This is equal to 072605 ...60%, where ¢; = #{j : z; = i} = count of num-
ber of responses of type ¢. Hence, likelihood only depends on the count data

(c1,¢2,...,¢k), not on the full response list (x1,x2,...,z,).
—— END WEDNESDAY 2 ——

[Some office hours now posted on web site (TA’s, plus New College). Also a few ”extra”
hours available per TA. However, these office hours are to SUPPLEMENT the tutorials,
not REPLACE them!]

Previous Class:

x Example re likelihood equivalence.

x MLE for Multiple Normal observations.

x MLE for Multiple Uniform observations.

« Multinomial Model: Py(i) = 6;, L(0 |x1,...,2p) =0y, ... 0., = (01) ... (0k)

n



— Numerical example for Multinomial Model: Suppose £ = 3, and n = 7, and

observations are 1,2,3,2,2,1,2. Then
L(0]1,2,3,2,2,1) = 6165036502010 = (61)*(62)"(63)" ,

so here ¢; = 2, cg = 4, and c¢3 = 1. Can thus summarise the full observation list
(1,2,3,2,2,1,2) by the count data (2,4, 1).

e SUFFICIENT STATISTICS (6.1.1).

— Definition: A statistic is some function 7' of the data (z1,...,z,), e.g. T, s2,

LS (0051 (2i), the count data (c1,ca, ..., cx), et

— Definition: A statistic T is sufficient if different observations, with the same value
of the statistic, always have equivalent likelihood functions. i.e., if whenever
T(s1) =T(s2), then L(f|s1) = K L(0|s2) for all § € Q, for some constant K > 0

(which may depend on s; and s2).

— In above “Multinomial Model” example, the statistic of “count data”, i.e.
T(x1,z2,...,2,) = (c1,Ca,...,ck), is sufficient, since the likelihood function only

depends on (c1, ¢, ..., ck).

— In “Normal Observations” example, likelihood function is equivalent to L(€ | x1, . . .

exp ( — 5 (T — 9)2), so L only depends on the data through T, hence the statistic

T 1s sufficient.

— “a-b Example” (text): Let S ={1,2,3,4}, and Q = {a, b}, with P,(1) = 1/2 and
P,(2) = P,(3) = P,(4) = 1/6, and with P,(1) = P,(2) = P,(3) = P,(4) = 1/4.
What is a sufficient statistic? Well, note that L(0|s) = Py(s) is the same if s
equals 2, 3, or 4. Hence, likelihood “does not care” if observation is 2, 3, or 4.
So, let T : S — {0,1} by T(1) = 0, and T(2) = T(3) = T(4) = 1. Then if
T(s1) =T(s2), then L(0|s1) = L(0]s2). Hence, T is sufficient statistic.

e FACTORISATION THEOREM: Let fy(s) be probability (or density function) for a
statistical model, and let T' be a statistic. Suppose can “factor” fy(s) as fo(s) =
h(s) ge(T(s)) for some positive functions gy and h. [Often take h(s) = 1.] Then T is

a sufficient statistic.
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— Proof: If T'(s1) = T'(s2), then

L(0]s1) = fo(s1) = h(s1)g6(T(s1)) = h(s1)96(T(s2))

_ Nlsy), o)) = M)
- h(Sg)h( 2)99(T< 2)) (52)

where K = h(s1)/h(s2) does not depend on 6. W

L(9|82) = KL(9‘32),

>

— In above “a-b Example”, can write fo(s) = 1 - go(T'(s)) where g,(0) = 1/2,
9a(1) = 1/6, gp(0) = g(1) = 1/4. So T is sufficient statistic.

e A statistic T is a minimal sufficient statistic if T'(s1) = T'(s2) if and only if L(0|s;) =
L(6|s2) VO € Q, i.e. we can calculate T'(s) once we know the mapping 6 — L(#|s).

— Intuitively, this means 7" is a “best possible” sufficient statistic.

— In above “a-b Example”, L(a|s) = 1/2 if T(s) = 0, while L(a|s) = 1/6 if

T(s) =1, so T is minimal sufficient statistic.

— Similarly, for Multinomial Model, (cq,...,¢) is minimal sufficient statistic; and

for Normal Observations example, T is minimal sufficient statistic. (Exercise.)

e REPARAMETERIZATION (6.2): Given statistical model {Py : 6 € Q}, suppose
¥ :Q — is 1-1, Then MLE of new parameter ¢ = ¥(6) is given by ¢ = ¥(4(s)).

[“Plug-in estimator”]

— Multiple Uniform Example: S = [0,00), @ = (0,00), Py = Uniform|0, 0], observe
T1,...,%y. We know MLE of 6 is 6= max;<;<p{x;}. Thus, since § — e is 1-1,
MLE of €f is ¢f = ¢f = exp (maxlgign{xi}) = maxj<j<n,{€e®}. Also, 0 — 62
is 1-1 on ©, so MLE of 6? is 02 = (0)? = maxi<j<n{(z;)?}. However, MLE of

(6 — 5)? is unclear since function is not 1-1.
e ESTIMATOR BIAS (6.3.1):
— Given estimator 6 of 8, how good is it?

— Write Eg(é) for the expected value of é, under the distribution Pp, i.e. assuming

that 6 is the true parameter value.
— The bias of the estimator is Biasg(6) = Eg(0) — 6.

11



— Example: Suppose S = [0,1], @ = {1,2}, and f1(s) = 1 and fa(s) = 2s for s € S.
The MLE of fis § = 1 if s < 1/2, while § = 2 if s > 1/2. [If s = 1/2, MLE
is either 1 or 2.] Now, Pi[s < 1/2] = Py[s > 1/2] = 1/2, so E1(f) = 3/2, so
Bias; (0) = (3/2) — 1 = +1/2. Also Pyfs < 1/2] = [}/*2sds = (1/2)2 = 1/4
and Pyfs > 1/2] = [|, 2sds = 3/4, s0 Ex(0) = (1/4)(1) + (3/4)(2) = 7/4, and

~

Biasy(0) = (7/4) — 0.5 = —1/4.
—— END MONDAY 3 ——
[Kung Hay Fat Choy!]

Previous Class:

* Sufficient Statistics

x Factorisation Theorem

x Minimal Sufficient Statistics
+x Reparameterisation

* Estimator Bias

e Another example re Factorisation Theorem & Minimal Sufficient Statistics: S = ) =
R, Py = N(0,1), and L(0|x1,...,2,) = exp(—(n/2)(Z — 0)?).

— Then L(O|z1,...,24) = h(z1,...,20) go(T(21,...,2,)), where T(x1,...,2,) =
L@+, . 4z,) =7, h(z1,...,2,) = 1, and go(r) = exp(—(n/2)(r —0)?). Hence,

by Factorisation Theorem, T is sufficient statistic.
— Is T minimal?

— Suppose have two sets of observations, (x1,...,%,) and (y1,...,Yn). Suppose that
LO|xy,...,2,) < L(O|y1,. .., Yn), i.e. exp(—(n/2)(x—0)?) = K exp(—(n/2) (7 —
0)?), V0 € Q, some K > 0. Does this mean that T = 7, i.e. T(21,...,2,) =
Ty, yn)?

— Yes! Theorem: 7 is a minimal sufficient statistic.

— Proof #1 (“constructive”): If exp(—(n/2)(Z — 0)?) = K exp(—(n/2)(y — 0)?),
Vo € Q, for some K > 0, then both functions must take their maximum at the
same value of . But LHS takes maximum at Z, while RHS takes maximum at 3.

So, must have T = 7.

12



— Proof #2 (by “contraposition”, a form of contradiction): Suppose theorem is
false. That means we sometimes have T # 7, even though exp(—(n/2)(z — 6)?) =
Kexp(—(n/2)(y — 0)%), V0 € Q. Is this possible?? If so, then setting § = =
gives 1 = Kexp(—(n/2)(y —7)?) < K, i.e. K > 1. But setting § = 7 gives
exp(—(n/2)(z — 7)?) = K, i.e. K < 1. Contradiction! i.e., if T # 7, then we
cannot have exp(—(n/2)(Z — 0)?) = K exp(—(n/2)(y — 0)?), V0 € Q. So, theorem

must be true, i.e. T must be a minimal sufficient statistic.

— Aside re logic: The principle of “contraposition” states: “P implies Q” is equiva-
lent to “not-Q implies not-P”; indeed, both mean it is impossible to have both P
true and Q false, at the same time. [Example: “z > 5 implies x > 4” is equivalent

to “r < 4 implies x < 5”. But not equivalent to “x > 4 implies x > 5".]

— Note that for = (Z +7)/2, we do have exp(—(n/2)(Z — 0)?) = exp(—(n/2)(y —
6)2). But not true for all § € Q.

— Similarly, =1 + ... + x, is also minimal sufficient statistic, but just x; is not

sufficient.

— By contrast, if we consider the pair w = (z1, 22 + ... + x,), then w is still
sufficient (since can compute Z from it), but w is not minimal (since from the

likelihood function there is no way to compute z1, just T or 1 + ...+ zy,).
e Estimator Bias, continued:

— More generally, any parameter 1) = ¥(f) with estimator ) has bias given by

~

Biasg(¢) = Fg(v) — ().

— Example: Suppose Py has mean ¢ = ¥(6) [or just ], and we estimate ) by

Z. Then Ey(X;) = 1, so Eg(X) = 1, so Biasg(y) = 0 no matter what 6 is.
[“Unbiased Estimator”]

— Multiple Normal Example: Suppose 2 = R, and Py = N(6,1). Then MLE of
is § = Z. Then Ey(X) = 0, so Biasg(f) = 0 for all 6 € Q. [Good.]

— Multiple Uniform Example: Here Py = Uniform|0, 6], and MLE is 6 = max;<;<, {x;}.
Is it unbiased? No, since Pylf < 0] = 1, so Eg[f] < 6, so Biasy(f) < 0. (How
much less?) [“Biased Estimator”] (Bad??)
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—— END WEDNESDAY 3 ——
[New info available on web.]

Previous Class:

x Detailed example of sufficient statistics, factorisation theorem, minimal sufficiency.

*x More examples about Estimator Bias.
e YET MORE ABOUT BIAS:

e Multiple Uniform Example (cont’d): Py = Uniform|0, 6], 6 = maxi<;<p{z;}. Then
P[0 < 0] =1, so Eylf] < 0, so Biasg(f) < 0. (How much less?) [“Biased Estimator”]
(Bad??)

— Alternate estimator: 0, = 2%. Then Ey(f;) = 2 Ey(T) = 2(0/2) = 6, so unbiased.
(Good??) But could have 6y < x; for some i. (Crazy??)

e “Location-Scale Normal Model”: Suppose 2 = R x (0, c0), where for § = (u,0?) € Q,

we have Py = P, ,2y = N(u,07). i.e. both x and o unknown.

— FACT (Text Example 6.2.6): Here MLE of (p,0?) is (Z, >0 (z; — 7)?).

[Requires solving a two-dimensional Score Equation.]
— Thus, it = 7, which is unbiased.

— What about estimator of ¢?? Fact (Text Corollary 4.6.2): Ep[+ 37" | (z;—7)%] =

2=1 2. Thus, always have Eg[+ >""  (z; — T)?] < 0% — biased! [Bad??]

— If instead use S? = L= 3" | (z; — T)?, then Ep[S?] = -2 =1 52 = 52, Thus,
S? is unbiased estimator of o. [This is why, in S?, we divide by n — 1 instead of

n.] [In fact, (n — 1)S?/0? ~ x%(n — 1), and S? independent of 7. . .|
¢ MEAN SQUARED ERROR (6.3.1):

e Defn: Let ¥ be a function of a parameter #, with estimator 1& The mean squared error
of 1) is

MSEy({) = Eol(h —¥(6))%], 0€Q.

(Best if small!)
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e Theorem (text Thm 6.3.1): MSEy(1)) = Varg (1)) + (Biasg(1)))2.

— Proof:

B (-0 ®)") =5 (550 (5) .2 (5) v o))
=5 (620 ()" )32 (020 (9)) (0 (9) ~ @) (5 (5) ~v @)

— Varg () +2(0) + (Biasa@))z :

since

B0 (9= 20 (9)) (B0 () =6 @)) = (80 (9) =0 ) 8 (9= 2 (4)))
= (B (4)-v®) ©) = 0. W
e Example: Py = N(0,1). Then MLE is = . Know Biasy(Z) = 0. Hence M SEy(T) =

Varg(Z) = 1/n. [Gets smaller as n — 00.]

e Example: Conducting referendum. S = {yes,no}. Q = [0,1]. Py(yes) = 0, Py(no) =
1 — 6. [Just like basketball example.] Observe z1,...,z,. What is MLE? What is
MSE of MLE?

Likelihood is L(0 | x1,...,x,) = 0°(1 — )", where ¢ = #{i; z; = yes}.
— Then £(0|x1,...,x,) = clog(f) + (n — c) log(1 — 0).
— Then S(0|z1,...,2,) = (c/0) — ((n—1¢)/(1 —0)).

— Score Equation solved when ¢(1 —0) — (n —¢)f =0, i.e. c—nf =0, i.e. § = ¢/n.
So, MLE is § = ¢/n. [Makes sense.]

— Also, under Py, ¢ ~ Binomial(n, 6), so Eg(c) = nb, so Eg(c/n) = 6, so 0 unbiased.
— Hence, MSEy(0) = Varg(0) = nd(1 — 0)/n? = 0(1 — 0) /n.
— Problem: 6 unknown!! What to do?

— Option #1: Note that always have #(1 — 0) < 1/4, so must have MSEg(é) <

(1/4)/n = 1/4n. [Conservative estimate; what most polling companies do!]

15



— Option #2: Instead use the estimated mean squared error MSEé(é), ie. MSEé(é) =
0(1 —0)/n = (¢/n)(1 —c¢/n)/n = c(1 —¢/n)/n?. [Less conservative.]

A~

— Corresponding standard error is then Sd;(6) = \/MSEé(é) = /c(1—c¢/n)/n? =
Vel —e¢/n)/n.

e Aside: Predicting weather. Suppose Environment Canada says, “20% chance of rain

tomorrow”, and then it rains. Are they wrong? How to judge??
— Using idea of MSE, their “error” equals (80%)?2, i.e. 0.64 error.

— More generally, if they predict probability p of precipitation (POP), then if it
rains or snows their “error” is (1 — p)?, otherwise their “error” is p?. [“Brier

Score” .. ]

— Without the square, error is minimised by always predicting either 0% or 100%

POP. But with square, error is minimised by best estimate p of true probability.
e Example: Suppose Py = Uniform|0, 0], and 0 = maxi<;<pn ;- What is MSEg(é)?

— Well, Py[(0 — 0)* > r] = Py[0 < 0 — \/r] = (0 — /r)/0)". So, use trick:

R R 0 R 0
MSEN0) = Eol(0 =07 = | R0 =07 = rldr = [ (0= viyo)r.
[Messy to compute, use computer .. .]

— Suppose 6y = 2Z. Then Biasy(f2) = 0, while Varg(fs) = (4/n)Varg(z;) = 62/3n,
so MSEg(03) = 0° + 62/3n = 62/3n.

— eg. 0=5,n=10: MSEy(f) = 0.38, MSEy(0;) = 0.84.
— e.g. 0=5,n=100: MSEy() = 0.005, MSEy(f) = 0.084. [“0 better”?]

e CONSISTENCY: Say an estimator 0 of a parameter 6 is consistent if, as the number
of observations n goes to infinity, 6 converges to 6 in probability, i.e. for all € > 0,
lim,, oo Py[|0 — 0] > €] = 0. [Good.]

e Example: Py = Uniform|0, 6], 6 = maxi<;<n i, 6y = 2. Are they consistent?

— By WLLN, as n — 0o, T — /2 (mean) in probability. So, §; — 6 in probability.

Consistent!
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— What about 6?7 Well, given e > 0, Py[|0—0| > €] = Py[0 < 6—¢]

as n — 0. So, € also consistent.

((0—€)/0)" — 0

—— END MONDAY 4 ——

Previous Class:

* More about bias, S2.

* Mean Squared Error: MSFEy(6) = Vary() + (Biasg(0))2.
—— Examples: Normal, Referendum, Weather, Uniform
x Consistency: 6 — 6 in probability, as n — oo.

— Uniform: Both 6 and ég consistent.
e Theorem: If lim,, o, M SEg(é) = 0, then 6 is a consistent estimator for 6.

— Proof: By Markov’s inequality,

A~ ~

Pll0—60l>€ = Pl(0—6)°>€] < E(0—-0)°]/ = MSEy(6) /¢,
so if MSEg(f) — 0 then Py[|0 — 60| > ¢] — 0. B
e Corollary: If lim,, .. Biasa(é) =0, and lim,, Varg(é) =0, then 0 is consistent.

— Proof: In this case,

lim MSEy(f) = lim [Varg(d) + (Biasg(9))?] = 0. N
e Example: If Py = N(0,1), and § = T, then Biasg(0) = 0, and Varg() = 1/n — 0, so

0 is consistent.

— If instead try 6 = z;, then still Biasg(f) = 0, but now Varg(d) = 1 4 0. In fact,
this 6 is not consistent since P[|é — 0| > €] does not change with n and so does

not — 0.

e Referendum Example: Estimate 6 by § = ¢/n. Then Biasg(f) = 0, and Varg(0) =

0(1 —0) /n — 0 as n — oo. So, 6 is consistent.

e For any model, if observe z1, ..., x,, and estimate cdf Fy(z) = Py(X < z) by F(z) =
LS I(—o0,2) (), then since Py(z; < z) = Fy(z), it follows from the WLLN that

F(z) — Fy(z) in probability as n — oo, so F(z) is a consistent estimator of Fy(z).
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— Similarly, 2 3" | I.(;) is consistent estimator of Py(X = z), again by WLLN.
¢ CONFIDENCE INTERVALS (6.3.2):

e Example: Suppose Py = N(0,1), and estimate 6 by . How close are we?

— Well, MSE is 1/n. So, if e.g. n = 16, and T = 5, then on average (6 —5)? ~ 1/16,
so |# — 5| ~ 1/4, so perhaps 0 is likely to be between 4.75 and 5.25. But how sure

can we be?
— Well, T ~ N(6, 1/n), so that /n(z — 0) ~ N(0,1), with cdf ®(z).

— Fact: ®(—1.96) = 0.025. [Text Table D.2.] Hence, if Z ~ N(0,1), then P(Z <
—1.96) = 0.025. Similarly P(Z > +1.96) = 0.025. So, P(—1.96 < Z < 1.96) =
0.95. [Note: The figure 1.96 is so important that you should remember it.]

~ Thus, P(—1.96 < n(Z — 0) < 1.96) = 0.95. So, P(~1.96/\/n < T — 0 <
1.96//n) = 0.95. So, P(T — 1.96/\/n < § < T+ 1.96/\/n) = 0.95. [T —
1.96/\/n, T+ 1.96/+/n) is 95% confidence interval for 6.”]

— e.g.n =16, 7 = 5, then 1.96/y/n = 0.49, so P(5 —0.49 < 6 < 5+ 0.49) = 0.95.
Roughly speaking, we're 95% sure that 6 is between 4.5 and 5.5. [“19 times out
of 207]

— Error gets smaller as n — co. [Not surprising since 6 is consistent.]

— If instead want to be 99% sure, then just replace “1.96” by “2.57”, since ®(2.57) =
0.995. [Or, if replace “1.96” by “1”, then 68% sure.]

e If instead Py = N(0,03) (with o2 known), then instead \/n/c2(z —6) ~ N(0,1), so
instead P(Z — 1.96 /03 /n < 0 < T+ 1.96 /03 /n) = 0.95.

—— END WEDNESDAY 4 ——
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[Test #1 from 3-5 on Wednesday Feb 11: Surnames A-Li in Medical Sciences Building
(1 King’s College Circle) room 3153; Surnames LI-Z in Canadiana Gallery (14 Queen’s
Park Crescent, behind Sig Sam Library) room 150. No aids allowed. Bring your T-Card!]

[Lots of TA office hours [and more| available on web.]

e Exercise 6.1.18: Q = {1,2}, T'(s) = f1(s)/f2(s), show T is minimal sufficient statistic.
['ve gotten many questions about this ... and there are many different approaches . ..
but here’s the most direct.] [Assume f;(s) > 0Vs € S to avoid complications.] Note
that

LO]s1)=KL(#|s2) Vo€ Q < L(O]|s1)/L(0]s2) =K V0 e€Q
& L(1|s1)/L(1]s2) = L(2|51)/L(2|52) & L(1]s1)/L(2]s1) = L(1]s2)/L(2]s2)

= T(Sl) = T(Sg) . B

e [Also, don’t worry too much about Exercise 6.2.14.]

Previous Class:

« 0 consistent if MSEy(0) — 0.

x Estimation of probabilities by corresponding “fraction of data” is consistent, by WLLN
(Text Thm 4.2.1).

x Confidence intervals.

—— Example: if Py = N(6,1), then 95% C.I. given by T & 1.96 / \/n.

— If instead Py = N(6,02), then instead get T 4 1.96 \/o3 /n.

e CONFIDENCE INTERVALS, continued.

e Location-Scale Model: Suppose 6 = (u,02), and Py = N(u,0?), i.e. u and o both

unknown. Then what is 95% confidence interval for p?

— Well, can estimate o2 by S?, so might hope that P(T — 1.96/5%/n < p <

T+ 1.96 1/S5?/n) =~ 0.95.
— However, actually the uncertainty in o2 requires a larger confidence interval.

— Recall that /n(T — p)/o ~ N(0,1) and (n —1)S?/0? ~ x?(n — 1), indep., so

_ V(I —p)/o
\/n/S? (T — = ~ t(n—1),
/55 ) \/(n—1)52/02(n—1) K )
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a t distribution with n — 1 degrees of freedom. Hence, if a,, is such that P(—a, <
T, < an) = 0.95 whenever T, ~ t(n), then P(T — ap—1+/5%/n < pu < T +

ap—1/5%/n) = 0.95.

— Always have a,, > 1.96, i.e. confidence intervals larger because of uncertainty in

o2. However, a,, ~ 1.96 if n is large.

— e.g. az = 3.18, a1p = 2.23, asp = 2.01. [Text Table D.4. You do not need to

memorise these values.|

— Can similarly get confidence intervals for o2 in terms of S?, using x?(n — 1)

distribution.

e Example: Election poll, candidates A, B, C. Ask n people who they will vote for; ¢ of

them say A. Find confidence interval for § = fraction of votes A will get.
— Let 6 = ¢/n.

— Know ¢ ~ Binomial(n, 0), so Eg(0) = 0, and MSEy(0) = Varg() = 0(1 —6) / n.

But how to get confidence interval?

— If n small, can perhaps compute with Binomial(n, ) directly. But what if n large?

— Use CLT! If n large, then (§ —0) / v/ Varg(0) ~ N(0,1), i.e. \/n/0(1 —0) (§—0) ~
N(0,1).

— Hence, like above, P(§ —6, < 0 < +0,) ~ 0.95, where 6, = 1.96 ,/0(1 — 0)/n =

“95% margin of error”.

— Another problem: # unknown! Two options: (1) “Plug-In Estimate”: replace 6
by its estimate, 6. (2) “Conservative Option”: Use that always 6(1—6) < 1/4, so
if 6, = 1.96 /(1/4)/n = 1.96 / 2\/n = 0.98 / \/n, then P(0 — 6, < 0 < 6+ 6,) >

0.95. [Good, but conservative.]
e What do real polling companies do?

— e.g. Ipsos-Reid mayor’s poll, November 3, 2003 (one week before mayoral election).
Phoned 700 adult Torontonians. Got estimate Miller 37%, Tory 31%, “accurate
within +3.7%, 19 times out of 20”.
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— Check: 0.98 /+/700 = 0.03704052 = 3.7%. i.e. polling companies usually use

option (2) above.

— Ifinstead wanted 99% certainty, then replace 1.96 by 2.57, get error 2.57 / 24/700 =
0.04856843 = 4.9%.

Basketball Example: Score 7 out of 10 foul shots. What is approximate 95% confidence
interval for p? Here 0.98 /1/10 = 0.31, so p could be anywhere in (0.7 — 0.31, 0.7 +
0.31) = (0.39, 1.01). Large interval! [Also crazy, since must have p < 1, i.e. n = 10 is

too small to accurately use normal approximation.]

— If instead score 70 out of 100, then 0.98 / 4/100 = 0.098 ~ 0.1, so 95% confidence
interval for p is approx. (0.6,0.8).

— If use Plug-In Estimate instead, then for n = 10 case get margin of error =
1.964/0(1 — 0)/n = 1.96,/0.7(0.3)/10 = 0.28, and for n = 100 case get margin of

error = 1.964/6(1 — 0)/n = 1.96,/0.7(0.3)/100 = 0.090. [In both cases, margin

of error a little smaller.]

— SAMPLE SIZE calculation (6.3.4): How many shots must we observe to get 95%
sure of being within, say, 0.02 of the true value of p? Want 95% margin of error
< 0.02, i.e. 0.98 /y/n < 0.02, i.e. n > (0.98/0.02)? = 2401. So, would require at
least 2401 shots.

Note: Can use this CLT in many cases. If you can find (say) C; and C5 such that,
under Py, Z = C1(T — C3) has mean 0 and variance 1, then for large n, Z ~ N(0, 1),
so P[|Z] > 1.96] - 0.95.

HYPOTHESIS TESTING (6.3.3)

“Statitus” Example: Have either fair coin or two-headed coin. Get three heads in a

row. Are we sure we have two-headed coin?

Have “null hypothesis” Hy that coin is fair, versus “alternative hypothesis” H; that

coin is two-headed.

Defn: The P-value of an experiment, is the probability that we would observe that

result, or a result “at least as surprising”, if the null hypothesis Hy is true.
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e “Statitus”: P-value is (1/2)% = 1/8 = 0.125. Small enough to conclude that Hy is

false??

— No! Usually require P-value < 0.05 to conclude Hy false. [“Three heads is not

statistically significant.”]

— If instead get five heads in a row, then P-value = (1/2)% = 1/32 = 0.031 < 0.05,
enough to conclude that Hy is false and we must have the two-headed coin. [“Five

heads is statistically significant.”]

— Suppose we demand 99% significance instead, i.e. require P-value < 0.01. Then
need seven heads in a row, to get P-value = (1/2)7 = 1/128 = 0.008 < 0.01.

—— END MONDAY 5 ——

e Example: Py = N(0,1). Suppose have hypothesis Hy: 6 = 6y = 5 (say), compared
to Hy : @ # 5. Then observe x1,...,x,, and compute Z = 5.1 (say). Can we be sure

that Hy is wrong?
— Well, here P-value is P5[|Z — 5| > 0.1].
— But under Ps, T has distribution N(5,1/n), so v/n(Z —5) ~ N(0,1). Hence,
P-value is

Ps[jz — 5 > 0.1] = P3[|vn(@ — 5)| > 0.1v/n] = P[|Z] > 0.1v/7]

= P[Z < —0.1y/n] + P[Z > 0.1\/n]| =2 P[Z < —0.1y/n] = 2®(-0.1y/n),
where Z ~ N(0,1). [“Z-test”]

— e.g. [Using text Table D.2, to be supplied if needed for tests.] n = 1: P-value
= 0.92; n = 10: P-value = 0.75; n = 100: P-value = 0.32; n = 200: P-value
= 0.16; n = 400: P-value = 0.046; n = 700: P-value = 0.0082.

— Conclude that to distinguish between Hy : 8 =5, and Hy : 6§ # 5, when T = 5.1,
requires SAMPLE SIZE (Sect. 6.3.4) of about 400 at 95% level, or about 700 at
99% level.

e Ifinstead Py = N(6,03), with 63 > 0 known, then instead obtain P-value of 2 ®(—|z —
6| \/n/od). [Exercisel]
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e Bernoulli Model (Text Example 6.3.11): Suppose again that Q = [0, 1], and Py(die) =
6, Py(live) = 1 — 6. Suppose “usually” 6 = 6y (known), but environment has changed.

Question: Do we still have 6 = 6,7
— Here HO 10 = 90, while H1 : 0 7& 19().

— Suppose observe n patients, of whom ¢ die. Assume n large. Let 6 = |(¢/n) — 6|,

observed deviation from 6.
— Then P-value is Py,[|(¢/n) — 0] > J].

— Under Py,, ¢ ~ Binomial(n,6p), with mean nfy and variance nfy(1 — 6p). So,
T = ¢/n has mean 6y and variance 0y(1 — 0p)/n. [Here 6y known, so don’t need

to bound variance by 1/4n.]
— Hence if Z = /n/0y(1 — 0y) (T — by), then for large n, Z ~ N(0,1).

— So, P-value is given by
Py, [l(c/n) — 0] > 8] = Py, [|Z] > 6 \/n/bo(1 — 6p)] =22 (— 0 /n/0:(1 —6y)).

— e.g. Bp = 0.2, observe n = 1000, ¢ = 250. Can we conclude the new environment
is more dangerous? Here 6 = |(250/1000) — 0.2| = 0.05, and P-value is

O (=6 /n/0o(1 — 6)) = 2®(—0.05 ,/1000/0.2(0.8)) = 2 ®(—3.95) = 0.000077 .

So yes, there is a (highly) statistically significant change: it’s gotten more dan-

gerous!

— Suppose instead had n = 4 and ¢ = 1. Then still ¢/n = 0.25, and 6 = |(¢/n) —
0.2| = 0.05. But would the change still be statistically significant? (No!)

—— END WEDNESDAY 5 ——
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[Reminder: Test #1 on Wednesday, 3-5: Surnames A-Li in MS 3153; Surnames L1-Z in
CG 150. No aids allowed. Bring your T-Card!]

[No classes next week (Reading Week).]

Previous Class:

x Examples re P-values:

—— Case Pp = N(0,1), Hy : 6 = 0y, Hy : 0 # 0y, P-value = Py [|X — 6| > 0] =
2®(—dy/n), where § = |T — 0| (observed value, as opposed to random variable X in

prob).
—— Case Py = N(0,02), P-value = 2®(—40+/n/o3).
—— Bernoulli Model, P-value ~ 2 ®(—4d+/n/0p(1 — 0y)), because of CLT (for n large).

e Bernoulli Model revisited: Q = [0,1], Py(die) = 0, Py(live) = 1 — 0, Hy : 0 = 6y,
observe n patients of whom c die, set § = |(¢/n) — y| (observed difference), then

P-value equals

Py, [[(C/n) — o] = 8] = 28— \/nJBo(1 — 1))

— One-Sided Tests: Suppose instead that we’re only worried about one “side” of the
change in 0, namely 6 getting larger. i.e. still Hy : 6§ = 6y, but now H; : 6§ > 6,
instead of Hy : 6 # 6.

— In that case, replace P-value Py, [|(C/n) — 0| > §] by just Py, [(C/n) — 0 > 4].

— This change removes the factor of “2” in P-value calculation, i.e. gives P-value
= <I>( —d4/n/0(1 — 90)) which is half as large.

— Whether to use Two-Sided (usual) or One-Sided test is a matter of judgement,
depending on the problem. [Usually just assume Two-Sided.]

e Location-Scale Model P-values [Text Example 6.3.13]: Py = N(u,0?) with y and o>
both unknown. Have hypothesis Hy : © = pg. Observe x1,...,x, with deviation
d = |T — pp|- What is P-value?

— Recall that T = /n/S? (X — u) ~ t(n — 1). So, P-value is

Po[|X —pu| >8] = P[|T|>8+/n/S?] = 2P[T <—6+/n/S?].
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[Can find from statistical package. Will be provided as needed on the class tests.]
[“t-test”]

— e.g o =25 7=051,5%=1,n=100: Get P-value equal to 0.3197, compared to
0.3173 if 0% = 1 is known. [i.e. P-value slightly larger due to uncertainty in o2.]

— If instead use one-sided test, i.e. test Hy : u = pg versus Hy : u > g, then remove

factor of “2”, get P-value equal to 0.1599.

e Statitus partial-treatment: Suppose statitus is usually 50% fatal. Company claims
that with their treatment, it’s “less” fatal. We observe 8 patients, of whom just 1

dies. Are we sure the company is correct?

— Let Q =[0,1], Py[die] = 0, Py[live] =1 — 6. Then Hy: 0 = 0.5, and Hy : 0 < 0.5.
What is P-value?

— Since n = 8 is small, don’t use CLT. Also, since they claim it is less fatal, use

one-sided test. So, P-value is P[< 1 die].

— Under Hy,

P[S 1 dle] = P0.5[§ 1 dle] = P(),5[0 dle] -+ P0.5[1 dle]

= (0.5)% + (Ef) (0.5)7(0.5)' = 9/2% = 0.035 < 0.05.

So, 95% confident that treatment helps. [Not 99% confident, though!]

— If instead just observed five patients, of whom one died, then compute [Exercise!]

that P-value = 6/2° = 0.19. In this case, we're not sure if it helped.

METHOD OF MOMENTS (6.4.1)

Another way to estimate 6 is to find the value 6 such that mean of Pj; equals T. [And,
if necessary, E4[X?] = 2 3" | (;)?, ete.] [“Method of Moments (MoM) Estimator”]

Example: Py = N(0,1). Then mean of Py is 6. So, for MoM Estimator, want 6 =T.
[Same as MLE.]

Example: Py = Exp(#). Then mean of Py is 1/6. So, for MoM Estimator, want
1/ =7, ie. 0 = 1/Z.
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e Example: Py = Uniform[0,6]. MLE is maxj<;<, ;. What is MoM Estimator?
— Well, mean of Py is /2. So, must have é/Q =7, ie. 0 = 27.
— We’ve seen this before! [“ég”] We know it’s consistent, has MSEg(é) — 0, etc.
e Example: Py = Uniform[—6, 6]. MLE is max;<;<y, |z;|. What is MoM Estimator?
— Here mean of Py is 0, which doesn’t help. So, must consider second moment.

— Second moment of Py is (20)2/12 = 62/3. So, want §2/3 = 13" (2;)?, ie.
0 =/(3/n) i (x:)?.

—— END MONDAY 6 ——

[Held Test #1, then week off for Reading Week .. ]

e SUMMARY SO FAR: Have learned basics of “classical statistics”:
— Inference when prob dist known or unknown.
— Statistical Models, likelihood functions.
— Maximum Likelihood Estimators, Score Equation.
— (Minimal) Sufficient Statistics.
— Bias, MSE, Consistency.
— Confidence intervals, hypothesis testing.
— Method-of-Moments estimators
e INTRODUCTION TO BAYESIAN INFERENCE (7.1)
e COIN EXAMPLE: Suppose I have either regular or two-headed coin.
— What is probability I have two-headed coin? (Undefined?)

— Suppose I flip it once, and get heads. Now what is probability I have two-headed
coin? (Still undefined?)

— In “classical” statistics, these probabilities are undefined. However, an alterna-
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tive approach, “Bayesian statistics”, says that every unknown has probabilities

associated with it.

— Bayesian statistics says start with a prior distribution of what you think at the
beginning. e.g. II(regular) = II(two-headed) = 1/2.

— Then if get one head, then new probability of two-headed coin is equal to old

probability, conditional on seeing one head:

P -h h
P(two-headed | head) — - (Wo-headed, head)

P(head)
P(two-headed, head) B (1/2)(1)
~ P(two-headed, head) + P(regular, head)  (1/2)(1) + (1/2)(1/2)
1/2
=55 =%

— If get k heads in a row, then

P(two-headed, k heads)

P(two-headed | k heads) = P(k heads)

P(two-headed, k heads)
P(two-headed, k heads) + P(regular, k heads)

_ (1/2)1)* _ 1
C1/2)@F+ (/2128 1+ (1/2)k

This — 1 as k — o0o.

— Suppose instead had prior II(regular) = 1/3, II(two-headed) = 2/3. Then if get

k heads in a row, then

P(two-headed, k heads)

P(two-headed | k heads) = Pk heads)
eads

P(two-headed, k heads)
P(two-headed, k heads) + P(regular, k heads)

(2/3)(1)* _ 2

(2/3) (D)% + (1/3)(1/2)F 2+ (1/2)%

This still — 1 as k — oo.

27



A Bayesian Model consists of Statistical Model { Py : 6 € Q} together with a prior distribution
IT on Q.

— Discrete case: II has probability function 7(6) = probability that 6 is true.

— Absolutely continuous case: II has density function 7 (), so that probability 6
between a and b is ffﬂ(@) db.

Then pair (6, s) has prior joint probability (or density) function () fo(s).

Hence, prior marginal distribution for s is m(s) = > 5. m(0) fo(s) [discrete case], or
m(s) = [peqm(0) fo(s)dd [absolutely continuous case]. “Prior Predictive Distribu-

tion”

Then once we observe some data s, then get conditional probability (or density)
function for 6:
m(0) fo(s)

7T(0|S)=W.

“Posterior Distribution” [“Posterior equals prior times likelihood, normalised.”]
Coin Example again:

— Here 7(two-headed) = 7(regular) = 1/2.

—  fiwo-headed (h€ad) = 1; fiwo-headed (tail) = 0; fregular(head) = fregular(tail) = 1/2.

— m(head) = m(two-headed) fiwo-headed (head)+m(regular) freguiar (head) = (1/2)(1)+
(1/2)(1/2) = 3/4. Also m(tail) = 7(two-headed) fiwo-headed (tail)
+m(regular) fregular(tail) = (1/2)(0) + (1/2)(1/2) = 1/4.

— Then
w(two-headed) ftwo—headed(head) (1/2) (1)

- = = - 2 .
7(two-headed | head) m(head) 3/ /3

[Same as before. |

— Also
m(regular) fregular(head)  (1/2)(1/2)
= = - 1 .
7(regular | head) m(head) 3/1 /3
— Also
two-headed) fiwo-headed (tail 1/2
m(two-headed | tail) = m(two-headed) fiwo-headed (tail = (1/2) (0) =0.

m(tail) 3/4
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— Ifinstead observe k heads, then m(k heads) = w(two-headed) fiwo-headed (kK heads)+
m(regular) freguiar(k heads) = (1/2)(1)* + (1/2)(1/2)F = (1/2) + (1/2)*1. Then

m(two-headed) fiwo-headed (K heads)
m(k heads)

7(two-headed | k heads) =

(1/2) ()* 1

T (/2) + (2R T 14 (1/2)F

[Same as before.]
e EXAMPLE: BERNOULLI MODEL. (Text p. 354.)

— Here S = {0,1}, Q = [0,1], and Py(1) = 0, Py(0) = 1 — 0. Suppose prior is
UNIFORM on €, so that 7(f) = 1. Suppose observe z1,...,z, € S. What is

posterior?
— Here fy(z1,...,2,) =0°(1 —0)" ¢, where ¢ = #{i; z; = 1} = nZ.

— Then m(zq,..., fGGQ 0) fo(z1,...,x d@—fo 1)gc(1—-0)"~ ch—fO
y)"~“dy. Hard! [FACT. This equals I'(c+ 1) I'(n — ¢+ 1) /T'(n + 2), or ¢! (n -
¢)!'/ (n+1)!. But never mind that!]

— Then posterior density is given by

7(9) f9($1,...,:1;n) B ( )90( g)n—c
m(xy,...,Ty) fo = Cdy

(0| x1,...,2n) =

In fact, this is a Beta distribution, Beta(c + 1,n — ¢+ 1). [Text pp. 60, 654.]

— Posterior provides our best understanding, given our prior II and the data z1, ..., x,,

of all the probabilities for 6.

— Once we have posterior, then we might estimate 6 by the posterior mean esti-
mator. Now, the mean of the Beta(c + 1,n — ¢ + 1) distribution is (¢ + 1)/[(c +
1)+ (n—c+1)] =(c+1)/(n+2). Hence, the posterior mean estimator for 6 is

6 = (c+1)/(n+ 2). This is close to our “usual” estimator ¢/n, but a bit closer
to 1/2.

—— END MONDAY 7 ——
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Previous Class:

x Quick review of classical statistics.

* Bayesian inference:

« Coin Example (two-headed or regular).

* Prior distribution II, with prob/dens fn 7 (6).

* Prior predictive distribution m(s) = > .o 7(0) fo(s).

* Posterior prob/dens fn 7(0|s) = 7(0) fo(s) / m(s).

« Bernoulli Model: 7(0) = 1 (Uniform), then (6 | z1,...,z,) < 0°(1—0)""¢ i.e. I1(0 | 21, ..., x,) =
Beta(c+ 1,n —c+1).

——— Then can e.g. estimate @ by posterior mean 6 = (¢ +1)/(n + 2).

— Note that the variance of the Beta(c+ 1,n — ¢+ 1) distribution is (¢+ 1)(n —c+
1)/ (n + 3)(n + 2)%, and this provides a measure of how uncertain we are about
the estimate (¢ +1)/(n+ 2). As n — oo, since 0 < ¢ < n, we see that variance

— 0, i.e. we’re more and more sure.

e Consider again Bernoulli model, but this time with prior density w(8) = 463 for

0 € Q=10,1]. [i.e. we think it’s more likely that 6 is larger]
— Still have fg(z1,...,2,) = 0°(1 — )", where ¢ = #{i; z; =1} = n=.
— m(xq,...,x,) still hard to compute.

— Posterior density is given by

m(0) fo(wr,...own) _ 4B} O°(1—0)" 4931 —6)"

0 = = -
ﬂ—( |x17 ,-Tn) m($17-~.7xn) m(xl,...,l‘n) m(m1,~.-,xn)

— We observe that this is a Beta(c + 4,n — ¢ + 1) distribution. [Text pp. 60, 654.]

(Don’t need to bother computing normalisation constants.)

— Posterior mean equals (c+4) / [(c+4)+(n—c+1)] = (c+4) / (n+5). [“a/(a+D)"]
A bit larger than previous posterior mean of (¢ + 1)/ (n + 2).

e LOCATION NORMAL MODEL. Suppose S = Q = R, and Py = N(6,1). Sup-
pose prior is II = N(ug,73) for some fixed, known g and 78. Suppose we observe

Z1,...,ZTn. Then we know (from before) that
n
fo(x1,...,z,) = K exp ( — 5@ — «9)2)
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Also here
1
(0) = exp (— (60 — po)?/275) -

\/ 2777'02

Also m(x1,...,2,) = [7(0) fo(z1,...,2,)d0. [Don’t worry about this for now.]

— Then (0) fol )
T o(T1,...,Tp
71—(9|:L'1,..-,1'n)_ m(xl,..-,xn)
(0 wtr) K10
g m(xy, Zn) |

We compute (text pp. 355-356) that this is the density of a normal distribution
with mean ((po/78) +nZ)/((1/78) + n), and variance 1/ ((1/72) + n).

— Hence, posterior mean estimator is 6 = ((uo/72) + n)/((1/72) + n).

— Note that 6 is a weighted average of prior mean po, and sample mean Z. As

n — oo, § — 7. (“The data swamps the prior.”)
e SUMMARY OF BAYESIAN STATISTICS:
— Adds new information, the “prior distribution”, to the model.

— Then can compute a “posterior distribution” which gives a full probability dis-

tribution (not just estimate) for the unknown 6.
— Can then e.g. estimate 6 by the posterior mean.

— Advantages: Get full distribution for 8, so can estimate probabilities, etc. Also,

can encorporate “prior information”, e.g. if experts “believe” certain things.

— Disadvantages: Computations can get difficult, even for simple models. [Though
not too difficult for simple discrete models, like Coin Example. For harder exam-
ples, entire subject of “Markov Chain Monte Carlo algorithms” devoted to trying

to do computations!] Also, result depends on prior and so is perhaps “subjective”.

— Very controversial: Some statisticians are die-hard Bayesians, others are anti-

Bayesian!

—— END WEDNESDAY 7 ——
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Previous Class:

x More examples re Bayesian inference and posterior distributions.
e MODEL CHECKING (9.1).
e A statistical model {Py : 6 € Q} is just a model; how do we know if it’s appropriate?

e We hope the data approximately fits some Py, but we don’t know which one; how to

check?

e Idea: Find some statistic (i.e. function of the data) which is ancilliary, i.e. whose
distribution does not depend on . Then see if that statistic approximately follows its

distribution.
e Example: Q =S =R, and Py = N(0,1).
— Then X; ~ N(6,1), which depends on 6 — not ancilliary.
— Also X ~ N(#, 1/n), which depends on @ — not ancilliary.

— But (n—1)S?% ~ x?(n — 1) which does not depend on 6 — ancilliary! So can check
(n—1)s* = > (z; — T)? to see if its value is “reasonable” for the x?(n — 1)

distribution.

— e.g.suppose n = 101, then > (X;—X)? ~ x2(100). Hence E[>_1" | (X;—X)?] =
100, and in fact P[74.22 < "7 (X; — X)2 < 129.56] = 0.95. So, if 37, (z; —
7)? < 74.22, 0r > (z; — T)? > 129.56], then perhaps have incorrect model.

e If instead Py = N (6, o2) with 02 known, then instead 25! §2 = U% (X —X)E~
0

90

x2(n — 1), so use this value instead.

e However, if Py, ,2) = N(u, 0?) [both unknown], then more complicated! Requires

simulation to approximate. [See text Example 9.1.2.]
e Example: Suppose 2 = S = R, with Py = Uniform[§ — 3, 6 + 3].

— Then under Py, X; — 6 ~ Uniform|[—3, 3], which does not depend on 6, however

it is not a statistic [depends on unknown value, 6].

— On the other hand, (X; —0) — (X, — ) = X; — X is an ancilliary statistic.
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— Hence, so is D = max; ;(X; — X;) = (max; X;) — (min; X;). [“discrepancy

statistic”]

— Precise distribution of D is tricky. However, if D > 6 then model must be wrong.

Also, for large n, expect D =~ 6, otherwise model wrong.

e Example: S = Q = (0,00), with Pyp({0}) = 4/5 and Pp({20}) = 1/5. Observe

L1yee.y3Tp.
— Let Dz :Xi+1/XZ' (1 S ) Sn— 1)

— Then Py[D; = 1] = Py[X; = X; 1] = (4/5)2+ (1/5)% = 17/25. Also Py[D; = 2] =
Pp[D; =1/2] = (4/5)(1/5) = 4/25.

— Hence, D; is an ancilliary statistic.

e Example: S = Q = (0,00), with Py = Exp(#). Observe x1,...,z,. What is a good
ancilliary statistic?

— Claim: D; = X411/ X, is ancilliary (1 <i<n —1).

— Proof #1: Use multivariable change-of-variable formula (text Theorem 2.9.2) to

get exact distribution of D;, and observe that it does not depend on 6. W

— Proof #2: Can write X; =Y, /0, where Y; ~ Exp(1). Then D; = (Y;/6)/(Yi+1/0) =
Y;/Y;11 whose distributions do not depend on 6. W

e CHI-SQUARED GOODNESS OF FIT TEST (9.1.2)

e Suppose election has k candidates, {1,2,...,k}. Suppose we think that candidate i
has support p;, so p1 + ...+ pr = 1. We then observe preferences x1,...,x,, and let

c; = #{j:x; =i} be count data. (Soci + ...+ ¢, =n.)

— If we’re right about the values of p;, then should have
(Cy,...,C) ~ Multinomial(n, p1, ..., px). How to test this?

— Well, C; would have mean np;, and variance np;(1 — p;). So, for large n, should

have

Ci —np;
R = —— "1 o N(0,1).

np;i(1 — p;)
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[“i’th residual”] Ancillary statistic (approx.).

— How to combine them? Intuition: for large n, >, (R;)* = >_,(Ci —np;)? /np;i(1 —
pi) ~ x2(k). Not quite due to restriction C; + ... + C, = n. Instead, X? =
S (C; —npi)? /np; = x?(k — 1). [“Chi-squared statistic”]

— Observed value is 22 = >~ (¢; — np;)?/np;. [Text: X¢.]

— Then P-value is P[X? > 22|, where X? ~ x?(k — 1). [One-sided test, since only

concerned if too far off.]

e Example: Three candidates 1, 2, 3. We think p; = 0.6, po = 0.3, p3 = 0.1. We then
poll n = 100 people, and observe counts c¢; = 45, co = 40, c3 = 15. What is P-value?

— Here
, (45—60)2 (40—30)%2 (15— 10)? .
= = 115/12 = 9.58.
T ot T 0 5/ 9.58

— Also if X? ~ x?(2), then P[X? > 9.58] = 0.0083. Small! So, we conclude that

our p; values are wrong.
—— END MONDAY 8 ——

Previous Class:

x Model Testing:

—— Can use ancilliary statistic to see if model is appropriate.
e.g. Pp = N(0,02), use 2515% ~ x%(n —1).

P
90

—— Other examples: Uniform, Discrete, Exponential.

* Chi-Squared Goodness of Fit Test

—— THM: If (C4, ..., Ck) ~ Multinomial(n, p1, ..., px), then X2 = Zle(C’i—npi)Q/npi ~
(k- 1).

—— Proof: See e.g. Theory of Statistics, by M.J. Schervish, pages 461-462. Uses matrix
analysis and normal distribution theory.

—— This gives P-value P[X? > x?] for hypothesis that {p;} are correct.

e Chi-Squared Goodness of Fit Test can also be used for CONTINUOUS data, by first

breaking it up into discrete regions.

e Example: Suppose we think the true distribution is Exp(1), and we observe values
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Z1,...,2100-

— Suppose we break up [0,00) into, say, the intervals Iy = [0,1], I = (1,2], I3 =
(2,5], and Iy = (5,00). Let C; = #{j: X; € I,} for i =1,2,3,4.

— Then P(X; € ) = [} e ®de =1 —e ' =0.632. P(X; € [,) = [l e "dz =
el —e 220232 P(X;€l3) = [, e Fdr=e2—e®=0129. P(X; €1,) =
J5 e ®dz = e = 0.007.

— Then should have (C,C5, Cs, Cy) ~ Multinomial(100, 0.632,0.232,0.129, 0.007).
— Suppose we observe ¢; = 60, co = 25, ¢3 = 14, ¢4 = 1. Then

, (60-632)%2 (25—-23.2)2 (14-129)2 (1-0.7)2 .
v 632 232 T 129 T o7 0-5

— If X? ~ x?(3), then P[X? > 0.524] = 0.914. Big! So, no evidence against
assumption that X; ~ Exp(1).

— Comment: Here nps = 0.7 is quite small, so test is very sensitive to value of c4.

Best to have np; “not too small” (say, > 1, or > 5) if possible.
e RELATIONSHIPS AMONG VARIABLES (Chapter 10)

— Given various quantities X; and Y}, are they related, i.e. does the distribution of

one depend on the value of the other, or not? [Equivalently: Are they dependent
or independent?]

e CATAGORICAL RESPONSE MODELS (Section 10.2.1).

e Suppose we take a survey of 100 U of T graduates, and find the following count data

{eist

Doctor Lawyer Scientist Unemployed
Have taken STA261 23 13 15 5
Have NOT taken STA261 12 10 8 14

e Question: Does taking STA261 have effect on your future?

e Here have predictor variable X € {Taken, Not}. Also outcome variable Y € {Doctor,
Lawyer, Scientist, Unemployed}. Are they dependent or independent?
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— Then X, Y independent iff 0;; = 6;.0.; for all 4, j. Is it true? How to test?

If we knew values of 0;. = ¢; and 60.; = r;, then could use chi-squared statistic

Ci; — ngir;)?
X2:Z( J .7) NX2(24_1):X2(7)7
i nqirj

and do usual chi-squared test.

But here §;. and 6.; are unknown!

Instead, could substitute MLE: ¢; = %23 Cij = %ci., rj = %Zz Cij = %c.j. But then
¢; and r; depend on the data {c;;}. How does this affect the distribution?

THEOREM (e.g. Schervish, pages 463-467): For large n,

xt = YA Bl - -1) =),

%]
In general, if a catagories for X, and b catagories for Y, then X2 ~ x?((a —1)(b—1)).

— This is because (a —1)(b—1) =[ab—1]—[(a— 1)+ (b—1)] = “k — 17 —“dim(Q2)”.

Using this, can compute P-value for no relationship, as P[X? > z?], where X2 ~
x2((a —1)(b—1)), and 2? is the observed value of X2,

—— END WEDNESDAY 9 ——

Previous Class:

x Applying chi-squared test to continuous data, by “partitioning”.

* Suppose have predictor variable X € {1,...,a} [e.g. {Taken STA261, Not Taken}|, and
response variable Y € {1,...,b} [e.g. {Doctor, Lawyer, Scientist, Unemployed}.

—— Are the variables X and Y “related”, i.e. dependent?

—— Null hypothesis: independent, i.e. P[X =i, Y = j] =6;; = 6,.0-.

—— Use x? statistic X2, replacing np; by n(C;./n)(C.;/n) = C;.C.;/n, i.e.

s x— (Cij — Ci.C,j/n)?

(2]

* THEOREM: For large n, X? ~ x%((a — 1)(b—1)).
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—— This is because (a — 1)(b—1) =[ab—1] —[(a— 1)+ (b—1)] = “k — 17 —“dim(Q)”;
see Text Theorem 9.1.2.

e Back to “U of T graduates” example:

Doctor Lawyer Scientist Unemployed
Have taken STA261 23 13 15 5)
Have NOT taken STA261 12 10 8 14

e In this example, the observed value is

, (23— (35)(56)/100)2 (13 — (23)(56)/100)% (15 — (23)(56)/100)2 (5 — (19)(56)/100)>

(35)(56)/100 (23)(56)/100 (23)(56)/100 (19)(56)/100
(12 — (35)(44)/100)2 (10 — (23)(44)/100)> (8 — (23)(44)/100)2 (14 — (19)(44)/100)2
(35)(44)/100 (23)(44)/100 (23)(44)/100 (19)(44)/100
= 8.93

But we expect X2 ~ x?((4 —1)(2 - 1)) = x%(3). Now, if X2 ~ x?(3), then P[X? >
8.93] = 0.030. So, P-value is 0.030 — small!

Conclusion: Taking STA261 has a significant effect on your future!

LEAST SQUARES ESTIMATES (10.3.1):

Unconditioned case: Suppose want to estimate E(Y') based on a sample y1,y2, ..., Yn.

Least Squares Principle: Estimate E(Y") by é, chosen to minimise SE = Y7 (y;—e)?.

— Well, £ SE = —Y" 2(y; — e) [differentiable everywhere], which equals 0 iff

e=71.

— Also, (£)?SE=3",2=2n>0.

— So, if all values in R are possible for e, then must have é = 3. [Makes sense.|

On the other hand, if only certain values possible for e, then é is the possible

value of e which is closest to §. [See Text Example 10.3.1.]
e What if Y depends on some other variable X7
— Need to assume some model for the dependence.
e LINEAR REGRESSION (10.3.2):
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e Suppose X, Y related variables, and we assume E(Y | X = x) = 81 + B22 for some un-
known (31, B2, and we observe independent draws (z1,y1), (€2,y2),- .., (Tn,Yn). How

to estimate (3 and (357

— Example: z; = grade in STA261, y; = salary when you graduate. Are they

related? How? Is (32 zero, or positive, or negative??

e Principle of Least Squares says choose 31, 32 to minimise SE = >, (y; — 1 — Box;)>.
How? [DRAW GRAPH.]

— Well, SFE differentiable everywhere, and — oo as (31, f2 — F00. Hence, minimis-

ing value must be critical point (if unique).

— Hence, want to solve 8%1 SE = 8%2 SE =0.

— 8%1 SE = —>".2(y; — f1 — P2x;), which equals 0 iff 5, =7 — (7.

- 8%2 SE = —> . 2x;(y; — p1 — Pax;). Substituting in 51 = § — (2T, we see this
equals — . 2x;(y; — Y — Pa(zi — T)).

— This equals 0 iff B = >, i (v; — 7)) >, zi(zi — T).

— Since ), T(y; —y) =0= ), T(x; — T), this is the same as fo =) . (z; — T)(y; —
)/ (i —T)? = b

— Then ﬁl = y— bgf = bl.
— Thus, (b1,bs) is the least-squares estimate of (31, 32).

e Then the line y = by + box is the “line of best fit” of the data {(z;,y;)}. Also,
b1 + box is the least-squares estimate of E(Y | X = x). [Draw graph.] [See e.g. Text
Figure 10.3.4.]

— Can also use by + box to estimate the actual value of Y, given X = z.

— If the ; are all equal, then >, (z; — T)? = 0, so by is undefined. [Makes sense

since then cannot determine how E(Y | X = x) varies with z.]

—— END MONDAY 9 ——
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Previous Class:

x Chi-Squared test for Catagorical Response Models:

C’ij—Ci.C.j n 2 ~
—— X2 =Y, GG~ 2 (e - 1)(b - 1)),

—— Then P-value against independence is P[X? > z?].

—— Example with a = 2, b = 4.

x Least Squares Principle.

—— Unconditioned case: Estimate E[Y] by ¥, or the possible value which is closest to .
* Linear Regression:

——If E[Y | X = z] = 1+ B2z, then estimate 85 by bo = >, (2, — %) (v =) / >, (x: —7T)?,
and (1 by by =y — boT.

e Are these estimators unbiased? That is, suppose E(Y|X = z) = (1 + foz, with 5
and (B unknown. We observe (z1,v1),..., (Zn,Yn), and estimate (51, B2) by (b1, b2)
as above. Does E(B;) = ;7

— Hard to compute E(Bs), since involves E(XY), etc.
— Trick: Compute conditional probability, E(B; | X1 = z1,..., X, = x,):
E(BQle ::Bl,...,Xn = In)
S (X - D) - V)
> (X — X)?

_ Yo i@ = T)[(Br + Baxi) — (Br + (27)]
> (@i —7)?

_ 2@ —T)fa(wi — T)
> (@i — )2

:E( ‘Xlziﬂl,...,Xn:.CL'n)

= 2.
— Then by double-expectation formula (Text Theorem 3.5.2),
E(By) = E[E(B2| X1,...,X,)] = E[f2] = f2. Unbiased!

— Then E(B1|X1 :il;'l,...,Xn :il;'n) :E(?—BQY|X1 ::El,...,Xn ::En) ==
(B1 4 BoT) — B2 = B1. Hence, E(B1) = E[E(B1|X1,...,Xy)] = E[1] = b

Also unbiased!
e What about UNCERTAINTY in estimates by, by?
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— Text Theorem 10.3.3: If E(Y | X = ) = 31 + B2z, and Var(Y | X = ) = o2 for
all x € R, then

Var(Bg|X1=x1,...,Xn:xn)=m,

1 (z)?
V&I‘(Bl‘Xl :xl,...,Xn :.Tn) 20'2 (E—Fm) N

Var(By + Boz | X1 =1, ..., X = xp) =02 (%—F%) .
Asn — oo, Y ,(x; —T)? = nVar(X) — oo, provided Var(X) > 0, so all these
variances — 0. Hence, in this case [technically, using Text Theorem 3.5.6 to
remove the conditioning], the biases are zero, and the variances — 0, so the

MSE — 0, so the estimates are consistent (as well as being unbiased).

—— END WEDNESDAY 9 ——

[Test #2 from 3-5 on Wednesday March 24, in Canadiana Gallery (14 Queen’s Park
Crescent, behind Sig Sam Library). Surnames A-Li in room 150, surnames LI-Z in room
250. No aids allowed. Bring your T-Card!]

[Test #2 will cover everything covered in lectures up to the end of this week, with emphasis

on material not covered on Test #1.]
[More TA office hours posted on web site.]

Previous Class:

* Linear Regression Model: E[Y | X = z] = 81 + [ax.

—— Here 34, 32 are true (unknown) values. [Analogous to o2, etc.]

+ Then least squares estimate for 3 is bo = Y, (z; — Z)(y; — ¥) / >, (z; — T)?; and for £
is by =y — bo.

—— Here b1,b2 are observed values of estimators, depending on the observed values
(r1,y1),- -+, (Tn,yn). [Analogous to s2, etc.]

* Considered sampling properties of B, = Y ,(X; — X)(Y; = Y)/ >,(X; — X)?, and
By =Y — b X.

—— Here B, B are the estimators, viewed as random variables depending on the random
data (X1,Y1),...,(X,,Y,). [Analogous to S2, etc.]

« Proved that By, By are unbiased, i.e. E[B;| = 1 and E[Bs| = (2. Good.
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—— Used trick: First computed conditional expectation, conditional on X; = z4,...,X,, =
Z,. Then used double-expectation formula.

% Also showed (using theorem from text) that variances — 0, so that M SE — 0, and
estimators are consistent. Good.

—— Aside: Formally, we described conditional variances Var[B; | X1 = x1,..., X, = z,].

Then can recover usual (unconditional) variances, Var[B;], using Text Theorem 3.5.6.

o If E(Y|X =1) =1+ fex for all x € R, then E[By + Box | X1 = x1,..., X, = 2] =
61 + ﬁgl‘. Hence E[Bl =+ BQIE] = 51 —+ 62.%‘ = E[Y|X = $] ThUS, Bl —+ BQIL‘ is an

unbiased estimator of E[Y | X = z]. [For interpolation / extrapolation.]

e Can also compute (Text Corollary 10.3.1) that if E(Y |X = z) = (1 + [ex, and
Var(Y | X = x) = 02 for all z € R, then
1 (x —7)2 )

— _ _ 2
Var(B1+B2.T|X1—.Tl,...,Xn—l'n)—O' (E—f—m

This is the MSE when estimating E[Y | X = z| by B; + B2z (since unbiased).

— The square-root of this MSE is then the “standard error” of estimating E[Y | X =

x] by By + Bax. [Don’t need to memorise formula, but need it for homework.|

— Assuming Var(X) > 0, this MSE — 0 as n — oo. Thus, By + Bax is a consistent
(and unbiased) estimator of E[Y | X = z].

e What if 02 is unknown? Can estimate o2 by

1 n
2 2: 2
= i—b —-b i) .
S n QZl(y 1 QI)

[Don’t need to subtract any mean, since already E[Y — B; — BoX] = 0.]

— Text Theorem 10.3.4: If E(Y | X = ) = 31 + B2z, and Var(Y | X = ) = o2 for
all z € R, then E[S? | X| = z1,...,X,, = 2,,] = 02, and E(S?) = o%. [Unbiased

estimator. |

— Analagous to 1= >"" | (z; — T)*.

— Intuition: We got to choose by, ba, so that reduces “dimension” by 2, from n to

n — 2. [Under additional assumptions (later), (n — 2)S?/0? ~ x%(n — 2).]
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e How to test if X and Y are related? [e.g. does grade in STA261 really affect future

income? does age really affect blood pressure?]
— They’re unrelated (actually “uncorrelated”) iff g2 = 0.

— Our estimate by may be “close” to 0. How close does it have to be? Is by = 0.1

small enough? How to test? P-value?

— Trick: Let .
(B2)? >;(Xi — X)?

F= a2

[“F statistic”]
— Why? Well, we know E[S?|X; = z1,...,X,, = x,] = 0. Also
B[(B)? | X1 =21,..., X, = x,]
=E[By| X1 =21,...,Xp =2, + Var[By | X1 = 21, ..., X, = 7,

:(ﬁ2) +m

Hence, E[(B2)? 3 (X; — X)? | X1 =a1,..., X, = 2] = (B2)? 2, (@i — T)* + 02

— Conclusion: If 85 = 0, then E[(B2)*Y",(z;,—7)* | X1 = 21,..., X, = z,] = 0%, in
which case F' ~ 1. But if F' large, then probably 82 # 0. [How large?? P-value??

More later.|
e ANOVA (“Analysis of Variance”):

e THEOREM (Text Lemma 10.3.1): If observe (x1,%1),..., (Tn,yn), and if by, by are

linear regression coefficients as above, then

n n n

ST —5)% = (02)*Y (2 —7)?+ D (yi — by — baw;)? = RSS + ESS,

i=1 =1 =1

where RSS = regression sum of squares = amount of variation of the {y;} due to
variation in the {z;}, and ESS = error sum of squares = amount of variation of the
{y;} due to deviations from the model Y = b; + b3 X (due to randomness in Y so that
Y # E[Y | X], and/or deviations from the model so that E[Y | X| # by + b2 X).

— Thus, our F statistic equals RSS/[ESS/(n — 2)]. [Distribution??]
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— Also, S? = ESS/(n — 2).
—— END MONDAY 10 ——

[Reminder: Test #2 is 3-5 next Wednesday. Surnames A-Li in room CG 150, surnames
LI-Z in room CG 250. No aids allowed. Bring your T-Card!]

Previous Class:

* Linear Regression Model, with E[Y | X = z] = 3; + fox, and Var[Y | X = 2| = 0.
—— Bj + Bz is unbiased, consistent estimate of 31 + foz = E[Y | X = z].

o ﬁ S (Y, =By — B> X;)? is unbiased estimator of o2.

——IfF=(B)?Y." [ (X;i—X)? /52 then F ~ 1if 85 ~ 0, while F > 1 if 5 far from 0.
* ANOVA: > | (y; —9)? = RSS + ESS, where RSS = (b2)? > (z; — T)? and ESS =
> (i — b1 — boxy)?.

—— Thus, $? = ESS/(n —2), and F = RSS/[ESS/(n — 2)].

e Can also define R? = RSS/Y .(yi —¥)? = RSS/(RSS + ESS) = COEFFICIENT
OF DETERMINATION. Thus 0 < R? < 1.

— If R? = 1, then ESS is small, so model Y = b; +b,X is accurate, i.e. Y is heavily
influenced by X.

— If R? ~ 0, then RSS is small, so Y depends more on random effects than on
b1 + b2 X, i.e. Y isn’t influenced much by X.

— THEOREM (Text Theorem 10.3.5): R? is the natural estimate of [Corr(X,Y)]? =
[Cov(X,Y)])? / Var(X) Var(Y). Indeed,

(bo)* >y (@ —7)% [ﬁ > i1 (@i —T)(yi — ) 2

1=1
S -0 A i @ T)? i o (v 9)?

_ Estimate of [Cov(X,Y)]?
~ Estimate of Var(X) Var(Y) '

R? =

—— END WEDNESDAY 10 ——
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[Reminder: Test #2 is 3—5 this Wednesday. Surnames A-Li in room CG 150, surnames
LI-Z in room CG 250. No aids allowed. Bring your T-Card!]

Previous Class:
* Reviewed Linear Regression, B, By, By + Box, S?, F, RSS, ESS.
* Introduced “coefficient of determination”, R?> = RSS/(RSS + ESS).

e NORMAL LINEAR REGRESSION:

e So far, we have generally assumed that E[Y | X = x] = (1 + (2, and (sometimes)
that Var[Y | X = 2] = 0%

e We now make a stronger assumption, that the conditional distribution of Y, given
that X = x, is equal to N(B1 + B2z, 02). [“Normal Linear Regression”, or “Linear

Regression with Normal Errors”.]

e In that case, we can determine many other distributions precisely [since linear com-

binations of normals are normal, etc.].

e Text Theorem 10.3.6: Under these assumptions, conditional on X7 = x1,..., X, = .,

BN (i o7 5o o))

2

Z?:ﬂii - 5)2) ;

By ~ N(ﬂz;

with S? independent of (By, Bs).
— So, ESS/o? = 252 5% ~ X% (n — 2).

— By C.L.T., these distributions are approximately true for large n, even with other

(non-normal) error distributions ...
e Then what about our F' statistic?

— Well, if B, = 0, then conditional on X7 = x1,..., X,, = x,,

n

(B2),| ) (@i —T)?/0? ~ N(0,1),

=1
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SO
RSS - _
— = (B2)* ) (z—7)% /0% ~ x*(1).
=1

But EG—S;S = "0—_2282 ~ x%(n —2), so

F =

(B2)? 3oy (zi — @)% [(B2)? Yy (zi =) /0] / (1)
52 2252/ (n—2)

— But if g3 # 0, then F should be larger.

— Hence, P-value for alternative hypothesis 85 # 0, versus null hypothesis that
B2 = 0, is given by

S (i A C

52

where W ~ F(1,n — 2). [Can compute from statistical package.]

— Note that mean of F(a,b) is b/(b—2), so mean of F/(1,n—2)is (n—2)/(n—4) =
14+2/(n—4) [if n > 4], a little more than 1. [Makes sense, since we know that if
P2 =0, then F' ~ 1/]

— [Aside: Variance of F(1,n — 2) is 2(n — 2)?(n — 3) / (n — 4)%(n — 6) = O(1) as

n — 00.]
e Example: Suppose observe pairs (3,1), (5,2), (7,2), (9,3). [DRAW GRAPH.]

— Does Y increase with X (on average), or not? We want to test the null hypothesis

that B2 = 0 against the alternative hypothesis that 35 # 0.

— Compute (messy!) that by = 1/5, by = 3/10, s> = 1/10, and F = 18. [Exercise:
Verify these!]

— But expect that '~ F(1,n —2) = F(1,2).

— Then P-value against null hypothesis (62 = 0) is given by P[W > F| = P[W >
18], where W ~ F(1,2).

— We compute (from statistical package) that this P-value = 0.0513. Thus, not quite

95% confident that observed increase wasn’t just from chance. (But almost!)

— [P-value would be smaller if n were larger.]
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—— END MONDAY 11 ——

[Held Test #2.]

Previous Class:

* Normal Linear Regression:

—— Distribution of Y, conditional on X = z, is N(3; + faz, 02).

—— Then By ~ N (B2, 02/ > (i — T)?).

—— Also By ~ N(f1, o?[(1/n) + ()?/ X, (z — T)?]).

—— Also (n —2)5%/0% ~ x*(n — 2), indep. of By, Bs.

* Then ESS/o? ~ x%(n — 2).

—— And RSS/o? ~ x%(1) if B2 = 0.

« Thus F' ~ F(1,n —2) if B2 = 0.

« Then P-value for Hy : f3 = 0 versus Hy : (3 # 0 is given by P[W > F|, where F' is
observed value of F-statistic, and W ~ F(1,n — 2).

« Example: Observe (3,1), (5,2), (7,2), (9,3).

—— Compute by = 1/5, by = 3/10, s> = 1/10, and F = 18.

—— Then P-value against # = 0is P[W > 18] = 0.0513, where W ~ F(1,n—2) = F(1,2).

e Can also get confidence intervals for By and Bs. [Here we focus on Bs.]

— Since
o2 )
BZ ~ N ﬁ27 n — 5
( zi:1($z )2
therefore
o2
By — 35~ N(0

2= e N o e

SO

(B2 — B2) Z(xz —7)2 /02~ N(0,1).

=1

— But also 2525% ~ x?(n — 2), independent of By. Hence,

(B2 = Bo)/ iy (s = 3)% | o
V(E28%)/(n —2)
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i.e.

n

Z i —T)%/S% ~ tin—2).

=1

— So, if a,, is such that P(—a, < T, < a,) = 0.95 whenever T, ~ t(n), then

P|By—a, 52/2 |~ )2 <y < By tan_s 52/2 ~7)?| = 0.95.
i=1
— de, by tan_o/s2/ > (v —7)? is a 95% confidence interval for value of 3s.

e Above example continued:
— Here by = 3/10, s* =1/10, and >, (z; — T)* = 20.

— Also, n = 4, and if Ty ~ ¢(2), then P[T> < —4.3] = 0.025, so (by symmetry)
P[Ty > +4.3] = 0.025, and P[~4.3 < Ty < +4.3] = 1 — 0.025 — 0.025 = 0.95, i.c.
as =4.3.

— Hence, 95% confidence interval for s is (3/10)£4.3 \/(1/10) /20 = 0.3+4.3/+/200 =
0.3 +0.304 = (—0.004, 0.604).

— This interval just barely contains 0. [Makes sense since B3 = 0 is just barely
possible at 95% confidence level.]

e B is similar, since [Text Corollary 10.3.2]:

— b
N =0

~ t(n—2).

e ONE CATEGORICAL PREDICTOR (10.4.1):
e Context:
— In Categorical Response Models: both X and Y are categorical.

— In Linear Regression: both X and Y are quantitative (i.e. numerical).
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e Suppose now that Y is quantitative, but X takes values in one of a different catagories,

{1,2,...,a}.
— Example: Y = height, while X = gender (male or female).
— Forie{l1,2,...,a}, let B; = E[Y | X =i]. Want to estimate the [3;.

e Suppose for each i € {1,2,...,a}, we observe n; different values of Y corresponding

to X =4, namely v;1,¥i2, - - ., Yin,. Assume that n, > 1 for all 7.
— Let N =n1 +n9 + ...+ n, be total number of observations.
e How to estimate the ;7
— Use principle of least squares.
— Here squared error is SE = Y7, ZJ (i — Bi)?

— Differentiable everywhere, goes to oo as any one 3; — +o00. So, SE is minimised

at a critical point (if unique).
— Critical point requires that %S’E = 0 for each .
o i
— But Q_&SE = _Zn (yw ﬁz)

— This equals 0 iff n;8; = >77%, vij, i.e. Bi = (1/n:) D252, yij = 7, the average of

the observations corresponding to X = i.
e Hence, estimate each 3; by the corresponding 7,;. [Makes sense.]
— E[Yi] = (1/n) Y7 E[Yy) = (1/n:) Y02, Bi = 0. [Unbiased estimator.]

e What about variance? Suppose Var[Y | X = i] = o2 for all 4, but 02 is unknown. How

to estimate?
— Fact (Text Theorem 10.3.10): Unbiased estimate of o2 is given by
1 a Mg .
N_a Z Z(yij —7;)
=1 j5=1

[Like ﬁ originally, and ﬁ for linear regression. This time get to choose a

values (¥y,...,¥,) based on data, which leads to the factor of ]
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e NORMAL ASSUMPTION: Assume now that the law of Y, given that X = 4, is
N(ﬂl, 0'2).

— Then ?z ~ N(ﬁz, 0'2/7”L¢).

— Also (Text Theorem 10.3.11), (N — a)S?/0? ~ x?(N — a), with S$? independent
of the ?Z

— It follows that 7;;/51 ~t(N — a).

—— END MONDAY 12 ——

Previous Class:

* Normal Linear Regression:

—— Review.

—— Confidence Interval for 5.

« One Categorical Predictor (10.4.1):

— X e{1,2,...,a}, Y €R.

—— Observe n; > 1 observations with X =i;let N =n; + ...+ ng.

—— Least-squares estimate of 5; = E[Y | X =] is 5, = (1/n;) Z?;l yij. [Unbiased.]
—— Estimate 02 = Var[Y | X =] by s* = (1/(N —a)) Y, > (Y —7;)%. [Unbiased.]
* Normal assumption: Given X =i, Y ~ N(f;,02).

—— Then Y; ~ N(83;, 02/n;).

—— Also (N —a)S?/0? ~ x*(N — a) [assuming N > a.

— Also =B t(N —a).

\/ S2 /ni
e CONFIDENCE INTERVALS:

— Let a, (again) be such that P[—a, < T}, < a,] = 0.95 whenever T;, ~ t(n).

— Then Pl—ay_q < 228 < ay_,] = 0.95.

\/52/7111'
— Re-arranging, P[Y; — an_ar\/S%/n; < Bi <Y +an—_a\/S%/n;] = 0.95.

— i.e., 95% confidence interval for §; is 7, & an—_q+/$?/n;, where now
5% = Fea 2oiz1 2ogeq (yij — U;)?. [Interval depends on values of y; for k # i,

t00.]

e DIFFERENCES OF MEANS:
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e What about differences 5; — 3; (j # 4)?
— Well, Y; ~ N(Bi, 0%/n;), and Y; ~ N(B;, 0%/n;), independent.
— Therefore, Y; —Y; ~ N(B; — B;, 02((1/n;) + (1/n))).
— So,

YY) —(Bi—B;)
Vo2 (L/ni) + (1/n;))

N(0,1).

— Here 02 is unknown (as usual). But we know that (N —a)S?/0? ~ x?(N — a).

— So, T~ t(N — a), where

(Y=Y ;)= (B:i—8;) _ _
Vo (1/no)+(1/n;)) (Y=Y — (8 - Bj)

VIN =a)S2/o?)/(N —a)  /S2((1/mi) + (1/ny))

— Then P[—CLN_a <T < CLN_a] = 0.95.

— Hence, L
Yi —Y;) = (B = 5;)

an—q| = 0.95.
< W)+ @)y

P[_aN—a

— Re-arranging, P[(Y; —Y ;) —an—_a/S?((1/n;) + (1/n;)) < Bi—B; < (Y; =Y )+
an—a/S%((1/n;) + (1/n;))] = 0.95.

— Thus, 95% confidence interval for 3; —3; is (7; —¥;) £an—a+/s>((1/n:) + (1/n5)).

e EXAMPLE:

— Suppose measuring [Qs of students at U of T and at York. U of T students: 130,
150, 140, 150, 170, 160. York students: 130, 140, 135.

— Then g, = (130 + 150 + 140 + 150 + 170 + 160) /6 = 150. And 7, = (130 + 140 +
135)/3 =135. Alsony =6 and np =3,and N =6+3 =9, and a = 2.

j=1
150)2 + (150 — 150)2 + (170 — 150)2 + (160 — 150)2 4 (130 — 135)2 + (140 — 135)% +
(135 — 135)2) = 2(400 + 0 + 100 + 0 + 400 + 100 + 25 + 25 + 0) = 1050/7.

— Then s> = 2= 32 3™ (y;;—7:) = 9%2((130—150)2+(150—150)2+(140—

— Also, if T7 ~ t(7), then P[—2.36 < Ty < 2.36] = 0.95.
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— Thus, 95% confidence interval for mean of U of T IQs (i.e., 1) is given by

7y % 2.36/52/ny = 150 + 2.361/(1050/7) /6 = (138.2,161.8).

— And, 95% confidence interval for mean of York IQs (i.e., (3) is given by 7, +
2.361/52 /s = 135 + 2.36,/(1050/7)/3 = (123.2, 146.8).

— Some overlap in these intervals. What about difference?

— Here 95% confidence interval for difference 3 — (5 is given by (7, — Uy) £
2.361/52((1/n1) + (1/n2)) = (150—135)42.36,/(1050/7)[(1/6) + (1/3)] = (—5.4,35.4).

— So, probably (31 > s, i.e. average 1Q at U of T is larger than average I1Q at York,

but we’re not quite 95% sure that it is.

e Final Exam is Monday, May 3, 9:00 a.m. — 12:00 noon, in University College, East
Hall (surnames A-Li) and West Hall (surnames LI-Z).

e FINAL COMMENT: Statistics courses for next year.

— STA 302, STA 322, STA 322: More about applied statistics techniques.

[regression analysis / sample surveys / experimental design]

— STA 352: More about the mathematical theory of statistical inference.

— STA 347: More about probability theory (expand on STA 257).
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