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Abstract

This paper considers ergodicity properties of certain adaptive Markov
chain Monte Carlo (MCMC) algorithms for multidimensional target dis-
tributions. It was previously shown in [23] that Diminishing Adaptation
and Containment imply ergodicity of adaptive MCMC. We derive various
sufficient conditions to ensure Containment.

1 Introduction

Markov chain Monte Carlo (MCMC) algorithms are widely used for approximately sampling
from complicated probability distributions. However, it is often necessary to tune the scaling and
other parameters before the algorithm will converge efficiently, and this can be very challenging espe-
cially in high dimensions. Adaptive MCMC algorithms attempt to overcome this challenge by learn-
ing from the past and modifying their transitions on the fly, in an effort to automatically tune the pa-
rameters and improve convergence. This approach was pioneered by the original adaptive Metropolis
algorithm of Haario et al. [14], which can be viewed as a version of the Robbins-Monro stochas-
tic control algorithm [20, 3]. Their paper was quickly followed by numerous other papers which
generalised, modified, clarified, and proved theorems about various adaptive MCMC algorithms in
various contexts and under various assumptions [7, 2, 15, 23, 24, 6, 1, 30, 32, 33, 11, 10, 4, 5, 8], as
well as some general-purpose adaptive MCMC software [29, 31].

Despite this considerable progress, it remains true that verifying ergodicity of adaptive MCMC
algorithms on unbounded state spaces remains non-trivial. Most of the ergodicity theorems assume
a Diminishing Adaptation condition, whereby the amount of adapting done at iteration n converges
to zero as n→∞, which is easily ensured by designing the algorithm appropriately. On a compact
state space, this condition together with a simple continuity assumption suffices to ensure ergodicity
of the algorithm (see e.g. Theorem 5 of [23]). However, on an unbounded state space, some additional
assumption (such as the Containment condition discussed below) is also required or ergodicity may
fail.
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In this paper, we consider the Containment condition in more detail. In particular, we prove a
number of results about sufficient (and occasionally necessary) conditions for Containment to hold.
We hope that these results will allow users to verify Containment for adaptive algorithms more
easily, and thus use adaptive MCMC more widely without fear of ergodicity problems.

1.1 Preliminaries

Consider a target distribution π(·) defined on a state space X with respect to some σ-field B(X )
(π(x) is also used to denote the density function). Let {Pγ : γ ∈ Y} be a family of transition kernels
of time homogeneous Markov chains, each having the same stationary probability distribution π,
i.e. πPγ = π for all γ ∈ Y.

An adaptive MCMC algorithm Z := {(Xn,Γn) : n ≥ 0} can be regarded as lying in the sample
path space Ω := (X × Y)∞. It proceeds as follows. We begin with an initial state X0 := x0 ∈ X
and a kernel PΓ0 where Γ0 := γ0 ∈ Y. At each iteration n+ 1, Xn+1 is generated from PΓn(Xn, ·),
so that if Gn = σ(X0, X1, . . . , Xn,Γ0,Γ1, . . . ,Γn), then for all A ∈ B(X ),

P(x0,γ0)(Xn+1 ∈ A | Gn) = P(x0,γ0)(Xn+1 ∈ A | Xn,Γn) = PΓn(Xn, A) , (1)

where P(x0,γ0) represents the probabilities induced by our adaptive scheme when starting at X0 = x0

and Γ0 = γ0. Concurrently, Γn+1 is obtained from some function of X0, · · · , Xn+1 and Γ0, · · · ,Γn,
according to the specific adaption scheme being used. (Intuitively, the adaptive scheme is designed
so that it hopefully learns as it goes, so that the values Γn hopefully get correspondingly better, in
terms of improved convergence of PΓn , as n increases.)

In the paper, we study adaptive MCMC with the property Eq. (1). We say that the adaptive
MCMC Z is ergodic if for any initial state x0 ∈ X and any kernel index γ0 ∈ Y,

lim
n→∞

∥∥P(x0,γ0)(Xn ∈ ·)− π(·)
∥∥

TV
= 0 ,

where ‖µ‖TV = sup
A∈B(X )

|µ(A)| is the usual total-variation metric on measures.

To study this ergodicity, we consider the properties of Diminishing Adaptation and Containment,
following [23]. (There are several other closely related approaches to ergodicity of adaptive MCMC,
see e.g. [2, 6, 30, 8].)

Diminishing Adaptation is the property that for any X0 = x0 and Γ0 = γ0, limn→∞Dn = 0
in probability P(x0,γ0) where Dn = supx∈X

∥∥PΓn+1(x, ·)− PΓn(x, ·)
∥∥

TV
represents the amount of

adaptation performed between iterations n and n+ 1.
Containment is the property that for any X0 = x0 and Γ0 = γ0, for any ε > 0, the stochastic

process {Mε(Xn,Γn) : n ≥ 0} is bounded in probability P(x0,γ0), i.e. for all δ > 0, there is N ∈
N such that P(x0,γ0)(Mε(Xn,Γn) ≤ N) ≥ 1 − δ for all n ∈ N, where Mε(x, γ) = inf{n ≥ 1 :∥∥Pnγ (x, ·)− π(·)

∥∥
TV
≤ ε} is the “ε-convergence time”.

Theorem 1 ([23]). Ergodicity of an adaptive MCMC algorithm is implied by Diminishing Adapta-
tion and Containment.

Thus, to ensure ergodicity of adaptive MCMC, it suffices to have Diminishing Adaptation and
Containment. When designing adaptive algorithms, it is usually not difficult to ensure directly that
Diminishing Adaptation holds. However, Containment may be more challenging, and is the subject
of this paper.

Remark 1. Atchadé et al. [8] allow for more general adaptive schemes, in which the different Pγ
can have different stationary distributions, but we do not pursue that here.
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1.2 Organisation of the Paper

Section 2 below presents several examples to show that ergodicity can hold even if neither
Containment nor Diminishing Adaptation holds, and that Diminishing Adaptation alone – even
together with a weaker form of Containment – is not sufficient for ergodicity of adaptive MCMC.
It also presents a simple summable adaptive condition which can be used to check ergodicity more
easily. Finally, it discusses properties related to simultaneous geometric ergodicity which also imply
ergodicity of adaptive algorithms.

Section 3 then discusses the weaker property of simultaneous polynomial ergodicity, and shows
that this property also implies ergodicity of adaptive algorithms under appropriate conditions.

Section 4 specialises to adaptive algorithms based on families of Metropolis-Hastings algorithms.
It shows that for lighter-than-exponential target distributions, ergodicity holds under relatively
weak assumptions. On the other hand, for targets with exponential or hyperbolic tails, additional
assumptions are required.

For ease of readability, all non-trivial proofs are deferred until Section 5.

2 Some Simple Results About Containment

We begin with a collection of relatively simple results about the Containment condition, before
considering more substantial results in subsequent sections.

2.1 On Necessity of the Conditions

We begin with a very simple example to show that neither Diminishing Adaptation nor Con-
tainment are actually necessary for ergodicity of adaptive MCMC.

Example 1. Let the state space X = {1, 2}, and let the available Markov transition kernels be:

Pθ =

[
1− θ θ

θ 1− θ

]
for fixed θ ∈ (0, 1). Obviously, for each θ ∈ (0, 1), the stationary distribution is Unif(X ), the
uniform distribution on X . Assume the following very simple state-independent adaptation scheme:
at each time n ≥ 0, we choose the transition kernel Pθn, where θn is some specific function of n.

Proposition 1. For the adaptation scheme of Example 1, with θn = 1
(n+2)r for some fixed r > 0,

we have the following:
(i) For any r > 0, Diminishing Adaptation holds but Containment does not;
(ii) If r > 1, then µ0Pθ0Pθ1 · · ·Pθn → µ where µ depends on µ0, and in particular if µ0 6= Unif(X )
then µ 6= Unif(X ), i.e. the adaptive scheme is not ergodic.
(iii) If 0 < r ≤ 1, then for any probability measure µ0 on X , we have µ0Pθ0Pθ1 · · ·Pθn → Unif(X ),
i.e. the adaptive scheme is ergodic in this case.

See the proof in Section 5.1.

Remark 2. The chain in Proposition 1 is simply a time inhomogeneous Markov chain, artificially fit
into the framework of adaptive MCMC. Although very simple, this example indicates the complexity
of adaptive MCMC ergodicity. In particular:
1. For r > 1, the limiting distribution of the chain is not uniform. So it shows that Diminishing
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Adaptation alone cannot ensure ergodicity.
2. For 0 < r ≤ 1, the algorithm is ergodic to the uniform distribution, but Containment does not
hold. That is, although the “ε convergence time” goes to infinity (see Eq. (29)), the distance between
the chain and the target is still decreasing to zero.

Proposition 2. For the adaptation scheme of Example 1, with θn = 1/2 for n even, and θn = 1/n
for n odd, both Diminishing Adaptation and Containment do not hold, but the chain still converges
to the target distribution Unif(X ).

See the proof in Section 5.1.
Example 1 shows that Containment is not a strictly necessary condition for ergodicity to hold.

In the following theorem, we prove that under certain additional conditions, Containment is in fact
necessary for ergodicity of adaptive algorithms.

Theorem 2. Suppose a family {Pγ}γ∈Y has the property that there exists an increasing sequence
of sets Dk ↑ X on the state space X , such that for any k > 0,

lim
n→∞

sup
Dk×Y

∥∥Pnγ (x, ·)− π(·)
∥∥

TV
= 0. (2)

If an adaptive MCMC algorithm based on {Pγ}γ∈Y is ergodic, then Containment holds.

Corollary 1. Suppose that the parameter space Y is a metric space, and the adaptive scheme
{Γn : n ≥ 0} is bounded in probability. Suppose that there exists an increasing sequence of sets
(Dk,Yk) ↑ X × Y such that any k > 0,

lim
n→∞

sup
Dk×Yk

∥∥Pnγ (x, ·)− π(·)
∥∥

TV
= 0.

If the adaptive MCMC algorithm is ergodic then Containment holds.

For proofs of Theorem 2 and Corollary 1, see Section 5.2.
We now present a second, more complicated example. This example also fails to be ergodic,

even though it satisfies Diminishing Adaptation, and also satisfies the “weak Containment” property
that supγ∈Y supx∈CMε(x, γ) <∞ for some small set C of positive stationary measure (indeed, that
trivially holds for this example, with C any compact interval within X , since Y is finite). Thus,
this example shows that to ensure ergodicity, the full Containment condition is not redundant, and
in particular it cannot simply be replaced by the “weak Containment” property.

Example 2. Let the state space X = (0,∞), and the kernel index set Y = {−1, 1}. The target

density π(x) ∝ I(x>0)
1+x2 is a half-Cauchy distribution on the positive part of R. At each time n, run

the Metropolis-Hastings algorithm where the proposal value Yn is generated by

Y Γn−1
n = X

Γn−1

n−1 + Zn (3)

with i.i.d standard normal distribution {Zn}, i.e. if Γn−1 = 1 then Yn = Xn−1 + Zn, while if
Γn−1 = −1 then Yn = 1

(1/Xn−1)+Zn
. The adaptation is defined as

Γn = −Γn−1I(XΓn−1
n <

1

n
) + Γn−1I(XΓn−1

n ≥ 1

n
), (4)

i.e. we change Γ from 1 to −1 when X < 1/n, and change Γ from −1 to 1 when X > n, otherwise
we do not change Γ.

Proposition 3. The adaptive chain {Xn : n ≥ 0} defined in Example 2 is not ergodic, and Con-
tainment does not hold, although Diminishing Adaptation does hold.

See the proof in Section 5.3.
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2.2 Summable Adaptive Condition

In the following result, we use a simple coupling method to show that a certain summable
adaptive condition implies ergodicity of adaptive MCMC.

Proposition 4. Consider an adaptive MCMC {Xn : n ≥ 0} on the state space X with the kernel
index space Y. Under the following conditions:
(i) Y is finite. For any γ ∈ Y, Pγ is ergodic with the stationary distribution π;
(ii) At each time n, Γn is a deterministic measurable function of X0, · · · , Xn,Γ0, · · · ,Γn−1;
(iii) For any initial state x0 ∈ X and any initial kernel index γ0 ∈ Y,

∞∑
n=1

P(Γn 6= Γn−1 | X0 = x0,Γ0 = γ0) <∞, (5)

the adaptive MCMC {Xn : n ≥ 0} is ergodic with the stationary distribution π.

See the proof in Section 5.4.

Remark 3. In Example 2, the transition kernel is changed when X
Γn−1
n reaches below the bound

1/n. If instead this bound is re-defined as 1/nr for some r > 1, then Proposition 4 can be used (by
adopting the procedure in Lemma 2 to check Eq. (5)) to show that the adaptive algorithm is ergodic.

2.3 Simultaneous Geometric Drift Conditions Revisted

It was proven in [23] (see [2] for similar related results) that Containment is implied by simul-
taneous strongly aperiodic geometric ergodicity (S.S.A.G.E.). S.S.A.G.E. is the condition that there
is C ∈ B(X ), a function V : X → [1,∞) , δ > 0, λ < 1, and b <∞, such that sup

x∈C
V (x) <∞, and

(i) for each γ, ∃ a probability measure νγ(·) on C with Pγ(x, ·) ≥ δνγ(·) for all x ∈ C, and
(ii) PγV ≤ λV + bIC for all γ.

The idea of utilizing S.S.A.G.E. to check Containment is that S.S.A.G.E. guarantees there is a
uniform quantitative bound of

∥∥Pnγ (x, ·)− π(·)
∥∥

TV
for all γ ∈ Y. However, S.S.A.G.E. can in fact

be weakened to the simultaneously geometrically ergodic condition (S.G.E.) studied by [27]. We
say that the family {Pγ : γ ∈ Y} is S.G.E. if there is C ∈ B(X ), some integer m ≥ 1, a function
V : X → [1,∞) , δ > 0, λ < 1, and b <∞, such that sup

x∈C
V (x) <∞, π(V ) <∞, and:

(i) C is a uniform νm-small set, i.e., for each γ, ∃ a probability measure νγ(·) on C with Pmγ (x, ·) ≥
δνγ(·) for all x ∈ C, and
(ii) PγV ≤ λV + bIC for all γ.

Note that the difference between S.G.E. and S.S.A.G.E. is that a uniform minorization set C
for all Pγ is assumed in S.S.A.G.E., however a uniform small set C is assumed in S.G.E. (see the
definitions of minorization set and small set in [19, Chapter 5]).

Theorem 3. S.G.E. implies Containment.

See the proof in Section 5.5.

Corollary 2. Consider the family {Pγ : γ ∈ Y} of Markov chains on X ⊂ Rd. Suppose that for
any compact set C ∈ B(X ), there exist some integer m > 0, δ > 0 and a measure νγ(·) on C for
γ ∈ Y such that Pmγ (x, ·) ≥ δνγ(·) for all x ∈ C. Suppose that there is a function V : X → (1,∞)
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such that for any compact set C ∈ B(X ), sup
x∈C

V (x) <∞, π(V ) <∞, and

lim sup
|x|→∞

sup
γ∈Y

PγV (x)

V (x)
< 1. (6)

Then for any adaptive strategy using {Pγ : γ ∈ Y}, Containment holds.

See the proof in Section 5.5.

3 Ergodicity via Simultaneous Polynomial Ergodicity

The previous section considered simultaneous geometric drift conditions. We now consider the
extent to which Containment is ensured by the weaker property of simultaneous polynomial drift
conditions.

3.1 Polynomial Ergodicity

There are many results available about polynomial ergodicity bounds for Markov chains [16, 17,
12, 13]. We begin by recalling in some detail a result by Fort and Moulines [13], giving a quantitative
convergence bound for (non-adaptive) time-homogeneous Markov chains with polynomial (sub-
geometric) convergence rates.

Theorem 4 ([13]). Suppose that the time-homogeneous transition kernel P satisfies the following
conditions:

• P is π-irreducible for an invariant probability measure π;

• There exist some sets C ∈ B(X ) and D ∈ B(X ), C ⊂ D, π(C) > 0 and an integer m ≥ 1,
such that for any (x, x′) ∈ 4 := C ×D ∪D × C, A ∈ B(X ),

Pm(x,A) ∧ Pm(x′, A) ≥ ρx,x′(A) (7)

where ρx,x′ is some measure on X for (x, x′) ∈ 4, and ε− := inf(x,x′)∈4 ρx,x′(X ) > 0.

• Let q ≥ 1. There exist some measurable functions Vk : X → R+\ {0} for k ∈ {0, 1, . . . , q},
and for k ∈ {0, 1, . . . , q − 1}, for some constants 0 < ak < 1, bk <∞, and ck > 0 such that

PVk+1(x) ≤ Vk+1(x)− Vk(x) + bkIC(x), inf
x∈X

Vk(x) ≥ ck > 0,

Vk(x)− bk ≥ akVk(x), x ∈ Dc, (8)

sup
D
Vq <∞.

• π(V β
q ) <∞ for some β ∈ (0, 1].

Then, for any x ∈ X , n ≥ m,

‖Pn(x, ·)− π(·)‖TV ≤ min
1≤l≤q

B
(β)
l (x, n), (9)
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with

B
(β)
l (x, n) =

ε+
〈

(I −A(β)
m )−1δx ⊗ π(W β), el

〉
S(l, n+ 1−m)β +

∑
j≥n+1−m(1− ε+)j−(n−m)(S(l, j + 1)β − S(l, j)β)

,

where < ·, · > denotes the inner product in Rq+1, {el}, 0 ≤ l ≤ q is the canonical basis on Rq+1, I
is the identity matrix;

δx ⊗ π(W β) :=

∫
δx(dy)π(dy′)W β(y, y′)

where W β(x, x′) :=
(
W β

0 (x, x′), · · · ,W β
q (x, x′)

)T
with W0(x, x′) := 1 and

Wl(x, x
′) = I4(x, x′) + I4c(x, x′)

(
l−1∏
k=0

ak

)−1

(m(V0))−1 (Vl(x) + Vl(x
′)) for 1 ≤ l ≤ q

where m(V0) := inf(x,x′)∈4c {V0(x) + V0(x′)};

S(0, k) := 1 and S(i, k) :=
k∑
j=1

S(i− 1, j), i ≥ 1;

A(β)
m :=


A

(β)
m (0) 0 · · · 0 0

A
(β)
m (1) A

(β)
m (0) · · · 0 0

...
...

. . .
...

...

A
(β)
m (q − 1) A

(β)
m (q − 2) · · · A

(β)
m (0) 0

A
(β)
m (q) A

(β)
m (q − 1) · · · A

(β)
m (1) A

(β)
m (0)

 ,

where A
(β)
m (l) := sup(x,x′)∈4

∑l
i=0 S(i,m)β

(
1− ρx,x′(X )

) ∫
Rx,x′(x, dy)Rx,x′(x

′, dy′)W β
l−i(y, y

′), where
the residual kernel

Rx,x′(u, dy) :=
(
1− ρx,x′(X )

)−1 (
Pmγ (u, dy)− ρx,x′(dy)

)
;

and ε+ := sup(x,x′)∈4 ρx,x′(X ).

Remark 4. In the B
(β)
l (x, n), ε+ depends on the set4 and the measure ρx,x′; the matrix (I−A(β)

m )−1

depends on the set 4, the transition kernel P , ρx,x′ and the test functions Vk; δx ⊗ π(W β) depends
on the set 4 and the test functions Vk.
Consider the special case of the theorem: ρx,x′(dy) = δν(dy) where ν is a probability measure with
ν(C) > 0, and 4 := C × C.
1. ε+ = ε− = δ.
2. I − A(β)

m is a lower triangle matrix so (I − A(β)
m )−1 =

(
b
(β)
ij

)
i,j=1,...,q+1

is also a lower triangle

matrix, and fixing k ≥ 0 all b
(β)
i,i−k are equal. b

(β)
ii = 1

1−A(β)
m (0)

. For i > j, b
(β)
ij is the polynomial

combination of A
(β)
m (0), · · · , A(β)

m (i + 1) divided by (1 − A(β)
m (0))i. By some algebra, we can obtain

that b
(β)
21 = A

(β)
m (1)

(1−A(β)
m (0))2

. So, by calculating B
(β)
1 (x, n), we can get the quantitative bound with a

simple form. B
(β)
1 (x, n) only involves two test functions V0(x) and V1(x).
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Remark 5. From Equation (8), V0(x) ≥ b0/(1 − α0) > b0 because 0 < α0 < 1. Consider the drift
condition: PV1 − V1 ≤ −V0 + b0IC . Since πP = π, π(V0) ≤ b0π(C) ≤ b0. Hence, the V0 in the
theorem can not be constant.

Remark 6. Without the condition π(V β) < ∞, the bound in Equation (9) can also be obtained.

However, the bound is possibly infinity. The subscript l of B
(β)
l (x, n) and β can explain the poly-

nomial rate. The related rate is S(l, n + 1 − m)β = O((n + 1 − m)lβ). It can be observed that

B
(β)
l (x, n) involves test functions V0(x), · · · , Vl(x), and lim supn n

βlB
(β)
l (x, n) < ∞. The maximal

rate of convergence is equal to qβ.

3.2 Polynomial Ergodicity and Adaptive MCMC

To prove Containment using polynomial ergodicity, we shall require some additional assump-
tions, as follows. Say that the family {Pγ : γ ∈ Y} is simultaneously polynomially ergodic (S.P.E.)
if the conditions (A1)-(A4) are satisfied.

A1: each Pγ is φγ-irreducible with stationary distribution π(·);

Remark 7. By Proposition 10.1.2 of [19], if Pγ is ϕ-irreducible, then Pγ is π-irreducible and the
invariant measure π is a maximal irreducibility measure.

A2: there is a set C ⊂ X , some integer m ∈ N, some constant δ > 0, and some probability measure
νγ(·) on X such that:

π(C) > 0, and Pmγ (x, ·) ≥ δIC(x)νγ(·) for all x ∈ X , γ ∈ Y; (10)

Remark 8. In Theorem 4, there is one condition Eq. (7) ensuring the splitting technique. Here we
consider the special case of that condition: ρx,x′(dy) = δνγ(dy) and 4 = C×C. Thus, by Remark 4,
the bound of

∥∥Pnγ (x, ·)− π(·)
∥∥

TV
depends on C, m, the minorization constant δ, π(·), νγ, and test

functions Vl(x) so we assume that they are uniform on all the transition kernels.

A3: there is q ∈ N and measurable functions: V0, V1, . . . , Vq : X → (0,∞) where V0 ≤ V1 ≤ · · · ≤ Vq,
such that for k = 0, 1, . . . , q − 1, there are 0 < αk < 1, bk <∞, and ck > 0 such that:

PγVk+1(x) ≤ Vk+1(x)− Vk(x) + bkIC(x), Vk(x) ≥ ck for x ∈ X and γ ∈ Y; (11)

Vk(x)− bk ≥ αkVk(x) for x ∈ X/C; (12)

sup
x∈C

Vq(x) <∞. (13)

Remark 9. For x ∈ C, νγ(Vl) ≤ 1
δP

m
γ Vl(x) ≤ 1

δ supx∈C Vl(x) +
mbl−1

δ .

A4: π(V β
q ) <∞ for some β ∈ (0, 1].

In terms of these assumptions, we have the following.

Theorem 5. Suppose an adaptive MCMC algorithm satisfies Diminishing Adaptation. Then, the
algorithm is ergodic under any of the following conditions:
(i) S.P.E., and the number q of simultaneous drift conditions is strictly greater than two;
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(ii) S.P.E., and when the number q of simultaneous drift conditions is greater than or equal to two,
there exists an increasing function f : R+ → R+ such that V1(x) ≤ f(V0(x));
(iii) Under the conditions (A1) and (A2), there exist some positive constants c > 0, b′ > b > 0,
α ∈ (0, 1), and a measurable function V (x) : X → R+ with V (x) ≥ 1 and sup

x∈C
V (x) <∞ such that

PγV (x)− V (x) ≤ −cV α(x) + bIC(x) for all x ∈ X , γ ∈ Y, (14)

and cV α(x)ICc(x) ≥ b′ for all x ∈ X ;
(iv) Under the condition (A1), (A2), and (A4), there exist some constant b′ > b > 0, two measurable
functions V0 : X → R+ and V1 : X → R+ with 1 ≤ V0(x) ≤ V1(x) and sup

x∈C
V1(x) <∞ such that

P γV1(x)− V1(x) ≤ −V0(x) + bIC(x) for all x ∈ X , γ ∈ Y, (15)

and V0(x)ICc(x) ≥ b′ for all x ∈ X , and the process {V1(Xn) : n ≥ 0} is bounded in probability.

For a proof of Theorem 5, see Section 5.6.

Remark 10. In part (iii), (A4) is then implied by Theorem 14.3.7 of [19], with β = α.

Remark 11. Atchadé and Fort [6] recently proved a result closely related to the above, using a
coupling method similar to that in [23]. Their Corollary 2.2 establishes ergodicity of adaptive MCMC
algorithms under the assumptions of uniform strong aperiodicity, simultaneous drift conditions of
the form (13), and uniform convergence on any sublevel set of the test function V (x). Thus, they
essentially reprove part (iii) of our Theorem 5, but under somewhat different assumptions.

4 Ergodicity of Adaptive Metropolis-Hastings algorithms

We now present some ergodicity results for various adaptive Metropolis-Hastings algorithms.
(For similar results about adaptive Metropolis-within-Gibbs algorithms, see [9].)

4.1 General Adaptive Metropolis-Hastings algorithms

We first consider general Metropolis-Hastings algorithms. We begin with some notation.
The target density π(·) is defined on the state space X ⊂ Rd. In what follows, we shall write 〈·, ·〉

for the usual scalar product on Rd, |·| for the Euclidean and the operator norm, n(z) := z/ |z| for
the normed vector of z, ∇ for the usual differential (gradient) operator, m(x) := ∇π(x)/ |∇π(x)|,
Bd(x, r) = {y ∈ Rd : |y − x| < r} for the hyperball on Rd with the center x and the radius r,
B̄d(x, r) for the closure of the hyperball, and Vol(A) for the volume of the set A ⊂ Rd.

Say an adaptive MCMC is an Adaptive Metropolis-Hastings algorithm if each kernel Pγ is a
Metropolis-Hastings algorithm, i.e. is of the form

Pγ(x, dy) = αγ(x, y)Qγ(x, dy) +

[
1−

∫
X
αγ(x, z)Qγ(x, dz)

]
δx(dy) (16)

where Qγ(x, dy) is the proposal distribution, αγ(x, y) :=
(
π(y)qγ(y,x)
π(x)qγ(x,y) ∧ 1

)
I(y ∈ X ), and µd is

Lebesgue measure. Say an adaptive Metropolis-Hastings algorithm is an Adaptive Metropolis algo-
rithm if each qγ(x, y) is symmetric, i.e. qγ(x, y) = qγ(x− y) = qγ(y − x).

[16] give conditions which imply geometric ergodicity of symmetric random-walk-based Metropo-
lis algorithm on Rd for target distribution with lighter-than-exponential tails, [see other related
results in 18, 25]. Here, we extend their result a little for target distributions with exponential tails.
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Definition 1 (Lighter-than-exponential tail). The density π(·) on Rd is lighter-than-exponentially
tailed if it is positive and has continuous first derivatives such that

lim sup
|x|7→∞

〈n(x),∇ log π(x)〉 = −∞. (17)

Remark 12. 1. The definition implies that for any r > 0, there exists R > 0 such that

π(x+ αn(x))− π(x)

π(x)
≤ −αr, for |x| ≥ R,α > 0.

It means that π(x) is exponentially decaying along any ray, but with the rate r tending to infinity
as x goes to infinity.
2. The normed gradient m(x) will point towards the origin, while the direction n(x) points away from

the origin. For Definition 1, 〈n(x),∇ log π(x)〉 = |∇π(x)|
π(x) 〈n(x),m(x)〉. Even lim sup

|x|7→∞
〈n(x),m(x)〉 <

0, Eq. (17) might not be true. E.g. π(x) ∝ 1
1+x2 , x ∈ R. m(x) = −n(x) so that 〈n(x),m(x)〉 = −1.

〈n(x),∇ log π(x)〉 = − 2|x|
1+x2 so lim

|x|7→∞
〈n(x),∇ log π(x)〉 = 0.

Definition 2 (Exponential tail). The density function π(·) on Rd is exponentially tailed if it is a
positive, continuously differentiable function on Rd, and

η2 := − lim sup
|x|→∞

〈n(x),∇ log π(x)〉 > 0. (18)

Remark 13. There exists β > 0 such that for x sufficiently large,

〈n(x),∇ log π(x)〉 = 〈n(x),m(x)〉 |∇ log π(x)| ≤ −β.

Further, if 0 < −〈n(x),m(x)〉 ≤ 1, then |∇ log π(x)| ≥ β.

Define the symmetric proposal density family C := {q : q(x, y) = q(x − y) = q(y − x)}. Our
ergodicity result for adaptive Metropolis algorithms is based on the following assumptions.

Assumption 1 (Target Regularity). The target distribution is absolutely continuous w.r.t. Lebesgue
measure µd with a density π bounded away from zero and infinity on compact sets, and sup

x∈X
π(x) <

∞.

Assumption 2 (Target Strongly Decreasing). The target density π has continuous first derivatives
and satisfies

η1 := −lim sup
|x|7→∞

〈n(x),m(x)〉 > 0. (19)

Assumption 3 (Proposal Uniform Local Positivity). Assume that {qγ : γ ∈ Y} ⊂ C. There exist
ζ > 0 such that

ι := inf
γ∈Y

inf
|z|≤ζ

qγ(z) > 0. (20)

Given 0 < p < q <∞, for u ∈ Sd−1 (Sd−1 is the unit hypersphere in Rd.) and θ > 0, define

Cp,q(u, θ) :=
{
z = aξ | p ≤ a ≤ q, ξ ∈ Sd−1, |ξ − u| < θ/3

}
. (21)
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Assumption 4 (Proposal Moment Condition). Suppose the target density π is exponentially tailed
and {qγ : γ ∈ Y} ⊂ C. Under Assumptions 2, assume that there are ε ∈ (0, η1), β ∈ (0, η2), δ, and
∆ with 0 < 3

βε ≤ δ < ∆ ≤ ∞ such that

inf
(u,γ)∈Sd−1×Y

∫
Cδ,∆(u,ε)

|z| qγ(z)µd(dz) >
3(e+ 1)

βε(e− 1)
. (22)

Remark 14. Under Assumption 3, let P̃ (x, dy) be the transition kernel of Metropolis-Hastings
algorithm with the proposal distribution Q̃(x, ·) ∼ Unif(B̄d(x, ζ/2)). For any γ ∈ Y, Pγ(x, dy) ≥
ιVol(B̄d(0, ζ/2))P̃ (x, dy). Under Assumption 1, by [25, Theorem 2.2], any compact set is a small
set for P̃ so that any compact set is a uniform small set for all Pγ.

Remark 15. 1. Assumption 4 means that the proposal family has uniform lower bound of the first
moment on some local cone around the origin. The condition specifies that the tails of all proposal
distributions can not be too light, and the quantity of the lower bound is given and dependent on
the tail-decaying rate η2 and the strongly decreasing rate η1 of target distribution. Assumptions 1-4
are used to check S.G.E. which is just sufficient to Containment.
2. If the proposal distribution in {qγ : γ ∈ Y} ⊂ C is a mixture distribution with one fixed part, then
Assumption 4 is relatively easy to check, because the integral in Eq. (22) can be estimated by the
fixed part distribution. Especially for the lighter-than-exponentially tailed target, Assumption 4 can
be reduced for this case. We will give a sufficient condition for Assumption 4 which can be applied
to more general case, see Lemma 1.

Now, we consider a particular class of target densities with tails which are heavier than ex-
ponential tails. It was previously shown by [12] that the Metropolis algorithm converges at any
polynomial rate when proposal distribution is compact supported and the log density decreases
hyperbolically at infinity, log π(x) ∼ − |x|s, for 0 < s < 1, as |x| → ∞.

Definition 3 (Hyperbolic tail). The density function π(·) is twice continuously differentiable, and
there exist 0 < m < 1 and some finite positive constants di, Di, i = 1, 2 such that for large enough
|x|,

0 < d0 |x|m ≤ − log π(x) ≤ D0 |x|m;

0 < d1 |x|m−1 ≤ |∇ log π(x)| ≤ D1 |x|m−1;

0 < d2 |x|m−2 ≤
∣∣∇2 log π(x)

∣∣ ≤ D2 |x|m−2.

Assumption 5 (Proposal’s Uniform Compact Support). Under Assumption 3, there exists some
M > ζ such that all qγ(·) with γ ∈ Y are supported entirely on B̄d(0,M).

Theorem 6. An adaptive Metropolis algorithm with Diminishing Adaptation is ergodic, under any
of the following conditions:
(i). The target density π is lighter-than-exponentially tailed, and Assumptions 1 – 3;
(ii). The target density π is exponentially tailed, and Assumptions 1 – 4;
(iii). The target density π is hyperbolically tailed, and Assumptions 1 – 3 and 5.

For a proof of Theorem 6, see Section 5.7.

4.2 Specific Cases of Adaptive Metropolis-Hastings Algorithms

Here we discuss two specific cases of adaptations of Metropolis-Hastings algorithms. The
first one (Example 3) is from [24] where the proposal density is a fixed distribution of two multi-
variate normal distributions, one with fixed small variance, another using the estimate of empirical
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covariance matrix from historical information as its variance. It is a slight variant of the origi-
nal adaptive Metropolis algorithm of Haario et al. [14]. In the example, the target density has
lighter-than-exponential tails. The second (Example 4) concerns with target densities with truly
exponential tails.

Example 3. Consider a d-dimensional target distribution π(·) on Rd satisfying Assumptions 1
- 2. We perform a Metropolis algorithm with proposal distribution given at the nth iteration by
Qn(x, ·) = N(x, (0.1)2Id/d) for n ≤ 2d; For n > 2d,

Qn(x, ·) =

{
(1− θ)N(x, (2.38)2Σn/d) + θN(x, (0.1)2Id/d), Σn is positive definite,
N(x, (0.1)2Id/d), Σn is not positive definite,

(23)

for some fixed θ ∈ (0, 1), Id is d× d identity matrix, and the empirical covariance matrix

Σn =
1

n

(
n∑
i=0

XiX
>
i − (n+ 1)XnX

>
n

)
, (24)

where Xn = 1
n+1

∑n
i=0Xi, is the current modified empirical estimate of the covariance structure of

the target distribution based on the run so far.

Remark 16. The fixed part N(x, (0.1)2Id/d) can be replaced by Unif(Bd(x, τ)) for some τ > 0. For
targets with lighter-than-exponential tails, τ can be an arbitrary positive value, because Assumption 3
holds. For targets with exponential tails, τ is dependent on η1 and η2.

Remark 17. The proposal N(x, (2.38)2Σ/d) is optimal in a particular large-dimensional context,
[see 26, 22]. Thus the proposal N(x, (2.38)2Σn/d) is an effort to approximate this.

Remark 18. Commonly, the iterative form of Eq. (24) is more useful,

Σn =
n− 1

n
Σn−1 +

1

n+ 1

(
Xn − X̄n−1

) (
Xn − X̄n−1

)>
. (25)

Proposition 5. Suppose that the target density π is exponentially tailed. Under Assumptions 1-4,∣∣Xn −Xn−1

∣∣ and ‖Σn − Σn−1‖M converge to zero in probability where where ‖·‖M is matrix norm.

For a proof of Proposition 5, see Section 5.8.

Theorem 7. Suppose that the target density π in Example 3 is lighter-than-exponentially tailed.
The algorithm in Example 3 is ergodic.

Proof: Obviously, the proposal densities are uniformly bounded below. By Theorem 6 and Propo-
sition 5, the adaptive Metropolis algorithm is ergodic.

The following lemma can be used to check Assumption 4.

Lemma 1. Suppose that the target density π is exponentially tailed and the proposal density family
{qγ : γ ∈ Y} ⊂ C. Suppose further that there is a function q−(z) := g(|z|), q− : Rd → R+ and
g : R+ → R+, some constants M ≥ 0, ε ∈ (0, η1), β ∈ (0, η2) and 3

βε ∨M < δ < ∆ such that for

|z| ≥M with the property that qγ(z) ≥ q−(z) for γ ∈ Y and

(d− 1)π
d−1

2

2Γ(d+1
2 )

Ber2

(
d− 1

2
,
1

2

)∫ ∆

δ
g(t)tddt >

3(e+ 1)

βε(e− 1)
, (26)

where η1 is defined in Eq. (18), η2 is defined in Eq. (19), r := ε
18

√
36− ε2, and the incomplete beta

function Bex(t1, t2) :=
∫ x

0 t
t1−1(1− t)t2−1dt, then Assumption 4 holds.
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For a proof of Lemma 1, see Section 5.9.
We now consider a specific example to illustrate the theorem.

Example 4. Consider the standard multivariate exponential distribution π(x) = c exp(−λ |x|) on
Rd where λ > 0. We perform a Metropolis algorithm with proposal distribution in the family
{Qγ(·)}γ∈Y at the nth iteration where

Qn(x, ·) =

{
Unif

(
Bd(x,∆)

)
, n ≤ 2d, or Σn is nonsingular,

(1− θ)N(x, (2.38)2Σn/d) + θUnif
(
Bd(x,∆)

)
, n > 2d, and Σn is singular,

(27)
for θ ∈ (0, 1), Unif

(
Bd(x,∆)

)
is a uniform distribution on the hyperball Bd(x,∆) with the center x

and the radius ∆, and Σn is as defined in Eq. (24).

Proposition 6. There exists a large enough ∆ > 0 such that the adaptive Metropolis algorithm of
Example 4 is ergodic.

For a proof of Proposition 6, see Section 5.10.

Remark 19. Concurrent with our research, Saksman and Vihola [30] recently proved some re-
lated results about the original Adaptive Metropolis (AM) algorithm of [14], assuming lighter-than-
exponential tails of the target distribution as in our Theorem 7 above. Their Theorem 13 shows that
if the target density is regular, strongly decreasing, and strongly lighter-than-exponentially tailed
(i.e., lim sup

|x|→∞

〈n(x),∇ log π(x)〉
|x|ρ−1 = −∞ for some ρ > 1), then strong laws of large numbers and central

limit theorems hold in the adaptive setting.

5 Proofs of the Results

5.1 Proofs Related to Example 1

Proof of Proposition 1: Since the adaptation is state-independent, the stationarity is pre-
served. So, the adaptive MCMC Xn ∼ δPθ0Pθ1Pθ2 · · ·Pθn−1(·) for n ≥ 0 where δ := (δ(1), δ(2)) is
the initial distribution.

The part (i). Consider
∥∥Pθn+1(x, ·)− Pθn(x, ·)

∥∥
TV

. For any x ∈ X ,∥∥Pθn+1(x, ·)− Pθn(x, ·)
∥∥

TV
= |θn+1 − θn| → 0.

Thus, for r > 0 Diminishing Adaptation holds.
By some algebra,

‖Pnθ (x, ·)− π(·)‖TV =
1

2
|1− 2θ|n . (28)

Hence, for any ε > 0,

Mε(Xn, θn) ≥ log(ε)− log(1/2)

log |1− 2θn|
→ +∞ as n→∞. (29)

Therefore, the stochastic process {Mε(Xn, θn) : n ≥ 0} is not bounded in probability.

The parts (ii) and (iii). Let µn :=
(
µ

(1)
n , µ

(2)
n

)
:= δPθ0 · · ·Pθn . So,

µ
(1)
n+1 = µ(1)

n − θn+1

(
µ(1)
n − µ(2)

n

)
and µ

(2)
n+1 = µ(2)

n + θn+1

(
µ(1)
n − µ(2)

n

)
.
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Hence,

µ
(1)
n+1 − µ

(2)
n+1 =

(
δ(1) − δ(2)

) n+1∏
k=0

(1− 2θk).

For r > 1,
∏n+1
k=0(1 − 2θk) converges to some α ∈ (0, 1) as n goes to infinity. µ

(1)
n+1 − µ

(2)
n+1 →(

δ(1) − δ(2)
)
α. For 0 < r ≤ 1, µ

(1)
n+1 − µ

(2)
n+1 → 0. Therefore, for r > 1 ergodicity to Uniform

distribution does not hold, and for 0 < r ≤ 1 ergodicity holds.

Proof of Proposition 2: From Eq. (28), for ε > 0, Mε(X2k−1, θ2k−1) ≥ log(ε)−log(1/2)
log|1−1/k| → ∞ as

k →∞. So, Containment does not hold.∥∥Pθ2k(x, ·)− Pθ2k−1
(x, ·)

∥∥
TV

=
∣∣1

2 −
1
2k

∣∣→ 1
2 as k →∞. So Diminishing Adaptation does not hold.

Let δ := (δ(1), δ(2)) be the initial distribution and µn := (µ
(1)
n , µ

(2)
n ) = δPθ0 · · ·Pθn . µ

(1)
n − µ(2)

n =

(δ(1) − δ(2))2−[n/2]−1
[(n+1)/2]∏
k=1

(
1− 1

2k

)
→ 0 as n goes to infinity. So ergodicity holds.

5.2 Proofs of Theorem 2 and Corollary 1

Proof of Theorem 2: Fix ε > 0. For any δ > 0, taking K > 0 such that π(DcK) < δ/2. For
the set DK , there exists M such that

sup
DK×Y

∥∥PMγ (x, ·)− π(·)
∥∥

TV
< ε.

Hence, for any (x0, γ0) ∈ X ×Y, by the ergodicity of the adaptive MCMC {Xn}n, there exists some
N > 0 such that n > N , ∣∣P(x0,γ0)(Xn ∈ DcK)− π(DcK)

∣∣ < δ/2.

So, for (Xn,Γn) ∈ (DK ,Y),

[Xn ∈ DK ] = [(Xn,Γn) ∈ DK × Y] ⊂ [Mε(Xn,Γn) ≤M ] .

Hence,

P(x0,γ0) (Mε(Xn,Γn) > M)

≤ P(x0,γ0) ((Xn,Γn) ∈ (DK × Y)c)

= P(x0,γ0) (Xn ∈ DcK)

≤
∣∣P(x0,γ0) (Xn ∈ DcK)− π(DcK)

∣∣+ π(DcK) < δ.

Therefore, Containment holds.

Proof of Corollary 1: Using the same technique in Theorem 2, for large enough M > 0,

P(x0,γ0) (Mε(Xn,Γn) > M)

≤ P(x0,γ0) ((Xn,Γn) ∈ (Dk × Yk)c)
≤ P(x0,γ0) (Xn ∈ Dc

k) + P(x0,γ0) (Γn ∈ Yck)
≤

∣∣P(x0,γ0) (Xn ∈ DcK)− π(DcK)
∣∣+ π(DcK) + P(x0,γ0) (Γn ∈ Yck) .

Since {Γn : n ≥ 0} is bounded in probability, the result holds.
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5.3 Proof of Proposition 3

First, we show that Diminishing Adaptation holds.

Lemma 2. For the adaptive chain {Xn : n ≥ 0} defined in Example 2, the adaptation is diminish-
ing.

Proof: For γ = 1, obviously the proposal density is qγ(x, y) = ϕ(y − x) where ϕ(·) is the density
function of standard normal distribution. For γ = −1, the random variable 1/x+Zn has the density
ϕ(y − 1/x) so the random variable 1/(1/x+ Zn) has the density qγ(x, y) = ϕ(1/y − 1/x)/y2.

The proposal density

qγ(x, y) =

{
ϕ(y − x) γ = 1
ϕ(1/y − 1/x)/y2 γ = −1

For γ = 1, the acceptance rate is min
(

1,
π(y)qγ(y,x)
π(x)qγ(x,y)

)
I(y ∈ X ) = 1+x2

1+y2 I(y > 0). For γ =

−1, the acceptance rate is min
(

1,
π(y)qγ(y,x)
π(x)qγ(x,y)

)
I(y ∈ X ) = min

(
1,

1
1+y2 ϕ(1/x−1/y)/x2

1
1+x2 ϕ(1/y−1/x)/y2

)
I(y > 0) =

min
(

1, 1+x−2

1+y−2

)
I(y > 0).

So for γ ∈ Y, the acceptance rate is

αγ(x, y) := min

(
1,
π(y)qγ(y, x)

π(x)qγ(x, y)

)
I(y ∈ X ) = min

(
1,

1 + x2γ

1 + y2γ

)
I(y ∈ X ). (30)

From Eq. (4), [Γn 6= Γn−1] = [X
Γn−1
n < 1/n]. Since the joint process {(Xn,Γn) : n ≥ 0} is a time

inhomogeneous Markov chain,

P(Γn 6= Γn−1) =

∫
X×Y

P(XΓn−1
n < 1/n | Xn−1 = x,Γn−1 = γ)P(Xn−1 ∈ dx,Γn−1 ∈ dγ)

=

∫
X×Y

Pγ(x, [t > 0 : tγ < 1/n])P(Xn−1 ∈ dx,Γn−1 ∈ dγ)

=

∫
[xγ≥1/(n−1)]

Pγ(x, [t > 0 : tγ < 1/n])P(Xn−1 ∈ dx,Γn−1 ∈ dγ)

where the second equality is from Eq. (1), and the last equality is from P(XΓn
n ≥ 1/n) = 1 implied

by Eq. (4).
So for any (x, γ) ∈ [(t, s) ∈ X × Y : ts ≥ 1/(n− 1)],

Pγ(x, [t > 0 : tγ < 1/n]) =

∫ ∞
0

I(yγ < 1/n)qγ(x, y)dy =

∫ −xγ+1/n

−xγ
ϕ(z)dz.

Since −xγ + 1/(n− 1) < 0,

1

n
ϕ(−xγ) ≤ Pγ(x, [t > 0 : tγ < 1/n]) ≤ ϕ(0)

n
. (31)

We have that

P(Γn 6= Γn−1) ≤ 1√
2πn

. (32)
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Therefore, for any ε > 0,

P
(

sup
x∈X

∥∥PΓn(x, ·)− PΓn−1(x, ·)
∥∥

TV
> ε

)
≤ P(Γn 6= Γn−1)→ 0.

From Eq. (30), at the nth iteration, the acceptance rate is αΓn−1(Xn−1, Yn) = min

(
1,

1+X
2Γn−1
n−1

1+Y
2Γn−1
n

)
I(Yn >

0). Let us denote Ỹn := Y
Γn−1
n and X̃n := XΓn

n . The acceptance rate is equal to

min

(
1,

1 + X̃2
n−1

1 + Ỹ 2
n

)
I(Ỹn > 0).

From Eq. (4), XΓn
n = X

−Γn−1
n I(XΓn−1

n < 1/n) + X
Γn−1
n I(XΓn−1

n ≥ 1/n). When Yn is accepted, i.e.
Xn = Yn,

[Ỹn < 1/n] = [XΓn−1
n < 1/n] and XΓn

n = Ỹ −1
n I(Ỹn < 1/n) + ỸnI(Ỹn ≥ 1/n).

On the other hand, from Eq. (3), the conditional distribution Ỹn | X̃n−1 is N(X̃n−1, 1).
From the above discussion, the chain X̃ := {X̃n : n ≥ 0} can be constructed according to the

following procedure. Define the independent random variables Zn
iid∼ N(0, 1), Un

iid∼ Bernoulli(0.5),

and Tn
iid∼ Unif(0, 1).

Let X̃0 = XΓ0
0 . At each time n ≥ 1, define the variable

Ỹn := X̃n−1 − Un |Zn|+ (1− Un) |Zn| . (33)

Clearly, −Un |Zn|+ (1− Un) |Zn|
d
= N(0, 1) (

d
= means equal in distribution).

If Tn < min

(
1,

1+X̃2
n−1

1+Ỹ 2
n

)
I(Ỹn > 0) then

X̃n = I(Ỹn < 1/n)Ỹ −1
n + I(Ỹn ≥ 1/n)Ỹn; (34)

otherwise X̃n = X̃n−1.
Note that:

1. The process X̃ is a time inhomogeneous Markov chain.
2. P(X̃n ≥ 1/n) = 1 for n ≥ 1.
3. At the time n, Un indicates the proposal direction (Un = 0: try to jump towards infinity; Un = 1:
try to jump towards zero). |Zn| specifies the step size if the proposal value Yn is accepted. Tn is
used to check whether the proposal value Yn is accepted or not. When Un = 1 and Ỹn > 0, Eq. (34)
is always run.

For two integers 0 ≤ s ≤ t and a process X and a set A ⊂ X , denote [Xs:t ∈ A] := [Xs ∈
A;Xs+1 ∈ A; · · · ;Xt ∈ A] and s : t := {s, s + 1, · · · , t}. For a value x ∈ R, denote the largest
integer less than x by [x].

In the following proofs for the example, we use the notation in the procedure of constructing
the process X̃.

Lemma 3. Let a =
(

1
2 −

7
√

2
12
√
π

)−2
. Given 0 < r < 1, for [x] > 12

1
1−r

P
(
∃i ∈ (k + 1) : (k + [x]1+r), X̃i < x/2 | X̃k = x

)
≤ [x]1+r(

[x]
2 −

7
√

2[x]r√
π

)2 ≤
a

[x]1−r
.
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Proof: The process X̃ is generated through the underlying processes {(Ỹj , Zj , Uj , Tj) : j ≥ 1}
defined in Eq. (33) – Eq. (34). Conditional on [X̃k = x], we can construct an auxiliary chain
B := {Bj : j ≥ k} that behaves like an asymmetric random walk until X̃ reaches below x/2, and
B is always dominated from above by X̃.

It is defined as that Bk = X̃k; For j > k, if X̃j−1 < x/2 then Bj := X̃j , otherwise
1. If proposing towards zero (Uj = 1) then B also jumps in the same direction with the step size

|Zj | (in this case, the acceptance rate min

(
1,

1+X̃2
j−1

1+Ỹ 2
j

)
is equal to 1);

2. If proposing towards infinity (Uj = 0), then Bj is assigned the value Bj−1 + |Zj | (the jumping

direction of B at the time j is same as X̃) with the acceptance rate 1+(x/2)2

1+(x/2+|Zj |)2 (independent of

X̃j−1), i.e. for j > k,

B j := I(X̃j−1 < x/2)X̃j + I(X̃j−1 ≥ x/2) (Bj−1 − Ij(x)) (35)

where

I j(x) := Uj |Zj | − (1− Uj) |Zj | I
(
Tj <

1 + (x/2)2

1 + (x/2 + |Zj |)2

)
. (36)

Note that
1. {Zj , Uj , Tj : j > k} are independent so {Ij(x) : j > k} are independent.

2. When X̃j−1 > x/2 and Uj = 0 (proposing towards infinity), the acceptance rate 1 >
1+X̃2

j−1

1+Ỹ 2
j

≥

1+(x/2)2

1+(x/2+|Zj |)2 , so that
[
Tj <

1+(x/2)2

1+(x/2+|Zj |)2

]
⊂
[
Tj <

1+X̃2
j−1

1+Ỹ 2
j

]
which is equivalent to [Bj − Bj−1 =

|Zj |] ⊂ [X̃j − X̃j−1 = |Zj |]. Therefore, B is always dominated from above by X̃.
Conditional on [X̃k = x],

[∃i ∈ (k + 1) : (k + [x]1+r), X̃i < x/2] ⊂ [∃i ∈ (k + 1) : (k + [x]1+r), Bi < x/2]

and for i ∈ (k + 1) : (k + [x]1+r),

[Bk:(i−1) ≥ x/2;Bi < x/2]

⊂[Bk ≥ x/2;Bk −
t−1∑
l=k+1

Il(x) ≥ x/2 for all t ∈ (k + 1) : i;Bk −
i∑

l=k+1

Il(x) < x/2].

So,

P
(
∃i ∈ (k + 1) : (k + [x]1+r), X̃i < x/2 | X̃k = x

)
≤P

∃i ∈ (k + 1) : (k + [x]1+r), Bk −
i∑

j=k+1

Ij(x) < x/2 | Bk = x


≤P( max

l∈1:[x]1+r
S̃l > x/2)

=P(max
l∈1:q

S̃l > q1/(1+r)/2)

where S̃0 = 0 and S̃l =
∑l

j=1 Ik+j(x) and q = [x]1+r. {Ij(x) : k < j ≤ k+l} and Bk are independent
so that the right hand side of the above equation is independent of k.
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By some algebra,

0 ≤ E[Ii(x)] =
1

2
E

[
|Zi|2 (x+ |Zi|)

1 + (x/2 + |Zi|)2

]
≤ 2

x
E
[
|Zi|2 (1 + |Zi|)

]
<

7
√

2√
πx
,

Var[Ii(x)] =
1

2
+

1

2
E
[
|Zi|2

1 + (x/2)2

1 + (x/2 + |Zi|)2

]
− 1

4

(
E

[
|Zi|2 (x+ |Zi|)

1 + (x/2 + |Zi|)2

])2

∈ [0, 1] .

Let µl = E[S̃l] and Sl = S̃l − µl and note that µl is increasing as l increases, and µq ∈ [0, 7
√

2q√
π

].

So {Si : i = 1, · · · , q} is a Martingale. By Kolmogorov Maximal Inequality,

P(max
l∈1:q

S̃l > q1/(1+r)/2) ≤P(max
l∈1:q

Sl > q1/(1+r)/2− µq)

≤ qVar[Ik(x)]

(q1/(1+r)/2− µq)2

≤ [x]1+r(
[x]
2 −

7
√

2[x]r√
π

)2 <
a

[x]1−r
.

The last second inequality is from [x] > 12
1

1−r >
(

14
√

2√
π

) 1
1−r

implying [x]
2 > 7

√
2[x]r√
π

.

Assume that Xn converges weakly to π(·). Take some c > 1 such that for the set D = (1/c, c),

π(D) = 9/10. Taking a r ∈ (0, 1), there exists N > 2c ∨ 12
1

1−r ∨ a
0.5

1
1−r ∨ 21/r exp( 1

0.8ϕ(−c)r ) (a is

defined in Lemma 3) such that for any n > N + 1, P(Xn ∈ D) > 0.8. Since [Xn ∈ D] = [XΓn
n ∈ D]

and XΓ d
= X̃, P(X̃n ∈ D) > 0.8. So, P(X̃n >

n
2 ) < 0.2 for n > N .

Letm = exp( 1
0.8ϕ(−c))(n+1)−1 that impliesm > n, m−n < n1+r (because n > 21/r exp( 1

0.8ϕ(−c)r )),

and log(m+1
n+1 ) = 1

0.8ϕ(−c) . Then

0.2 > P(X̃m >
n

2
) ≥

m−1∑
j=n

P(X̃j ∈ D; Ỹj+1 <
1

j + 1
; X̃(j+1):m >

n

2
). (37)

From Eq. (33) and Eq. (34), [Ỹi+1 <
1
i+1 ] = [X̃i+1 = 1

Ỹi+1
> i + 1] for any i > 1. Consider

j ∈ n : (m− 1). Since X̃ is a time inhomogeneous Markov chain,

P
(
X̃j ∈ D; Ỹj+1 <

1

j + 1
; X̃(j+1):m > n/2

)
= P(X̃j ∈ D)P

(
X̃j+1 = Ỹj+1 <

1

j + 1
| X̃j ∈ D

)
P

(
X̃(j+2):m >

n

2
| X̃j+1 =

1

Ỹj+1

> j + 1

)

= P(X̃j ∈ D)P

(
X̃j+1 =

1

Ỹj+1

> j + 1 | X̃j ∈ D

)
(

1− P

(
X̃t ≤ n/2 for some t ∈ (j + 1) : m | X̃j+1 =

1

Ỹj+1

> j + 1

))
.
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From Eq. (31), for any x ∈ D,

P(Ỹj+1 <
1

j + 1
| X̃j = x) = P1(x, {t ∈ X : t < 1/(j + 1)}) ∈

[
ϕ(−c)
j + 1

,
ϕ(0)

j + 1

]
.

So,

P(Ỹj+1 <
1

j + 1
| X̃j ∈ D) ≥ ϕ(−c)

j + 1
.

Hence, for x > j + 1,

P
(
X̃t ≤ n/2 for some t ∈ (j + 1) : m | X̃j+1 = x

)
≤P
(
X̃t ≤ x/2 for some t ∈ (j + 1) : m | X̃j+1 = x

)
≤P
(
X̃t ≤ x/2 for some t ∈ (j + 1) : (j + [x]1+r) | X̃j+1 = x

)
≤ a

[x]1−r
≤ a

n1−r ,

because of x/2 > n/2, m− n < n1+r, and Lemma 3. Thus,

P

(
X̃t ≤ n/2 for some t ∈ (j + 1) : m | X̃j+1 =

1

Ỹj+1

> j + 1

)
≤ a

n1−r .

Therefore,

P(X̃m >
n

2
) ≥0.8ϕ(−c)(1− a

n1−r )
m−1∑
j=n

1

j + 1

≥0.8ϕ(−c)(1− a

n1−r ) log((m+ 1)/(n+ 1)) = (1− a

n1−r ) > 0.5.

Contradiction! By Lemma 2, Containment does not hold.

5.4 Proof of Proposition 4

Fix x0 ∈ X , γ0 ∈ Y. By the condition (iii) and the Borel-Cantelli Lemma, ∀ε > 0, ∃N0(x0, γ0, ε) >
0 such that ∀n ≥ N0,

P(x0,γ0) (Γn = Γn+1 = · · · ) > 1− ε/2. (38)

Construct a new chain {X̃n : n ≥ 0} which satisfies that for n ≤ N0, X̃n = Xn, and for n ≥ N0,
X̃n ∼ Pn−N0

ΓN0
(X̃N0 , ·). So, for any n > N0 and any set A ∈ B(X ), by the condition (ii),∣∣∣P(x0,γ0)(Xn ∈ A,ΓN0 = · · · = Γn−1)− P(x0,γ0)(X̃n ∈ A)

∣∣∣ ≤ ε/2.
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Since the condition (i) holds, suppose that for some K > 0, Y = {y1, · · · , yK}. Denote µi(·) =
P(x0,γ0)(X̃N0 ∈ · | ΓN0 = yi) for i = 1, · · · ,K. Because of the condition (ii), for n > N0,

P(x0,γ0)(X̃n ∈ A)

=
K∑
i=1

P(x0,γ0)(X̃n ∈ A,ΓN0 = yi)

=

K∑
i=1

∫
XN0∩[γN0

=yi]
Pγ0(x0, dx1) · · ·PγN0−1(xN0−1, dxN0)Pn−N0

yi (xN0 , A)

=

K∑
i=1

P(x0,γ0)(ΓN0 = yi)µiP
n−N0
yi (A).

By the condition (i), there exists N1(x0, γ0, ε,N0) > 0 such that for n > N1,

sup
i∈{1,··· ,K}

∥∥µiPnyi(·)− π(·)
∥∥

TV
< ε/2.

So, for any n > N0 +N1, any A ∈ B(X ),∣∣P(x0,γ0)(Xn ∈ A)− π(A)
∣∣

≤
∣∣∣P(x0,γ0)(Xn ∈ A)− P(x0,γ0)(X̃n ∈ A)

∣∣∣+∣∣∣P(x0,γ0)(X̃n ∈ A)− π(A)
∣∣∣

≤(ε/2 + ε/2) + ε/2 = 3ε/2.

Therefore, the adaptive MCMC {Xn : n ≥ 0} is ergodic.

5.5 Proofs of Section 2.3

First we recall a previous result of [28, Theorem 5].

Proposition 7 ([28]). Let P (x, dy) be a Markov kernel on the state space X . Suppose there is a
set C ⊂ X , δ > 0, some integer m > 0, and a probability measure νm on X such that

Pm(x, ·) ≥ δνm(·) for x ∈ C.

Suppose further that there exist 0 < λ < 1, b > 0, and a function h : X × X → [1,∞) such that

E [h(X1, Y1) | X0 = x, Y0 = y] ≤ λh(x, y) + bIC×C((x, y)).

Let A := sup(x,y)∈C×C E[h(Xm, Ym) | X0 = x, Y0 = y], µ := L(X0) be the initial distribution, and π
be the stationary distribution. Then for any integer j > 0,

‖L(Xn)− π‖TV ≤ (1− δ)[j/m] + λn−jm+1Aj−1Eµ×π[h(X0, Y0)].

We now proceed to the proofs for this section.
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Proof of Theorem 3: Let {X(γ)
n : n ≥ 0} and {X(γ)

n : n ≥ 0} be two realizations of Pγ

for γ ∈ Y. Define h(x, y) := (V (x) + V (y))/2. From (ii) of S.G.E., E[h(X
(γ)
1 , Y

(γ)
1 ) | X(γ)

0 =

x, Y
(γ)

0 = y] ≤ λh(x, y) + bIC×C((x, y)). It is not difficult to get Pmγ V (x) ≤ λmV (x) + bm so

A := sup(x,y)∈C×C E[h(X
(γ)
m , Y

(γ)
m ) | X(γ)

0 = x, Y
(γ)

0 = y] ≤ λm supC V + bm =: B.

Consider L(X
(γ)
0 ) = δx and j :=

√
n. By Proposition 7,∥∥Pnγ (x, ·)− π(·)

∥∥
TV
≤ (1− δ)[

√
n/m] + λn−

√
nm+1B

√
n−1(V (x) + π(V ))/2. (39)

Note that the quantitative bound is dependent on x, n, δ, m, C, V and π, and independent of
γ. As n goes to infinity, the uniform quantitative bound of all

∥∥Pnγ (x, ·)− π(·)
∥∥

TV
tends to zero for

any x ∈ X .
Let {Xn : n ≥ 0} be the adaptive MCMC satisfying S.G.E. From (ii) of S.G.E., supn E[V (Xn) |

X0 = x,Γ0 = γ0] < ∞ so the process {V (Xn) : n ≥ 0} is bounded in probability. Therefore, for
any ε > 0, {Mε(Xn,Γn) : n ≥ 0} is bounded in probability given any X0 = x and Γ0 = γ0.

Proof of Corollary 2: From Eq. (6), letting λ = lim sup|x|→∞ supγ∈Y
PγV (x)
V (x) < 1, there exists

some positive constant K such that supγ∈Y
PγV (x)
V (x) < λ+1

2 for |x| > K. By V > 1, PγV (x) <
λ+1

2 V (x) for |x| > K. PγV (x) ≤ λ+1
2 V (x) + bI{z∈X :|z|≤K}(x) where b = supx∈{z∈X :|z|≤K} V (x).

5.6 Proof of Theorem 5

The theorem follows from Theorem 8, Theorem 9, Theorem 10, and Lemma 4 below. Theorem 10
shows that {V (Xn) : n ≥ 0} in the case (iii) is bounded in probability. The case (iii) is a special
case of S.P.E. with q = 1 so that the uniform quantitative bound of

∥∥Pnγ (x, ·)− π(·)
∥∥

TV
for γ ∈ Y

exists.

Lemma 4. Suppose that the family {Pγ : γ ∈ Y} is S.P.E.. If the stochastic process {Vl(Xn) : n ≥
0} is bounded in probability for some l ∈ {1, . . . , q}, then Containment is satisfied.

Proof: We use the notation in Theorem 4.
From S.P.E., for γ ∈ Y, let ρx,x′(dy) = δνγ(dy) (so ρx,x′(X ) = δ) and 4 := C × C. So,

ε+ = ε− = δ.
Note that the matrix I −A(β)

m is a lower triangle matrix. Denote (I −A(β)
m )−1 := (b

(β)
ij )i,j=0,··· ,q.

By the definition of B
(β)
l (x, n),

B
(β)
l (x, n) =

ε+
∑l

k=0 b
(β)
lk

∫
π(dy)W β

k (x, y)

S(l, n+ 1−m)β +
∑

j≥n+1−m(1− ε+)j−(n−m)(S(l, j + 1)β − S(l, j)β)

≤ ε+

S(l, n+ 1−m)β

l∑
k=0

b
(β)
lk

∫
π(dy)W β

k (x, y).

By some algebra, for k = 1, · · · , q,

∫
π(dy)W β

k (x, y) ≤ 1 +

(
m(V0)

k−1∏
i=0

ai

)−β [
V β
k (x) + π(V β

k )
]

(40)
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because β ∈ (0, 1]. In addition, m(V0) ≥ c0 so the coefficient of the second term on the right hand
side is finite.

By induction, we obtain that b
(β)
10 = A

(β)
m (1)

(1−A(β)
m (0))2

, and b
(β)
11 = 1

1−A(β)
m (0)

. It is easy to check that

0 < b
(β)
11 ≤ 1

δ .
By some algebra,

A(β)
m (1) ≤mβ + sup

(x,x′)∈C×C

∫
Rx,x′(x, dy)Rx,x′(x

′, dy′)W β
1 (y, y′)

≤mβ + sup
(x,x′)∈C×C

[
1 + (a0m(V0))−β(Pmγ V

β
1 (x) + Pmγ V

β
1 (x′))

]
≤mβ + 1 + 2(a0m(V0))−β(sup

x∈C
V1(x) +mb0)

because Pmγ V
β

1 (x) ≤ Pmγ V1(x) ≤ V1(x) +mb0. Therefore, b
(β)
10 is bounded from the above by some

value independent of γ.
Thus,

B
(β)
1 (x, n) ≤ δ

S(1, n+ 1−m)β

(
b
(β)
10

∫
π(dy)W β

0 (x, y) + b
(β)
11

∫
π(dy)W β

1 (x, y)

)
≤ δ

(n+ 1−m)β

(
b
(β)
10 π(C) + b

(β)
11

[
1 + (a0m(V0))−β(V β

1 (x) + π(V β
1 ))
])
.

Therefore, the boundedness of the process {V1(Xk) : k ≥ 0} implies that the random sequence

B
(β)
1 (Xn, n) converges to zero uniformly on X in probability. Containment holds.

Let {Zj : j ≥ 0} be an adaptive sequence of positive random variables. For each j, Zj will
denote a fixed Borel measurable function of Xj . τn will denote any stopping time starting from
time n of the process {Xi : i ≥ 0} i.e. [τn = i] ⊂ σ(Xk : k = 1, · · · , n+ i) and P(τn <∞) = 1.

Lemma 5 (Dynkin’s Formula for adaptive MCMC). For m > 0, and n > 0,

E[Zτ̃m,n | Xm,Γm] = Zm + E[

τ̃m,n∑
i=1

(E[Zm+i | Fm+i−1]− Zm+i−1) | Xm,Γm]

where τ̃m,n := min(n, τm, inf(k ≥ 0 : Zm+k ≥ n)).

Proof:

Zτ̃m,n = Zm +

τ̃m,n∑
i=1

(Zm+i − Zm+i−1) = Zm +

n∑
i=1

I(τ̃m,n ≥ i)(Zm+i − Zm+i−1)

Since τ̃m,n ≥ i is measurable to Fm+i−1,

E[Zτ̃m,n | Xm,Γm] =Zm + E[

n∑
i=1

E[Zm+i − Zm+i−1 | Fm+i−1]I(τ̃m,n ≥ i) | Xm,Γm]

=Zm + E[

τ̃m,n∑
i=1

(E[Zm+i | Fm+i−1]− Zm+i−1) | Xm,Γm].
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Lemma 6 (Comparison Lemma for adaptive MCMC). Suppose that there exist two sequences of
positive functions {sj , fj : j ≥ 0} on X such that

E[Zj+1 | Fj ] ≤ Zj − fj(Xj) + sj(Xj). (41)

Then for a stopping time τn starting from the time n of the adaptive MCMC {Xi : i ≥ 0},

E[

τn−1∑
j=0

fn+j(Xn+j) | Xn,Γn] ≤ Zn(Xn) + E[

τn−1∑
j=0

sn+j(Xn+j) | Xn,Γn].

Proof: From Lemma 5 and Eq. (41), the result can be obtained.

The following proposition shows the relations between the moments of the hitting time and the test
function V -modulated moments for adaptive MCMC algorithms with S.P.E., which is derived from
the result for Markov chain in [17, Theorem 3.2]. Define the first return time and the ith return
time to the set C from the time n respectively:

τn,C := τn,C(1) := min {k ≥ 1 : Xn+k ∈ C} (42)

and
τn,C(i) := min {k > τn,C(i− 1) : Xn+k ∈ C} for n ≥ 0 and i > 1. (43)

Proposition 8. Consider an adaptive MCMC {Xi : i ≥ 0} with the adaptive parameter {Γi : i ≥ 0}.
If the family {Pγ : γ ∈ Y} is S.P.E., then there exist some constants {di : i = 0, · · · , q − 1} such
that at the time n, for k = 1, · · · , q,

cq−kE[τkn,C | Xn,Γn]

k
≤E[

τn,C−1∑
i=0

(i+ 1)k−1Vq−k(Xn+i) | Xn,Γn]

≤dq−k(Vq(Xn) +
k∑
i=1

bq−iIC(Xn))

where the test functions {Vi(·) : i = 0, · · · , q}, the set C, {ci : i = 0, · · · , q − 1}, and {bi : i =
0, · · · , q − 1} are defined in the S.P.E..

Proof:
τn,C−1∑
i=0

(i+ 1)k−1 ≥
∫ τn,C

0
xk−1dx = k−1τkn,C .

Since Vq−k(x) ≥ cq−k on X ,

E[

τn,C−1∑
i=0

(i+ 1)k−1Vq−k(Xn+i) | Xn,Γn] ≥
cq−k
k

E[τkn,C | Xn,Γn]. (44)

So, the first inequality holds.
Consider k = 1. By S.P.E. and Lemma 6,

E[

τn,C−1∑
i=0

Vq−1(Xn+i) | Xn,Γn] ≤ Vq(Xn) + bq−1IC(Xn). (45)
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So, the case k = 1 of the second inequality of the result holds.
For i ≥ 0, by S.P.E.,

E[(i+ 1)k−1Vq−k+1(Xn+i+1) | Xn+i,Γn+i]− ik−1Vq−k+1(Xn+i)

≤(i+ 1)k−1 (Vq−k+1(Xn+i)− Vq−k(Xn+i) + bq−kIC(Xn+i))− ik−1Vq−k+1(Xn+i)

≤− (i+ 1)k−1Vq−k(Xn+i) + d̃
(
ik−2Vq−k+1(Xn+i) + (i+ 1)k−1bq−kIC(Xn+i)

)
for some positive d̃ independent of i.

By Lemma 6,

E[

τn,C−1∑
i=0

(i+ 1)k−1Vq−k(Xn+i) | Xn,Γn] ≤

d̃E[

τn,C−1∑
i=0

i(k−1)−1Vq−(k−1)(Xn+i) | Xn,Γn] + bq−kIC(Xn).

(46)

From the above equation, by induction, the second inequality of the result holds.

Theorem 8. Suppose that the family {Pγ : γ ∈ Y} is S.P.E. for q > 2. Then, Containment holds.

Proof: For k = 1, . . . , q, take large enough M > 0 such that C ⊂ {x : Vq−k(x) ≤M},

P(x0,γ0) (Vq−k(Xn) > M) =

n∑
i=0

P(x0,γ0) (Vq−k(Xn) > M, τi,C > n− i,Xi ∈ C) +

P(x0,γ0) (Vq−k(Xn) > M, τ0,C > n,X0 /∈ C) .

By Proposition 8, for i = 0, · · · , n,

P(x0,γ0) (Vq−k(Xn) > M, τi,C > n− i | Xi ∈ C)

≤P(x0,γ0)

τi,C−1∑
j=0

(j + 1)k−1Vq−k(Xi+j) > (n− i)k−1M+

cq−k

n−i−1∑
j=0

(j + 1)k−1, τi,C > n− i | Xi ∈ C


≤P(x0,γ0)

τi,C−1∑
j=0

(j + 1)k−1Vq−k(Xi+j) > (n− i)k−1M+

cq−k

n−i−1∑
j=0

(j + 1)k−1 | Xi ∈ C


≤

supx∈C E(x0,γ0)

[
E(x0,γ0)

[∑τi,C−1
j=0 (j + 1)k−1Vq−k(Xi+j) | Xi,Γi

]
| Xi = x

]
(n− i)k−1M + cq−k

∑n−i−1
j=0 (j + 1)k−1

≤
dq−k

(
supx∈C Vq(x) +

∑k
j=1 bq−jIC(x)

)
(n− i)k−1M + cq−k

∑n−i−1
j=0 (j + 1)k−1

,
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and

P(x0,γ0) (Vq−k(Xn) > M, τ0,C > n | X0 /∈ C) ≤
dq−k

(
Vq(x0) +

∑k
j=1 bq−jIC(x0)

)
nk−1M + cq−k

∑n−1
j=0 (j + 1)k−1

.

By simple algebra,

(n− i)k−1M + cq−k

n−i−1∑
j=0

(j + 1)k−1 = O
(

(n− i)k−1 (M + cq−k(n− i))
)
.

Therefore,

P(x0,γ0) (Vq−k(Xn) > M)

≤ dq−k

 sup
x∈C∪{x0}

Vq(x) +
k∑
j=1

bq−j


(

n∑
i=0

P(x0,γ0)(Xi ∈ C)

(n− i)k−1 (M + cq−k(n− i))
+

δCc(x0)

nk−1 (M + cq−kn)

)
.

(47)

Whenever q ≥ 2, k can be chosen as 2. While k ≥ 2, the summation of L.H.S. of Eq. (47) is
finite given M . But if q = 2 then just the process {V0(Xn) : n ≥ 0} is bounded probability so that
q > 2 is required for the result. Hence, taking large enough M > 0, the probability will be small
enough. So, the sequence {Vq−2(Xn) : n ≥ 0} is bounded in probability. By Lemma 4, Containment
holds.

Remark 20. In the proof, only (A3) is used.

Remark 21. If V0 is a “nice” non-decreasing function of V1, then the sequence {V1(Xn) : n ≥ 0}
is bounded in probability. In Theorem 10, we discuss this situation for certain simultaneously single
polynomial drift condition.

Theorem 9. Suppose that {Pγ : γ ∈ Y} is S.P.E. for q = 2. Suppose that there exists a strictly
increasing function f : R+ → R+ such that V1(x) ≤ f(V0(x)) for all x ∈ X . Then, Containment is
implied.

Proof: From Eq. (47), we have that {V0(Xn) : n ≥ 0} is bounded in probability. Since V1(x) ≤
f(V0(x)),

P(x0,γ0) (V1(Xn) > f(M)) ≤ P(x0,γ0) (f(V0(Xn)) > f(M)) = P(x0,γ0) (V0(Xn) > M) ,

because f(·) is strictly increasing. By the boundedness of V0(Xn), for any ε > 0, there exists N > 0
and some M > 0 such that for n > N , P(x0,γ0) (V1(Xn) > f(M)) ≤ ε. Therefore, {V1(Xn) : n ≥ 0}
is bounded in probability. By Lemma 4, Containment is satisfied.

Consider the single polynomial drift condition, see [17]: PγV (x)−V (x) ≤ −cV α(x) + bIC(x) where
0 ≤ α < 1. Because the moments of the hitting time to the set C is (see details in [17]), for any
1 ≤ ξ ≤ 1/(1− α),

Ex

[
τC−1∑
i=0

(i+ 1)ξ−1V (Xi)

]
< V (x) + bIC(x).
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The polynomial rate function r(n) = nξ−1. If α = 0, then r(n) is a constant. Under this situation, it
is difficult to utilize the technique in Theorem 8 to prove {V (Xn) : n ≥ 0} is bounded in probability.
Thus, we assume α ∈ (0, 1).

Proposition 9. Consider an adaptive MCMC {Xn : n ≥ 0} with an adaptive scheme {Γn : n ≥ 0}.
Suppose that (A1) holds, and there exist some positive constants c > 0, > b > 0, α ∈ (0, 1), and a
measurable function V (x) : X → R+ with V (x) ≥ 1 and sup

x∈C
V (x) <∞ such that

PγV (x)− V (x) ≤ −cV α(x) + bIC(x) for γ ∈ Y. (48)

Then for 1 ≤ ξ ≤ 1/(1− α),

E(x0,γ0)

τn,C−1∑
i=0

(i+ 1)ξ−1V 1−ξ(1−α)(Xn+i) | Xn,Γn

 ≤ cξ(C)(V (Xn) + 1). (49)

Proof: The proof applies the techniques in Lemma 3.5 and Theorem 3.6 of [17].

Theorem 10. Suppose that (A2) and the conditions in Proposition 9 are satisfied, and there exists
some constant b′ > b such that cV α(x)ICc > b′ for all x ∈ X . Then, Containment is implied.

Proof: Using the same techniques in Theorem 8, we have that

P(x0,γ0)

(
V 1−ξ(1−α)(Xn) > M

)
≤ cξ

(
supx∈C∪{x0} V (x) + 1

)(∑n
i=0

P(x0,γ0)(Xi∈C)

(n−i)ξ−1(M+n−i) + δCc (x0)
nξ−1(M+n)

) . (50)

Therefore, for ξ ∈ [1, 1/(1−α)), the sequence
{
V 1−ξ(1−α)(Xn) : n ≥ 0

}
is bounded in probability.

Since 1 − ξ(1 − α) > 0, the process {V (Xn) : n ≥ 0} is bounded in probability. By Lemma 4,
Containment holds.

5.7 Proof of Theorem 6

Before we prove Theorem 6, we recall [16, Lemma 4.2].

Lemma 7. Let x and z be two distinct points in Rd, and let ξ = n(x− z). If 〈ξ,m(y)〉 6= 0 for all
y on the line from x to z, then z does not belong to

{
y ∈ Rd : π(y) = π(x)

}
.

Consider the test function V (x) = cπ−s(x) for some c > 0 and s ∈ (0, 1) such that V (x) ≥ 1.
By some algebra,

PγV (x)/V (x) =

∫
A(x)−x

(
πs(x)

πs(x+ z)

)
qγ(z)µd(dz)+∫

R(x)−x

(
1− π(x+ z)

π(x)
+
π1−s(x+ z)

π1−s(x)

)
qγ(z)µd(dz),

where the acceptance regionA(x) := {y ∈ X |π(y) ≥ π(x)}, and the potential rejection regionR(x) :=
{y ∈ X |π(y) < π(x)}. From [21, Proposition 3], we have PγV (x) ≤ r(s)V (x) where r(s) :=
1 + s(1− s)−1+1/s.
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Proposition 10. Suppose that the target density π is exponentially tailed. Under Assumptions
1–4, Containment holds.

Proof: Note that it is not difficult to check that for s ∈ (0, 1), π(V ) <∞ by utilizing Definition 2.
Consider s ∈ [0, 1/2). Under Assumption 4, let

h(α, s) = r′(s) +
1

(1− s)2
−

α

1− s
inf

(u,γ)∈Sd−1×Y

∫
Cδ,∆(u,ε)

|z|
[
e−αs|z| − e−α(1−s)|z|

]
qγ(z)µd(dz) and

H(α, s) = 1 +

∫ s

0
h(α, t)dt

where ε, β, δ,∆, and Cδ,∆(·, ·) are defined in Assumption 4. So, H(βε/3, 0) = 1 and

∂H(βε/3, 0)

∂s
= h(βε/3, 0) ≤ e−1 + 1− βε(1− e−1)

3
inf

(u,γ)∈Sd−1×Y

∫
Cδ,∆(u,ε)

|z| qγ(z)µd(dz) < 0.

Therefore, there exists s0 ∈ (0, 1/2) such that H(βε/3, s0) < 1.

Denote C(x) := x − Cδ,∆(n(x), ε) and C>(x) := x + Cδ,∆(n(x), ε). For |x| ≥ 2∆ and y ∈
C(x) ∪ C>(x), |y| ≥ |x| −∆ ≥ ∆ so |n(y)− n(x)| < ε/3.

Since the target density π(·) is exponentially tailed and Assumption 2, for sufficiently large
|x| > K1 with some K1 > 2∆, 〈n(x),∇ log π(x)〉 ≤ −β and 〈n(x),m(x)〉 ≤ −ε. Then there
exists some K2 > K1 such that for |x| ≥ K2, 〈n(y),m(y)〉 ≤ −ε for y ∈ C(x) ∪ C>(x). Thus,

|∇ log π(y)| = 〈n(y),∇ log π(y)〉
〈n(y),m(y)〉 ≥ β. Moreover, y = x± aξ for some δ ≤ a ≤ ∆ and ξ ∈ Sd−1. So,

〈ξ,m(y)〉 = 〈ξ − n(x),m(y)〉+ 〈n(x)− n(y),m(y)〉+ 〈n(y),m(y)〉 < −ε/3. (51)

Hence, by Lemma 7, for |x| > K2,

C(x) ∩
{
y ∈ Rd : π(y) = π(x)

}
= ∅ and C>(x) ∩

{
y ∈ Rd : π(y) = π(x)

}
= ∅.

For y = x+ aξ ∈ C>(x),

π(y)− π(x) =

∫ a

0
〈ξ,∇π(x+ tξ)〉 dt

=

∫ a

0
〈ξ, n(∇π(x+ tξ))〉 |∇π(x+ tξ)| dt

<− ε

3

∫ a

0
|∇π(x+ tξ)| dt ≤ 0

so that C>(x) ⊂ R(x). Similarly, C(x) ⊂ A(x).
Consider the test function V (x) = cπ−s0(x) for some c > 0 such that V (x) > 1. By Assump-

tion 1, for any compact set C ⊂ Rd, sup
x∈C

V (x) <∞.

For any sequence {xn : n ≥ 0} with |xn| → ∞, there exists some N > 0 such that n > N ,
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|xn| > K2. We have

PγV (xn)/V (xn) =

∫
{C(xn)−xn}∪{C>(xn)−xn}

Ixn,s0(z)qγ(z)µd(dz)+∫
{C(xn)−xn}c∩{C>(xn)−xn}c

Ixn,s0(z)qγ(z)µd(dz),

where

Ixn,s0(z) =

{
πs0 (xn)
πs0 (xn+z) , z ∈ A(xn)− xn,
1− π(xn+z)

π(xn) + π1−s0 (xn+z)
π1−s0 (xn)

, z ∈ R(xn)− xn.

For z = aξ ∈ C>(xn)− xn and t ∈ (0, |z|), by Eq. (51)

〈ξ,∇ log π(xn + tξ)〉 = 〈ξ,m(xn + tξ)〉 |∇ log π(xn + tξ)| < −εβ/3.

So, by Assumption 4,

π(xn + z)

π(xn)
= elog π(xn+z)−log π(xn) = e

∫ |z|
0 〈ξ,∇ log π(xn+tξ)〉dt ≤ e−βε|z|/3 ≤ e−βεδ/3 ≤ e−1.

Similarly, for z = −aξ ∈ C(xn)− xn,

π(xn)

π(xn + z)
≤ e−βε|z|/3 ≤ e−1.

t1−s0 − t ≤ 1
1−s0 t

1−s0 − t. Since t→ 1
1−s0 t

1−s0 − t is an increasing function on [0, 1],∫
{C(xn)−xn}∪{C>(xn)−xn}

Ixn,s0(z)qγ(z)µd(dz)

≤
∫
C(xn)−xn

1

1− s0
e−s0βε|z|/3qγ(z)µd(dz)+∫

C>(xn)−xn

(
1− e−βε|z|/3 +

1

1− s0
e−(1−s0)βε|z|/3

)
qγ(z)µd(dz).

On the other hand, ∫
{C(xn)−xn}c∩{C>(xn)−xn}c

Ixn,s0(z)qγ(z)µd(dz)

≤r(s0)Qγ

(
{C(xn)− xn}c ∩

{
C>(xn)− xn

}c)
.

Define Kx,γ(t) :=
∫
C(x)−x e

−t|z|qγ(z)µd(dz) =
∫
C>(x)−x e

−t|z|qγ(z)µd(dz), and

Hx,γ(θ, t) :=
Kx,γ(tθ)

1− t
+Kx,γ(0)−Kx,γ(θ) +

Kx,γ((1− t)θ)
1− t

+ r(t)(1− 2Kx,γ(0)).

So,
PγV (xn)/V (xn) ≤ Hxn,γ(βε/3, s0).
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Clearly, Kx,γ(t) ≤ 1/2. For 0 ≤ t < 1/2,

∂Hx,γ(θ, t)

∂t

=r′(t)(1− 2Kx,γ(0)) +
Kx,γ(θt) +Kx,γ(θ(1− t))

(1− t)2
+

θ

1− t

(
K
′
x,γ(θt)−K ′x,γ(θ(1− t))

)
≤r′(t) +

1

(1− t)2
− θ

1− t

∫
C(x)−x

(
e−θt|z| − e−θ(1−t)|z|

)
|z| qγ(z)µd(dz)

≤h(θ, t).

Since Hx,γ(θ, 0) = 1, Hx,γ(θ, t) ≤ H(θ, t) for 0 ≤ t < 1/2. Thus, Hxn,γ(βε/3, s0) ≤ H(βε/3, s0) < 1

so lim sup
|x|→∞

sup
γ∈Y

PγV (x)
V (x) < 1. By Corollary 2, Containment holds.

Remark 22. Jarner and Hansen [16] shows that if under Assumption 2 the target density is
lighter-than-exponential tailed, then the random-walk-based Metropolis algorithms are geometrically
ergodic. The technique in Proposition 10 can be also applied to MCMC. So, even if the target
density is exponentially tailed under some moment condition similar as Eq. (22), any random-
walk-based Metropolis algorithm is still geometrically ergodic. In fact, our symmetry assumption
(q(x, y) = q(x− y) = q(y − x)) is a little weaker than the assumption (q(x, y) = q(|x− y|)) of [16].

Proof of Theorem 6: For (ii), by Proposition 10, Containment holds. Then ergodicity is im-
plied by Containment and Diminishing Adaptation.

For (i), From Assumption 3, for any ε ∈ (0, η1) and any u ∈ Sd−1,∫
Cζ/2,ζ(u,ε)

|z| qγ(z)µd(dz) ≥
ιζVol(Cζ/2,ζ(u, ε))

2

where ι is defined in Eq. (20), ζ is defined in Assumption 3, Ca,b(·, ·) is defined in Eq. (21). The
right hand side of the above equation is positive and independent of γ and u. Since target density
is lighter-than-exponentially tailed, η2 := − lim sup|x|→∞ 〈n(x),∇ log π(x)〉 = +∞ such that there
is some sufficiently large β such that Eq. (22) holds. So, Assumption 4 is satisfied.

For (iii), adopting the proof of [12, Theorem 5], we will show that the simultaneous drift condition
Eq. (14) holds. Denote

R(g, x, y) := g(y)− g(x)− 〈∇g(x), y − x〉 .

Consider the test function V (x) := 1 + fs(x) where f(x) := − log π(x) for 2
m − 1 < s <

min( 2
m ,

3
m − 2) where m is defined in Definition 3.

So,

PγV (x)− V (x) = Pγf
s(x)− fs(x) =

4∑
j=0

Ij(x, γ),
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where M is defined in Assumption 5 and

I0(x, γ) :=− sf s−1(x) |∇f(x)|2
∫
R(x)−x∩{|z|≤M}

〈m(x), n(z)〉2 |z|2 qγ(z)µd(dz),

I1(x, γ) :=

∫
{|z|≤M}

R(fs, x, x+ z)qγ(z)µd(dz),

I2(x, γ) :=

∫
R(x)−x∩{|z|≤M}

R(fs, x, x+ z)
R(π, x, x+ z)

π(x)
qγ(z)µd(dz)

I3(x, γ) :=

∫
R(x)−x∩{|z|≤M}

R(f s, x, x+ z) 〈∇f(x), z〉 qγ(z)µd(dz)

I4(x, γ) :=

∫
R(x)−x∩{|z|≤M}

R(π, x, x+ z)

π(x)
〈∇fs(x), z〉 qγ(z)µd(dz).

By [12, Lemma B.4] and Assumption 5,

|I1(x, γ)| = O(|x|ms−2), |I2(x, γ)| = O(|x|m(s+2)−4),

|I3(x, γ)| = O(|x|m(s+1)−3), |I4(x, γ)| = O(|x|m(s+2)−3).

Note that the O(·)s in the above equations are independent of γ. Since 2
m −1 < s < min( 2

m ,
3
m −2),

|I1(x, γ)|, |I2(x, γ)|, |I3(x, γ)| and |I4(x, γ)| converge to zero as |x| → ∞.
By Assumption 2, for ε ∈ (0, η1) (η1 is defined in Eq. (19)), 〈n(x),m(x)〉 < −ε as |x| is suffi-

ciently large. By Assumption 3, for sufficiently large |x|, for any z ∈ C0,ζ(n(x), ε) (ζ is defined in
Assumption 3, ι is defined in Eq. (20), and C·,·(·, ·) is defined in Eq. (21)),

−1 ≤ 〈m(x), n(z)〉 = 〈m(x), n(x)〉+ 〈m(x), n(z)− n(x)〉 ≤ −ε+ ε/3.

Thus,

I0(x, γ) ≤− 4ε2ιsf s−1(x) |∇f(x)|2

9

∫
C0,ζ(n(x),ε)

|z|2 µd(dz)

=− c1f
s−1(x) |∇f(x)|2 ≤ c2f

s−(2−m)/m(x),

for some c1 > 0 (independent of x) where C0,ζ(n(x), ε) = C0,ζ(u, ε) for any u ∈ Sd−1.
So, there exist some K > 0 and some c3 > 0 such that V (x) > 1.1 and PγV (x) − V (x) ≤

−c3V
α(x) for |x| > K, some α ∈ (0, 1). Let Ṽ (x) := V (x)I(|x| > K) + I(|x| ≤ K). So,

Pγ Ṽ (x)− Ṽ (x) ≤ −c3Ṽ
α(x) + c3I(|x| ≤ K).

Hence, by Theorem 5, Containment holds.

5.8 Proof of Proposition 5

Note that in the proof of Theorem 6, some test function V (x) = cπ−s(x) for some s ∈ (0, 1) and
some c > 0 is found such that S.G.E. holds.

To check Diminishing Adaptation, it is sufficient to check that both ‖Σn − Σn−1‖M and
∣∣Xn −Xn−1

∣∣
converge to zero in probability where ‖·‖M is matrix norm.

We compute by standard algebraic manipulation that

Σn − Σn−1

=
1

n+ 1
XnX

>
n −

1

n− 1

(
1

n

n−1∑
i=0

XiX
>
i

)
+

2n

n2 − 1
Xn−1X

>
n−1 −

1

n+ 1

(
XnX

>
n−1 +Xn−1X

>
n

)
.
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Hence,
‖Σn − Σn−1‖M

≤ 1
n+1

∥∥XnX
>
n

∥∥
M

+ 1
n−1

∥∥∥ 1
n

∑n−1
i=0 XiX

>
i

∥∥∥
M

+ 2
n

∥∥∥Xn−1X
>
n−1

∥∥∥
M

+

1
n+1

∥∥∥XnX
>
n−1 +Xn−1X

>
n

∥∥∥
M
.

(52)

indent To prove Σn−Σn−1 converges to zero in probability, it is sufficient to check that
∥∥XnX

>
n

∥∥
M

,∥∥∥ 1
n

∑n−1
i=0 XiX

>
i

∥∥∥
M

,
∥∥∥Xn−1X

>
n−1

∥∥∥
M

and
∥∥∥XnX

>
n−1 +Xn−1X

>
n

∥∥∥
M

are bounded in probability.

Since lim sup
|x|→∞

〈n(x),∇ log π(x)〉 < 0, there exist some K > 0 and some β > 0 such that

sup
|x|≥K

〈n(x),∇ log π(x)〉 ≤ −β.

For |x| ≥ K, log π(y)−log π(x)
(r−1)|x| ≤ −β where r > 1 and y = rx, i.e.

(
π(y)
π(x)

)−s
≥ esβ

r−1
r
|y|. Tak-

ing x0 ∈ Rd with |x0| = K, V (x) = cπ−s(x0)
(
π(x)
π(x0)

)−s
≥ caesβ

r−1
r
|x| for x = rx0, r > 1, and

a := inf
|y|≤K

π−s(y) > 0, because of Assumption 1. If r ≥ 2 then r−1
r ≥ 0.5. Therefore, as |x| is

extremely large, V (x) ≥ |x|2. We know that supn E[V (Xn)] <∞ (See Theorem 18 in [23]).
Since

∥∥XnX
>
n

∥∥
M

:= sup
|u|=1

u>XnX
>
n u ≤ sup

|u|=1
|u|2 |Xn|2 ≤ |Xn|2,

∥∥XnX
>
n

∥∥
M

is bounded in prob-

ability.
Obviously, ∥∥∥∥∥ 1

n

n−1∑
i=0

XiX
>
i

∥∥∥∥∥
M

≤ 1

n

n−1∑
i=0

∥∥∥XiX
>
i

∥∥∥
M
.

Then, for K > 0,

P

(
1

n

n−1∑
i=0

∥∥∥XiX
>
i

∥∥∥
M
> K

)
≤ 1

K

1

n

n−1∑
i=0

E
[∥∥∥XiX

>
i

∥∥∥
M

]
≤ 1

K

1

n

n−1∑
i=0

E
[
|Xi|2

]
≤ 1

K
sup
n

E[V (Xn)].

Hence,
∥∥∥ 1
n

∑n−1
i=0 XiX

>
i

∥∥∥
M

is bounded in probability.∣∣Xn

∣∣ ≤ 1
n+1

∑n
i=0 |Xi|. So,

P(
∣∣Xn

∣∣ > K) ≤ 1

K

1

n+ 1

n∑
i=0

E[|Xi|] ≤
1

K
sup
n

E[V (Xn)].

∣∣Xn

∣∣ is bounded in probability. Hence,
∥∥∥Xn−1X

>
n−1

∥∥∥
M

is bounded in probability.

Finally, ∥∥∥XnX
>
n−1 +Xn−1X

>
n

∥∥∥
M
≤ 2 |Xn|

∣∣Xn−1

∣∣ .
Therefore,

∥∥∥XnX
>
n−1 +Xn−1X

>
n

∥∥∥
M

is bounded in probability.
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5.9 Proof of Lemma 1

For u ∈ Sd−1,∫
Cδ,∆(u,ε)

|z| g(|z|)µd(dz) =

∫ ∆

δ
g(t)tddt

∫
{ξ∈Sd−1 : |ξ−u|<ε/3}

ω(dξ).

where ω(·) denotes the surface measure on Sd−1.
By the symmetry of u ∈ Sd−1, let u = ed := (0, · · · , 0︸ ︷︷ ︸

d−1

, 1). So, the projection from the piece{
ξ ∈ Sd−1 : |ξ − u| < ε/3

}
of the hypersphere Sd−1 to the subspace Rd−1 generated by the first

d − 1 coordinates is d − 1 hyperball Bd−1(0, r) with the center 0 and the radius r = ε
18

√
36− ε2.

Define f(z) =
√

1− (z2
1 + · · ·+ z2

d−1).

ω
({
ξ ∈ Sd−1 : |ξ − u| < ε/3

})
=

∫
Bd−1(0,r)

√
1 + |∇f |2dz1 · · · dzd−1

=
(d− 1)π

d−1
2

Γ(d+1
2 )

∫ r

0

ρd−2√
1− ρ2

dρ =
(d− 1)π

d−1
2

2Γ(d+1
2 )

Ber2

(
d− 1

2
,
1

2

)
.

Hence, ∫
Cδ,∆(u,ε)

|z| g(|z|)µd(dz) =
(d− 1)π

d−1
2

2Γ(d+1
2 )

Ber2

(
d− 1

2
,
1

2

)∫ ∆

δ
g(t)tddt. (53)

Therefore, the result holds.

5.10 Proof of Proposition 6

We compute that ∇π(x) = −λn(x)π(x). So, 〈n(x),∇ log π(x)〉 = −λ and 〈n(x),m(x)〉 = −1.
So, the target density is exponentially tailed, and Assumptions 1 and 2 hold. Obviously, each
proposal density is locally positive. Now, let us check Assumption 4 by using Lemma 1. Because

Vol(Bd(x,∆)) =
∆dπ

d
2

dΓ(d2 + 1)
,

the function g(t) defined in Lemma 1 is equal to 1
Vol(Bd(x,∆))

. η1 defined in Eq. (18) and η2 defined

in Eq. (19) are respectively λ and 1. Now, fix any ε ∈ (0, 1) and any δ ∈ ( 1
λ ,∞). The left hand side

of Eq. (26) is

(d− 1)π
d−1

2

2Γ(d+1
2 )

Ber2

(
d− 1

2
,
1

2

)∫ ∆

δ
g(t)tddt =

d(d− 1)

2(d+ 1)Be(d+1
2 , 1/2)

·Ber2

(
d− 1

2
,
1

2

)
·∆
(

1− δd+1

∆d+1

)
,

where Be(x, y) and Ber(x, y) are beta function and incomplete beta function, r is a function of ε
defined in Lemma 1.

Once fixed ε and δ, the first two terms in the right hand side of the above equation is fixed.
Then, as ∆ goes to infinity, the whole equation tends to infinity. So, there exists a large enough
∆ > 0 such that Eq. (26) holds. By Lemma 1, Assumption 4 holds. Then, by Proposition 10,
Containment holds. By Proposition 5, Diminishing Adaptation holds. By Theorem 1, the adaptive
Metropolis algorithm is ergodic.

32



Acknowledgements

We thank G. Fort and M. Vihola for helpful comments.

References
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