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Abstract. We study convergence of Markov chains {Xk} to their station-
ary distributions π(·). Much recent work has used coupling to get quantita-
tive bounds on the total variation distance between the law L(Xn) and π(·).
In this paper, we use shift-coupling to get quantitative bounds on the total

variation distance between the ergodic average law 1
n

n∑
k=1

L(Xk) and π(·).

This avoids certain problems, related to periodicity and near-periodicity of
the Markov chain, which have plagued previous work.

Keywords. shift-coupling, computable bounds, Markov chain Monte
Carlo, drift condition, minorization condition, small set.

1



1. INTRODUCTION.

Recent work of Meyn and Tweedie (1994), Rosenthal (1995), and Bax-
endale (1994) has used minorization conditions and drift conditions to ob-
tain quantitative bounds on convergence to stationarity of certain Markov
chains. Such bounds are particularly important in the applied area of
Markov chain Monte Carlo (see e.g. Gelfand and Smith, 1990; Smith and
Roberts, 1993), as a method of determining how long to run a Markov
chain until it can be regarded as approximately a sample from the desired
stationary distribution.

Much of this theoretical analysis has used the method of coupling (see
e.g. Lindvall, 1992), in which two different versions of the Markov chain
(one started in the stationary distribution) are defined jointly in such a
way that they are likely to be equal after a large number of iterations.
The coupling inequality then immediately provides bounds on the distance
to stationarity. One of the difficulties in applying such results is that the
two Markov chains must become equal at the same time. This can be
difficult to accomplish, and in particular it is plagued by difficulties related
to periodicity (or near-periodicity) of the underlying Markov chain.

In this paper, we avoid such difficulties by examining convergence of
ergodic averages 1

n

∑n
k=1 P (Xk ∈ ·) of the Markov chain distributions (see

e.g. Tierney, 1994, Section 3.3), rather than of the individual distributions
P (Xn ∈ ·) themselves. This allows us to replace the method of coupling
with the related method of shift-coupling (see Aldous and Thorisson, 1993;
Thorisson, 1992, Section 10; Thorisson, 1993; Thorisson, 1994), in which
two Markov chains are allowed to become equal at different times. From the
Monte Carlo perspective, this corresponds to sampling the chain at a time
chosen uniformly in {1, 2, . . . , n} rather than at time n. This will some-
times be a less efficient sampling method, however it avoids all problems
related to near-periodicity of the chain. (For other approaches to sampling
from complicated distributions, see Asmussen, Glynn, and Thorisson, 1992;
Propp and Wilson, 1995.)

Background and necessary results on shift-coupling are introduced in
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Section 2. Bounds using minorization and drift conditions, including a gen-
eralization involving multiple minorization conditions and also connections
to potential theory, are presented in Section 3. Bounds for various examples
are presented in Section 4.

2. BOUNDS INVOLVING SHIFT-COUPLING.

Let P (·, ·) be the transition probabilities for a Markov chain on a (possi-
bly continuous) state space X . Let {Xk}∞k=0 and {X ′

k}∞k=0 be two processes
defined jointly on X , each marginally following the transition probabili-
ties P (·, ·). Let T and T ′ be non-negative-extended-integer-valued random
variables, such that if T, T ′ < ∞, then for each non-negative integer n,

XT+n = X ′
T ′+n .

Then, following Aldous and Thorisson (1993), we call T and T ′ shift-
coupling epochs.

Ordinary coupling requires that T = T ′, in which case the total varia-
tion distance between the laws of Xk and X ′

k satisfies

‖L(Xk) − L(X ′
k)‖ ≡ sup

A⊆X
|P (Xk ∈ A) − P (X ′

k ∈ A)| ≤ P (T > k) .

This is the well-known coupling inequality. Shift-coupling cannot possibly
bound ‖L(Xk)−L(X ′

k)‖, since for example it cannot rule out periodic be-
haviour. However, it can be used to bound convergence of ergodic averages.
The following bound is stated in Thorisson (1992, equation 10.2); for a
proof see Thorisson (1993) or Thorisson (1994).

Proposition 1. Let {Xk}, {X ′
k}, T , and T ′ be as above. Then the total

variation distance between ergodic averages of {Xk} and {X ′
k} satisfies∥∥∥∥ 1

n

n∑
k=1

P (Xk ∈ ·) − 1
n

n∑
k=1

P (X ′
k ∈ ·)

∥∥∥∥ ≤ 1
n
E (min (max(T, T ′), n)) .
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Remarks.
1. This proposition would usually be used with L(X ′

0) = π(·), where π is
a stationary distribution for the chain. Then 1

n

∑n
k=1 P (X ′

k ∈ A) =
π(A). The proposition then provides a bound on the total variation
distance between the stationary distribution π(·) and the average dis-
tribution 1

n

∑n
k=1 P (Xk ∈ ·) of the Markov chain of interest. Thus,

if we can construct shift-coupling epochs, and can bound quantities
of the form P (max(T, T ′) ≥ `), then we can bound the distance to
stationarity of ergodic averages.

2. The ergodic average of distributions 1
n

∑n
k=1 P (Xk ∈ ·) considered here

has an interpretation related to estimating π(A) by considering what
fraction of the Markov chain states X1, . . . , Xn lie in the set A. Such
estimation is a common technique in Markov chain Monte Carlo. The
above proposition then bounds (uniformly in the set A) the bias of this
estimator, i.e. the absolute-value difference of the expected value of
this estimator and the true quantity π(A).

3. The ergodic average of distributions considered here, 1
n

∑n
k=1 P (Xk ∈

·), is of course different from the distribution of ergodic averages,
P
(

1
n (
∑n

k=1 Xk) ∈ ·
)
. For the latter, few quantitative bounds are known,

but various central limit theorems are available; see Geyer (1992) for
a review. It is possible that shift-coupling could also be used in this
context; for example, if Xk, X ′

k ∈ R with |Xk|, |X ′
k| ≤ C for all k, then∣∣∣∣∣ 1n

(
n∑

k=1

Xk

)
− 1

n

(
n∑

k=1

X ′
k

)∣∣∣∣∣ ≤ 2C

n
max(T, T ′) .

One possible method of constructing shift-coupling epochs is to allow
{Xk} and {X ′

k} to each marginally follow the Markov chain transitions
P (·, ·), and to find times T and T ′ with XT = X ′

T ′ . We can then define
{X ′′

k } by X ′′
k = Xk for k ≤ T , and X ′′

k = X ′
k−T+T ′ for k ≥ T . Then T

and T ′ are shift-coupling epochs for {X ′′
k } and {X ′

k}, and L(X ′′
0 ) = L(X0).
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However, such a process {X ′′
k } will not necessarily marginally follow the

Markov chain transitions. We note that it suffices to have

L
(
X ′

n+1 |T, T ′n, X0, . . . , XT , X ′
0, . . . , X

′
n

)
= P (X ′

n, ·) , n = 0, 1, 2, . . . (∗)

(where T ′n = T ′ if T ′ ≤ n, otherwise T ′n = ∞); this implies that L(X ′′
0 , X ′′

1 , . . .)
= L(X0, X1, . . .). [In particular, (∗) is satisfied if the chains are independent
and the event {T = n, T ′ = n′} is determined by X1, . . . , Xn, X ′

1, . . . , X
′
n′ .]

In that case, we can apply our previous results to the chains {X ′′
k } and

{X ′
k}, to obtain

Corollary 2. Let {Xk} and {X ′
k} each marginally follow the Markov

chain transitions P (·, ·). Let T and T ′ be random times with XT = X ′
T ′ ,

and assume that (∗) is satisfied. Then∥∥∥∥ 1
n

n∑
k=1

P (Xk ∈ ·) − 1
n

n∑
k=1

P (X ′
k ∈ ·)

∥∥∥∥ ≤ 1
n
E (min(max(T, T ′), n)) .

One way to satisfy (∗) is to let T ′ = 0 always, let T = inf{n ≥ 0 ; Xn =
X ′

0}, and let {X ′
k} be conditionally independent of T,X0, . . . , XT given

X ′
0. Then max(T, T ′) = T . Furthermore, on a finite state space, if X ′

0 is
distributed according to a stationary distribution π(·), then the expectation
of T does not depend on the starting point X0 (Aldous, 1993, Chapter 2,
Corollary 13). We thus obtain

Corollary 3. Let P (·, ·) be the transition probabilities for a Markov chain

on a finite state space X , with stationary distribution π(·). Then uniformly

over all starting distributions L(X0), we have∥∥∥∥ 1
n

n∑
k=1

P (Xk ∈ ·) − π(·)
∥∥∥∥ ≤ 1

n
ET ,

where ET =
∑

j∈X π(j)Ei(Tj) is the expected time, starting from the point

i ∈ X , to hit a point j ∈ X chosen according to π(·); furthermore, ET does

not depend on i.
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Finally, we observe that most of this section applies equally well to
continuous-time processes, with virtually identical proofs. We leave the
details to the reader.

3. MINORIZATION AND DRIFT CONDITIONS.

Suppose our Markov chain, on a state space X , has transition probabil-
ities P (·, ·) which satisfy the following two inequalities, for some measurable
function V : X → [1,∞), some probability measure Q(·) on X , and some
λ < 1, Λ < ∞, ε > 0, and d ≥ 0. Write C = {x ∈ X |V (x) ≤ d}.
(i) (drift condition) E (V (X1) |X0 = x) ≤ λV (x) + Λ1C(x) for all x ∈ X ;
(ii) (minorization condition) P (x, ·) ≥ ε Q(·), for all x ∈ C.
These and related inequalities were used in Meyn and Tweedie (1994) and in
Rosenthal (1995) to construct couplings and thus obtain bounds on the dis-
tance from stationarity of the individual distributions L(Xn). We use them
here to construct shift-couplings and obtain simple bounds on the distance
from stationarity of ergodic averages 1

n

∑n
k=1 L(Xk) of the distributions.

Indeed, we shall define processes {Xk} and {X ′
k} as follows. We choose

X0 according to an initial distribution ν(·), and choose X ′
0 independently

according to a stationary distribution π(·). We let {Xk} proceed as fol-
lows. Given Xt−1, if V (Xt−1) > d then simply choose Xt ∼ P (Xt−1, ·). If
V (Xt−1) ≤ d, then flip and independent coin with probability of heads ε.
If the coin comes up heads, choose Xt ∼ Q(·) and set T = t. If the coin
comes up tails, choose Xt ∼ 1

1−ε (P (Xt−1, ·)− ε Q(·)). Continue in this way
for t = 1, 2, . . . , T , i.e. until after the first time the coin comes up heads.

We let the process {X ′
k} proceed similarly. Each time V (X ′

t−1) ≤ d, we
flip a new independent coin with probability of heads ε. If the coin comes
up heads, we set X ′

t = XT and set T ′ = t. If the coin comes up tails, choose
X ′

t ∼ 1
1−ε

(
P (X ′

t−1, ·)− ε Q(·)
)
. Continue in this way for t = 1, 2, . . . , T ′,

i.e. until after the first time the new coin comes up heads.
We thus have by construction that XT = X ′

T ′ . To complete the
joint definition for times after time T [resp. time T ′], we let {XT+m}
and {X ′

T ′+m} update identically from P (·, ·) so that XT+m = X ′
T ′+m for
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m = 1, 2, 3, . . ..
We have thus jointly constructed the processes {Xk} and {X ′

k} (each
marginally updated according to P (·, ·)) together with shift-coupling epochs
T and T ′. We now need only bound the tail probabilities P (max(T, T ′) >

k).
Now, using the drift condition and arguing as in Rosenthal (1995), we

have that for any j > 0,

P (T ≥ k) ≤ (1− ε)[j] + P (Nk < j) ,

where Nk is the number of times the process {Xm} returns to the set C up
to and including time k. But then if ri is the i’th return time of {Xm} to
C, then we have

P (Nk < j) = P (r1 + . . . + rj > k) = P (λ−(r1+...+rj) > λ−k)

≤ λkE
(
λ−(r1+...+rj)

)
≤ λkE (V (X0)) (λ−1A)j−1 ,

where we have used Markov’s inequality and bounds from Rosenthal (1995),
and where A = sup

x∈C
E(V (X1) |X0 = x) ≤ λd + Λ. We thus have that

P (T ≥ k) ≤ (1− ε)[j] + λk−j+1Aj−1Eν(V ) .

Similarly
P (T ′ ≥ k) ≤ (1− ε)[j] + λk−j+1Aj−1Eπ(V ) .

Furthermore it is easily verified that Eπ(V ) ≤ Λ
1−λ . Hence

P (max(T, T ′) ≥ k) ≤ P (T ≥ k) + P (T ′ ≥ k)

≤ 2(1− ε)[j] + λk−j+1Aj−1

(
Eν(V ) +

Λ
1− λ

)
.

Using Proposition 1, and setting j = rk + 1, we thus have
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Theorem 4. Suppose a Markov chain P (·, ·), on a state space X , with

initial distribution ν(·) and stationary distribution π(·), satisfies drift and

minorization conditions as in (i) and (ii) above. Then for any 0 < r < 1,

the total variation distance of the ergodic averages to stationarity satisfies∥∥∥∥ 1
n

n∑
k=1

P (Xk ∈ ·) − π(·)
∥∥∥∥ ≤

1
n

n∑
k=1

(
2(1− ε)rk + λ(1−r)kArk

(
Eν(V ) +

Λ
1− λ

))
.

Remarks.
1. The theorem allows for a range of (sufficiently small) values of r to be

used. Naturally, one would usually choose r so as to make the bound as
small as possible. An optimal value of r could perhaps be determined
by differentiation.

2. By replacing
n∑

k=1

by
∞∑

k=1

in the bound, and using that A ≤ λd + Λ, we

see that if r is small enough that λ(1−r)(λd + Λ)r < 1, then∥∥∥∥ 1
n

n∑
k=1

P (Xk ∈ ·) − π(·)
∥∥∥∥ ≤

1
n

(
2(1− ε)r

1− (1− ε)r
+

λ(1−r)(λd + Λ)r

1− λ(1−r)(λd + Λ)r

(
Eν(V ) +

Λ
1− λ

))
.

3. When verifying the minorization condition (ii), it is not necessary to
explicitly compute the measure Q(·). Indeed, all that is required is the
quantity ε, which may be thought of as the “overlap” of the various
transition probabilities from different points of C.

4. The hypotheses of this theorem are similar to those of recent results
of Meyn and Tweedie (1994) and Rosenthal (1995) concerning conver-
gence of individual distributions. However, certain extra conditions are

8



avoided. In Rosenthal (1995) it was required that d > 2Λ
1−λ to allow

for coupling at the same time. In Meyn and Tweedie (1994), it was
required that the chain have an atom, or be strongly aperiodic, to get
complete results and avoid problems related to periodicity. This the-
orem thus avoids certain troublesome difficulties often associated with
the convergence of individual distributions.

5. The bound in the theorem decreases only at rate O(1/n). But it is
easily seen that, if L(X0) 6= π(·), then no faster rate is possible. On
the other hand, the distance from stationarity of certain other ergodic
averages, such as 1

n

∑2n
n+1 P (Xk ∈ ·), will sometimes decrease at an

exponential rate O(ρn) for some ρ < 1, though it is not clear how such
faster bounds can be established using shift-coupling.

One problem with Theorem 4 is that sometimes (e.g. for nearly-periodic
chains) the small set C has to be chosen to be extremely small so as to allow
ε to be sufficiently large to be of practical value. However, this can lead to λ

becoming unacceptably large, rendering the bounds of Theorem 4 of little
practical use. Thus, we shall now consider an idea for using larger sets,
which are subsequently partitioned into a finite number of subsets, each
exhibiting a minorization condition. The number of partitioning sets can
be arbitrary for the approach adopted here. However since we are usually
(at least for MCMC) interested in Markov chains with real eigenvalues
which can only have period 1 or 2 (for example reversible chains), and also
for computational manageability, we restrict attention to the case of two
partitioning sets.

Let C = {x ∈ X : V (x) ≤ d} = C1 ∪C2, with C1 and C2 disjoint, such
that,

(i)(drift condition) E(V (X1)|X0 = x) ≤ λV (x)+Λ1C(x) for all x ∈ X .
(ii) (minorization condition) P (x, ·) ≥ εiQi(·) for all x ∈ Ci, i = 1, 2.
(iii) (transfer condition) Q1(C2) ≥ δ and Q2(C1) ≥ δ.
Construct the two processes X and X ′ as follows. First generate

two random variables Z1 and Z2 independently from Q1, Q2 respectively.
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Augment X by two indicator processes I1 and I2, defined jointly in the
following way. Set (I1)0 = (I2)0 = 0. For t ≥ 1, if Xt−1 ∈ Ci and
(Ii)t−1 = 0, then flip a coin with probability of heads εi. If a head oc-
curs, set Xt = Zi and (Ii)t = 1. If a tail occurs, generate Xt independently
from 1

1−εi
(P (Xt−1, ·)− εiQi(·)) and leave (Ii)t = 0. Otherwise generate Xt

independently from P (Xt−1, ·) and leave (Ii)t = (Ii)t−1. Thus, (Ii)t = 0
until such time as there is a regeneration from the set Ci, and afterwards
(Ii)t = 1.

Construct X ′ identically (but perhaps with a different starting distribu-
tion), and independently (conditional on the values Z1 and Z2, which are the
same for both processes); call its corresponding indicator processes I ′1 and
I ′2. The reason for this construction is that we can then define shift-coupling
epochs Ti and T ′i , for either i = 1 or i = 2, by Ti = min{t | (Ii)t = 1} and
T ′i = min{t | (I ′i)t = 1}. We then clearly have

min (max(T1, T
′
1), max(T2, T

′
2)) ≤ max(S, S′)

where S = inf{t; (I1I2)t = 1} and S′ = inf{t; (I ′1 + I ′2)t ≥ 1} (i.e. S is the
first time when X has regenerated from both of C1 and C2, while S′ is the
first time when X ′ has regenerated from either of C1 and C2). According
to the above construction, S and S′ are independent.

Exactly as before, we have that P (S′ > k) ≤ (1−ε)j+λk−j+1Aj−1Eπ(V ),
where ε = min(ε1, ε2). The corresponding bounds on S are similar but re-
quire a few additional observations.

As before, let Nk be the number of returns of the chain {Xt} to C up
to and including time k, and let ri be the ith return time. Then we have

Lemma 5. For any non-negative integer j,

P (S > k) ≤ (1− ε1ε2δ)j + P (Nk−1 < j) .
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Proof. We use the fact that one way for the process to have regenerated
from both C1 and C2 is to regenerate from one, and then immediately from
the other. This has probability at least ε1ε2δ. Thus, we shall modify the
above construction of X for the purpose of this proof, to get a minorization
for 2 consecutive iterations of the chain.

We do so by defining new “coin flips” as follows. At each iteration t,
if Xt ∈ C and we didn’t flip a coin at time t − 1, then flip one now, with
probability ε1ε2δ of a head. If we achieve a head, then generate Xt+1 from
Qi(t)(C−1

2−i(t)Qi(t)(·) restricted to C2−i(t), and Xt+2 from Q2−i(t)(·), where
i(t) = 1 or 2 as Xt ∈ C1 or C2, respectively. It is easy to verify that this is a
joint minorization for the next 2 iterations of the algorithm. The remaining
1− ε1ε2δ of probability mass is generated by any independent mechanism.

Then

P (S > k) = P (S > k, Nk−1 < j) + P (S > k, Nk−1 ≥ j)

= P (S > k, Nk−1 < j)+P (S > k, Nk−1 ≥ j, first j coin tosses produce tails )

≤ P (Nk−1 < j) + P (first j coin tosses produce tails )

≤ P (Nk−1 < j) + (1− ε1ε2δ)j

as required.

It remains to control the term P (Nk−1 < j). Exactly as before, we
have that for α > 1,

P (Nk−1 < j) ≤ α−(k−1)E(Πj
i=1α

ri)

Now suppose there exists a function V ≥ 1, and a constant α > 1, such
that

E(V (X1)|X0 = x) ≤ α−1V (x)
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for all x ∈ Cc. Then as in Rosenthal (1995, Lemma 4) we have that
E(αr1) ≤ E(V (X0)), and

E(αri |Fi−1) ≤ α2 sup
x∈C

E(V (X2)|X0 = x) ,

where Fi is the σ-algebra generated by the chain up to the ith return to C.
But

sup
x∈C

E(V (X2)|X0 = x)

= sup
x∈C

{E(V (X2)1Cc(X1)|X0 = x) + E(V (X2)1C(X1)|X0 = x)}

≤ sup
x∈C

{E(V (X2) |X1 = x)} + sup
x∈C

{α−1E(V (X1) |X1 = x)}

≤ (1 + α−1) sup
x∈C

E(V (X1)) .

Hence
E(αri |Fi−1) ≤ (1 + α−1)α2 sup

x∈C
E(V (X1)|X0 = x).

Putting these results together, and setting A = sup
x∈C

E(V (X1) |X0 = x)

as before, we obtain that

P (S > k) ≤ (1− ε1ε2δ)j + Aj−1E(V (X0))λk−2j+1.

Hence by exact analogy to the previous theorem, using that E(max(S, S′)) ≤
E(S) + E(S′), and setting j = rk + 1

2 , we have

Theorem 6. Suppose a Markov chain P (·, ·) on a state space X , with

initial distribution ν and stationary distribution π, satisfies conditions (i),
(ii), and (iii) above. Set ε = min(ε1, ε2). Then for any 0 < r < 1 such that

λ1−2rAr < 1,∥∥∥∥ 1
n

n∑
k=1

P (Xk ∈ ·) − π(·)
∥∥∥∥ ≤ 1

n

(
(1− ε)r

1− (1− ε)r
+

λ(1−r)Ar

1− λ(1−r)Ar

)
(Eν(V ))

+
1
n

(
(1− ε1ε2δ)r

1− (1− ε1ε2δ)r
+

λ(1−2r)Ar

1− λ(1−2r)Ar

)
(Eπ(V )) ,

where A = sup
x∈C

E(V (X1) |X0 = x) ≤ λd + Λ.
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To end this section, we note that the bound in Proposition 1 is bounded
above by E(T ) + E(T ′). This suggests interest in the expected values
of shift-coupling epochs, which is connected to results in potential the-
ory. For example, a paper of Baxter and Chacon (1976) states the fol-
lowing. Assume that our Markov chain asymptotically converges weakly
to a stationary distribution π, from any initial distribution. (This as-
sumption can sometimes be verified easily, since there are various general
theorems proving asymptotic convergence, cf. Tierney, 1994.) Define the
“potential operator” by G =

∑∞
k=0 P k, so that, given a measure µ on X ,

µG(·) =
∑∞

k=0

∫
µ(dx)P k(x, ·) is a possibly-infinite measure on X . Then

given an initial distribution ν, and an arbitrary probability measure Q on
X , Baxter and Chacon’s result is that there exists a stopping time T with
L(XT ) = Q, if and only if [(ν − Q)G]− = φdπ is absolutely continuous
with respect to π (where [. . .]− means the negative part of the measure
[. . .]). Furthermore, in this case the smallest possible value of E(T ) over all
stopping times with L(XT ) = Q, is precisely the essential supremum of |φ|.

This immediately implies information about our shift-coupling epochs,
as follows. Given a probability measure Q on X , with [(ν −Q)G]− = φ dπ

and [(π −Q)G]− = φ′ dπ as above, define

eQ = ess sup |φ| ; e′Q = ess sup |φ′| .

(For definiteness, set eQ or e′Q to +∞ if the negative part of the correspond-
ing measure is not absolutely continuous with respect to π.) Furthermore,
let M be the infimum of the possible values of E(max(T, T ′)), where T

and T ′ are any shift-coupling epochs for our Markov chain P (·, ·) starting
from the distributions ν and π respectively. Then since we always have
max(E(T ),E(T ′)) ≤ E(max(T, T ′)) ≤ E(T ) + E(T ′), we see that

inf
Q

max(eQ, e′Q) ≤ M ≤ inf
Q

(eQ + e′Q) ,

where Q plays the role of L(XT ) = L(X ′
T ′). Thus, this theory immediately

bounds the quantity M within a factor of 2.
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On the other hand, from Proposition 1, the total variation distance of
ergodic averages to the stationary distribution π is bounded above by M/n.
We thus conclude

Proposition 7. Let P (·, ·) be the transition probabilities for a Markov

chain on an arbitrary state space X , with stationary distribution π(·). As-

sume that lim
n→∞

Pn(x, A) = π(A) for every x ∈ X and for every measurable

A ⊆ X . Then given a starting distribution ν = L(X0), we have that for

any probability distribution Q(·) on X ,∥∥∥∥ 1
n

n∑
k=1

P (Xk ∈ ·) − π(·)
∥∥∥∥ ≤ 1

n
(eQ + e′Q) ,

with eQ and e′Q as above.

Quantities like eQ appear to be very difficult to compute in practice.
Thus, it may be difficult to apply this proposition to specific examples.

4. EXAMPLES.

We now apply some of the above bounds to a variety of examples of
Markov chains with stationary distributions.

4.1. A one-dimensional normal example.

We first consider a very simple example, adapted from the bivariate
normal example of Schervish and Carlin (1992). We consider the Markov
chain defined on the one-dimensional real line by

L(Xk |Xk−1 = x) = N(
x

2
,

3
4
) ,

where N(·, ·) is a normal distribution. Setting V (x) = 1 + x2, it is easily
verified that E(V (X1) |X0 = x) = 1

4V (x) + 3
2 . Hence, choosing d = 4, we

have that E(V (X1) |X0 = x) ≤ λ V (x) whenever V (x) > d, with λ = 5/8.
Furthermore it is easily verified (cf. Rosenthal, 1995, Example #1) that for
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V (x) ≤ d we have a minorization condition with ε = 0.31. Hence, taking
λ = 5/8, Λ = 3/4, and ε = 0.31, assuming Eν(V ) = 2, and choosing
r = 0.18, we have from Theorem 4 (and Remark 2 following) that∥∥∥∥ 1

n

n∑
k=1

P (Xk ∈ ·) − π(·)
∥∥∥∥ ≤ 50/n .

4.2. A queueing example.

We consider the M/M/1 queue example of Meyn and Tweedie (1994,
Section 8). Here X = {0, 1, 2, . . .}, P (0, 0) = p, P (0, 1) = q = 1− p, and for
x ≥ 1 we have P (x, x− 1) = p, P (x, x + 1) = q. We assume that p > 1

2 , so
that this chain has a stationary distribution. Following Meyn and Tweedie,
we choose the singleton small set C = {0}, and choose V (x) = (p/q)x/2 =
π(x)−1/2, so that we may take λ = 2

√
pq and Λ = p−√pq. (We note that

the choice V (x) = π(x)−1/2 is commonly useful; see Roberts and Tweedie,
1994, Theorem 3.3.) Also since C is a singleton, clearly the minorization
condition holds with ε = 1. Furthermore we may take d = 1. The bound of
Theorem 4 thus reduces to∥∥∥∥ 1

n

n∑
k=1

P (Xk ∈ ·) − π(·)
∥∥∥∥ ≤ 1

n

(
λ1−r(λ + Λ)r

1− λ1−r(λ + Λ)r

) (
Eν(V ) +

Λ
1− λ

)

with λ = 2
√

pq and Λ = p − √
pq. This is minimized by choosing r = 0,

whence it becomes 1
n

(
λ

1−λ

)(
Eν(V ) + Λ

1−λ

)
. For example, if p = 2/3, then

λ = 0.943 and Λ = 0.195, so the bound becomes 1
n (16.5)(3.42 + Eν(V )).

If p = 0.9, then λ = Λ = 0.6, so the bound becomes 1
n (1.5)(1.5 + Eν(V )).

Hence, in either case, the bound gives very fast convergence of the ergodic
averages.
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4.3. A periodic Markov chain with drift towards 0.

Let us modify the previous example so that X consists of all integers
(including the negative ones), and set P (x, x− 1) = p = 1−P (x, x + 1) for
x > 0, and P (x, x + 1) = p = 1 − P (x, x − 1) for x ≤ 0. For p > 1

2 , this
new model also has a stationary distribution. However, the Markov chain
is now periodic (of degree 2), so the individual distributions will in general
not converge.

On the other hand, convergence of the ergodic averages follows very
similarly to before. Indeed, if we modify V in the obvious way to give
V (x) = (p/q)|x|/2, then we may keep C, λ, ε, and d as in the previous
example. The value of Λ changes slightly to Λ =

√
p/q − 2

√
pq. We then

get sharp bounds on convergence of ergodic averages, exactly as above. If
p = 2/3, the bound becomes 1

n (16.5)(8.24 + Eν(V )), while if p = 0.9 the
bound becomes 1

n (1.5)(6 + Eν(V )).

4.4. A Metropolis algorithm for a normal density.

Mengersen and Tweedie (1993, Example 4) consider a Metropolis algo-
rithm when the desired stationary distribution π(·) is the standard normal
distribution N(0, 1). They consider a proposal candidate distribution given
by N(x, 1) when starting at a point x ∈ R. The Markov chain transitions
are then defined as follows. Given that Xk = x, we generate a proposal point
y from N(x, 1), and then either “accept” this proposal and set Xk+1 = y

with probability min(1, φ(y)/φ(x)), where φ is the density function for π(·),
or “reject” the proposal and set Xk+1 = x = Xk.

Mengersen and Tweedie have shown that this Markov chain satisfies
drift and minorization conditions as in Section 3 above. Setting V (x) =
e0.48|x| and C = (−1.15, 1.15), they show that we may take λ = 0.95,

Λ =
√

2Φ(0.48/
√

2)e−(0.48)2/4 + 1− 1√
2
− λ

.= 0.188 ,
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and

ε =
1√
2

 1.15∫
−1.15

e−x2
dx

 e−(1.15)2 .= 0.169 .

They then use these values to apply their general method to the convergence
of the individual distributions P (Xn ∈ ·), but the bounds have numerical
values on the order of billions of iterations and thus are not very useful in
practice.

Using our Theorem 4 above, we can apply these values to get more
useful bounds. Indeed, taking r = 0.06 and noting that d = e0.48(1.15) .=
1.74, we obtain that for this example,∥∥∥∥ 1

n

n∑
k=1

P (Xk ∈ ·) − π(·)
∥∥∥∥ ≤ 1

n
(180 + 86 (4 + Eν(V ))) .

These values are quite reasonable, even though they are based on choices of
V and C designed to optimize the bounds used by Mengersen and Tweedie.

4.5. Antithetic samplers.

Example 6.1 occurs naturally as a Markov chain induced by the Gibbs
sampler on a bivariate normal target density with mean 0, variances 1, and
correlation ρ = −1/

√
2. {Xk} corresponds to one of the one-dimensional

components of the chain.
As we stated in the introduction, one of the motivations for the use

of shift coupling is to be able to consider “almost periodic” algorithms.
Algorithms of this type are sometimes constructed deliberately, in order to
create antithetic effects, that subsequently lead to ergodic averages with
smaller variances. As a first example of the application of Theorem 4 to
antithetic algorithms, consider the following generalization of Example 6.1.

For −1 < θ < 1, define the Markov chain {Xk} by

L(Xk|Xk−1 = x) = N(θx, 1− θ2).
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The stationary distribution for this chain is N(0, 1) for each θ. Example
6.1 corresponds to the case θ = 1/2, however for antithetic algorithms, we
are more interested in the case where θ is negative.

Setting V (x) = 1 + x2, it is easy to verify that E(V (X1)|X0 = x) =
θ2V (x) + 2(1 − θ2). Therefore with d = 4 as before, E(V (X1)|X0 = x) ≤
λV (x) for X such that V (x) ≥ d, where λ = 1+θ2

2 . A computation for the
minorization measure for V (x) < d gives

ε =

∞∫
−∞

inf
x∈C

N
(
θx, 1− θ2; dy

)
= 2Φ

( −|θ|√3√
1− θ2

)
,

where Φ(·) denotes the cumulative normal distribution function. We can
also take Λ = 3(1− θ2)/2.

For a numerical example, taking Eν(V ) = 2 (say), we apply the last
line of Theorem 4 for |θ| = 3/4. We find by trial and error that r = 0.1 is
nearly optimal among allowable values of r; this choice gives that∣∣∣∣ 1

n

n∑
k=1

P (Xk ∈ ·)− π(·)
∣∣∣∣ ≤ 447

n
.

For |θ| = 0.85, taking r = 0.08 as nearly optimal, the bound worsens
considerably to 4969

n . (For |θ| = 0.90, taking r = 0.06, the bound becomes
96021/n, while for |θ| = 0.95 and r = 0.02, it is larger than 108/n.) Thus,
the bounds give quite reasonable values except when |θ| is close to 1.

It is interesting to note that the Theorem gives equally good bounds for
the rate of convergence for positive and negative values of θ. Therefore to
benefit from the antithetic nature of the chain, we need to use an alternative
approach, such as that of Theorem 6. We consider this in our final example.

Returning to the MCMC context, Green and Han (1992) suggest the
use of antithetic components in a “Gibbs-type” blocking scheme. For exam-
ple suppose that π is a bivariate normal target density with mean (0, 0), unit
variances and correlation ρ. Iteratively construct (Xn, Yn) from (Xn−1, Yn−1)
as follows.

L(Xn|Xn−1, Yn−1) = N(αXn−1 + ρ(1− α)Yn−1, (1− ρ2)(1− α2))
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L(Yn|Xn, Yn−1) = N(αYn−1 + ρ(1− α)Xn, (1− ρ2)(1− α2)).

It is easy to check that the stationary distribution of this chain is the target
distribution π above. α = 0 corresponds to the Gibbs sampler case, whereas
the case where α and ρ have different signs is the antithetic case.

Using the quadratic test function V (x, y) = 1 + x2 + y2,

E(V (Xn, Yn)|Xn−1 = x, Yn−1 = y) = 1 + (1− ρ2)(1− α2)(2 + ρ2(1− α)2)

+[(ρ2(1− α)2 + α)y + α(1− α)ρx]2 + (ρy + αx)2.

We will consider the case α = −ρ = −1/2. In this case, by bounding the
eigenvalues of the quadratic form above, and a little algebra, we obtain,

E(V (Xn, Yn)|Xn−1, Yn−1) ≤
213
256

V (Xn−1, Yn−1) +
380
256

which implies that for V (Xn−1, Yn−1) ≥ 10,

E(V (Xn, Yn)|Xn−1, Yn−1) ≤
63
64

V (Xn−1, Yn−1) .

It follows that we may take d = 10, λ = 63/64, and Λ = 341/256. A crude
bound on the minorization measure for x, y such that V (x, y) ≤ 10 gives
ε ≥ exp{ −9ρ2

(1−ρ2)2 } which equals e−4 in the case where ρ = 1/2. The bound
from Theorem 4 then gives

∣∣∣∣ 1
n

n∑
k=1

P ((Xk, Yk) ∈ ·)−π(·)
∣∣∣∣ ≤ 1

n

(
2
r
e4 +

(63/64)1−r98r

1− (63/64)1−r98r
(Eν(V ) + 88)

)
.
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4.6. An application of Theorem 6.

We consider the previous one-dimensional example, with L(Xn |Xn−1 =
x) = N(θx, 1 − θ2). We assume that −1 < θ < 0 and consider applying
Theorem 6.

As above, we take V (x) = 1 + x2 and d = 4, to get λ = 1+θ2

2 and
Λ = 3(1− θ2)/2. Here C is the interval [−

√
3,
√

3] as before. We partition
it into C1 = [−

√
3, 0] and C2 = (0,

√
3]. A minorization computation as

before gives

ε1 = ε2 = 2Φ

(
−|θ|

√
3

2
√

1− θ2

)
.

The improvement over the previous calculation is the extra factor of 2 in
the denominator of the function argument; given the nature of the function
Φ this will represent much more than a factor of 2 increase in the value of
ε.

To compute the transfer value δ, we recall that by construction

ε1 Q1(C2) =

√
3∫

0

inf
−
√

3≤x≤0
N
(
θx, 1− θ2; dy

)

=

√
3|θ|
2∫

0

N(|θ|
√

3, 1− θ2; dy) +

√
3∫

√
3|θ|
2

N(0, 1− θ2; dy)

= Φ

(
−
√

3|θ|
2
√

1− θ2

)
− Φ

(
−
√

3|θ|√
1− θ2

)
+ Φ

( √
3√

1− θ2

)
− Φ

( √
3|θ|

2
√

1− θ2

)
.

Hence we may take δ to be this value divided by ε1. We may then directly
apply Theorem 6.

As a numerical example, if θ = −3/4, then ε1 = ε2 = 0.667, and
δ = 0.493. Taking r = 0.1, and again putting Eπ(V ) = Eν(V ) = 2,
Theorem 6 thus gives∣∣∣∣ 1

n

n∑
k=1

P (Xk ∈ ·)− π(·)
∣∣∣∣ ≤ 149

n
.
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For θ = −0.85, taking r = 0.05, the bound becomes 230
n . This appears

to be a substantial improvement over the bounds of the previous example.
Furthermore, as θ → −1 the improvement will become more and more
pronounced. We thus conclude that, in this example at least, much can be
gained from the multiple-minorization-condition approach of Theorem 6.
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