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Abstract

This paper explores how and when to use common random number (CRN) simu-

lation to evaluate Markov chain Monte Carlo (MCMC) convergence rates. We discuss

how CRN simulation is closely related to theoretical convergence rate techniques such

as one-shot coupling and coupling from the past. We present conditions under which

the CRN technique generates an unbiased estimate of the squared Wasserstein dis-

tance between two random variables. We also discuss how unbiasedness of the squared

Wasserstein distance between two Markov chains over a single iteration does not extend

to unbiasedness over multiple iterations. We provide an upper bound on the Wasser-

stein distance of a Markov chain to its stationary distribution after N steps in terms

of averages over CRN simulations. Finally, we apply our result to a Gibbs sampler for

Bayesian regression.
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1 Introduction

Markov chain Monte Carlo (MCMC) algorithms are often used to simulate from a stationary

distribution of interest (see e.g. Brooks et al. [2011]). One of the primary questions when

using these Markov chains is, after how many iterations is the distribution of the Markov

chain sufficiently close to the stationary distribution of interest, i.e. when should actual

sampling begin Hobert and Jones [2001]. The number of iterations it takes for the distribu-

tion of the Markov chain to be sufficiently close to stationarity is called the burn-in period.

Various informal methods are available for estimating the burn-in period, such as effective

sample size estimation, the Gelman-Rubin diagnostic, and visual checks using traceplots or

autocorrelation graphs Dobson and Barnett [2008], Hoff [2009], Rachev et al. [2008], Roy

[2020]. However, none of these methods provide a formal estimate of the distance between

the distribution of the Markov chain and the stationary distribution.

From a theoretical perspective, distance to stationarity is traditionally measured in terms

of total variation distance (e.g. Roberts and Rosenthal [2004], Tierney [1994]), though more

recently the Wasserstein distance has been considered Gibbs [2004], Jin and Hobert [2022],

Madras and Sezer [2010], Qin and Hobert [2022b]. However, finding upper bounds on either

distance can be quite difficult to establish Geyer [2011], Hobert and Jones [2001], and if an

upper bound is known, it is usually based on complicated problem-specific calculations Jin

and Hobert [2022], Qin and Hobert [2022a], Sixta and Rosenthal [2022], Steinsaltz [1999].

This motivates the desire to instead estimate convergence bounds from actual simulations

of the Markov chain, which we consider here.

One common method for generating upper bounds on the Wasserstein distance is through

a contraction condition (see Definition 2.1). This can often be established using the common

random number (CRN) simulation technique, i.e. using the same random variables to sim-

ulate two copies of a Markov chain with different initial values (see Section 2). Estimating

Markov chain convergence rates using CRN simulation was first proposed in Johnson [1996]

to find estimates of mixing times in total variation distance; see also Biswas et al. [2019],
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Jacob [2020]. This approach falls under the general framework of “auxiliary simulation”

Cowles and Rosenthal [1998], i.e. using extra preliminary Markov chain runs to estimate

the convergence time needed in the final run. More recently, Biswas and Mackey [2021]

showed how CRN simulation could be used for estimating an upper bound on the Wasser-

stein distance (their Proposition 3.1), and provided useful applications of the CRN method

to high-dimensional and tall data (their Section 4). Simulation using the CRN technique is

useful since for random variables under certain conditions it induces an unbiased estimate of

the squared Wasserstein distance (see equation 3) and for Markov chains under certain condi-

tions it produces a conditionally unbiased estimate of the squared Wasserstein distance (see

equation 9). It was shown in Glasserman and Yao [1992] that simulated Euclidean distance

between two random variables generated using the CRN technique is an unbiased estimate of

the squared Wasserstein distance when the random transformation is an increasing function

of the uniform random variable (see propositions 3.1 and 3.2 below).

In this paper, in Theorem 3.3 below, we generalize the result of Glasserman and Yao

[1992] and conclude that the CRN technique generates an unbiased estimate of the squared

Wasserstein distance whenever the intervals over which the transformation of a random

variable in R are increasing and decreasing are the same. This theorem should help establish

whether the CRN technique is optimal for simulating the Wasserstein distance, or if another

simulation technique such as Biswas et al. [2022], Cowles and Rosenthal [1998], Lee et al.

[2020], Papp and Sherlock [2022], Wang et al. [2021], Xu et al. [2021] is merited. Within the

context of Markov chains, unbiasedness is only proven over a single iteration. We show how

it is more difficult to extend over multiple iterations in Section 3.3.

Then, in Theorem 4.4 below, we provide an estimated upper bound in terms of CRN

simulation on the Wasserstein distance between a Markov chain and the corresponding sta-

tionary distribution when only the unnormalized density of the stationary distribution is

known. We apply this theorem (Section 5) to a Gibbs sampler for a Bayesian regression

model with semi-conjugate priors.
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This paper is organized as follows. In Section 2, we present definitions and notation.

We also discuss the relationship between the closely related notions of coupling from the

past, one-shot coupling, and the CRN technique. In Section 3, we present a set of random

functions (of real-valued random variables) that will generate unbiased estimates of the

squared Wasserstein distance when the CRN technique is used. In Section 4, we establish

convergence bounds of a Markov chain to its corresponding stationary distribution using the

CRN technique when the initial distribution is not in stationarity. Finally, in Section 5,

we apply our Theorem 4.4 to a Gibbs sampler for a Bayesian regression model with semi-

conjugate priors. The code used to generate all of the tables and calculations can be found

at github.com/sixter/CommonRandomNumber.

2 Background

2.1 Distances between measures

Let X : X → R and Y : X → R be two random variables defined on a common complete

seperable metric space (X ,F , λ) where X is a Borel measurable set, F is the Borel sigma

field on X , and λ is a Borel probability measure on X .We denote the law of the random

variable X as L(X) and similarly for L(Y ). Let π, ν be two probability measures on R, and

let d : X ×X → R+ be a metric function. When not specified, the distance, d, refers to the

Euclidean distance. The probabilistic definition of the L1-Wasserstein distance between the

two probability measures π and ν is the infimum of the expected distance between X and

Y over all joint pairs of random variables (X, Y ) with marginals L(X) = π and L(Y ) = ν,

Wd(π, ν) = infX∼π,Y∼ν E[d(X, Y )]. The Wasserstein distance is finite if for some x0 ∈ X ,

E[d(X, x0)] <∞ and E[d(Y, x0)] <∞. When the infimum is attained at an optimal coupling,

the Wasserstein distance is the random variable pair (XM , YM) that minimizes the expected

distance, Wd(π, ν) = E[d(XM , YM)] such that L(XM) = π,L(YM) = ν. Total variation is a

special case defined as ||π − ν||TV = infX∼π,Y∼ν P(X ̸= Y ).
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2.2 Essential supremum and infimum

Let f : X → R be a function on the measure space (X ,F , λ). The essential supremum is

the smallest value a ∈ R such that λ(x | f(x) < a) = 1. More formally, ess supx f(x) =

infa∈R{a | λ(x | f(x) > a) = 0}. The essential infimum is likewise the largest value a ∈ R

such that λ(x | f(x) > a) = 1. Or, ess infx f(x) = supa∈R{a | λ(x | f(x) < a) = 0} Poznyak

[2008].

2.3 Iterative function systems: Backward and forward process

Define a Markov chain {Xn}n≥1 initialized at X0 on a complete separable metric space (X , d)

such that Xn = fθn(Xn−1), where {θn}n≥1 are i.i.d. random variables on some measurable

space Θ and random measurable mappings fθn : X 7→ R. The set of random functions

fθ1 , fθ2 , . . . is called an iterated function system. Any time-homogeneous Markov chain can

be represented as an iterated function system Stenflo [2012].

The iterated function system defines the forward and backward processes. The forward

process, {Xn}n≥1, which is a Markov chain, is defined as follows,

Xn = fθn(fθn−1(. . . fθ1(X0)))

The backward process, {X̃n}n≥1, which is not necessarily a Markov chain Steinsaltz [1999]

with respect to the filtration for X0, . . . , Xn but tends to converge pointwise to a limit, is

defined as follows,

X̃n = fθ1(fθ2(. . . fθn(X0)))

Figure 1 graphs the forward and backward process of an autoregressive process using the

same random mappings. The point towards which the backwards process converges is itself

random.

Despite the difference in behaviour of the two processes, the marginal distributions of
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Figure 1: The backwards, {X̃n}n≥1, and forwards, {Xn}n≥1, process of the autoregres-
sive normal system where Xn, X̃n are simulated using the same random mappings, Xn =
0.9Xn−1 + Zn, Zn ∼ N(0.1) and X0 = 25.

the forward and backward processes are the same, Xn
d
= X̃n, so the backwards process is

sometimes used when studying convergence properties of the forwards Markov chain Diaconis

and Freedman [1999], Stenflo [2012], Steinsaltz [1999].

2.4 Convergence of forward and backward processes

When studying the convergence rates of iterated random functions, we are typically inter-

ested in establishing a contraction condition. The ‘vanilla’ contraction condition, sometimes

referred to as global average Stenflo [2012] or strongly Steinsaltz [1999] contractive, is defined

as the supremum over all x of the expected Lipschitz constant.

Definition 2.1 (Global average contraction condition). There exists a D ∈ (0, 1) such that

for n ≥ 0,

D ≥ sup
x ̸=x′

E[d(fθ(x), fθ′(x
′))]

d(x, x′)

Modifications to the above contraction condition have been widely studied and can be

found in Diaconis and Freedman [1999], Ghosh and Marecek [2022], Jarner and Tweedie

[2001], Leśniak et al. [2020], Steinsaltz [1999], Stenflo [2012]. Under strong conditions, the
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mean value theorem can be used to show the global average contraction condition holds 2.1

and local contraction conditions exist Steinsaltz [1999].

Obtaining accurate calculations of the global contraction rate 2.1 is often difficult and

alternatively estimating the convergence of the Markov chain through simulation may be

appealing to practitioners. In particular, if two forward processes Xn, X
′
n are simulated

using the CRN technique (i.e., Xn = fθn(Xn−1) and X ′
n = fθn(X

′
n−1) for n ∈ N) then the

expected distance between the nth iteration of the two forward processes is equal to the

expected distance between the nth and n+ 1th iteration of the backwards process, X̃n.

E[d(Xn, X
′
n+1) | X0 = x]

= E[d[fθn(fθn−1(. . . fθ1(x) . . .)), fθn(fθn−1(. . . fθ1(fθn+1(x)) . . .))] | X0 = x]

= E[d[fθ1(fθ2(. . . fθn(x) . . .)), fθ1(fθ2(. . . fθn(fθn+1(x)) . . .))] | X̃0 = x]

= E[d(X̃n, X̃n+1) | X̃0 = x]

2.5 Common random numbers

Previously we defined the CRN technique to setting θn = θ′n, i.e. using the same random

variables (θn)n to simulate both Markov chains. This is the intuitive definition of CRN for

applications Biswas and Mackey [2021], Dai [2016], Heng and Jacob [2019]. However, we will

first restrict our discussion to defining the CRN technique based on using uniform random

variables as the common random number. Later on, we will discuss how expanding the

definition of the CRN technique from a uniform random variable to θn affects the optimality

of the CRN technique.
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3 Conditionally unbiased estimates of the Wasserstein

distance using the common random number tech-

nique

3.1 Common random number applied to a random variable

Suppose X is a random variables with cumulative distribution functions (CDF) FX and Y

is a random variable with CDF FY . Then we can represent XU ∼ FX and YU ∼ FX with

the inverse cumulative distribution function (CDF) of a uniform random variable U . That

is XU = F−1
X (U) where F−1

X (t) = inf{x ∈ R : FX(x) ≥ t} is a generalized inverse CDF of the

marginal and U ∼ Unif(0, 1). Similarly, YU = F−1
Y (U) with its generalized inverse CDF.

We first define CRN by jointly setting (XU , YU) = (F−1
X (U), F−1

Y (U)) using a common

uniform random variable U ∼ Unif(0, 1) Glasserman and Yao [1992]. We will call this

definition the InvCDF-CRN (inverse CDF - common random number). The InvCDF-CRN

is the joint distribution that minimizes the expected square distance between two random

variables. That is, the InvCDF-CRN solves the Monge-Kanterovich problem when d(x, y) =

(x−y)2 (see [Major, 1978, Theorem 8.1]). This definition stems from the following proposition

which says that the maximum supermodular transform between the joint distribution of

(X, Y ) is attained with the random variables (XU , YU) = (F−1
X (U), F−1

Y (U)). We say a

function h : R2 → R is right continuous if for every pair of decreasing sequences xn → x and

yn → y, h(xn, yn)→ h(x, y).

Proposition 3.1 (Theorem 2 of Cambanis et al. [1976] and Proposition 2.1 of Glasserman

and Yao [1992]). Suppose that ψ : R × R → R is a measurable supermodular function

(ψ(x1, y1)+ψ(x2, y2) ≥ ψ(x1, y2)+ψ(x2, y1) when x1 ≤ x2 and y1 ≤ y2) and right continuous.

Let X and Y be real-valued random variables defined on X with distribution functions FX
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and FY respectively. If U ∼ Unif(0, 1) and supX∼FX ,Y∼FY
E[ψ(X, Y )] <∞, then

sup
X∼FX ,Y∼FY

E[ψ(X, Y )] = E[ψ(F−1
X (U), F−1

Y (U))].

Proposition 3.1 is consistent with Theorem 2.9 of Santambrogio [2015]. Some examples

of supermodular functions are ψ(x, y) = xy, (x + y)2, min{x, y}, and f(x − y) where f is

concave and continuous (see Section 4 of Cambanis et al. [1976]). In this paper, we focus

on the functions ψ(x, y) = xy and ψ(x, y) = −|x− y|2. If the CRN generates the supremum

expectation for the function ψ(x, y) = xy (i.e., supX∼FX ,Y∼FY
E[XY ] = E[F−1

X (U)F−1
Y (U)]),

then the CRN generates the supremum covariance when the marginal distributions are fixed

and X, Y have finite first moments as follows:

sup
X∼FX ,Y∼FY

Cov(X, Y ) = sup
X∼FX ,Y∼FY

E[XY ]− E[X]E[Y ] (1)

= Cov(F−1
X (U), F−1

Y (U)). (2)

By the same reasoning, the function ψ(x, y) = −|x−y|2 is supermodular since it is concave

and continuous, then the CRN generates the L2−Wasserstein distance (where d(x, y) =

|x− y|) if X, Y have finite second moments:

W2(L(X),L(Y ))2 = inf
X∼FX ,Y∼FY

E[(X − Y )2] (3)

= E[(F−1
X (U)− F−1

Y (U))2]. (4)

Note that the above result can be generalized from L2-Wasserstein distance to Lp-Wasserstein

distance Jacob [2020], Glasserman and Yao [1992].
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Figure 2: Two copies of the autoregressive process where Xn, Yn are simulated using CRN,
Xn = 0.9Xn−1 + Zn, Zn ∼ N(0, 1), and X0 = 25, Y0 = −25

3.2 Common random number in a Markov chain setting.

Within the context of a Markov chain, we define the CRN technique as follows. Let

{Xn}n≥0 be a Markov chain such that Xn is defined as an iterated function system and

Xn = fθn(Xn−1) = f(θn, Xn−1) where θ1, θ2 . . . are i.i.d. random variables. We assume

that θU ∼ Fθ where Fθ is the distribution function of θ can be constructed from a uniform

random variable, θU = F−1
θ (U), U ∼ Unif(0, 1). Note that if θ⃗ ∈ Rp is a vector of inde-

pendent random variables, then each coordinate can be constructed from a uniform random

variable θU,i = F−1
θi

(Ui), i ∈ {1, . . . p} where Ui ∼ Unif(0, 1) are i.i.d. (this is consistent with

equation 3 of Glasserman and Yao [1992]). When used in simulation, the CRN technique

visibly shows how two copies of a Markov chain converge. See figure 2 for an example of two

autoregressive processes that converge.

Next, we extend Proposition 3.1 to non-decreasing functions of uniform random variables.

Proposition 3.2 (Proposition 2.2 of Glasserman and Yao [1992]). Fix x, y ∈ X and let

X1 = f(θU , x) and Y1 = f(θV , y) with measurable f : R × X → R where θU = F−1
θ (U),

θV = F−1
θ (V ) and U, V ∼ Unif(0, 1). Suppose for z = x, y, f(·, z) is a non-decreasing
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continuous function with E[X2
1 ], E[Y

2
1 ] <∞. Then

sup
U∼Unif(0,1)
V∼Unif(0,1)

E[f(θU , x)f(θV , y)] (5)

is attained by setting U = V .

We relaxed the assumption that f(·, x) be increasing to assuming that f(·, x) is non-

decreasing. The relaxed assumption generates the same conclusion since ψ(f(·, x), f(·, x))

remains supermodular if ψ is supermodular and f(·, x), f(·, y) are non-decreasing (which is

required in the proof of Proposition 2.2 of Glasserman and Yao [1992]). Note, for example

that the distribution function F−1 in Proposition 2.1 of Glasserman and Yao [1992] is a

non-decreasing function, not a strictly increasing function.

Similar to Proposition 3.1, the supremum covariance (equation 1) and infimum Euclidean

distance (equation 3) are attained when U = V .

In practise, however, f(θ, x) and f(θ, y) are not always non-decreasing functions with

respect to θ. Rather, the following theorem shows that the supremum is attained when

U = V if the functions f(θ, x) and f(θ, y) are both increasing and decreasing for the same

values of θ ∈ R. A function F : R→ R is of bounded variation if TF (x) = sup{
∑n

k=1 |F (xk)−

F (xk−1)| : −∞ < x0 < x1 < · · · < xn = x} and limx→∞ TF (x) is finite. For a function

F : R → R, define the area over which F is a non-decreasing function, that is, for θ0 there

exists ϵ0 > 0 such that for 0 < ϵ < ϵ0, F (θ0) ≤ F (θ0 + ϵ). Similarly, define the area over

which F is a non-increasing function as the points θ0 where there exists ϵ0 > 0 such that for

0 < ϵ < ϵ0, F (θ0) ≥ F (θ0 + ϵ).

Theorem 3.3. For fixed x, y ∈ X , let X1 = f(θU , x) and Y1 = f(θV , y) be random functions

with measurable f : R×X 7→ R and θU = F−1
θ (U) and θV = F−1

θ (V ) with U, V ∼ Unif(0, 1).

Define the set Ax,y = (Ix ∩ Iy) ∪ (Dx ∩ Dy) where for z = x, y, Iz is the area over which

f(·, z) is a non-decreasing function and Dz is the area over which f(·, z) is a non-increasing

function. If E[X2
1 ], E[Y

2
1 ] <∞, and both f(·, x) and f(·, y) are of bounded variation, then
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• If P (Ax,y) = 1 (the intervals of positive measure over which θ is increasing and de-

creasing on f(·, x) and f(·, y) are the same),

Wd(L(X1),L(Y1))2 = E[(f(θU , x)− f(θU , y))2] (6)

i.e. (f(θU , x)− f(θU , y))2 is an unbiased estimator of Wd(L(X1),L(Y1))2.

• If P (Ax,y) = 0 (that is the function f(·, x) is increasing and f(·, y) is decreasing over

the same intervals of positive measure or vice versa),

Wd(L(X1),L(Y1))2 = E[(f(θ1−U , x)− f(θU , y))2] (7)

i.e. (f(θ1−U , x)− f(θU , y))2 is an unbiased estimator of Wd(L(X1),L(Y1))2.

• If 0 < P (Ax,y) < 1 (there are intervals of positive measure over which θ is increasing

on f(·, x) and decreasing on f(·, y) or vice versa), then

E[(f(θU , x)− f(θU , y))2]− ϵ ≤ Wd(L(X1),L(Y1))2 ≤ E[(f(θU , x)− f(θU , y))2] (8)

where ϵ = 2E[(f(θ1−U , x)− f(θU , x))f(θU , y)1AC ].

The proof is in Section 9.

The set Ax,y is simpler to visualize. It is the values of θ for which either both f(θ, x) and

f(θ, y) are increasing or decreasing for fixed x, y. See figure 3 for an example.

3.3 Conditionally unbiased estimates of the squared Wasserstein

distance

Denote Xn = f(θn, Xn−1) and Yn = f(θ′n, Yn−1) where θn, θ
′
n ∈ R are random variables.

Theorem 3.3 implies that if P (A) = 1 for all Xn−1 = x and Yn−1 = y, then applying the
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Figure 3: Denote f(θ, x) = cos(πxθ). The above graphs two functions: f(θ, 1) = cos(πθ)
and f(θ, 2) = cos(2πθ). The set A1,2 in this case is the value of θ where the function is bold.
That is, A = (0, 0.5) ∪ (1.5, 2).

CRN technique to simulate E[(Xn − Yn)2] will generate conditionally unbiased estimates of

the squared Wasserstein distance. That is, for two copies of a Markov chain, Xn and Yn, that

were simulated by CRN (Xn = f(θn, Xn−1) and Yn = f(θn, Yn−1)), the squared Wasserstein

distance will be conditionally unbiased on Xn−1 and Yn−1 as follows:

Wd(L(Xn),L(Yn) | Xn−1 = x, Yn−1 = y)2 (9)

:= inf
Xn∼L(Xn),Yn∼L(Yn)

E[(Xn − Yn)2 | Xn−1 = x, Yn−1 = y] (10)

= E[(f(θn, Xn−1)− f(θn, Yn−1))
2 | Xn−1 = x, Yn−1 = y] (11)

This is the optimal coupling for the Wasserstein distance given the previous iteration.

Remark. Note that Markov chains that satisfy P (A) = 1 for all Xn−1 = x and Yn−1 = y and

are simulated by CRN may not be unconditionally unbiased. Unconditional unbiasedness is
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defined as follows for X0 = x and Y0 = y:

Wd(L(Xn),L(Yn))2 = E[(f(θn, f(θn−1, . . . f(θ1, x) . . .))− f(θn, f(θn−1, . . . f(θ1, y) . . .)))
2].

To illustrate our point, fix n = 2 and initial values X0 = x, Y0 = y. Then

Wd(L(X2),L(Y2))2 := inf
θ1∼L(θ1),θ′1∼L(θ′1)
θ2∼L(θ2),θ′2∼L(θ′2)

E[(f(θ2, f(θ1, x))− f(θ′2, f(θ′1, y)))2].

However, the function f(θ2, ·) may be increasing for f(θ1, x) and decreasing for f(θ1, y) (or

vice versa), which by Theorem 3.3 means that the function might not generate the infimum

expectation.

Remark. Even if a Markov chain does not present itself as conditionally unbiased it might still

be conditionally unbiased under different function construction. This is because the CRN

technique depends on the function f . To quote Wang et al. [2021] “In most [...] scenarios

the user must construct a coupling tailored to the problem at hand.” For example, if X1 and

Y1 have continuous distribution functions, then they can be written as transformations of

the uniform distribution and thus a common random number that generates the maximum

covariance exists. Generating such a function g such that Xn = g(U), U ∼ Unif(0, 1) may

not be easy to calculate, however. For example, the Metropolis Hastings algorithm does

not appear to converge in expectation when the heuristic algorithm for using the common

random number on the proposal and accept/reject random variables is used Cowles and

Carlin [1996]. Figure 4 shows that when we apply the heuristic algorithm on the CRN

technique of a Metropolis algorithm, sample mean convergence is bounded away from 0. In

Papp and Sherlock [2022], asymptotically optimal estimates using a variation of the CRN

are provided for the Metropolis-Hastings algorithm when the target distribution is elliptical

normal.

The following two examples use Theorem 3.3 to show that the CRN technique generates
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Figure 4: We apply a random-walk Metropolis algorithm on the unnormalized (c > 0) target
density, π(x) = cg(x) where g(x) = x3 sin y4 cos y5 with proposal distribution N(Xn−1, 0.01).
The next iteration can be written as a function of Zn ∼ N(0, 1) and Un ∼ Unif(0, 1) as
follows Xn = (Xn−1 + 0.1Zn)I{Un < π(Xn−1 + 0.1Zn)/π(Xn−1)} + Xn−1I{Un ≥ π(Xn−1 +
0.1Zn)/π(Xn−1)}. When we use CRN on Zn and Un to simulate Xn and Yn, |Xn − Yn| does
not converge even though the Wasserstein distance does converge.

conditionally unbiased estimates of the squared Wasserstein distance.

Example 3.1 (Random logistic map). Define Xn ∈ [0, 1] to be a random logistic map. That

is, Xn = f(θn, Xn−1) = 4θnXn−1(1 − Xn−1) and θn ∼ Beta(a + 1/2, a − 1/2) for a > 1/2.

Since f(θn, Xn−1) is a non-decreasing function of θn for all values of Xn−1 ∈ [0, 1], then by

Theorem 3.3 the CRN technique provides simulated estimates of the Euclidean distance that

are conditionally unbiased to the squared Wasserstein distance. That is, if X̂n and Ŷn are

CRN simulations of the random logistics map then Wd(L(Xn),L(Yn))2 = E[(X̂n − Ŷn)2]

See figure 5 for an example of two random logistic map processes that converge. See

Section 7.4 of Steinsaltz [1999] for theoretical convergence diagnostics in total variation

distance and example 2 of Madras and Sezer [2010] for upper bounds in Wasserstein distance

as a function of total variation distance.
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Figure 5: Two copies of the random logistic map where Xn, Yn are simulated using CRN,
Xn = 4θnXn−1(1−Xn−1), θ ∼ Beta(1.5, 0.5), and X0 = 0.99, Y0 = 0.1

Example 3.2. Define Xn ∈ [−1, 1] to be a Markov chain such that

Xn = f(θn, Xn−1) = sin[(1− |Xn−1|) cos(θn)]

where θn ∼ Unif(−π/2, 3π/2). Since f(θn, Xn−1) is increasing and decreasing over the same

regions of θ for fixed Xn−1, Yn−1 ∈ [−1, 1], then by Theorem 3.3 the CRN technique provides

simulated estimates of the Euclidean distance that are conditionally unbiased to the squared

Wasserstein distance.

Figure 6 provides an example of copies of this Markov chain converging when the CRN

technique is used. Figure 7 shows that for initial values X0 = 0.75 and Y0 = 0.05 the

functions f(X0, θ) and f(Y0, θ) are both increasing and decreasing over the same regions of

θ.

Finally, note that Theorem 3.3 is only applicable for θ ∈ R. Further research needs to

be done to extend the above results to θ ∈ Rd. However, we believe that a proof can be

established using Proposition 3.2 and assuming that f(θ, x) is of bounded Arzelà-variation

(see Definition 3.2.1 of Breneis [2020]). If a function defined in Rd is of bounded Arzelà-
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Figure 6: Two copies of a Markov chain Xn = f(θn, Xn−1) = sin[(1 − |Xn−1|) cos(θn)]
where θn ∼ Unif(−π/2, 3π/2). Xn, Yn are simulated using CRN, with initial values and
X0 = 0.75, Y0 = 0.05

Figure 7: Denote f(θ, x) = sin[(1−|x|) cos(θ)]. The above graphs two functions: f(θ, 0.75) =
sin[0.25 cos(θ)] and f(θ, 0.05) = sin[0.95 cos(θ)]. Note that both functions are decreasing over
the same region, θ = (0, π).
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Figure 8: Two copies of a Markov chain with Dirichlet process means where Xn, Yn are
simulated using CRN, Xn = (1 − θn)Zn + θnZn−1, θ ∼ Beta(1.5, 1), Zn ∼ N(0, 1), and
X0 = 10, Y0 = −10

variation, then it can be written as the difference of two coordinate-wise increasing functions

(see Theorem 3.4.1 of Breneis [2020]) where Proposition 3.2 can then be applied. Example

3.3 is a Markov chain of Dirichlet process means where θ ∈ R2 and f(θ, x) is not always an

increasing function of θ, so none of the theorems in this text apply. The CRN technique still

appears to generate converging Markov chains, however (see figure 8).

Example 3.3 (Dirichlet process means). Define Xn ∈ [0, 1] to be a Markov chain of Dirichlet

process means. That is Xn = f(θn, Zn, Xn−1) = (1−θn)Zn+θnXn−1 and θn ∼ Beta(a, 1) for

a > 0 and Zn ∼ N(0, 1). In this case (θn, Zn) ∈ R2, so Theorem 3.3 does not apply. Further,

since f(θn, Zn, Xn−1) may not necessarily be an increasing function of (θn, Zn), Proposition

3.2 also does not apply. The Markov chain of Dirichlet process means still seems to converge

when the CRN technique is used. See figure figure 8 for an example of two Markov chains

with Dirichlet processes means that converge. See section 7 of Roberts and Rosenthal [2002]

for theoretical convergence diagnostics.
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4 Common random number as a method of simulating

Markov chain convergence rates

We propose estimating the L1−Wasserstein distance between the nth iteration of a Markov

chain Xn and the corresponding stationary distribution X∞ through simulation using the

CRN technique. Our method is outlined in Theorem 4.4. Using CRN simulation as a

convergence diagnostic tool was first discussed in Johnson [1996] for bounding total variation

distance.

Before providing a method for simulating an upper bound on E[|Xn−X∞|], we must first

provide a method of bounding the expected distance between two copies of a Markov chain

(E[|Xn − Yn|]) and their corresponding expected distance to stationarity, (E[|Xn − X∞|]).

To do so, we will first define rejection sampling and separation distance and how they are

related.

Definition 4.1 (Rejection sampling). Suppose that we have a target distribution π, which

we want to sample from, but is difficult to do, and we have a proposal distribution ν that

is easier to sample from. Suppose also that π << ν (i.e., π(A) = 0 =⇒ ν(A) = 0, where

A ∈ F) and K ≥ (dπ/dν)(x), x ∈ X for some known K. To generate a random variable

Xπ,L(Xπ) = π we do the following,

1. Sample X ∼ ν and U ∼ Unif(0, 1) independently.

2. If U ≤ 1
K

dπ
dν
(X) then accept X as a draw from π. Otherwise reject X and restart from

step 1.

Lemma 4.1 (Rejection sampler rejection rate). Denote the event

A = {X is accepted as a draw from π}

in the rejection sampler algorithm defined above. The rejection rate denoted as r is as follows
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where K = ess supx∈X (dπ/dν)(x).

r(π, ν) = 1− P (A) = 1− 1/K

Proof. See Section 11.2.2 of Ross [2010].

We further define the separation distance on the continuous state space X as follows.

Separation distance was first defined in Aldous and Diaconis [1987] for discrete state spaces.

As far as we know, separation distance was only recently defined on a continuous state space

in Caputo et al. [2020]. We use the definition of separation distance defined in Caputo et al.

[2020] where the density functions are known.

Definition 4.2 (Separation distance (Remark 5 of Caputo et al. [2020])). Let ν and π be

two distributions defined on the same measure space (X ,F , λ) such that ν << π. The

separation distance is,

s = s(π, ν) = ess sup
x

(
1− dν

dπ
(x)

)
It turns out that the separation distance and the rejection rate of the rejection sampler

are the same.

Lemma 4.2. Let π and ν be two probability measures defined on the same measure space

(X ,F , λ) with positive density functions. If ν is the proposal distribution and π is the target

distribution in a rejection sampler, then the rejection rate equals the separation distance,

s(π, ν) = r(π, ν)

Proof. Let f be the probability density of π and g the probability density of ν. Then

s(π, ν) = ess sup
x∈X

(
1− g(x)

f(x)

)
= 1− ess inf

x∈X

g(x)

f(x)
= 1− 1

ess supx∈X
f(x)
g(x)

= 1− 1

K

= r(π, ν).
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Now that we have defined separation distance and the rejection rate of the rejection

sampler, we can apply upper bounds on the distance to stationarity as follows. The use of

rejection sampling to generate an upper bound on the expected distance between a proposal

distribution ν and a stationary distribution π was inspired by Johnson [1996], which used

rejection sampling to generate similar upper bounds in total variation distance.

Theorem 4.3. Let {Xn}n≥1 and {Yn}n≥1 be two copies of a Markov chain in X with initial

distribution L(X0) = µ,L(Y0) = ν. Assume π and ν are defined on the same support and let

X∞ be the corresponding stationary random variable with distribution π. Then

W|·|(L(Yn),L(X∞)) ≤ E[|Yn −X∞|] ≤ KE[|Xn − Yn|] (12)

where the expectation is taken with respect to coupling using common random numbers (θn)n

such that X0 and Y0 are independent and K = 1
1−s(π,ν)

= 1
1−r(π,ν)

.

Proof. Let A = {Accept Y0 as a draw from π}. Note that L(Y0|A) = π and so, L(Yn|A) = π.

Then

∫
X×X

E[|Xn − Yn|
∣∣ X0 = x, Y0 = y]µ(dx)ν(dy)

≥
∫ 1

0

∫
X×X

E[|Xn − Yn|
∣∣ X0 = x, Y0 = y]µ(dx)IA(y, u)ν(dy)du

≥ 1

K

∫
X×X

E[|Xn − Yn|
∣∣ X0 = x, Y0 = y]µ(dx)π(dy)

and so equation 12 follows.

In many cases the normalizing constant for π is unknown. That is, we only know of a

function g(x) such that cg(x)dx = π(dx) where c is unknown. In this case we must find a

constant L > 0 such that
∫
X g(x)dx ≥ L, which implies that c ≤ 1

L
and if h is the Lebesgue
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density of ν,

K ≤ 1

L
sup
x∈X

g(x)

h(x)
. (13)

See Example 5.1 for a way of estimating K when the normalizing constant of π is unknown.

In Section 5 we estimate L as the integral over a bounded subset of X , B ⊂ X . That

is, L =
∫
B
g(x)dx. Caffo et al. [2002] presents an alternative approach to estimating the

rejection rate, K, when the normalizing constant for π is unknown.

Next we define Algorithm 1 for generating an estimate of inf(XN ,YN )E[|XN −YN |], N ≥ 1

where L(X0) = µ,L(Y0) = ν. The algorithm generates a conditionally unbiased estimate of

the L1-Wasserstein distance provided the conditions in Theorem 3.3 hold. This algorithm is

similar to algorithm 1 in Biswas and Mackey [2021]. Combining algorithm 1 with Theorem

Algorithm 1 An estimate of E[|XN − YN |] ≈ 1
I

∑I
i=1 |xN,i − yN,i| using CRN

for i = 1, . . . , I do
x0,i ∼ µ, y0,i ∼ ν where x0,i ⊥⊥ y0,i
for n = 1, . . . , N do

θn ∼ Θ
xn,i ← fθn(xn−1,i)
yn,i ← fθn(yn−1,i)

end for
end for
return 1

I

∑I
i=1 |xN,i − yN,i|

4.3, we can simulate an upper bound between a Markov chain at iteration N , XN , and the

corresponding stationary random variable, X∞, as follows,

Theorem 4.4. Suppose that the Markov chain {Xn}n≥0 with stationary distribution L(X∞) =

π can be written as an iterated function system Xn+1 = fθn+1(Xn) where (θn)n≥1 are i.i.d.

random variables. Let (Xn, Yn) be two copies of the Markov chain coupled using com-

mon random numbers (θn)n with L(X0) = ν and L(Y0) = µ. Suppose for each n ≥ 0,

E[|Xn|], E[|Yn|] < ∞ and that the initial distribution of Xn, L(X0) = ν is defined on the
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same support as π. Then

W|·|(L(XN),L(X∞)) ≤ K lim
I→∞

1

I

I∑
i=1

|xN,i − yN,i| (14)

holds almost surely where 1
I

∑I
i=1 |xN,i−yN,i| is defined as in algorithm 1 and K = 1

1−s(π,ν)
=

1
1−r(π,ν)

.

Proof. Fix N ≥ 1. By the strong law of large numbers, limI→∞
1
I

∑I
i=1 |xN,i − yN,i|

a.s.
=

E[|XN − YN |]. By Theorem 4.3, E[|XN − X∞|] ≤ KE[|XN − YN |] and so equation 14

follows.

The consistency of limI→∞
1
I

∑I
i=1 |xN,i − yN,i| is similarly proven in Proposition 3.1 of

Biswas and Mackey [2021].

5 Gibbs sampler for a Bayesian regression model with

semi-conjugate priors

Consider the Bayesian linear regression model with semi-conjugate priors (see Chapter 5 of

Rachev et al. [2008]) for which we will apply Theorem 4.4 to simulate convergence bounds

on the Wasserstein distance.

Example 5.1 (Gibbs sampler for Bayesian regression with semi-conjugate priors). Suppose

we have the following observed data Y ∈ Rk and X ∈ Rk×p where

Y |β, σ ∼ Nk(Xβ, σ
2Ik)

for unknown parameters β ∈ Rp, σ2 ∈ R. Suppose we apply the prior distributions on the

unknown parameters,

β ∼ N(mβ,Σβ) σ2 ∼ Inv-χ2(υ0, c
2
0).
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The joint posterior density function of β, σ2|Y,X is proportional to the following equation,

g(β, σ2) (15)

=
1

(σ2)(n+υ0)/2+1
exp

(
− 1

2σ2
(y −Xβ)T (y −Xβ)− 1

2
(β −mβ)

TΣ−1
β (β −mβ)−

υ0c
2
0

2σ2

)
.

(16)

The Bayesian regression two-variable deterministic scan Gibbs sampler is based on the con-

ditional posterior distributions of βn, σ
2
n and is defined as follows initialized at β0, σ

2
0:

1. βn|σ2
n−1, Y,X ∼ N(β̃σ2

n−1
, Vσ2

n−1
)

2. σ2
n|βn, Y,X ∼ Γ−1

(
k+υ0
2
, 1
2

[
υ0c

2
0 + (Y −Xβn)T (Y −Xβn)

])
where

Vσ2
n−1

=

(
1

σ2
n−1

XTX + Σ−1
β

)−1

, β̃σ2
n−1

= Vσ2
n−1

(
1

σ2
n−1

XTY + Σ−1
β mβ

)
.

Here Γ−1(α, β) represents the inverse gamma distribution with shape parameter α and rate

parameter β. Replacing βn = β̃σ2
n−1

+V
1/2

σ2
n−1
Zn, where Zn ∼ N(0, Ip) into the equation for σ2

n

and with Gn ∼ Γ(k+υ0
2
, 1), we get that

σ2
n|σ2

n−1, Y,X =

υ0c20
2

+
(Xβ̃σ2

n−1
− Y +XV

1/2

σ2
n−1
Zn)

T (Xβ̃σ2
n−1
− Y +XV

1/2

σ2
n−1
Zn)

2

 1

Gn

(17)

where (Zn, Gn)n are independent for all n.

Although the joint Markov chain may be high-dimensional in both coordinates, special

properties of the Gibbs sampler allow us to upper bound the total variation between two

joint Markov chains in terms of only the a univariate marginals of the Markov chains using

common random numbers.

Lemma 5.1. Let β∞, σ
2
∞ denote the stationary Gibbs Markov chain. The total variation
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distance can be bounded by the expected distance as follows,

∥∥L(βn+1, σ
2
n+1)− L(β∞, σ2

∞)
∥∥
TV
≤ (k + υ0)

2

2υ0c20
E[|σ2

n − σ2
∞|]

where the expectation is with respect to coupling using common random numbers (Zn, Gn)n

for σ2
n and σ2

∞ = σ
′2
n such that σ2

0 ∼ µ and σ
′2
0 ∼ π are independent.

Proof. It follows from the de-initializing property of the Markov chain [Roberts and Rosen-

thal, 2001, Example 3] that

∥∥∥L(βn+1, σ
2
n+1)− L(β′

n+1, σ
′2
n+1)

∥∥∥
TV
≤

∥∥∥L(σ2
n)− L(σ

′2
n )

∥∥∥
TV
.

Using common random numbers, let Gn = G′
n where Gn ∼ Gamma(α, 1) Zn ∼ N(0, Ip) are

independent and denote

Wn =
υ0c

2
0

2
+

∥∥∥Xβ̃σ2
n−1
− Y +XV

1/2

σ2
n−1
Zn

∥∥∥2

2

W ′
n =

υ0c
2
0

2
+

∥∥∥Xβ̃σ′2
n−1
− Y +XV

1/2

σ
′2
n−1

Zn

∥∥∥2

2
,

so that σ2
n|σ2

n−1 = Wn
1
Gn

and σ
′2
n |σ

′2
n−1 = W ′

n
1
G′

n
. Denote ∆ = W ′

n −Wn and without loss of

generality, assume W ′
n > Wn. Since Gn ∼ Gamma(α, 1) where α = k+υ0

2
, let π1/Gn denote

the density of 1/Gn and similarly denote the density π(1+∆/Wn)/Gn for (1 + ∆/Wn)/Gn. So

we have

π1/Gn(x) ∝ x−α−1e−1/x

π(1+∆/Wn)/Gn(x) ∝
1

1 + ∆/Wn

(
x

1 + ∆/Wn

)−α−1

e−(1+∆/Wn)/x

∝ (1 + ∆/Wn)
αx−α−1e−(1+∆/Wn)/x.
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Using the coupling characterization of total variation

||L(σ2
n)− L(σ

′2
n )||TV

≤ E

[
||L(Wn

1

Gn

)− L(W ′
n

1

Gn

)||TV

∣∣ Zn, σ
2
n−1, σ

′2
n−1

]
= E

[
||L(Wn

1

Gn

)− L((Wn +∆)
1

Gn

)||TV

∣∣ Zn, σ
2
n−1, σ

′2
n−1

]
By Proposition 2.2 of Sixta and Rosenthal [2022]

= E

[
||L

(
1

Gn

)
− L

((
1 +

∆

Wn

)
1

Gn

)
||TV

∣∣ Zn, σ
2
n−1, σ

′2
n−1

]
By Proposition 2.1 of Sixta and Rosenthal [2022]

≤ E

[
sup
x>0

{
1−

π1/Gn(x)

π(1+∆/Wn)/Gn(x)

} ∣∣ Zn, σ
2
n−1, σ

′2
n−1

]
By Lemma 6.16 of of Levin et al. [2017]

So,

||L(σ2
n)− L(σ

′2
n )||TV ≤ E

[
sup
x>0

{
1− x−α−1e−1/x

(1 + ∆/Wn)αx−α−1e−(1+∆/Wn)/x

}]
= E

[
sup
x>0

{
1− e∆/Wn/x

(1 + ∆/Wn)α

}]
= E

[
1− 1

(1 + ∆/Wn)α

]
.

Define f(x) = 1
xα , f

′(x) = −α 1
xα+1 . By the mean value theorem, f(1 + ∆/Wn) = f(1) −
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∆
Wn

α
ξα+1 , ξ ∈ (1, 1 + ∆/Wn). So, f(1 + ∆/Wn) ≥ 1− α ∆

Wn
. Now,

||L(σ2
n)− L(σ

′2
n )||TV

≤ E[1− (1− α ∆

Wn

)] = E[α
∆

Wn

]

≤ E[
k + υ0

2
∆

2

υ0c20
] since α =

k + υ0
2

and Wn ≥
υ0c

2
0

2

=
k + υ0
υ0c20

E[|Wn −W ′
n|]

=
k + υ0
υ0c20

E[|Wn −W ′
n|]E[G−1

n ]E[G−1
n ]−1

=
k + υ0
υ0c20

E[|Wn/Gn −W ′
n/Gn|]E[G−1

n ]−1 by independence

≤ (k + υ0)
2

2υ0c20
E[|Wn/Gn −W ′

n/Gn|].

Using Lemma 5.1, we can apply Theorem 4.4 to only the one-dimensional initialization

of the marginal Gibbs Markov chain (σ2
n) to estimate the total variation of the possibly

high-dimensional joint Markov chain.

Lemma 5.2. Let (σ2
n)n and (σ

′2
n )n be two copies of the deterministic scan Gibbs Markov

chain initialized with σ2 ∼ ν and σ
′2 ∼ µ. Assume σ2

0 ∼ ν is a distributed Γ−1(α′, β′) with

parameters α′ = (k + υ0)/2 and β′ = υ0c
2
0. Let σ2

∞ ∼ π be from stationary Markov chain

started from the the marginal posterior distribution. Then

E[|σ′2
n − σ2

∞|] ≤
(2π)p/2 det(Σβ)

1/2∫
Rp×R+

g(β, σ2)d(β × σ2)

Γ(α′)

β′α′ E[|σ2
n − σ

′2
n ]

where the expectation is taken with respect to coupling using common random numbers and

σ2
0 and σ

′2
0 are independent.

Proof. Define f as the corresponding density function of ν, f(σ2) = β′α′

Γ(α′)
1

(σ2)α
′+1 e

−β′/σ2
where
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α′ = (k + υ)/2 and β′ = υ0c
2
0/2. Note that

∫
g(β, σ2)dβ ≤ (2π)p/2 det(Σβ)

1/2 1

(σ2)(k+υ0)/2+1
exp

(
−υ0c

2
0

2σ2

)
= (2π)p/2 det(Σβ)

1/2Γ(α
′)

β′α′ f(σ
2).

By equation 13 the value for K follows. By equation 12 the inequality follows.

Given Theorem 4.4 and Lemma 5.2 we show how an upper bound on the convergence

rate in Wasserstein distance can be simulated for a numerical example of the Gibbs sampler

for Bayesian regression with semi-conjugate priors, Example 5.1. We further provide an

estimate of the upper bound in total variation using Lemma 5.1.

Numerical Example 5.1. Suppose that we are interested in evaluating the carbohydrate

consumption (Y) by age, relative weight, and protein consumption (X) for twenty male

insulin-dependent diabetics. For more information on this example, see Section 6.3.1 of

Dobson and Barnett [2008].

We want to find the estimated upper bound on the total variation distance for a Gibbs

sampler for Bayesian regression with semi-conjugate priors fitted to this model. In this case,

there are 20 observed values and 4 parameters (k = 20, p = 4). We set the priors to mβ = 0⃗,

Σβ = I4, υ0 = 1, c20 = 10. Using cubature approximation Narasimhan et al. [2023] with the

R programming language R Core Team [2024], we can set
∫
g(β, σ2)d(β×σ2) = L ≈ 0.9687,

where L is defined in equation 13. Using the bound in Lemma 5.2 K ≤ 2.1150 and,

E[|σ2
n − σ

′2
∞|] ≤ 2.1150 lim

I→∞

1

I

I∑
i=1

|σ2
n,i − σ

′2
n,i|

holds almost surely.

Using the CRN technique, we simulated E[|σ2
n,i − σ

′2
n,i|] one thousand times (I = 1000)

over 100 iterations (N = 100). Figure 9 graphs the 1000 simulations and shows that the

absolute differences spike at the second iteration, |σ2
2,i−σ

′2
2,i|, but converge quite quickly after
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Figure 9: 1000 simulations of |σ2
n,i − σ

′2
n,i| where n =iteration.

this. At iteration 25, E[|σ2
25−σ2

∞|] ≤ K 1
1000

∑1000
i=1 |σ2

25,i−σ
′2
25,i| = 2.1150×0.0014 ≈ 0.00291.

Figure 10 graphs the histogram of |σ2
25,i − σ

′2
25,i|. Further, by Lemma 5.1 the total variation

distance is bounded above by (k+υ0)2

2υ0c20
= 22.05 times the expected distance,

||L(σ2
n)− L(σ

′2
∞)||TV ≤ 22.05E[|σ2

n − σ2
∞|]

So at the 25th iteration, ||L(σ2
25)− L(σ

′2
∞)||TV ≤ 0.0642.

6 Acknowledgements

The authors would like to thank the anonymous referees.

7 Disclosure statement

The authors report there are no competing interests to declare.

29



Figure 10: The following histogram graphs 1000 simulations of |σ2
25,i − σ

′2
25,i|. The vertical

line and sample mean difference is 1
1000

∑1000
k=1 |σ2

25,i − σ
′2
25,i| = 0.0014

8 Funding

The research of Sabrina Sixta was supported in part by a Canada Graduate Scholarships

from NSERC of Canada. The second author was supported in part by Natural Sciences and

Engineering Research Council of Canada.

9 Proof of Theorem 3.3

Proof of Theorem 3.3. Fix x, y and denote g(U) = f(F−1
θ (U), x) and h(V ) = f(F−1

θ (V ), y).

We write U, V as uniform random variables such that L(U) = Unif(0, 1),L(V ) = Unif(0, 1).

Note that since θU = F−1(U) where F is invertible, we interchangeably write the set A to

signify A (defined on θ) and F (A) (defined on U, V ). Also note that since g(U), h(V ) are

assumed to be of bounded variation, the sets Ix, Iy, Dx, Dy can be written as the union of

countable intervals by Corollary 3.6 of Stein and Shakarchi [2005].

First we show that

sup
U∼L(U),V∼L(V )

E[g(U)h(V )1A] = E[g(U)h(U)1A] (18)
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Denote Ix ∩ Iy = ∪k≥1Jk and A \ (Ix ∩ Iy) = ∪k≥1Lk where J and L are intervals. We have

sup
(U,V )

E[g(U)h(V )1A]

≤ sup
(U,V )

E[g(U)h(V )1Ix∩Iy ] + sup
(U,V )

E[g(U)h(V )1A\(Ix∩Iy)]

= sup
(U,V )

E[g(U)h(V )1Ix∩Iy ] + sup
(U,V )

E[(−g(U))(−h(V ))1A\(Ix∩Iy)]

= sup
(U,V )

E[
∑
k≥1

g(U)h(V )1Jk ] + sup
(U,V )

E[
∑
k≥1

(−g(U))(−h(V ))1Lk
]

= sup
(U,V )

∑
k≥1

E[g(U)h(V )1Jk ] + sup
(U,V )

∑
k≥1

E[(−g(U))(−h(V ))1Lk
]

≤
∑
k≥1

sup
(U,V )

E[g(U)h(V )1Jk ] +
∑
k≥1

sup
(U,V )

E[(−g(U))(−h(V ))1Lk
]

=
∑
k≥1

E[g(U)h(U)1Jk ] +
∑
k≥1

E[(−g(U))(−h(U))1Lk
]

= E[g(U)h(U)1Ix∩Iy ] + E[(−g(U))(−h(U))1A\(Ix∩Iy)]

= E[g(U)h(U)1A]

The third equality is by the Dominated Convergence Theorem, Theorem 1.5.8 of Durrett

[2010], and the second last equality is by Proposition 3.2.

Since E[g(U)h(U)] ≤ sup(U,V )E[g(U)h(V )] ≤ E[g(U)h(U)], equality follows. Note that

Proposition 3.2 can still be applied even if g(U)h(U)1Jk and g(U)h(U)1Lk
are no longer

the product of right continuous functions, which is a result of the fact that 1Jk may not

necessarily be right continuous. This is because the theorem still applies by discussions in

Section 4 of Cambanis et al. [1976] that note that rather than requiring that f(·, x) be right

continuous it is simply necessary to assume that the discontinuous points are countable and

have left and right limits. This is a necessary condition for bounded variation (assumed in

the theorem). Since the function IA has countably many discontinuities, Proposition 3.2 can

be used.
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Second we show that

sup
(U,V )

E[g(U)h(V )1Ac ] = E[g(U)h(1− U)1Ac ] (19)

Suppose Ac can also be written as countable intervals. The set Ac represents areas where

either g is increasing and h is decreasing or vice versa. By similar reasoning to equation 18,

sup
(U,V )

E[g(U)h(V )1Ac ] = − inf
(U,V )

E[g(U)(−h(V ))1Ac ]

= − inf
(U,V )

E[
∑
I∈Ac

g(U)(−h(1− U))I]

= − inf
(U,V )

∑
I∈Ac

E[g(U)(−h(1− U))I]

≤ −
∑
I∈Ac

inf
(U,V )

E[g(U)(−h(1− U))I]

= −
∑
I∈Ac

E[g(U)(−h(1− U))I]

= −E[g(U)(−h(1− U))1Ac ]

= E[g(U)h(1− U)1Ac ]

The third equality is by the Dominated Convergence Theorem, Theorem 1.5.8 of Durrett

[2010], and the third last equality is by Theorem 2 of Cambanis et al. [1976].

Again, since E[g(U)h(1 − U)1Ac ] ≤ sup(U,V )E[g(U)h(V )1Ac ] ≤ E[g(U)h(1 − U)1Ac ],

equality follows.
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Case 1: Suppose P (A) = 1. We write P (Ac) = P (U, V ) ∈ F (Ac))

sup
(U,V )

E[g(U)h(V )]

= sup
(U,V )

E[g(U)h(V )1A] + E[g(U)h(V )1Ac ]

= sup
(U,V )

E[g(U)h(V )1A] + E[g(U)h(V ) | (U, V ) ∈ F (Ac)]P (Ac)

= sup
(U,V )

E[g(U)h(V )1A] Since P (Ac) = 0

= E[g(U)h(U)1A] by equation 18

= E[g(U)h(U)]

By equation 3, equation 6 follows.

Case 2: Suppose P (A) = 0.

sup
(U,V )

E[g(U)h(V )]

= E[g(U)h(1− U)1Ac ] by equation 19

= E[g(U)h(1− U)]

By equation 3, equation 7 follows.

Case 3: Suppose 0 < P (A) < 1.

sup
(U,V )

E[g(U)h(V )]

≤ sup
(U,V )

E[g(U)h(V )1A] + sup
(U,V )

E[g(U)h(V )1Ac ]

= E[g(U)h(U)1A] + E[g(U)h(1− U)1Ac ] by equations 18 and 19

By equation 3, equation 8 follows.
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