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We examine the behaviour of the pseudo-marginal random walk
Metropolis algorithm, where evaluations of the target density for the
accept/reject probability are estimated rather than computed pre-
cisely. Under relatively general conditions on the target distribution,
we obtain limiting formulae for the acceptance rate and for the ex-
pected squared jump distance, as the dimension of the target ap-
proaches infinity, under the assumption that the noise in the estimate
of the log-target is additive and is independent of the position. For
targets with independent and identically distributed components, we
also obtain a limiting diffusion for the first component.

We then consider the overall efficiency of the algorithm, in terms
of both speed of mixing and computational time. Assuming the addi-
tive noise is Gaussian and is inversely proportional to the number of
unbiased estimates that are used, we prove that the algorithm is opti-
mally efficient when the variance of the noise is approximately 3.283
and the acceptance rate is approximately 7.001%. We also find that
the optimal scaling is insensitive to the noise and that the optimal
variance of the noise is insensitive to the scaling. The theory is illus-
trated with a simulation study using the particle marginal random
walk Metropolis.

1. Introduction. Markov chain Monte Carlo (MCMC) algorithms have proved particularly
successful in statistics for investigating posterior distributions in Bayesian analysis of complex
models (see e.g. [SR93, Tie94, BGJM11]). Almost all MCMC methods are based on the Metropolis-
Hastings (MH) algorithm which owes much of its success to its tremendous flexibility. However, in
order to use the classical MH algorithm, it must be possible to evaluate the target density up to a
fixed constant of proportionality. While this is often possible, it is increasingly common for exact
pointwise likelihood evaluation to be prohibitively expensive, perhaps due to the sheer size of the
data set being analysed. In these situations, classical MH is rendered inapplicable.

The pseudo-marginal Metropolis-Hastings algorithm (PsMMH) [Bea03, AR09] provides a general
recipe for circumventing the need for target density evaluation. Instead it is required only to be
able to unbiasedly estimate this density. The target densities in the numerator and denominator
of the MH accept/reject ratio are then replaced by their unbiased estimates. Remarkably, this
yields an algorithm which still has the target as its invariant distribution. One possible choice of
algorithm, the pseudo-marginal random walk Metropolis (PsMRWM), is popular in practice (e.g.
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[GW11, KdV12]) because it requires no further information about the target, such as the local
gradient or Hessian, which are generally more computationally expensive to approximate than the
target itself [PDS11].

Broadly speaking, the mixing rate of any PsMMH algorithm decreases as the dispersion in the
estimation of the target density increases [AR09]. In particular, if the target density happens to
be substantially over-estimated then the chain will be overly reluctant to move from that state
leading to a long run of successive rejections (a sticky patch). Now, in PsMMH algorithms, the
target estimate is usually computed using an average of some number, m, of approximations (see
Sections 1.1 and 3). This leads to a trade off, with increasing m leading to better mixing of the
chain, but also to larger computational expense. We shall consider the problem of optimising m.

It is well known (e.g. [RRO01, SFR10]) that the efficiency of the random-walk Metropolis (RWM)
algorithm varies enormously with the scale of the proposed jumps. Small proposed jumps lead to
high acceptance rates but little movement across the state space, whereas large proposed jumps
lead to low acceptance rates and again to inefficient exploration of the state space. The problem
of choosing the optimal scale of the RWM proposal has been tackled for various shapes of target
(e.g. [RGGI7, RRO1, Béd07, BRO8, BRS09, SR09, Shel3, BR00]) and has led to the following rule
of thumb: choose the scale so that the acceptance rate is approximately 0.234. Although nearly all
of the theoretical results are based upon limiting arguments in high dimension, the rule of thumb
appears to be applicable even in relatively low dimensions (e.g. [SFR10]).

This article focusses on the efficiency of the PsMRWM as the dimension of the target density
diverges to infinity. For relatively general forms of the target distribution, under the assumption
of additive independent noise in the log-target, we obtain (Theorem 1) expressions for the limit-
ing expected squared jump distance (ESJD) and asymptotic acceptance rate. ESJD is now well-
established as a pragmatic and useful measure of mixing for MCMC algorithms in many contexts
(see e.g. [PG10]), and is particularly relevant when diffusion limits can be established (see for exam-
ple the discussion in [RR13]). We then prove a diffusion limit for a rescaling of the first component,
in the case of a target with independent and identically distributed components (Theorem 2); the
efficiency of the algorithm is then given by the speed of this limiting diffusion, which is equivalent to
the limiting ESJD. We examine the relationship between efficiency, scaling, and the distributional
form of the noise, and consider the joint optimisation of the efficiency of the PsSMRWM algorithm
(taking computational time into account) with respect to m, and the RWM scale parameter. Exact
analytical results are obtained (Corollary 1) under an assumption of Gaussian noise in the estimate
of the log-target, with a variance that is inversely proportional to m. In that case, we prove that
the optimal noise variance is 3.283, and the corresponding optimal asymptotic acceptance rate is
7.001%, thus extending the previous 23.4% result of [RGG9I7]. Finally, we illustrate the use of these
theoretical results in a simulation study (Section 4).

1.1. The PsMRWM. Consider a state space X C R? and let 7(-) be a distribution on X', whose
density (with respect to Lebesgue measure) will be referred to as m(x). The MH updating scheme
provides a very general class of algorithms for obtaining an approximate dependent sample from a
target distribution, 7(+), by constructing a Markov chain with 7(+) as its limiting distribution. Given
the current value x, a new value x* is proposed from a pre-specified Lebesgue density ¢ (x,x*) and is
then accepted with probability a(x,x*) = 1A [r(x*) ¢ (x*,x)]/[7(x) ¢ (x,x*)]. If the proposed value
is accepted then it becomes the next current value, otherwise the current value is left unchanged.

The PsMMH algorithm [AR09] presumes the computational infeasibility of evaluating 7(x) and
uses an approximation 7y (x) that depends on some auxiliary variable, v. The auxiliary variable is
sampled from some distribution guux(v|x), and the approximation 7 (x) is assumed to satisfy that
Eq,..[7Tv(x)] = em(x), for some constant ¢ > 0. The value of the constant is irrelevant to all that
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follows, and so, without loss of generality, we assume that ¢ = 1. We also assume that &, > 0.
The PsMMH algorithm creates a Markov chain; with a stationary density (since ¢ = 1) of

7~T(X7 V) = Qaux(xa V)ﬁ'v (X)a (1.1)

which has 7(x) as its x marginal. When a new value, X*, is proposed via the MH algorithm, a new
auxiliary variable, V*, is proposed from the density gaux(x*,v*). The pair (x*, v*) are then jointly
accepted or rejected. The acceptance probability for this MH algorithm on (x,v) is

v+ (x*) q (X7, %)

P R g Gox)

We are thus able to substitute the estimated density for the true density, and still obtain the
desired stationary distribution for x. Note that for symmetric proposals, this simplifies to 1 A
[Trve (x°) /v ()]

Different strategies exist for producing unbiased estimators, for instance using importance sam-
pling or latent variable representations, as in [FPRO08]|, or using particle filters ([GSS93], [DM04])
as in [ADH10]. We shall illustrate our theory in the context of Bayesian analysis of a partially
observed Markov jump process.

1.2. Previous related literature. [PASSGK12] and [DPDK14] both examine the efficiency of
pseudo-marginal algorithms using bounds on the integrated autocorrelation time (I4c7) and under
the assumptions that the chain is stationary and the distribution of the additive noise in the log-
target is independent of x (our Assumptions 1). Under the further assumption that this additive
noise is Gaussian and the computing time inversely proportional to its variance (our Assumptions
4), both articles then seek information on the optimal variance of this additive noise. [PASSGK12]
consider the (unrealistic) case where the Metropolis-Hastings algorithm is an independence sampler
which proposes from the desired target distribution for z, and obtain an optimal variance of 0.922.
[DPDK14] consider a general Metropolis-Hastings algorithm and define a parallel hypothetical ker-
nel Q* with the same proposal mechanism as the original kernel, (), but where the acceptance
rate separates into the product of that of the idealised marginal algorithm (if the true target were
known) and that of an independence sampler which proposes from the assumed distribution for the
noise. This kernel can never be more efficient than the true kernel. Upper and lower bounds are
obtained for the [ 47 for @Q* in terms of the of Isor of the exact chain and the I4o7 and a partic-
ular lag-1 autocorrelation of the independence sampler on the noise. These bounds are examined
under the assumption that the additive noise is Gaussian and the optimal variance for the noise is
estimated to lie between 0.922 and 1.682.

Other theoretical properties of pseudo-marginal algorithms are considered in [AV14], which gives
qualitative (geometric and polynomial ergodicity) results for the method and some results concern-
ing the loss in efficiency caused by having to estimate the target density.

1.3. Notation. In this paper, we follow the standard convention whereby capital letters denote
random variables, and lower case letters denote their actual values. Bold characters are used to
denote vectors or matrices.

2. Studying the Pseudo Marginal Random Walk Metropolis in high dimensions.

2.1. Proposal distribution. We focus on the case where the proposal, x*, for an update to x is
assumed to arise from a random walk Metropolis algorithm with an isotropic Gaussian proposal

X* =x+ \Z, where z R N(0,I), (2.1)
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and I is the d x d identity matrix, and A > 0 is the scaling parameter for the proposal. The results
presented in this article extend easily to a more general correlation matrix by simply considering the
linear co-ordinate transformation which maps this correlation matrix to the identity matrix and ex-
amining the target in this transformed space. In proving the limiting results we consider a sequence

of d-dimensional target probabilities 7(%). In dimension d the proposal is X(®* 2 N(x(@ D21y,

2.2. Noise in the estimate of the log-target. We will work throughout with the log-density of
the target, and it will be convenient to consider the difference between the estimated log-target
(log 7y (x)) and the true log-target (log7(x)) at both the proposed values (x*,V*) and the current
values (x, V), as well as the difference between these two differences:

W =logmy(x) — log m(x),
W* :=logy« (x*) — logm (x*), (2.2)
B =W"-W.

Throughout this article we assume the following.

ASSUMPTIONS 1. The Markov chain (X, W) = {(Xk-,Wk)}k>0 is stationary, and the distri-
bution of the additive noise in the estimated log-target at the proposal, W*, is independent of the
proposal itself, X*.

REMARK 1. [t is unrealistic to believe that the second part of Assumptions 1 should hold in
practice. Pragmatically, this assumption is necessary in order to make progress with the theory
presented herein; however, in our simulation study in Section 4 we provide evidence that, in the
scenarios considered, the variation in the noise distribution is relatively small.

Note that the noise term within the Markov chain, W, does not have the same distribution as
the noise in the proposal, W*, since, for example, moves away from positive values of W will be
more likely to be rejected than moves away from negative values of W. In the notation of Section
1.1, since W* is a function of V, gaux(x*, v) now gives rise to g*(w*), the density of the noise in the
estimate of the log-target, which is independent of x*. Integrating (1.1) gives the joint stationary
density of the Markov chain (X, W) as

9" (w)en(x). (2.3)
This is Lemma 1 of [PdASSGK12]. Under Assumptions 1, W and X are therefore independent, and

the stationary density of W is g*(w)e®.

2.3. High dimensional target distribution. We describe in this section conditions on the sequence
of target densities 7(9) that ensure that the quantity log [W(d) (X*) /() (X)] behaves asymptotically
as a Gaussian distribution under an appropriate choice of jump scaling A(¥). The main assumption
is that there exist sequences of scalings sgd) > (0 and S(Ld) > 0 for the gradient and the Laplacian of
the log-likelihood log 7(# such that the following two limits hold in probability,

V log 7(d)(X(d) Al (d) (x (d)
o IVIB TV Aleg D) (2.4)

d— (d) d— (d)

for X(@ 2 7@ 1Tn the rest of this article we assume that the sequence of densities 7(4 is such that

for each index i > 1, with all components of x fixed except the i, the i*" component satisfies
or(d)
8$i

—0 as || — o0. (2.5)
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Under this regularity condition, an integration by parts shows that E[||Vlog r(d) (X(d))|]2]
~E[Alog r(d)(x ))} Equation (2.4) thus yields hmd_mo(sg )2 /s = 1. We will suppose from

now on, without loss of generality, that sé ) = S(Ld) =: 5(4 We also require that no single compo-

nent of the local Hessian H(? (x) := [812] log () (x)]0<ij<d dominate the others in the sense that
the limit T

(d))2(x(d)
lim Trace[(H )4(X )]
d—o0 (S(d))

=0 (2.6)

holds in probability. We also assume that the Hessian matrix is sufficiently regular so that for any
02,e> 0 and Z@ 2 N(0,1)

(@) (@ (X () (@) (X (DY) Z(D)
fim B( sup ‘<Z [HY(X +tazd/s ) = HO(XD)] 2(D)
d—o0 te(0,1) (s()?

These conditions are discussed in detail in [Shel3] where they are shown to hold, for example,
when the target is the joint distribution of successive elements of a class of finite-order order
multivariate Markov processes. The targets considered in [RGG97], [RRO1] and Section 2.5 all
satisfy the conditions with s(® o d*/2. We record the conditions formally as:

’>s) —0. (27

ASSUMPTIONS 2. The sequence of densities ©'? satisfies Equations (2.4),(2.6),(2.7) and the
reqularity condition (2.5).

We shall show in next section that under these assumptions the choice of jump size

14

(. ~_
A = <@

(2.8)

for a parameter £ > 0 leads to a Gaussian asymptotic behaviour for log[r(®(X*)/x(?(X)]. This
ensures that for high dimensions, the mean acceptance probability a(? (¢) of the MCMC algorithm,

@ (X@ 4 ADZ@) W
7@ (X(@D) W }

a D (p) .= E[1 A

stays bounded away from zero and one.

2.4. Expected squared jump distance. A standard measure of efficiency for local algorithms is
the Euclidian Expected Squared Jumping Distance (e.g. [SR09], [BRS09], [Shel3]) usually defined
as EHXkH — XkH2 Consider, for example, a target with elliptical contours, or one which has
components which are independent and identically distributed up to a scale parameter. In such
situations the Euclidean ESJD is dominated by those components with a larger scale. We would
prefer an efficiency criterion which weights components at least approximately equally, so that
moves along each component are considered relative to the scale of variability of that component.
A squared Mahalanobis distance is the natural extension of Euclidean ESJD, and in the case of the
two example targets mentioned above, it is exactly the correct generalisation of Euclidean ESJD.
We therefore define a generalised potential squared jump distance for a single iteration with respect

to some d x d positive definite symmetric matrix T(¢ [ HX(d ,(Cd) H?r(d) }, where the Markov
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chain {X,(Cd)}kzo is assumed to evolve at stationarity and [[z]|2,,) := (z, T(Yz). We will require that,

in the limit as d — 0o, no one principal component of T dominates the others in the sense that
2
Trace [(T(d))g} /Trace [T(d)} — 0. (2.9)
Clearly, (2.9) is satisfied when T® = I; (i.e. Euclidian ESJD).

THEOREM 1. Consider a PsMRWM algorithm. Assume that the additive noise satisfies Assump-
tions 1, the sequence of densities 7Y satisfy Assumptions 2, and the sequence of jump distance
matrices TD satisfy (2.9). Assume further that the jump size X9 is given by (2.8) for some fized
> 0.

1. Acceptance probability.
The mean acceptance probabilities o ¥ (¢) converge as d — oo to a non-trivial value a(f),

B 7
lim a@ () =2 x IE[@ ( - ) } =: a(f), (2.10)
d—o0 4 2

with B as in (2.2), where ® is the cumulative distribution of a standard Gaussian distribution.
2. Expected Square Jump Distance.

A rescaled expected squared jump distance converges as d — oo to a related limit,

. s(@)? 2

lim Tm(ce[%w} X, — XD = 2 x a(f) = J(0). (2.11)
Theorem 1 is proved in Section 5.1. It establishes limiting values for the acceptance probability
and expected squared jump distance, and more importantly for the relationship between them,
which is crucial to establishing optimality results as we shall see. Further, (2.11) shows that, as is
common in scaling problems for MCMC algorithms (for example in [RGG97, RR98]), the ESJD
decomposes into the product of the acceptance probability «(¢) and the expected squared proposed
jumping distance ¢2, implying an asymptotic independence between the size of the proposed move
and the acceptance event. As in the RWM case, we wish to be able to consider J(¢) to be a function
of the asymptotic acceptance rate «(¢). Our next result, which is proved in Section 5.2, shows that

this is indeed possible.

PROPOSITION 1. For a PsMRWM algorithm with noise difference B as in (2.2), with jump size
determined by £ > 0 as in (2.8), and with limiting asymptotic acceptance rate a(€) as in (2.10), the
mapping £ — «a(f) is a continuous decreasing bijection from (0,400) to (0, Qmas], where

Amag = lim a(f) = 2 x P[B > 0].
£—0

Proposition 1 yields that amax = sup,so @(f). When there is no noise in the estimate of the
target, as already proved in [RGG97], the acceptance rate simplifies to ag(¢) := 2®(—¢/2) and
the associated expected squared jump distance reads Jo(¢) = £? ag(£) . Thus we may also consider
the asymptotic efficiency of a pseudo-marginal algorithm relative to the idealised algorithm if the
target were known precisely by defining J,.;(¢) = J(¢)/Jo(€), which also reads

Jra(6) = q)(_lm)E [cp <f - 5)] . (2.12)

The following proposition, which is proved in Section 5.3, shows that the relative efficiency can
never exceed unity and that it is bounded below by the acceptance rate in the limit as £ — 0.
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ESJD (Gaussian) ESJD (Laplace)

Fia 1. Contour plots of the asymptotic expected squared jump distance J(€) from (2.11) plotted as a function of the
scaling parameter £ and of the standard deviation, o, of the additive noise. In the left-hand panel the additive noise
in the log-target is assumed to be Gaussian, and in right-hand panel it is assumed to have a Laplace distribution.

PROPOSITION 2. With a(f) and Jye(¢) as defined in (2.10) and (2.12) respectively,

Omaz < Jrel(ﬁ) < 1

The quantities a(f), J(¢) and Jie(¢) depend upon the distribution of B, and hence on the
distribution of the additive noise W from (2.2). Figure 1 considers two particular cases: where the
distribution of the additive noise is Gaussian, i.e. W* ~ N(—02/2,02) (which we shall consider
further in Section 3), and where the distribution of the additive noise is Laplace (i.e., double-
exponential), with mean log(1 — ¢2/2) and scale parameter o/v/2. For each of these two cases, it
shows a contour plot of J(¢) as a function of the proposal scaling parameter ¢ and of the standard
deviation of the additive noise, o. Figure 2 shows the equivalent plots for Jye(£).

Our ultimate goal is often to choose ¢ to mazimise J(¢), and thus obtain an optimal limiting
diffusion (and hence an approximately optimal algorithm for finite d too). We shall use Theorem 1
to establish an optimal acceptance rate in a particular limiting regime, in Section 3.2 below.

Figure 2 illustrates that, except for small values of the scaling, the relative efficiency for a given
noise distribution is relatively insensitive to the scaling. Related to this, from Figure 1 it appears
that the optimal scaling (i.e., the value ¢ which maximises J(¢)) is relatively insensitive to the
variance of the additive noise. When there is no noise, the optimum is o ~ 2.38 as first noted in
[RGGI7], however the optimum remains close to 2.5 across a range of variances for both choices of
noise distribution.

For these two examples, as might be expected, for any given scaling of the random walk proposal,
the efficiency relative to the idealised algorithm decreases as the standard deviation of the noise
increases, a phenomenon that is investigated more generally in [AV14]. Thus there is an implicit
cost of having to estimate the target density. As a result of this, we should not expect the optimal
acceptance probability for RWM of 0.234 to hold here.

2.5. Diffusion limit. We next prove that PsMRWM in high dimensions can be well-approximated
by an appropriate diffusion limit (obtained as d — o). This provides further justification for mea-
suring efficiency by the ESJD, as discussed in detail in [RR13]. Briefly, the limiting ESJD (suitably
scaled) is equal to the square of the limiting process’s diffusion coefficient, h say. By a simple time
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Fia 2. Contour plots of Jre(€) from (2.12), the asymptotic expected squared jump distance relative to the idealised
algorithm, plotted as a function of the scaling parameter £ and of the standard deviation, o, of the additive noise. In
the left-hand panel the additive noise in the log-target is assumed to be Gaussian, and in the right-hand panel it is
assumed to have a Laplace distribution.

change argument, the asymptotic variance of any Monte Carlo estimate of interest is inversely pro-
portional to h. Minimising variance is thus equivalent to maximising h, i.e. h becomes (at least in
the limit) unambiguously the right quantity to optimise. By constrast, MCMC algorithms which
have non-diffusion limits can behave in very different ways, and ESJD may not be an appropriate
way to compare algorithms in such cases.

We shall consider in this section the PsMRWM algorithm applied to a sequence of simple i.i.d
target densities

d

ﬂ(d)(:vl, CeXg) = H [ ()

=1

where f is a one dimensional probability density. We assume throughout this section that the
following regularity assumptions hold.

ASSUMPTIONS 3. The first four moments of the distribution with density f are finite. The
log-likelihood mapping = — log f(x) is smooth with second, third and fourth derivatives globally
bounded.

One can verify that under Assumptions 3, the target 7(?) satisfies Assumptions 2. It is important
to stress that the ESJD analysis of Section 2.4 only relies on the weaker Assumptions 2 and, as
discussed at the end of the previous section, is valid for much more general target distributions
than the ones with i.i.d. coordinates considered in this section. The stronger Assumptions 3 are
standard in the diffusion-limit literature and are, perhaps, the simplest from which a diffusion
limit is expected to result [RGG97]. However, these i.i.d. assumptions have been relaxed in various
directions [BPST04, B&d07, BR0O8, BRS09, PST12] and we believe that our diffusion limit Theorem
2 could also be extended to similar settings at the cost of considerably less transparent proofs.

In the remainder of this article we consider the sequences of scaling functions 4/ sgd) = sgd) =

VT x d, with

1:=E[{(log f(X))'}*] = —E[(log f(X)) ] (2.13)
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and X 2 f(x) dz. Indeed, Equation (2.4) is satisfied; consequently, for a tuning parameter ¢ > 0,
we consider d-dimensional RWM proposals with scaling

AND =g 71V2812  with  §=1/d (2.14)

as in (2.8). The quantity I, which quantifies the roughness and the scale of the marginal density
f(x) dx, has been introduced in the definition of the RWM jump-size (2.14) so that all our limiting
results on the optimal choice of parameter ¢ are independent of f(z)dx. The main result of this
section is a diffusion limit for a rescaled version V(@ of the first coordinate process. For time ¢ > 0
we define the piecewise-constant continuous-time process

(@
V() = X

with the notation Xlid) = (X/,gdl)7 cee X]idfg) € R? so that V(@(t) is the first coordinate of X(Lfllj. Note

that in general the process V(@) is not Markovian. The next theorem shows that nevertheless, in
the limit d — oo, the process V(@ converges weakly to an explicit Langevin diffusion. This result
thus generalises the original RWM diffusion limit proved in [RGG97].

THEOREM 2. Let T > 0 be a finite time horizon. For oll d > 1 let each Markov chain and
the additive noise satisfy Assumptions 1, let the sequence of product form densities 7@ satisfy the
reqularity Assumptions 3 and set the scale of the jump proposals as in Equation (2.14). Then, as
d — oo,

v v

in the Skorokhod topology on D([0,T]), where V satisfies the Langevin SDE

1
dv, = h'/2(0) dB, + 5 10) Vlog f(Vi) dt (2.15)

with initial distribution Vg 2 f and B, a standard Brownian motion. The speed function h is
proportional to the asymptotic rescaled ESJD function J,

h(l) = J(O/1,
with the constant of proportionality I defined by Equation (2.13).

The time change argument discussed before Theorem 2 shows that the quantity J.. exactly
measure the loss of mixing efficiency (computational time not taken into consideration) when exact
evaluations of the target density are replaced by unbiased estimates; as already mentioned, the
pseudo-marginal algorithm always has worse mixing properties than the idealised algorithm.

3. Optimising the PsSMRWM. We next consider the question of optimising the PsMRWM.
Now, when examining the efficiency of a standard RWM, the expected computation (CPU) time is
usually not taken into account since it is implicitly assumed to be independent of the choice of tuning
parameter(s). This may indeed be approximately true for the RWM. However, for the PsMRWM
the expected CPU time for a single iteration of the algorithm is usually approximately inversely
proportional to the variance of the estimator 7 (z). For this reason, we measure the efficiency of the
PsMRWM through a rescaled version of the ESJD:

(Effici ) (Expected Square Jump Distance)
ciency) :=

3.1
(Expected one-step computing time) (3.1)
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Of course, for any increasing function F', the quantity F(ESJD)/(Expected one-step computing time)
is a possible measure of efficiency. However, the discussion at the start of Section 2.5 indicates that
(3.1) is the appropriate measure of efficiency in the high-dimensional asymptotic regime considered
in this article.

In the remainder of this section, we implicitly assume that the target distributions satisfy As-
sumptions 2.

3.1. Standard (Gaussian) regime. We shall restrict attention to the case in which the additive
noise follows a Gaussian distribution. More precisely, we shall assume the following, which we shall
refer to for brevity as ‘the standard asymptotic regime’ (SAR):

ASSUMPTIONS 4. For each x € X and 0 > 0, we have an unbiased estimator 7 (x) of n(x), such
that log w(z) follows a Gaussian distribution with variance 0. Furthermore, the expected one-step
computing time is inversely proportional to o2.

Intuitively, Assumptions 4 are designed to model the situation where 7(z) is estimated as a
product of n averages of m i.i.d. samples in the limit as n — oo and with m ~ n. For a fixed
large n, approximate normality follows from the central limit theorem; moreover o2 ~ ¢/m for
some ¢ > 0, and the computational time is proportional to m and hence to 1/02. Assumptions 4
have recently been shown to hold more generally, in the context of particle filtering for a hidden
Markov model (see [BDMD13]). There are other natural situations where multiplicative forms for
the importance sampling estimator of the likelihood might make the estimator well-approximated
as a log-Gaussian, for example in correcting for a PAC likelihood approximation (see [LMO3]).

Under the SAR of Assumptions 4, we will prove an optimality result in Section 3.2 which specifies
a particular optimal variance for the estimate of the log-target.

3.2. Optimisation under the standard asymptotic regime. In this section we consider a sequence
7@ of target distributions satisfying Assumptions 2 and assume that each unbiased estimator
satisfies the independence in Assumptions 1. Under these assumptions, the rescaled ESJD of the
PsMRWM algorithm with jump size (2.8) is described by Theorem 1. Under the SAR, i.e. Assump-

tions 4, and with Var [log #(x)] = o2, the noise difference is B 2 N(—02,20?). Since the mean one
step computing time is assumed to be inversely proportional to the variance, o2, the asymptotic
efficiency, as d — oo, is proportional to

02 x J2(f) =: Eff,2(0) (3.2)

where J,2(¢) stands for the asymptotic rescaled ESJD identified in Theorem 1, i.e. J(¢), in the
special case where B 2 N(—02,202).

Figure 3 provides a contour plot of this efficiency Eff,2(¢), relative to the highest achievable
efficiency, and of the logarithm of the asymptotic acceptance rate «(¢), both as functions of the
scaling parameter £ and of the standard deviation, o. It also provides a plot of the profile Eﬂ‘agpt(ﬁ) (0)
as a function of £, again relative to the highest achievable value.

As previously suggested by Figure 1, we see that the conditional optimal value of £ is relatively
insensitive to the value of o.

The point at which the maximal efficiency is achieved is detailed precisely in Corollary 1 below.

COROLLARY 1. The efficiency Eff,2(¢) is mazximised (to three decimal places) when the variance
a2 of the log-noise is
ooy = 3.283
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Relative efficiency (SAR) Profile relative efficiency logl0(acceptance rate) (SAR)

Fic 3. Contour plots of the theoretical relative efficiency Eff, 2(€)/Eff,2 t(lapt), and of the base-10 logarithm of the
op
asymptotic acceptance probability o (€), and a plot of the profile relative efficiency Eff, 2 (0 (0)/ Eff,2 t(lopt), all for
op op
the scenario where the additive noise arises from the SAR.

and the scaling parameter £ is
lopt = 2.562,

at which point the corresponding asymptotic acceptance rate is

opt = 7.001 %.

As 0? — 0o the optimal scaling satisfies Lopt(0) — 2v/2 and as { — oo the optimal variance satisfies
agpt(f) — 4.

PRrROOF. For convenience, write 72 := 202 and introduce three independent standard Gaussian
random variables U, V, Z 2 N(0,1). Notice that B 2 —72/2 47U and

Eff,2(() = T* CE[®(B/t—¢/2)] = T* PPV < (—7%/2+7U)/l — £/2]
=2 PPV —1U < —(7*+ ) /2] = P2 PPV +72Z < — (72 + £2) /2] (3.3)
1
=720 <—2\/ T2 +€2> )
For fixed 72 + ¢2, the quantity 72¢% is maximised when 72 = ¢2, at which point the efficiency is
®(—7/1/2) o 0*®(—0). This is maximised numerically when o2 = o2y = 3.283 (to three decimal
places), and at this point fop = aopt\/? and aopt = 2P(—0,pt) With the corresponding numerical

values as stated.
Differentiating (3.3) with respect to ¢ we find that the optimal scaling satisfies

® <—;\/€2 + r2> = %E% <—;\/£2 + 72> N2+ 72

The result for large 72 follows from the relationship ®(—z) ~ o(x)/z as 2 — co. The symmetry of
the function (¢2,72) +— Eff,2(¢) in 7 and ¢ then provides the result for large /. O

Remarks
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1. This leads to a new optimal scaling for standard Gaussian targets of A & fopt/ V/d with Lopt &
2.562, and contrasts with the corresponding formula lo / Vd, with €0 ~ 2.38, for the usual ran-
dom walk Metropolis algorithm [RGG97]; recall that £ satisfies £y = argming. o (2 ®(—£/2).

2. In the discussion of Figure 1 it was noted that for a Gaussian or Laplace noise regime the
optimal scaling at a particular noise variance, o2, is insensitive to the value of 2. From Figure
3 and from the symmetry of expression (3.3), the optimal variance at a particular scaling l
is also insensitive to the value of £. Moreover as £ — 0 the optimal variance is 2 5/2 ~ 2.83,
which corresponds (at least to 2dp) with the value obtained in [DPDK14].

3. In practice, o might be a function of a discrete number m of samples or particles and, hence,
only take a discrete set of values. In particular, if the variance in the noise using m = 1 is
already lower than 3.283, then there can be little gain in increasing m.

4. In many problems the computational cost of obtaining an unbiased estimate of the target is
much larger than the cost of the remainder of the algorithm, but this is not always the case.
Consider therefore the more general problem where the cost of obtaining a single unbiased
estimate is t,q: times the cost of the remainder of the algorithm. In this case the efficiency
functional should be expressed as (Efficiency) = J,2(¢)/(1 + t,q;0~2) and the optimal accep-
tance rate is a function of ¢,4; which varies between between 7.0% (as t,q: — o0) and 23.4%
(as trqr — 0).

Figure 3 shows that in contrast to the insensitivity of the optimal scaling to the variance of the
noise, the acceptance rate at this optimum could potentially vary by a factor of 3 or more. Thus if a
particular scaling of the jump proposals maximises J(¢) for some particular noise distribution and
variance, then that scaling should be close to optimal across a wide range of noise distributions and
variances. However, tuning to a particular acceptance rate, whilst more straightforward in practice,
could lead to a sub-optimal scaling if the noise distributions encountered in the tuning runs are not
entirely representative of the distributions that will be encountered during the main run.

Our theory applies in the limit when the dimension d of the (marginal) target X goes to infinity.
However, using a similar argument to that in [SR09], when X ~ N(0,I;) it can be shown that
under the SAR with the proposal as in (2.1) the ESJD and acceptance rate are:

B A B
ESJD(\, d :2>\2E[ Z 2@( Z| + >] and  a(),d :IE[@ (- Z +>}
(A d) 1Z|| S1Z]l NZ] (A d) 2|| | NZ]

where Z X N(0,1I;) and B 2 N(—02,20?). Numerical optimisation of the efficiency function,
02 x ESJID(),d) for d = 1,2,3,5 and 10 produces a steady decrease in ¢ = \/d from 2.59 to 2.57
and in & from 11.5% to 7.7%, and a similarly steady increase in 62 from 3.23 to 3.27. Thus, at least
for Gaussian targets and with efficiency measured by ESJD, the asymptotic results for the optimal
scaling and optimal variance are applicable in any dimension but there may be a small increase in
the optimal acceptance rate, as is found for the non-pseudo-marginal RWM (e.g. [RR01, SR09]).
In the simulation study of Section 4, below, we find that Corollary 1 and its associated formulae
provide a good description of the optimal settings for a particle filter with T"= 50 and d = 5.

4. Simulation Study. In this section we restrict attention to the SAR of Section 3.1. Corollary
1 suggests that the optimal efficiency should be obtained by choosing the number of unbiased
estimates, m, such that the variance in the log-target is approximately 3.3. The scale parameter, A,
should be set so that the acceptance rate is approximately 7%. Since the constant of proportionality
relating A\ and /¢ is unknown in practice, we cannot simply set £ = 2.56.

In practice the assumptions underlying this result may not hold: the dimension of the parameter
space is finite, the distribution of the noise, W*, may not be Gaussian, and it is likely to also vary
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Fic 4. Normal QQplots of the noise in the estimate of the log-target at the a proposed value of the posterior median,
%, when m = 50 (left panel), m = 100 (centre) and m = 400 (right).

with position, x*. We conduct a simulation study to provide an indication of both the extent of
and the effect of such deviations.

We use the Particle Marginal RWM algorithm (PMRWM) of [ADH10] to perform exact inference
for the Lotka-Volterra predator-prey model; see [GW11] for a more detailed description of the
PMRWM which focusses on this particular class of applications. Starting from an initial value,
which is, for simplicity, assumed known, the two-dimensional latent variable U evolves according
to a Markov Jump Process (MJP). Each component is observed at regular intervals with Gaussian
error of an unknown variance. Appendix B provides details of the observation regime and of the
transitions of the MJP and their associated rates. It also provides the parameter values, the priors
and the lengths of the MCMC runs.

An initial run provided an estimate of a central value, X (the vector of posterior medians), and
the posterior variance matrix, \//z;(X) Since the shape of the target distribution, and hence the
optimal shape of the proposal, is unknown we follow the frequently used strategy for the RWM (e.g.
[SFR10]) of setting the proposal covariance matrix to be proportional to Var(X). {From Remark 1
following Corollary 1, we set Vpop = 72 X (2.56%/d) x @(X) with 7 = 1 corresponding to an
optimal tuning for a Gaussian target.

Let M := {50, 80, 100, 150, 200, 300, 400} define the set of choices for the number of particles, m,
and let G := {0.4,0.6,0.8,1.0,1.2,1.4,1.6} define the set of choices for the relative scaling, 7. For
each (m,~) in M x G an MCMC run of at least 2.5 x 10° iterations was performed starting from
%. For diagnostic purposes runs of at least 10* iterations were performed with m € M and v = 0
(so x = x throughout).

We perform three checks on our assumptions. The diagnostic runs provide a sample from the
distribution of W*, the estimate of the log-target at a proposed value; this allows us to investigate
the second part of Assumptions 1 and both parts of Assumptions 4. We first examine the SAR
Assumptions 4. Figure 4 shows QQplots for m = 50, m = 100 and m = 400 against a Gaussian
distribution; it is clear that at m = 50 the right-hand tail is slightly too light and the left-hand
tail is much heavier than that of a Gaussian. Similar but much smaller discrepancies are present
at m = 100, whilst at m = 400 the noise distribution is almost indistinguishable from that of
a Gaussian. The left hand panel in Figure 5 plots log Var[W*] against logm and includes a line
with the theoretical slope of —1 and passing through an additional point at m = 1600. The heavy
left-hand tail at m = 50 leads to a considerably higher variance than that which would arise under
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Fic 5. In the left panel the logarithm of the empirical variance of the noise in the estimate of the log-proposal sampled
at x = X 1is plotted against the logarithm of the number of particles used; the centre and right panels are plots of the
logarithms of the empirical estimates of the moment generating functions of L and L (My(t) and Ma(t), respectively)
against t. The additional lowest curve in the centre panel * and in the right-hand panel is the logarithm of Ma(t) with
m = 1600, and constitutes our best estimate of ‘truth’.

the SAR, however even by m = 80 the fit is reasonably close.

We assess the degree of dependence of the distribution of W* on the position x by considering
the joint distribution of W* and L := (log7)(X), the true log-target evaluated at X, where X
is distributed according to the target. For a particular m, all of the runs with v > 0 provide a
combined sample of size n; from the distribution of the estimate of the log-target at the current
value, L = L + W, whereas (after scaling so that %2?221 expw*® = 1) each run with v = 0
provides a sample of size ng from the distribution of W* at x = x. Equation (2.3) shows that
subject to Assumptions 1, W and L are independent and that the density of W is an exponentially
tilted version of the density of W*. These two properties lead directly to the following.

PRrROPOSITION 3. If Assumptions 1 hold, the identity
E[exp(tL)] /E[exp {(t+ )W*}] = E[exp(tL)] (4.1)
holds for any t € R such that all the above three expectations are well defined.

The right hand side of (4.1) is independent of the noise distribution, or equivalently of the
number of particles, m. Moreover, if the noise is small enough then the ratio on the left hand side
should provide a good estimator of the true moment generating function (MGF) of L even if there
is dependence (since the impact of any dependence will be small).

In our scenario, realisations of L are typically between —385 and —375 with a mode at approx-
imately —379, so the MGFs of L and L are dominated by the term e 3™ whatever the noise
distribution. To be able to discern any differences we therefore consider for each value of m, shifted
estimators of the MGFs of L and of L.

ni n -1
M (t) := T;Zexp [t(ﬁ(i) +379)| and My(t) := M (t) (T; Zexp [(t + l)W*(i)}> )
=1 i=1

The central panel of Figure 5 shows M;(t) with a separate curve for each value of m; the lowest
curve is our best estimate of the true MGF of L (Ms(t) from m = 1600). The right hand panel
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Fic 6. Empirical efficiency, ;j\j”, measured in terms of minimum effective sample size per CPU second, plotted against
(left panel)  for different values of m and (right panel) o® (estimated from the sample of W* at the posterior median,
x) for different values of .

shows My (t) for each value of m. Clearly the curves in the right hand panel do not coincide and so
the assumption of independence does not hold precisely. However it is clear from the very different
vertical scales of the two figures that most of the difference between the distribution of L for any
given m and the distribution of L can be explained by Assumptions 1.

We now consider an empirical measure of efficiency eff, the quotient of the minimum (over the
parameters) effective sample size and the CPU time. The left-hand panel of Figure 6 shows off
plotted against ~ for different values of m, whilst the right-hand panel shows off plotted against m
for different values of 7. The optimal (over G) value for v is either 0.8 or 1.0 whatever the value of
m, which is consistent with the expected insensitivity of the optimal scaling and suggests that the
target is at least approximately Gaussian. The optimal (over M) value for m is either m = 200,
m = 150 or m = 100, corresponding to an optimal o (estimated from the sample for W*) of either
1.0, 1.3 or 2.1, again (as far as can be discerned) showing no strong sensitivity to . Finally the
overall optimum occurs at 02 = 2.1 and v = 0.8 with an acceptance rate of 15.39%. The optimal o2
is slightly lower than the theoretically optimal value of 3.3. Further theoretical investigations (using
numerical integration) for a true 5-dimensional Gaussian target corrupted by noise subject to the
SAR show that ESJD per second is still optimised at o? ~ 3.3; however empirical investigations
show that the ESS /sec for this target is optimised at a value of 0 &~ 2. The discrepancy between the
theory and our simulation study is therefore likely to be attributable to this discrepancy between
ESS and ESJD in low dimensional settings. The relatively high acceptance rate is a consequence
of this lower variance and fits with our theory since from (3.3) the acceptance rate should be
20(—31/20% + 42 x 2.562) = 14.7%.

5. Proofs of results. Equation (2.3) yields that B = W* — W has density p satisfying

p(b) := /ER g (w)g"(w +b)e" dw = /*GR g (w* = b)g" (w*)e” " dw* = e~p(-).

Thus
p(b) = e~%/? h(b), where h is a symmetric function, h(b) = h(—b). (5.1)
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This fact will be used in the proofs of Theorem 1 and Proposition 1.

5.1. Proof of Theorem 1. For notational convenience, we drop the index [-](¥ when the context
is clear. As in Section 2.3, the Hessian matrix of the log-likelihood L(x) := log 7(?(x) at x € R% is
denoted by H(x) = [8%[/()()] L<ij<d

e Proof of Equation (2.10).
The mean acceptance probability equals

oD () .= E [1 A exp (L(X FADZ) — [(X) + B)} - E[F <L(X FADZ) — [(X) + B)]

with X 2 7@ jump scale \(@ := ¢/5(4) | random variable Z 2 N(0,1;) independent from
X and accept-reject function F'(u) := 1 A exp(u). Algebra shows that for any b € R and
v 2R N(—£2/2,¢%) we have E[1 Aexp(V + )] = ®(—£/2 + b/l) + e’ ®(—£/2 — b/{). By (5.1)

oo

E[l1ANexp(V + B)] = /

—0o0

h(b) <e—b/2q>(4/2 +b/0) + e 2D(—0/2 — b/e)) db
= 2/00 h(b) e 2% (—/2+b/C) db=2E[®(—¢/2+ B/1)].

Since F' is continuous and bounded, in order to prove Equation (2.10) it, therefore, suffices
to show that L(X 4+ A9Z) — L(X) converges in law to a Gaussian distribution with mean
—¢2/2 and variance £2. A second order expansion yields

1

LX +A9Z) - L(X) = \DN(VL(X),Z) + 5

(\)*(2, H(X)Z) + R(X, Z,\)

with remainder R(X,Z, \®) := (A@)? [1(1—1)(Z, [H(X +tA\DZ) — H(X)] Z) dt. Slutsky’s
Lemma shows that to finish the proof of (2.10) it suffices to verify that A (VL(X),Z)
converges in law to a centred Gaussian distribution with variance ¢? and that

lim SO\DZHX)Z) = /2 and  lim R(X,ZA®D) =0

d—o0 d—o0
in probability.
— Note that conditionally upon X = x € RY the quantity A(¥(VL(X),Z) has a cen-

tred Gaussian distribution with variance ¢2 HVL(X)HZ/(S(C?))Q. Equation (2.4) shows that
MD(VL(X), Z) converges in law to a Gaussian distribution with variance ¢2.

— Conditionally upon X = x the quantity ()\(d))Z(Z, H(X) Z) has the same distribution as
72 (Z?Zl Bi(x) Zf) /S(Ld) where (B1(x),...,84(x)) is the spectrum of the Hessian matrix

H(x). The conditional mean thus equals the re-scaled Laplacian ¢? AL(x)/ sg) and the
conditional variance is

d
204 Z Bi(x)2/(s(Ld))2 = 2/* Trace [HZ(X)]/(S(Ld))z.
=1

Markov inequality, Equations (2.4) and (2.6), and the hypothesis S(Ld) = (sgal))2 yield
that 3 ()\(d))2<Z, H(X),Z) converges in probability to —¢2/2.
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— Equation (2.7) shows that the remainder R(X,Z, \(®) converges to zero in probability.

e Proof of Equation (2.11).
The proof of Equation (2.11) follows from Equation (2.10). Note that we have

(59)°

2
(d) 2 _ 12| 7w
Trace [T(@] < B[ X35 — X7 g = 521@{7“ X F(L(X +A97) - L(X) + B)}.

Trace [T(d)]

Since limg_, o E[F <L(X FADZ) — L(X) + B)} — a(f), to prove Equation (2.11) it suffices
to verify that

2]l o “
{Tmce[wq 1 x F(LX+A92) - LX) + B)

converges to zero as d — oo. Since the function F' is bounded, the conclusion follows

1Z]12 2 . .
once we have proved that E [( () T~ 1) ] converges to zero. Diagonalisation of the

Trace|T()
symmetric matrix T(? in an orthonormal basis shows that this last quantity equals 2 x
Trace [(T(d))ﬂ /Trace [T(d)]2 so that the conclusion directly follows from Equation (2.9).

5.2. Proof of Proposition 1. The dominated convergence theorem shows that ¢ — «(f) =
2 x E[®(B/¢ — (/2)] is continuous and converges to zero as ¢ tends to infinity. Since the limit-
ing acceptance probability can also be expressed as a(f) = 2P(££ + (?/2 < B) for & 2 N(0,1)
independent from all other sources of randomness, it also follows that the limiting acceptance prob-
ability a/(¥) converges to 2IP(B > 0) as ¢ converges to zero. To finish the proof of Proposition 1, it
remains to verify that the function ¢ — «(¥) is strictly decreasing. To this end, we will establish
that the derivative a(¢) is strictly negative. Applying (5.1), the derivative of £ a(¢) is

Cflj(z):jg/ 20| - ¢/2+b/(] eb/2h(b)db:—/

beR beR 80[ —t2 b/E} {1 * %Qb} e~ h(b) db

with p(z) = ®'(z) = e *"/2/\/27 the density of a standard Gaussian distribution. Algebra shows
that the function b+ be=%/2 p[—£/2 4 b//] is odd so that the derivative simplifies,

%(z) =- /bERLp[ —€/2-+b/e] e n(b) db.

This quantity is clearly strictly negative, concluding the proof of Proposition 1.

5.3. Proof of Proposition 2. The upper bound follows from a similar argument to that in [AV14].

Let W be an independent copy of W* and let V 2 N(—¢2/2,¢2%) be independent from any other
source of randomness. Relating W to W through (2.3) yields

E[1Aexp(V + B)] = E [eXp(W) Aexp(V) exp(W*)| SE[LAexp(V)] = 2 x &(—£/2);

we have applied Jensen’s inequality twice to the function (z,y) — = A exp(V)y which is concave in
both z and y. Since J(¢) = E[1 A exp(V + B)], the upper bound follows.

The lower bound follows from a similar argument to that used in [DPDK14]. We note that
(1AeV) 1 AeP) <1AeHB. V and B are independent by assumption; as amayx = E[1 A €P], the
result follows on taking expectations with respect to both of these variables.
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5.4. Proof of Theorem 2. In this section we use the following notations. We write u,, < v, when
the absolute value of the quotient u,, /v, is bounded above by a constant which is independent of the
index n; we write u,, < v, if u < v, and v, < uy,. For (x,w) € R? x R we write Ex -] instead of
El- |(Xg (d) WO( )) = (x,w)]. The Metropolis-Hastings accept-reject function is the globally Lipschitz
func‘mon F(u) = 1 A e". The log-likelihood function is denoted by A := log f in this section. We
drop the index () when the context is clear.

The proof follows ideas from [Béd07], which itself is an adaptation of the original paper [RGG97].
It is based on ([EK86], Theorem 8.2, Chapter 4) which gives conditions under which the finite
dimensional distributions of a sequence of processes converge weakly to those of some Markov
process. ([EK86], Corollary 8.6, Chapter 8) provides further conditions for this sequence of processes
to be relatively compact in the appropriate topology and thus establish weak convergence of the
stochastic processes themselves.

The situation is slightly more involved than the one presented in [RGG97, Béd07]; the proof
needs an homogenisation argument since the processes X(@ and W@ evolve on two different time
scales. Indeed, it will become apparent from the proof that the process X(9 takes O(d) steps to
mix while the process W@ takes O(1) steps to mix. In order to exploit this time-scales separation,
we introduce an intermediary time scale Ty = |d” | where 0 < v < 1/4 is an exponent whose exact
value is not important to the proof. The intuition is that after O(T}) steps the process W(% has
mixed while each coordinate of )Efd) has only moved by an infinitesimal quantity. We introduce the
subsampled processes X@ and W@ defined by

X =x{9  and WP =w.

One step of the process X (@) (resp. W(d)) corresponds to Ty steps of the process X (%) (resp. W(d))

We then define an accelerated version V(@ of the subsampled first coordinate process k +— X (d) .In

order to prove a diffusion limit for the first coordinate of the process X(@ one needs to agcelerate
time by a factor of d; consequently, in order to prove a diffusion limit for the process X (@ one
needs to accelerate time by a factor d/T,; and thus define V() by

V@) =X 0
The proof then consists of showing that the sequence V() converges Weakly in the Skorohod
topology towards the limiting diffusion (2.15) and verifying that ||[V(@ — V(@] J[o,7] converges
to zero in probability; this is enough to prove that the sequence V(d) converges weakly in the
Skorohod topology towards the limiting diffusion (2.15). The proof is divided into three main steps.
First, we show that the finite dimensional marginals of the process V@ converge to those of the
limiting diffusion (2.15). Second, we establish that the sequence V@ g weakly relatively compact.
These two steps prove that the sequence V@ converges weakly in the Skorohod topology towards
the diffusion (2.15). As a final step, we prove that the quantity ||[V(@ — V@] J[o,7] converges to
zero in probability, establishing the weak convergence of the sequence V(4 towards the diffusion
(2.15). Before embarking on the proof we define several quantities that will be needed in the
sequel. We denote by £ the generator of the limiting diffusion (2.15). Similarly, we define £(9

and £@ the approximate generators of the first coordinate process {X ;gdl)}k;zo and its accelerated

version {)Nflgdl) }e>0; for any smooth and compactly supported test function ¢ : R — R, vector
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x = (21,...,24) € R and scalar w € R we have
Lo@) = hO]¢" (@) + Alz) ¢'(21).
LDp(x,w) =B [p(X]7) = o(@1)] /6,
LDp(x,w) = Exw w [0(X1]) = o(x1)]/ (Ta % 8)

with § = 1/d. Note that although ¢ is a scalar function, the functions LD and E(d)cp are defined
on R% x R. In the sequel we sometimes write L@ (x1, ..., x4, w) instead of LD p(x,w).

5.4.1. Convergence of the finite dimensional distributions of V(@ 1In this section we prove that
the finite dimensional distributions of the sequence of processes V@ converge weakly to those of the
diffusion (2.15). Since the limiting process is a scalar diffusion, the set of smooth and compactly
supported functions is a core for the generator of the limiting diffusion ([EK86],Theorem 2.1,
Chapter 8); in the sequel, one can thus work with test functions belonging to this core only.
To prove the convergence of the finite dimensional marginals, one can apply ([EK86],Chapter 4,
Theorem 8.2, Corollary 8.4) to the pair (6@, (@) defined by

(@ L I %) D (p) = FDL(KD 7@
¢ (t):m/t V() ds and o D(t) = Lp(XD . WO ) (52)

To establish that this result applies, we will concentrate on proving that for any smooth and
compactly supported function ¢ : R — R the following limit holds,

lim E[LDp(X1,...,Xa, W) — Lo(X1)] =0, (5.3)

d—00

for {Xj;}r>1 an ii.d sequence of random variables distributed according to f(z)dx and W 2
eVg*(w) dw. Equation (5.3) implies Equation (8.11) of ([EK86],Chapter 4) and the stationarity
Assumption implies Equations (8.8) and (8.9) of ([EK86],Chapter 4). To verifify that Equation

. . d
(8.10) of ([EKS86],Chapter 4) holds, one can notice that for any index k > 1 we have IEHQD(X,E:E) —
go(X&dl) )H < k62, which is a direct consequence of the triangle inequality and the fact that ¢ is a

Lipschitz function. The proof of (5.3) is based on an averaging argument that exploits the following
relationship between the generators £(@ and £,

Ty—1
LD p(x, w) = xw[Td Zc L] (5.4)

Equation (5.4) follows from the telescoping expansion @(X% ))—@(X(()d)) = gd: 01 (Xgﬁl) go(Xéd))
and the law of iterated conditional expectations. The following lemma is crucial

LEMMA 1. (Asymptotic expansion of £(@y)
Let Assumptions 1 and 3 be satisfied. There exist two bounded and continuous functions a,b: R —
R satisfying the following properties.

1. Let W be a random variable distributed as the stationary distribution of the log-noise, W S
e g*(w) dw, and a(f) be the asymptotic mean acceptance probability identified in Theorem 1.
The following identity holds,

Ela(W)] = EB(W)] = = a(0). (5.5)
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2. For any smooth and compactly supported function ¢ : R — R the averaged generator Gy
defined for any (z1,w) € R? by

72 /
Golwr.w) == 7 | a(w) (@) ¢/ (1) + bw) o

!

(e1)]
satisfies

2
=0

Jim E LDo(X, ..., X, W) = Gp(X1, W)
—00

for an i.i.d sequence {Xy}r>1 marginally distributed as f(x)dx and constant I defined by
(2.13).

The above Lemma thus shows that the approximate generator Ex ) vy [(p(X Ld)) — cp(xl)] /0 asymp-
totically only depends on the first coordinate 1 € R and the log-noise w € R. The proof is an
averaging argument for the (d — 1) coordinates (z2,...,xq); this is mainly technical and details can
be found in Appendix A.1. The next step consists in exploiting the separation of scales between

the processes {X,gd)}kzo and {Wéd)}kzo.

LEMMA 2. Let h: R — R be a bounded measurable function. Suppose that for any d > 1 the
Markov chain {(X,(gd), Wéd))}kzo is started at stationarity. The following limit holds,

Ty—1

: 1 (d)y _ _
gﬂngm%)wm]w,

with W distributed according to the stationary distribution W 2 evg* (w) dw.

The above lemma thus shows that Ty = |d”] steps, with 0 < v < 1/4, are enough for the process
W@ to mix. The proof relies on a coupling argument and the ergodic theorem for Markov chains.
Details can be found Appendix A.2. We now have all the tools in hands to prove Equation (5.3).
First, with the notation XY = (X,...,X}), the telescoping expansion (5.4) and conditional
Jensen’s inequality yields

T;—1
~ 1
E|LD (XD, W) — Lo(X:)| = E‘Ex@,w[fd Z E(d)@(xl(;l)’ W@y ﬁgp(Xéfll))”
k=0
1 Ty—1
d d d
< E‘ T ST Lo wi) —Ew(Xé,l)(~
k=0
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One can then use the triangle inequality to obtain the bound

Td 1
BIE@(XD, W)~ Lo(X)| <E| 7 > L2 W) - Lo(x§) |
1 Td 1
d d
< = E‘ LD X() ) Go(X kl’ng ))‘
4 k=0
Tyg—1

+E| - > GplXii W ) = Go(xgH Wi |

Td 1
+E! 7y 2 9PXSE ") - Lo(x()|

To complete the proof of the convergence of the finite dimensional distributions of V@ towards
those of the limiting diffusion (2. 15) it remains to prove that E;(d) — 0 as d — oo for i = 1,2, 3.

e Since the Markov chain {(X k , ) Wk ") }e>0 is assumed to be stationary the quantity E(d) also
equals E| LDo(Xy, ..., X, W) = Go(X1, W ) |- Lemma 1 shows that Ei(d) — 0 as d — oc.
e The formula for the quantity Go(z,w) shows that the expectation Ea(d) also reads

Td 1
> aWH{a i) o () - 4D ¢ (i) } (5.6)
k=0
Ty—1

Zb D) e (X - " (x|
k=0

€2
<E| 7
Ty

Under Assumptions 3 the function A’ is globally Lipschitz; since ¢ is smooth with compact
support the functions z — A’(z)¢/(x) and = — ¢ are both globally Lipschitz. Using the

boundedness of the functions a and b, this yields that the quantity in Equation (5.6) is
bounded by a constant multiple of T% Zgigl E‘X ,idl) - X(()fil) ‘ For any index k£ > 0 we have

I[“?J|Xk+1 1 ,gd1)| < 62 5o that E!X,gdl) — X[()fll)‘ < k62, Since Ty/d'/? — 0, the conclusion
follows.
e Lemma 1 shows that one can express the generator of the limiting diffusion (2.15) as Ly(z) =

?E[a(W)] Al(z) ¢ (z) + @E[b(W)] ¢" (x). The expectation E3(d) thus also reads

Because the function ¢ is smooth with compact support, it follows (Cauchy-Schwarz) that
this quantity is less than a constant multiple of

Ty—1 T,—1

e[ > a(w®) — Bl )] < B[22 +E[7 > w0 ) —Epw)|.
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Lemma 2 shows that E’T% Z;;Fdzgl b(Wk(d)) - E[b(W)H — 0 and under Assumptions 3 the
expectation E[A’(X)?] is finite. Therefore, to finish the proof of the limit E3(d) — 0, one
needs to verify that E[{Tid ;;Fd:_ol a(Wéd)) - E[a(W)]}Q] — 0. According to Lemma 2, the

sequence (Tl r‘,:d 01 a(W,Ed))—IE[a(W)D converges in L' to zero. The sequence is also bounded

in L* since the function a is bounded. A sequence bounded in L*° that converges to zero in
L' also converges to zero in any L? for 1 < p < co. The conclusion follows.

5.4.2. Relative weak compactness of the sequence V@, The process V(@ is started at stationar-

ity and the space of smooth functions with compact support is an algebra that strongly separates
points. ([EK86]Chapter 4,Corollary 8.6) shows that in order to prove that the sequence V(@ i
relatively weakly compact in the Skorohod topology it suffices to verify that Equation (8.33) and
(8.34) of ([EKS86],Chapter 4) hold.

e To prove (8.34) it suffices to show that for any smooth and compactly supported test func-

tion ¢ the sequence d +— ]E‘E(d (X1,..., Xa, I/V)‘2 is bounded. One can use the telescoping

expansion (5.4), Lemma 1 and the stationarity of the Markov chain {(X;ﬁd), Wéd))}kzo and
obtain that

Tg—1
~ 2 1 d d 2
E|L@p(XD, W) gEdeE LDpX\, WD) — Go(x 3, Wi
k=

=

+E\ Zg 9w

Tq—1 Tq—1
ld d

< = Y E[LDeXD, W) - Go(X W ZE\Q (X3 mf

4 k=0
= E[LD (XD, W) - Go(X1,W)|* + E|Gp(X1, W)y2 = 0( )+ 0O(1).
This proves Equation (8.34). N
To prove (8.33) one needs to show that the expectation of sup { [£4(t) — V@ )| : te[0,T]}

converges to zero as d — oo, where the process &, is defined in Equation (5.2). Note that the
supremum is less than

J
llellLip X sup {5 X Z ‘X](.i) _ Xz,(fm :0<i<j<dxT and |i—j|< Td} (5.7)
k=i

where ||¢||rip is the Lipschitz constant of . Therefore, since ‘X](-i) -X i(ﬁ)} NE) Zi;i | Z1;| where

{Zj}r>0 are i.i.d standard Gaussian random variables such that Xﬁ) * = Xﬁ) +0T Y26 7,
the following Lemma gives the conclusion.

LEMMA 3. Let {&g}r>1 an i.i.d sequence of standard Gaussian random variables N(0,1).
We have

J
lim E[sup{axZ\gk\ L 0<i<j<dxT and \z‘—j\gTdH -0
d—o0 —
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PROOF. Indeed, it suffices to prove that § times the expectation of the supremum sup{S(i,d) :
i <d/Ty}, with S(i,d) = Z,&Z:il%fd ‘§k|, converges to zero; this follows from Markov’s inequal-
ity and standard Gaussian computations. O

This concludes the proof of the relative weak compactness in the Skorohod topology. The se-
quence of processes V@D is weakly compact in the Skorohod topology and the finite dimensional
distributions of V(@ converge to the finite dimensional distribution of the diffusion (2.15). Conse-
quently, the sequence of processes V(@) converges weakly in the Skorohod space D([0,7]) to the
diffusion (2.15). The next section shows that the discrepancy between V(9 and V@ is small and

thus proves that the sequence of processes V(@ also converges to the diffusion (2.15).

5.4.3. Discrepancy between V(49 and V@ Since sup;<p ‘Vt(d) — ‘Z(d)‘ is less than the supremum

of Equation (5.7), Lemma (3) yields that |V — V(d)||oo7[07T] converges to zero in probability. This
ends the proof of Theorem 2.

6. Discussion. We have examined the behaviour of the pseudo-marginal random walk Metropo
lis algorithm in the limit as the dimension of the target approaches infinity, under the assumption
that the noise in the estimate of the log-target at a proposed new value, x, is additive and inde-
pendent of x.

Subject to relatively general conditions on the target, limiting forms for the acceptance rate and
for the efficiency, in terms of expected squared jump distance (ESJD), have been obtained. We
examined two different noise distributions (Gaussian and Laplace), and found that the optimal
scaling of the proposal is insensitive to the variance of the noise and to whether the noise has a
Gaussian or a Laplace distribution.

We then examined the behaviour of the Markov chain on the target, x, and the noise, obtaining
a limiting diffusion for the first component of a target with independent and identically distributed
components. The efficiency function in this case is proportional to the speed of the diffusion, thus
further justifying the use of ESJD in this context.

We identified a ‘standard asymptotic regime’ under which the additive noise is Gaussian with
variance inversely proportional to the number of unbiased estimates that are used. In this regime the
efficiency function is especially tractable, and we showed that it is maximised when the acceptance
rate is approximately 7.0% and the variance of the Gaussian noise is approximately 3.3. We noted
that in this regime the optimal noise variance is also insensitive to the choice of scaling.

A detailed simulation study on a Lotka Volterra Markov jump process using a particle filter
suggested that in the scenario considered the assumptions of the standard asymptotic regime are
reasonable provided the number of particles is not too low. Furthermore, whilst the assumption that
the distribution of the noise does not depend on the current position is not true, variations in the
distribution have a small effect on the distribution of the estimates of the log-target compared with
the effect of the noise itself. The optimal scaling was found to be insensitive to the noise variance
(or equivalently the number of particles) and the optimal noise variance was relatively insensitive to
the choice of scaling. The overall optimal scaling was consistent with the theoretical value obtained;
however the optimal variance was a little lower than the theoretically optimal value. Investigations
showed that this discrepancy can be explained by the differences between our theoretical measure
of efficiency (ESJD) and empirical measures used in the simulation study (ESS).

The results from the simulation study suggest that in low dimension a safer option than tuning
to a particular variance and acceptance rate might be to take advantage of the insensitivity of the
optimal scaling to the variance and vice versa and optimise scaling and variance independently.
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The diffusion limit provides strong support for the optimisation strategies suggested by the ESJD
criterion. However, in an ideal world it would be good to show that the sequence of algorithms which
achieves the minimal optimal integrated autocorrelation time for a given functional might converge
to the optimal diffusion. This is a generic question which is relevant to all diffusion limits for MCMC
algorithms, and there are still important open questions regarding the relationships between ESJD,
diffusion limits and limiting optimal integrated autocorrelation. In this direction, a recent paper [?
| has shown that diffusion limits can be translated into complexity results, thus demonstrating that
at least the order of magnitude of the number of iterations to ”converge” can be read off from the
diffusion limit.

The optimal variance of 3.28 under the standard asymptotic regime is similar to the value of 2.83
obtained in [DPDK14] under the same noise assumptions and for a scenario where the component
of the Markov chain on X mixes infinitely more slowly than the noise component. Indeed, as noted
in a remark following Corollary 1, 2.83 is (to two decimal places) the optimal variance that we
obtain when ¢ = 0. There are many differences between the approaches in [DPDK14] and this
article. For example, we optimise a limiting efficiency for the random walk Metropolis with respect
to both the scaling and the variance whereas [DPDK14] considers the univariate optimisation of a
bound on the efficiency of Metropolis-Hastings kernels which satisfy a positivity condition. That a
similar conclusion may be drawn from two very different approaches is encouraging.

APPENDIX A: PROOF OF TECHNICAL LEMMAS

Let {X,};>1 be an i.i.d sequence of random variables distributed as f(z)dz, W 2 e’ g*(w) dw,
{Z} j}k>0,j>1 an ii.d sequence of N(0,1) random variables, {Uj}r>0 an i.i.d sequence of random
variables uniformly distributed on (0, 1) and {W}!},>0 an i.i.d sequence distributed as g*(w) dw. All
these random variables are assumed to be independent from one another. For all integers 1 < 5 <d

we set X(()f? = X; and Wéd) = W. We introduce the proposals X,gdj)’* = X,gdj? + 01712 d=> 2y ; and
define (Xlgr)l’ ngi)l) = (Xéd)7*7W§) if
d
* (d) (d),* (d)
Uy < F(Wk WA - A(X,w.))
j=1
and (X ,ﬁ)l, W,Ei)l) = (X ,gd), W,gd)) otherwise. We define X(4) = (X lgdl) yeeey X ,gd;). For any dimension
d > 1 the process {Xéd), Wéd))}kzl is a Metropolis-Hastings Markov chain started at stationarity,
ie. (X(()d), Wéd)) = (Xy,...,Xg, W) 2 7@ targeting the distribution (.
A.1. Proof of Lemma 1. In this section, for notational convenience, we write Z; instead of
Zp,; and W* instead of W;. We set

a(w) =E[F(Q+W* —w)] and bw):= %E[F(Q LW~ w)] (A1)

with F'(u) = €" I, <0y and Q 2 N(—¢2/2,¢?) independent from all other sources of randomness.
To prove Lemma 1, it suffices to show that the function a and b are continuous, bounded, satisfy
identity (5.5) and that the following two limits hold,

{ limg e E|Bg[(X]? = X1)/6] — 2T~ a(W)A'(X1)|* =0 (A2)

limge  E[LE[(XP? = X1)2/6] — 2 1-1o(W)[* = 0.

We have used the notation Ey4[---] for E[--- |X1,..., X4, W]. The fact that the functions a and b
are bounded and continuous follows from the dominated convergence theorem.
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e Proof of Equation (5.5). Note that E[b(W)] = 1E[1 A exp(Q2 + B)] with B := W* — W. A
standard computation show that for any 5 € R we have E[1 Aexp(Q+ 3)] = 2®(—¢/2+ /1),
so that the identity E[b(W)] = a(¢) directly follows from the definition of o in Theorem 1.

For proving the identity E[a(W)] = $a(¢), note that the expectation E[a(W)] equals

—22/2
—52/2+£Z+’w*—w w % N N .
€ L /24 rw—w<o} € w w dw dw™ dz
///(z,w,w*)ER3 {—02/2+4 <0y € g ( )g ( ) \/27

I wr ok ® (K 6_(_Z+€)2/2 dw dw* d
N -z w—w* e w w e dw dw* dz
///(znu,w*)eR3 {=82/2+t(-2+0)+ S0y €’ 9" (w)g*(w") V2r

= _22/2
- e

- I cuwr—ws0p € g (w)g*(w” dw dw* dz

///(z,w,w*)em {—02/2+402+ sope’ g (w)g* (w”) NoT

= E[ljo+w+—w>o0}l-

We have used the change of variable (z,w*,w) — (—z + {,w,w*) to go from the second
line to the third. This computation shows that E[a(W)] := E[eW —W Loyws—w<oy =
E[lfo+w+—w>o}]. Since F(u) = 1 Ae" = e* 1,01 + Lu>o it follows that

a() =E[F(Q+W* —=W)] =E[e™™ W Ig e weoy] + Elljarw-—w=o,

and therefore E[a(W)] = «(¢)/2.

Proof of Equation (A.2) We will only verify that the first limit in Equation (A.2) holds. The
proof of the second limit is similar but easier. In other words, we will focus on proving that
the sequence Ed[(Xll’d — X1)/8] converges in L? to 21~ 'a(W)A'(X;). An integration by
parts shows that for any continuous function g : R — R such that ¢’ has a finite number
of discontinuities, if g(Z) and ¢’(Z) have a finite first moment for Z 2 N(0,1), the identity
E[Z x g(Z)] = E[¢'(Z)] holds. It follows that

Eq[(X)" = X1)/6] = 017262 Bq[Z1 x F(QD + W* — W)
= CT I E[F(QD + W —W) x A(y + 01712642 7y)]

with Q@) = 2?21 A(X; 4+ €17126Y2 7)) — A(X;). Under Assumption 3 the function A’ =
(log f)' is globally Lipschitz so that, since the function F’ is bounded, one can focus on proving
that

Eq[ F/(QY +W* —W)] x A(X3)

converges in L? to a(W)A’(X1). By the Cauchy-Schwarz inequality, this reduces to proving
that

4

Jim EHEd[F’(Q(d) FWE W) = E[F(Q+ W — W)]] } = 0.
—r 00

By the Portmanteau’s theorem and the dominated convergence theorem and the definition

of Q@ this reduces to proving that for almost every realisation {zi}i>1 of the i.i.d sequence
{Xi}i>1 the following limit holds in distribution,

d
lim > A(w; + 0171262 2;) — Az;) = Q.

d—oo 4
i=1
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Under Assumption 3 the third derivative of A is bounded so that a second order Taylor
expansion yields that the difference A(z;+¢ 1712 6Y/2 Z;)— A(x;) equals A (x;) £ 171/2 62 Z;+
(1/2) A" (2;) 2 T71 6 Z2 + O(d—3/?); consequently,

d d 1
_ w 30 A () _ S A ()2 1/2
, 1/2 51/2 7y _ N i=1 i 1/2 i=1
;:1 Az + 01 0714 7Z) — A(zy) = 21{ 7 } +01 { pi } 13

d "

for & 2 N(0, 1) independent from all other sources of randomness. The law of large numbers
shows that for almost every realisation {z;};>1 the right-hand-side of the above equation

converges in distribution towards (2 2 N(—£2/2,¢%).

A.2. Proof of Lemma 2. For convenience, we first give a high level description of the rea-
soning. We construct processes {W,id)}kzo, {Yk(d)}kzo and {Yj }x> satisfying the following.

e With high probability W\? = W? for all k < T,

e The process {}A/}sd)}kzo has the same law as the process {/ngd)}kzo.

e With high probability ¥\ = ¥}, for all k < Ty.

e The process {Y} }r>0 is a Markov chain that is ergodic with invariant distribution e* g*(w) dw.

One can thus use an approximation of the type

T,—1 T,—1

7 > MOV ~ER)]| ~ E|7- 3" h(Y) ~ ERW))
k=0 k=0

and the usual ergodic theorem gives the conclusion. We use at several places the following elemen-
tary lemma.

LEMMA 4. Let Ty; = [d7]| with 0 < v < i. Let {P,gd)}kdzo and {Q,(qd)}kdzo be two arrays of
(0, 1)-valued random variables. Let {Uy}k>0 be a sequence of random variables uniformly distributed
on the interval (0,1). We suppose that for all dimension d > 1 the random variable Uy, is independent

from {Pj(d) ?;é and {Q(d)j}?;é. Consider the event

E,(cd) = {w : forall 0<5< k}

Yuy<r®y = Lvs<ai)y
Under the assumption that E[|P]§d) - Q,(Cd)| ‘E,gd_)l} < k/Vd we have limg_,o ]P)(E:(F?) =1.

PRrROOF. Note that P(E(d)) = P(E(d)) H?,llP’[I E]i)l]. Since Uj is sup-

{U;<Py I{Uj<Q§d)}‘

(d) _ h1_1_
posed to be mdependent from the event E;7 it follows that IP’[ {U;<P@y = I{Uj<Q;d)} ‘EJ_I] =1
E []Pj @ _ | ‘E(d |. The conclusion then directly follows from the bound E [\P,gd) —Qéd)] ‘E,gd_)l]

<
k/Vd and’y<1/4. O

We now describe the construction of the processes {W }k>0, {Y }k>0 and {Yj}r>0. To this
end, we need an i.i.d sequence { }r>0 of standard N(0, 1) Gaussian random variables independent
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from all other sources of randomness. All the processes start at the same position Wéd) = Wéd) =
V3 = Yo = W. We define W%, = wy if

Uk<F[ ZA’ Vi — )2+ Wy — W(d)}

and W,g +)1 = /V(7( ) otherwise. We define Yk( +)1 =Wy if
: 2\ /2 2 v (d)
Uy < F[M—W {d—l S A(X;)) } & — 2/2 + Wi — V] }
=1
and Yk( +)1 ?k(d) otherwise. We define Y1 = W} if

Uy < F[egk 22 W - Yk}

and Y41 = Yy otherwise.

° W,id) W( ) with high probability.

We prove that limg_,, P [W,gd) W(d) k=1,...,T, d} = 1. Because the Metropolis-Hastings
function F' is globally Lipschitz, Lemma 4 shows that it suffices to verify that

E\ZA —AX) - A(X )u—l/?ij/f+f\<k/\f (A.3)

Under Assumptions 3 the second and third derivatives of A are bounded so that the bound
(A.3) follows from a second order Taylor expansion,

E| ZA (X\07) = A — A(X)ET Y 24 i )N+ 122
- () L ) e X (D) 72
E‘ ZA (X ) \/ﬁA (Xk,j)Zk,j - mA ( kg)Z/w"

!l (@ GRS X(®)
+ﬁE\Z(A’(X,m)—A( )Z,w\+2fd EZ:A” — A"(X;)) 2}

E‘dZA” +I‘

2 1 <
{ZE\A’ (x\) A'(Xj)|2} + 57 O E|AT(X(D) - A'(X;)|

1k k1
+E‘d12A” +I(Nﬁ+—d+—d+—d.

We have used the bound IE]XIS? — Xj]2 < %.
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o W@ and Y@ have same law. - R
It is straightforward to verify that the processes {Wéd)}kzo and {Yk(d)}kzo have the same law.

° ?k(d) = Y, with high probability.
We prove that limg .o, IP’[}/;k(d) =Y, :k=1,... ,Td} = 1. Lemma 4 shows that this follows

1/2
from the elementary bound E| {d‘l Z;{:l A’(Xj)Q} —IY2| < 1/Vd.

We now show that the Markov chain {Y}}x>o is a Markov chain that is reversible with respect
to the distribution e¥¢*(w) dw,

eg*(2)g* (y) E[E[F(Q 4y — 2)]] = e¥g*(y) " («) E[E[F(Q + = — y)]]

for all z,y € R2. This boils down to verifying that the function (x,y) — e*E[F(Q +y — )] is
symmetric; Proposition 2.4 of [RGG97] shows that this quantity can be expressed as

e$<1><_§€2—zy_m) qu)(_;ﬂ;x—y),

which is indeed symmetric. Note that this Markov chain corresponds to the penalty method of
[CD99]; see also [NFW12] for a discussion of this algorithm. The ergodic theorem for Markov
chains applies; for any bounded and measurable function i : R — R we have

N—o0

1 N-1
lim E| ];0 h(Yy) — E[h(W)]’ —0.

One can thus use the triangle inequality several times to see that for any bounded and measurable
function h : R — R we have
| Tl | Tl | Tl
d d (d =(d
E| 7 Y hW?) —ERW)]| < = Y EpW?) = h(W )|+ E|— Y h(W?) ~E[n(W)
T, Ty Tq
1 Tl
<SA-PWP =W k=1,... Ty + IE‘— A E[h(W)]‘
Ta (=
Ta—1 Ta—1

So(1)+ 7 Y E[RE) — h(v)| + B[ 7 Y h(vi) — Eh(W)|
k=0 k=0

=o(1) +o(1) + o(1),
which finishes the proof of Lemma 2.

APPENDIX B: DETAILS OF THE LOTKA VOLTERRA MODEL

In this Appendix, we present details of the Lotka-Volterra model used in the simulation study
of Section 4. The Lotka-Volterra model is a continuous-time Markov chain on N(Q). The transitions
and associated rates for this model are:

T1U1U2

(u,ug) "—" (u1 + L,ug — 1), (u1,u2) 29 (up — 1,uz) and (ui,us9) ik (ug,ug + 1);

the rate for any other transition is zero. Observations of the Markov chain, when they occur, are
subject to Gaussian error:
(51 (t) Ty 0
Y(t)~N .
o~n([ui ][5 a
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Using x = (0.006, 0.6,0.3,25,49), a realisation of the stochastic process was simulated from initial
value u(0) = (70,70) for T'= 50 time units. The state, perturbed with Gaussian noise, y(t¢), was
recorded at t = 1,2,...,T. For inference, Xi,..., X5 were assumed to be independent, a prior:
with log X; ~ Unif [-8,8], (i=1,...,5).

The initial value for each chain was a vector of estimates of the posterior median for each
parameter, obtained from the initial run; hence no “burn-in” was required. Each algorithm was run
for 2.5 x 10° iterations, except with m = 50 and m = 80, where 10° iterations were used. Output
was thinned by a factor of 10 for storage.
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