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Summary. We consider a system of particles moving independently on a countable

state space, according to a general (non-space-homogeneous) Markov process. Under mild

conditions, the number of particles at each site will converge to a product of independent

Poisson distributions; this corresponds to settling to an ideal gas. We derive bounds on the

rate of this convergence. In particular, we prove that the variation distance to stationarity

decreases proportionally to the sum of squares of the probabilities of each particle to be

at a given site. We then apply these bounds to some examples. Our methods include

a simple use of the Chen-Stein lemma about Poisson convergence. Our results require

certain strong hypotheses, which further work might be able to eliminate.
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1. Introduction.

A standard question in Markov process theory is the existence of, and convergence to,

a stationary probability distribution. The question of rate of convergence concerns how

quickly this convergence occurs. Such questions are now standard in the literature (see,

e.g. [Di], [DS], [R]).

Many Markov processes do not have normalized stationary distributions, though they

may still have a non-negative (but perhaps non-normalizable) invariant measure m(x),

x ∈ X . (We consider only processes on discrete spaces X .) For such processes, we instead

consider a system of particles, each moving independently according to the Markov process

P t(x, y), for t ∈ T (in discrete or continuous time). This system process is defined precisely

in Section 2, and has been previously studied in [Doo], [Li], and [LP]. Given an invariant

measure m(x), the system process will have a stationary probability distribution given

by a product over X of independent Poisson distributions with means m(x). It is thus

reasonable to study the question of convergence of the system process to this new stationary

distribution.

For such processes, we obtain the following result. The convergence to stationarity,

measured by total variation distance on any fixed finite subset K of X , is governed by the

quantity

sK(t) = sup
x∈X
y∈K

P t(x, y) ,

the largest single probability of being at a point in K after time t. Specifically, for reason-

able initial distributions, the variation distance goes down on the order of between sK(t)

and sK(t)2. More precise bounds, depending on the subset K and on the initial distribu-

tions, are actually presented (Section 3), and it is shown that the distance to stationarity is

actually proportional to the sum of squares of certain transition probabilities. Applications

to specific examples, including a discussion of the question of exponential convergence rate,

are presented in Section 5.

The quantity sK(t) defined above has been studied in various contexts, including

substantial work for certain random walks on groups; see for example [VSC]. Thus, our

results can be combined with previous work to get precise information about convergence
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rates of independent particle systems in such situations.

Our proofs make use of the method of Chen-Stein ([Ch], [Ste]), and in particular the

“process version” of Arratia, Goldstein, and Gordon [AGG]. This is discussed in Section

4, along with proofs of our main results.

The convergence to a product of Poissons corresponds to the notion in physics of

convergence to an ideal gas; see e.g. [Dy], page 174.

Our work is closely related to a result of Dobrushin [Dob] and Stone [Sto]. They obtain

complicated necessary and sufficient conditions for convergence of similar system processes

to Poisson point processes. However, their theorem applies only to the space-homogeneous

case, where the different particles move according to translates of a single Markov process

(so in place of m(x) they simply have scaled Lebesgue or counting measure). Furthermore,

they give no information about rates of convergence, our main interest here.

In addition, in Section 3 of [De], results are presented regarding the asymptotic decay

rate of processes similar to ours, for the case where the underlying Markov chain is a

random walk.

Since originally completing this manuscript, we have learned that a similar approach is

suggested in Example 10.2.14 of [BHJ]. However, these authors concentrate on the special

case of deterministic starting distributions. Furthermore, the bounds they obtain have the

awkward property of having transition probabilities in both numerator and denominator,

a complication avoided here.

As a running example, consider simple symmetric random walk on the integers Z.

This (discrete-time) Markov process is defined by

P 1(x, x + 1) = P 1(x, x− 1) =
1
2

, x ∈ Z

with P 1(x, y) = 0 otherwise. This Markov process is easily seen to have no invariant

probability measure. On the other hand, it is easily seen that counting measure on Z

is an invariant measure for this Markov process, although it is not normalizable. Thus,

we will see that the system process induced from this Markov process has a stationary

distribution given by a product of independent copies of Poisson(1). Furthermore, here

sK(t) = O(1/
√

t), so that convergence of the system process to stationarity happens on
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the order of between 1/
√

t and 1/t. (In fact, we shall prove that it happens on the order

of 1/
√

t; see Proposition 7.)

2. Preliminaries.

We define the system processes that we wish to study using the following definition,

similar to Doob [Doo]. It defines a new Markov process, built out of multiple independent

copies of P t(x, y).

Definition. Let {P t(x, y)}t∈T be the semi-group for a Markov process on a countable

state space X . Let ν be a probability measure on Z+
X (the space of all functions from

X to the set Z+ of non-negative extended integers). The (independent) system process

based on P t(x, y), with initial distribution ν, is the process {Nx(t)}t∈T defined on Z+
X by

choosing {Nx(0)}x∈X according to ν, putting Nx(0) particles at each site x ∈ X , letting

them proceed independently according to P t(x, y), and letting Nx(t) record the number

of particles at site x at time t.

By an invariant measure for the Markov process P t(x, y), we shall mean a non-negative

(possibly non-normalizable) measure m(x) on the discrete space X , such that

∑
x

m(x) P t(x, y) = m(y) , for all y ∈ X , t ∈ T .

The system process defined above allows us to make the connection between a non-

normalizable invariant measure as above, and the issue of convergence to a stationary

distribution. The connection is given by the following.

Lemma [Doo]. Let {m(x)}x∈X be an invariant measure for P t(x, y). Then the measure

∏
x∈X

Poisson (m(x)) ,

given by a product of independent Poisson distributions with means m(x), is a stationary

probability distribution for the system process {Nx(t)}t∈T associated with P t(x, y).

The proof of this lemma is a straightforward. Let {Nx(0)}x∈X be chosen from the

above distribution. The invariance of the measure m(x) ensures that the means of Nx(t)
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will not depend on t. Elementary properties of the Poisson distribution then ensure that

the distributions of the Nx(t) will in fact remain as independent Poissons.

The question of whether the system process has other stationary distributions, in

addition to mixtures of the products of Poissons, is discussed in [Li] and [LP].

The lemma suggests that we study system processes, and consider the question of

their convergence (and rate of convergence) to the stationary distribution given above.

This is done in the next section.

3. Results.

We consider a Markov process {P t(x, y)}t∈T , in discrete or continuous time, on a

countable state space X , with a non-negative invariant measure m(x) as above. We shall

study the system chain {Nx(t)}t∈T defined in Section 2. To study convergence, we shall

use the metric given by total variation distance on a finite subset of X . (There will usually

not be convergence in total variation distance on the entire state space.)

Write ν for the initial distribution of {Nx(0)}x∈X on Z+
X . We shall assume that

ν =
∏

x∈X
νx is given by a product measure, with νx a probability measure on Z+ having

the “correct” finite mean m(x), and having finite second moment m2(x). This ensures

that we will have

E (Nx(t)) = m(x), for all t ∈ T .

We shall prove the following result about convergence to a product of Poissons.

Theorem 1. Consider the system process {Nx(t)} defined above, with K ⊆ X a finite

subset. Let ν, m(x) and m2(x) be as above, and set FK = min
(

1, max
x∈K

(
m(x)−1/2

))
.

Then if the process begins in initial distribution ν, then∥∥∥∥ L ({Nx(t)}x∈K)−
∏
x∈K

Poisson (m(x))
∥∥∥∥

var

≤ 4 FK

∑
x∈X

(
m2(x) + m(x)2 −m(x)

) (
P t(x,K)

)2
,

where ‖P −Q‖var = 2 sup
A
|P (A)−Q(A)| =

∑
x∈X

|P (x)−Q(x)| is the usual total variation

distance for probability measures.
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Remark. We are unable to obtain a natural lower bound in this case, because of the

difficulty of controlling the unknown starting distribution ν. This is improved in Theorem

4 below.

The upper bound given in Theorem 1 may be difficult to interpret. The following

simple corollary is perhaps more intuitive.

Corollary 2. Assume d ≤ m(x) ≤ D and that m2(x) ≤ D2, for all x ∈ X . Then∥∥∥∥ L ({Nx(t)}x∈K) −
∏
x∈K

Poisson (m(x))
∥∥∥∥

var

≤
(
4 FK |K|2 D2(D + D2)/d

)
sK(t) ,

where |K| is the number of elements in K, and where

sK(t) = sup
x∈X
y∈K

P t(x, y) .

Proof. We bound m(x)2 by D2 and bound m2(x) by D2, and note that

∑
x∈X

(
P t(x,K)

)2 ≤
(

sup
x∈X

P t(x,K)
) ∑

x∈X
P t(x,K) .

Since
∑

x∈X
m(x)P t(x, K) = m(K), we must have

∑
x∈X

P t(x, K) ≤ m(K)/d. The result now

follows from the inequalities P t(x, K) ≤ |K|sK(t) and m(K) ≤ |K|D.

The corollary also asserts that the variation distance will be small if sK(t) |K|2 is small.

This shows that for a given t, the process will be approximately independent Poisson on

sets K whose size is small compared to O(1/
√

sK(t)). (Note that Theorem 1 is a more

refined statement; the bound there depends on the layout of K, not merely on its size.)

As a further corollary, we can immediately obtain information about weak convergence

of our system process in a certain topology. This corollary also follows from Theorem 1.3

of [LP]. The proof is straightforward and is omitted.
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Corollary 3. Assume, in addition to the assumptions of the previous corollary, that

lim
t→∞

sup
x∈X

P t(x, y) = 0, for all y ∈ X .

Then the system process converges weakly to a product of independent Poissons with

means m(x), in the usual product topology on Z+
X .

The upper bound given in Theorem 1 works uniformly for any initial distributions

νx with given first and second moments. Under certain additional restrictions on the νx,

stronger statements can be made. For our next result, we assume the following.

(A1) The distributions νx are each given by sums of independent Bernoulli random

variables. Specifically, Nx(0) =
∑

γ∈Γx

Hγ , where Hγ ∼ Bernoulli(hγ) are inde-

pendent, where Γx is an appropriate index set, and where
∑

γ∈Γx

hγ = m(x).

Note that these initial distributions include deterministic ones, where m(x) is an

integer and νx(m(x)) = 1, because it is permissible to have hγ = 1.

Assumption (A1) suggests the following interpretation. Let each γ ∈ Γx represent a

distinct particle, which is created at x with independent probability hγ , or is otherwise

not created at all. Then, for γ ∈ Γx, the probability that particle γ was created, and is at

site y ∈ X at time t, is given by hγ P t(x, y).

Under these conditions, we can prove sharp upper and lower bounds in terms of the

quantities

JA(t) =
∑
x∈X

∑
γ∈Γx

(
hγ P t(x,A)

)2
,

defined for any subset A ⊆ X , and with Jy(t) = J{y}(t). We shall prove the following.

Theorem 4. Consider the system process {Nx(t)} as above. Let K be a finite subset of

X , and let m(x), hγ , FK , and JA(t) be as above. Assume that (A1) holds. If the process

begins in the initial distribution ν, then

2 max
y∈K

(
e−m(y)

(
1 − e−Jy(t)/2

))
≤
∥∥∥∥ L ({Nx(t)}x∈K) −

∏
x∈K

Poisson (m(x))
∥∥∥∥

var

≤ 4 FK JK(t) ,

Note that for small values of Jy(t), the quantity 1−e−Jy(t)/2 is approximately Jy(t)/2.

The theorem thus says essentially that, up to constants independent of t, the variation
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distance to independent Poissons is bounded between the maximum of Jy(t), and JK(t).

(Note that if |K| = 1, then JK(t) = Jy(t).) Note also that the quantity max
y∈K

e−m(y) and

the quantity FK are both bounded above by 1, and both go to 0 as min
y∈K

m(y) gets large.

Remark. If the underlying Markov chain is symmetric, i.e. P t(x, y) = P t(y, x) for all

x, y ∈ X , then there are general bounds on Jy(t) and JK(t) which may help in applying

Theorem 4. Indeed, recalling that
∑

γ∈Γx

hγ = m(x), we have

Jy(t) =
∑
x∈X

∑
γ∈Γx

(
hγP t(x, y)

)2 ≥ (inf
γ

hγ)(inf
x

m(x))
∑
x∈X

P t(y, x)P t(x, y)

= (inf
γ

hγ)(inf
x

m(x))P 2t(y, y) .

Also

JK(t) =
∑
x∈X

∑
γ∈Γx

(hγ)2
∑

k,k′∈K

P t(x, k)P t(k′, x) ≤ (sup
γ

hγ)(sup
x

m(x))
∑

k,k′∈K

P 2t(k, k′)

≤ |K|2(sup
γ

hγ)(sup
x

m(x)) max
k,k′∈K

P 2t(k, k′) .

We shall make use of these bounds in proving Proposition 7 below.

As in the case of Theorem 1, we can easily deduce bounds from Theorem 4 which are

more intuitive.

Corollary 5. Assume, in addition to (A1), that m(x) ≤ D for all x ∈ X . Then

3 (inf hγ)2 e−D sK(t)2/4 ≤
∥∥∥∥ L{Nx(t)}x∈K −

∏
x∈K

Poisson (m(x))
∥∥∥∥

var

≤ 4 FK |K|2 D (suphγ) sK(t) ,

where again sK(t) = sup
x∈X
y∈K

P t(x, y).

Proof. For the lower bound, we note that e−m(y) ≥ e−D. Also max
y∈K

Jy(t) ≥ ((inf hγ)sK(t))2

by inspection, and 1−e−r ≥ 3r/4 for r ≤ 1
2 , so that 1−e−Jy(t)/2 ≥ 1−e−((inf hγ)sK(t))2/2 ≥

3 ((inf hγ)sK(t))2 /8.
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For the upper bound, we note that

JK(t) ≤ |K| (suphγ) sK(t)m(K) ≤ |K|2 (suphγ) D sK(t) .

The result follows.

This corollary shows that the rate of convergence in this case is essentially governed by

the convergence to zero of the quantity sK(t), which represents the largest single transition

probability of the underlying Markov process. In particular, the corollary shows that the

convergence of the system process will be exponential if and only if the quantity sK(t)

decreases exponentially as a function of t. This is explored further in Section 5.

In our running example of simple symmetric random walk, it is well-known that

sK(t) = O(1/
√

t), and does not depend on K. Thus, the convergence to stationarity of

the associated system process goes down on the order of between 1/
√

t and 1/t. (In fact,

we shall show that it goes down as O(1/
√

t); see Proposition 7.) Also, the system will be

approximately independent Poisson on sets of size o(t1/4).

Lastly, corresponding to Theorem 4 in the case when |K| = 1, one can obtain a

quantitative version of the “Law of Rare Events”, concerning the approximation of the

distribution of sums of binomial random variables (with different means) by a Poisson

distribution. (An asymptotic version of this law can be found in [Fe], p. 282.) However,

better bounds are already known (see for example [BHJ]), so we omit a precise statement.

Theorems 1 and 2 are proved in the following section. The question of how quickly

the quantity sK(t) decays in specific examples is explored in Section 5.

4. Proof of Theorems 1 and 4.

We shall use the following “process version” of the Chen-Stein method ([Ch], [Ste]),

due to Arratia, Goldstein, and Gordon ([AGG], Theorem 4).

Lemma 6. Let I = I1 ∪ . . . ∪ Id be an index set, and let {Xα}α∈I be a collection of

(possibly dependent) indicator variables. For each α ∈ I, choose a neighborhood Bα ⊆ I

with α ∈ Bα, and assume Xα is independent of {Xβ}β 6∈Bα . Set Wj =
∑

α∈Ij

Xα, and set
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λj = E(Wj). Then

‖L(W1, . . . ,Wd) −
∏
j

Poisson(λj)‖var ≤ 4 min
(

1, (min
j

λj)−1/2

)
(b1 + b2) ,

where

b1 =
∑
α∈I

∑
β∈Bα

E(Xα) E(Xβ) ; b2 =
∑
α∈I

∑
β∈Bα
β 6=α

E(Xα Xβ) .

Remark. The original result in [AGG] contained an extra factor of 1.4, but this has

been eliminated by Arratia and Tavaré [AT].

We now proceed to the proof of the theorems. Because it is more straightforward, we

begin with the proof of Theorem 4.

Proof of Theorem 4. For the lower bound we compute directly. Indeed, for any fixed

y ∈ K, we have (writing qγ for hγP t(x, y) for γ ∈ Γx, and writing
∑
γ

for
∑

x∈X

∑
γ∈Γx

)

log P (Ny(t) = 0) =
∑

γ

log (1− qγ) ≤
∑

γ

[
−(qγ)− (qγ)2/2

]
= −m(y)−

∑
γ

(qγ)2/2 ,

where we have used
∑
γ

qγ = m(y) and an easy bound on log(1− r). Hence,

(Poisson(m(y); 0) − P (Ny(t) = 0)) ≥ e−m(y)
(
1 − e−

∑
(qγ)2/2

)
.

The lower bound follows immediately.

For the upper bound, we use Lemma 6. Write Γ for the disjoint union of the Γx, and

for k ∈ K, set Ik = {(γ, k) | γ ∈ Γ}, so that I = {(γ, k) | γ ∈ Γ, k ∈ K}. We choose the

neighborhoods B(γ,k) = {(γ, j) | j ∈ K}. Then the conditions of the lemma are satisfied,

for indicator variables H(γ,k) defined by H(γ,k) = 1 if and only if particle γ is at position

k at time t. Furthermore, b2 = 0 since the same particle γ can’t be at two different sites j

and k at the same time. Finally, we compute that

b1 =
∑
x∈X

∑
γ∈Γx

∑
k∈K

hγP t(x, k)
∑
j∈K

hγP t(x, j) =
∑
x∈X

∑
γ∈Γx

(
hγP t(x,K)

)2
.

Theorem 4 now follows.
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Remark. The upper bound above can also be proved directly, without making use of

the Chen-Stein result. However, the proof is more cumbersome and also leads to slightly

weaker bounds.

Proof of Theorem 1. We again use Lemma 6. We first realize νx as a sum of

(dependent) indicator variables. We define indicator random variables H(x,j,k) for x ∈ X ,

j = 1, 2, 3, . . ., and k = 1, 2, . . . , j, where P (H(x,j,k) = 1) = νx(j), where H(x,j,k1) =

H(x,j,k2), and where (H(x,j1,k1))(H(x,j2,k2)) = 0 for j1 6= j2. This means that the variable∑
j,k

H(x,j,k) is distributed according to νx.

We then define indicator variables H(x,j,k,y) by starting independent particles at x

corresponding to each H(x,j,k), and setting

H(x,j,k,y) = 1 if and only if (H(x,j,k) = 1 and the particle goes from x to y in time t) .

Thus, P (H(x,j,k,y) = 1) = νx(j) P t(x, y).

We define a neighborhood for (x, j, k, y) given by

B(x,j,k,y) = {(x, j′, k′, y′) | any j′, k′, y′} .

We claim that

b1 =
∑

x

m(x)2
(
P t(x,K)

)2
,

and that

b2 =
∑

x

(m2(x)−m(x))
(
P t(x, K)

)2
.

Indeed, since our neighborhoods form an equivalence relation, we can evaluate b1 by sum-

ming over all neighborhoods (indexed by x) the square of the sum of the pα. Thus,

b1 =
∑

distinct
nhbds

( ∑
α∈nhbd

E(Xα)

)2

=
∑
x∈X

 ∞∑
j=1

j∑
k=1

∑
y∈K

E(H(x,j,k,y))

2

=
∑
x∈X

 ∞∑
j=1

j∑
k=1

∑
y∈K

νx(j)P t(x, y)

2

=
∑
x∈X

(
m(x)P t(x,K)

)2
.
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For b2, we begin by writing

b2 =
∑
x∈X

∑
(j,k,y)

∑
(j′,k′,y′) 6=(j,k,y)

E
(
H(x,j,k,y) H(x,j′,k′,y′)

)
.

We now observe that the expected value will be 0 unless j = j′ and k 6= k′ (because if

j = j′ and k = k′, then necessarily y 6= y′, and a particle cannot be in two different places

at once). The sum over all k 6= k′ then just contributes a factor j(j − 1), and we obtain

b2 =
∑
x∈X

∞∑
j=1

νx(j) j(j−1)
∑
y∈K

∑
y′∈K

P t(x, y) P t(x, y′) =
∑
x∈X

(m2(x)−m(x))
(
P t(x, K)

)2
.

The result now follows.

Remark. The results in [AGG] actually allow for some dependence among the random

variables Xα, controlled through the quantity

b3 =
∑
α

E

∣∣∣∣∣∣E
Xα − E(Xα) |

∑
β 6∈Bα

Xβ

∣∣∣∣∣∣ .

It is possible that this more general bound could be used to obtain results which do not

require the assumption that our initial distribution ν be a product measure.

5. Rates for specific examples.

It is natural to ask what our results say about specific examples. We begin with a

careful consideration of simple symmetric random walk. We then provide an example to

demonstrate that it is possible for our system chains to converge exponentially quickly.

Proposition 7. Let {Nx(t)}x∈Z, t∈Z+ represent the system chain corresponding to simple

symmetric random walk on the integers, started with exactly one particle at each site.

Assume for simplicity that t is even. Then

(3/4e)
(

2t

t

)
/4t ≤

∥∥∥∥ L ({Nx(t)}x∈K) −
∏
x∈K

Poisson (m(x))
∥∥∥∥

var

≤ 4 |K|2
(

2t

t

)
/4t .
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Proof. This follows from Theorem 4 and the remark following. Note that here m(x) =

hγ = FK = 1, and for any x, y ∈ Z, P 2t(x, y) ≤ P 2t(x, x) =
(
2t
t

)
/4t. The upper bound

follows immediately. The lower bound follows from this and from recalling again that

1− e−r ≥ 3r/4 for r ≤ 1
2 .

By Stirling’s approximation,
(
2t
t

)
/4t = (1 + o(1))/

√
πt as t → ∞. Thus, the above

proposition shows that the system chain corresponding to simple symmetric random walk

converges at rate 1/
√

t.

We now turn our attention to the question of exponentially fast convergence of our

system chain. Corollary 5 shows that if the initial distribution satisfies (A1), then this

convergence will be exponential if and only if the quantity sK(t) decreases exponentially

quickly. Assuming there is at least one particle created at each site of X , with probabilities

bounded away from 0, this is equivalent to saying that sup
x∈X

P t(x, y) decreases exponentially

quickly (in t) for each y ∈ K.

We now observe that under these circumstances, if P t(x, y) is recurrent, then the

convergence of the system chain will be sub-exponential. Indeed, if it were exponential,

then P t(x, x) would decrease exponentially quickly for any x ∈ K, and so
∞∑

t=1
P t(x, x)

would be finite, implying that P t(x, y) is transient.

Similar comments apply if P t(x, y) satisfies a weaker condition than recurrence, namely

that for a given y ∈ K there are deterministic points x1, x2, . . ., such that
∞∑

t=1
P t(xt, y) is

infinite. (Recurrence is equivalent to being able to take xt = y for all t.)

However, there are indeed well-behaved transient walks for which the convergence is

exponential. We give one example here.

Proposition 8. Let P t(x, y) correspond to simple random walk on the doubly-infinite

binary tree. (Thus, at each step a particle goes to one of the 3 neighboring sites with

probability 1/3.) Then, there is a > 0 such that for any sites x and y,

P t(x, y) < e−at

for sufficiently large t. Thus, the corresponding system chain, beginning with 1 particle at

each site, converges exponentially quickly.

13



Proof. Note that at each step, a particle’s distance to x will increase with probability

2/3, and decrease with probability 1/3 (assuming the particle is not exactly at x). Thus,

by the large deviation principle, for ε > 0 the probability of a particle remaining within

( 1
3 − ε)t of x after time t is bounded by e−rt for some r > 0. Also, if the particle is at

a point y which is a distance j > ( 1
3 − ε)t away from x, it is equally likely to be at any

of the 2j equidistant points, so P t(x, y) ≤ 2−j . Combining these facts, the result follows.
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