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Preface

The present project is devoted to the discussion of properties of f-uniform
ergodicity for homogeneous Markov chains. This topic is considered in many
scientific articles (see, for example, [1], [2], [3], [4]). One of the effective tools
that are used to prove properties of Markov chains ergodicity is the coupling
method. The details of this method are shown, for instance, in [1], [3].

The main goal of the current project is a detailed discussion of the cou-
pling method and illustration of its application to the study of ergodic prop-
erties of Markov chains. Moreover, in the project we shall describe useful
conditions for a Markov chain which are sure to be satisfied in case of the
chain’s f-uniform ergodicity.

The project consists of three sections and Appendix. In section 1 (Intro-
duction) we give necessary definitions and notations related to the correct
definition of a homogeneous Markov chain and corresponding measure and
expectation. In particular, we shall state one of the most important theo-
rems related to the current topic, namely, Kolmogorov’s Theorem about a
consistent family of measures.

Since the main interest in studying of Markov chains is represented by
those state spaces (X, B) which have a countably generated o-algebra B, it’s
natural to ask a question about the topological construction of such state
spaces. It’s also related to the fact that the main Kolmogorov’s Theorem
holds only in the particular class of topological spaces. This class consists
of complete separable metric topological spaces and is big enough to satisfy
scientific demands in use of Markov chains. The Appendix is devoted to
the description of wonderful relationship between a countably generated o-
algebra B and a complete separable metric state space X.

In section 2 (Quantative Bounds on Convergence of Time-Homogeneous
Markov Chains) we give a detailed description of the coupling method moti-
vated in the article [3]. This method is used to estimate f-norm that we are

interested in, namely, |[£P™ —& P"||f, where &, £ are probability measures on



B and P(z,A) is a transition function that defines a homogeneous Markov
chain.

In conclusion, section 3 (f-Uniform Ergodicity of Markov Chains) is de-
voted to the discussion of the properties of f-uniform ergodicity for homo-
geneous Markov chains. Here, on the one hand, we illustrate the application
of the coupling method to the solution of f-uniform ergodicity problem, on
the other hand, we discuss necessary conditions for f-uniform ergodicity of

a homogeneous Markov chain.
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1 Introduction

1.1 Product of Measurable Spaces

To understand the theory of Markov chains it is necessary to discuss the
products of measurable spaces (see, for example,[5], pages 144-151).

Let (Q0,A40),...(2y,4,,) be fixed sets Q; with o-algebras A;, i = 0,n.
Consider the direct product

ﬁ Q; = {{azi}?zo cx; € Q1= O,n}

=0

The sets of the form Ay x ... x A, = {{x}?zo cx, €A € AL = O,n} are
called measurable (n + 1)-rectangulars.

Let Ap be the collection of all finite unions of measurable n-rectangulars.
We can easily check the following lemma:

Lemma 1.1.1. A is an algebra of subsets from [];", €2;.

Let’s denote by A the smallest o-algebra containing Aj.

Definition 1.1.2. A is called a direct product of o-algebras A;, and we
write A = Ay ® ... ® A,.

Examples.

1. Let ; = R = (—00,00) and A; = B(R) be a Borel o-algebra in R.
Then it’s known (see [5], page 144) that

A ®..0 A =BR)® ... BR)

is a Borel o-algebra B(R™*™) in R*™ =R x ... x R.
1
n+

2. Let ©Q; = X, where X is a countable set, and A; = A be a o-algebra
of all subsets in X. Then Qy x ... x Q,, = X" is countable, and

A®..® A is a o-algebra of all subsets in X! (since {z;}l', €
—————

n+1
AR ... @ AV{x;} € X" and X" is countable).
—_——

n+1



Now consider a countable collection (£2;,.4;), i = 0, 1,2, ..., of measurable

spaces. Let

[T = {{eiy 2 € Qi =0,1,2,...}.

i=0
(In particular, if Q; = QVi =0,1,2, ..., then T[22, := Q> = {{x;}2 12, € 2,4 =0,1,2,...}.)
Let A;, € A;,, k =1,n. The set of the form

C(A“ X ... X A,Lk> = {{Qiz}fio € HQ’ LTy, € Alk,k = 1,77/}
i=0
is called a cylinder of order n with a base A;; x ... x A;, . We shall write
C(Azl X ... X Alk) = H Alk X H Qz
k=1 ik
Let F be the smallest o-algebra of subsets in ]2, €2;, containing all
cylinders. Then F is called a direct product of o-algebras A;, and we write
F = Q2 A;, and the pair ([132, ;, ®:2, A;) is called a direct product of
measurable spaces (€2;, A;).

Examples.

1. IfQ; =R, A; = B(R), then (see [5], page 146) the o-algebra ®:°, B(R)

in R* is called a Borel g-algebra in R*°.

2. Let Q; = X, where X is a countable set, and A; = F be a g-algebra of
all subsets in X. Then ®7;°,.A; is not the same as the o-algebra of all

subsets in X'*°.

1.2 Kolmogorov’s Theorem

Let’s consider a particular case of the direct product of measurable spaces,
(R>®, ®qB(R)). Let P be a probability measure on (R*, ®, B(R)). For
each (n + 1)-rectangular A; x ... x A,, € B(R™"1) let

P,(Ag x..xA,)=P(C(Ay x ... x A,)) =P (Ao X ... X Ap X ﬁ R) :

i=n+1



Then P, can be extended to a countably additive probability measure on

?:0 B(R)7 and
Poi1(Ag X ... x Ay X R) =Pu(Ag X ... X Ay) (1)

The equality (1) is called the property of consistency of a sequence of
probability measures P, defined on @;°,B(R). The following important
theorem takes place:

Theorem 1.2.1. Kolmogorov’s Theorem. Let P, P, ..., P, be a se-
quence of probability measures, defined on (R, B(R)), (R?, B(R?)),..., (R, B(R®)),
respectively, such that the consistency property (1) is satisfied. Then there
exists a unique probability measure P on ®:°, B(R) such that

P(C(Ag X ... x A,)) = Py(Ag X ... X Ay)

for all Ag x ... x A, € B(R").

The Kolmogorov’s theorem holds even for more general situation (see
remarks in [5], page 168), namely, the following theorem also takes place:

Theorem 1.2.2. Let ; be a complete separable metric space, A; =
B(2;) be a o-algebra of Borel subsets in €;, 1 = 0,1,2, .... Let Py, Ps, ..., Py, ...
be a sequence of probability measures defined on (€9, 4p), (20 X 1, 4g ®
Ap) e (TT o i, Q1 Ai),-.., Tespectively, such that the following consistency
property is satisfied:

Poi1(Ag X oo X Ay X Qi) = P(Ag X ... X Ay)

for all A; € A;, @ = 0,n. Then there exists a unique probability measure P
on (TI3%, 2, ®3°, A;) such that

P(C(Ap X ... x A,)) = Py(Ag X ... X Ay)

for all A; € A;, i =0,n.
Remark 1. As an example of a complete separable metric space we can

consider a countable set X with a discrete metric measure

1 ifx#y
0 ifx=y

p(z,y) =



In this case, any subset from X" is open or closed. Thus, B(X) is a o-algebra
of all subsets.

Remark 2. Consider Z = X x X x {0, 1}, where X is countable or finite.
Then Z is countable or finite, and Z is a complete separable metric space
with respect to a discrete metric measure, and B(Z). Thus, theorem 1.2.2 is
true for Q; = X, A; = B(X) and for Q; = Z, A, =B(Z2),i=0,1,2,....

Now, keeping in mind considered constructions let’s define a homogeneous

Markov chain.

1.3 Definition of Markov Chain

Let (€2, F, P) be a probability space, Xo, X1, ..., Xp, ... be a sequence of ran-
dom variables on (2, F, P) with values from some measurable space (.5, €),
ie. X :Q — Sand X7Y(B) € FVBe& i=0,1,2,.., where £ is a o-
algebra of subsets in S. Let F,, = F,,(Xo, ..., X,,) be the smallest o-subalgebra
in A, with respect to which Xj, ..., X, are measurable.

Definition 1.3.1. We say that a sequence Xy, Xi,...,X,,... forms a

Markov chain , if for all n > m > 0 and for all B € £ we have
P(X, € B|F,) = P(X,, € B|X,,).

An important role in studying Markov chains is played by transition ker-

nels P,(x, B), where z € S, B € £ such that:

1. When B € € is fixed P,(z, B) is a measurable function on (S, &);

2. When z € S is fixed P,(z, B) is a probability measure on (5, €).

It is known (see [5], page 565) that there exists P,;1(x, B) such that
P(Xps1 € B|X,) = Poir(Xo, B)

forall Be&,n=0,1,2,...
If Poyi(x,B) = P,(z,B), n = 1,2,..., then a Markov chain is called
homogeneous , in this case, P(x,B) = Pi(x,B), and P(x,B) is called a

transition kernel for a chain Xy, X1, ..., X,,, ....

8



Together with P(z, B) for a Markov chain X, X1, ..., X,,, ... it’s important
to consider an initial distribution 7 which is a probability measure on (.5, &)
such that 7(B) = P(X, € B).

The pair (7, P(z, B)) completely defines a Markov chain Xy, X1, ..., X, ...,
since for all {X;}7

P((Xo, ..., X)) € A) :/W(dmo)/P(xo,dxl)---/IA(xO,...,xn)P(xn_l,dmn), 2)
S S S

where [, is an indicator function, i.e.

1 ifzeA
ifx g A

[A(.T) =

and A € ®!' &, where ;- , £ is a direct product of o-algebras &£, i.e. here
we consider ([T7, S, QL E).

Using (2) it may be shown that for any bounded measurable non-negative
function g : ([T, S, ®i, €) — (R, B(R)) the expected value of this function

can be calculated by the following formula
Eg(Xo, X1,..., X)) = / (dzo) /P xg, dxy) - /g (2o, T1,y ooy T ) Py 1, dy) (3)
E

Since for studying Markov chains the initial probability space (€2, F, P)
is not as important as a measurable space of values (5,€), and an initial
distribution 7, and a transition kernel P(z, B), that allow us to calculate
all necessary probability characteristics for the chain with the help of the
formulas (2)and (3), then the chain {X;}3°, can be constructed as follows.

Let us have (S,€&), m, P(z,B). Consider the product of spaces Q =

209, F=Q2,&. For any A€ Q& let
P,1(A) = / (dxo) /P xg, dzy) - /[A X0y eey T ) P21, dxyy),
S
using (2).
Thus, we get a consentient sequence of probability measures {F,}> .

Let’s assume that S is a complete separable metric space, and € = B(S).

9



According to theorem 1.2.2, there exists a unique probability measure P on

(I120 S, ®2, &) such that
P(C(AO X ..o X An)) = Pn+1(A0 X ... X An) (4)

for all A; € £,7=0,n.

Let Q =[[;2) E, F = ®;2, £ and P be the previous measure on F. Then
for P the equality (2) is satisfied. Consider random variables Y;({z;}2,) =
z; €S, {z;}32, € 172 S, x; € S for all 4. Thus,

v (115 @) = (2. F) - (5.6)

Theorem 1.3.2 (see [5], pages 566-567) The sequence {Y;}°, forms a
homogeneous Markov chain with values from (.5, £), initial distribution 7 and
a transition kernel P(z, B).

Thus, by theorem 1.3.2, we always can say that the chain {X;}2, is

constructed similarly to the way the chain {Y;}°, was constructed.

2 Quantative Bounds on Convergence of Time-
Homogeneous Markov Chains

In this section, following the article ” Quantative Bounds on Convergence of
Time-Inhomogeneous Markov Chains” by R. Douc, E. Moulines, and Jeffrey
S. Rosenthal (see [3]), we shall give a detailed description of the coupling
method and its application to the estimation of the f-norm |[P™ — &' P™||,
where &, & are probability measures on o-algebra of the chain’s state set, for

a homogeneous Markov chain with a transition function P(z, A).

2.1 Constructions

Let us be given a homogeneous Markov chain X = {Xy, Xy, ..., Xy, ...} with a
state space (X, B(X)), initial distribution 7, and transition kernel P(z, B),

10



x € X, B € B(X), where B(X) is a o-algebra of all subsets in X

Assume that this chain satisfies the following condition:

(A1) There exist C C X x X, € > 0 and a family of probability measures
{Veu} (o aryee on F = B(X) such that

min(P(x, A), P(z', A)) > ev, . (A) (5)

for all A € B(X), (z,2') € C. In this case the set C is called a (1, €)-coupling
set. If C = C x C, where C C X, then C is called a pseudo-small set. If
Vo = v Va,2’ € C, where C is a pseudo-small set, then we say that C' is a
(1, €)-small set.

Consider a state set X x X = {(z,2’) : z,2" € X'}. In this case, a o-algebra
B(X x X) of all subsets in X x X coincides with a o-algebra B(X) Q@ B(X),
which is generated by sets of the form A x A’, where A C X, A’ C X.

To define a transition function on (X x X, B(X) x B(X)) it’s enough
to define P((z,2'), A x A’), and then, keeping in mind that B(X) & B(X)
is generated by sets of the form A x A’ extend P((z,z"), A x A") for fixed
(x,2") € X x X as a measure on B(X) ® B(X).

Let (see [3], page 2) for (z,2') € C'and A, A’ C X

P(z,A) —evy v (A)) (P(a/,A') — evy o (A'))

Rz, Ax A) = ( . : . (6)
—€ —€

If (x,2') ¢ C, let
R(z,2'; Ax A') = Pz, A)P(z', A").

Extend R(z,2’; A x A’) to a transition function on (X x X, B(X) x B(X)).

In particular, this transition function has the following property:

1—e
- ' A)—ev, (7>
R(x’a,:/; X % A) — (P(z',A) 90,90/(‘4))

{ Rz, Ax X) = (P(x,A)—ev, 1 (A))
T
for (z,2") € C, AC X.
Remark 3. In definition (6) we use condition (A1) that gives us

R(z,2'; Ax A)>0V(x,2)) e C, A A C X.

11



Let R(x,2’; D) be any transition function on (X x X,B(X x X) that
satisfies (7). Above (see (6)) we showed that such functions R(z,z'; D),
where (z,2') € X x X, D C X x X, exist.

Let P(z,2’; D) be another transition function on (X x X', B(X x X) such
that for (x,2") € C, A, A’ € B(X) we have

Pz, 2 Ax A= (1 —e)R(z,2"; Ax A') + evy (A A), (8)
and for (x,2') ¢ C, A € B(X) we have

P(z,2'; Ax X) = P(x,A) and P(z,2'; X x A) = P(2/, A)

Remark 4. Such transition functions P(z,a’; D) exist. It’s sufficient
to take P(x,2"; A x A') = P(z,A)P(2',A") for (z,2') ¢ C, and to take
P(z,z'; Ax A') as in (8) for (z,2') € C.

Note that P(z,2'; A x A') = P(x, A)P(2', A’) for fixed z,2' € X can be
extended to the “area” on B(X')® B(X'), and the area of the rectangle A x A’
is equal to the product of side measures, P(x, A)P(z’, A").

So, we have an initial transition function P(x, A) on (X, B(X)), and two
transition functions R(z,z'; D), P(x,2'; D) on (X x X, B(X) x B(X)) satis-
fying (7) and (8) respectively.

Following [3], let’s construct now a Markov chain Z,, with values from
X x X x{0,1} = Z. We can write Z, = (X,,, X],,d,), where X,,, X are
functions with values from X, and d,, is a function with values from {0, 1}.
The cylinders in Z are sets of the form A x A’ x {0} and A x A’ x {1}, where
A A e B(X).

To define a Markov chain Z,, let’s define a transition function on B(Z) =

B(X)QB(X)®B({0,1}) as follows (it’s enough to define for (z,2',d) € Z

12



and cylinders A x A" x {0}; A x A" x {1}, A, A" C X):

P ((x,a',d); D)

P(x,A) ifd=1and X =X and D=Ax A" x {1}

0 ifd=1and D=Ax A" x {0}

Vo (ANA) ifd=0, (z,2') e C,D=AxA x {1}
(1—e)R(x,2';Ax A)ifd=0, (z,2') € C, D=Ax A x {0}
0 ifd=0, (z,2') ¢ C, D=Ax A x {1}
Pz, 2'; Ax A) ifd=0, (z,2') ¢ C, D=Ax A" x {0}

Let &,& be probability measures on B(X), dy be the Dirac measure on
{0,1} centered on d = 0, i.e. 0p({0}) =1, do({1}) = 0.
Consider a product of measures p = £ ® { ® oy on B(X) @ B(X) ®

B({0,1}) = B(Z). The probability measure p will be considered as an initial

distribution for {Z,}~,. Thus, we shall consider a homogenecous Markov

chain defined by the pair (u, P) on (Z,B(Z2)).

We shall need the following

Proposition 2.1.1.

Pegerasy(Zn € A X X x{0,1}) = (£P")(A) (10)

Pegeros (Zn € X x A" x{0,1}) = ({'P")(A) (11)

n=0

(Here Pegergs, is a probability measure on (ZN, e B(Z)) generated by
the pair (£ ® £’ ® &g, P) (see(2)).)

Recall that ((£P)(A) = [ P(x, A)¢(dx), A C X, and P" = PP"!, where
(PQ)(w, 4) = | P, dy)Qly. ).

Proof of Proposition 2.1.1:

Let n = 0, then using (2) we’ll get that

Pegerws,(Zo = (Xo, Xg, do) € Ax X x {0,1}) = /]Ax/’vx{o,l}f ® & @ do(d(zo, 24, do))
Z

= (R @0h(Ax X x{0,1})
= (A)-€'(X)-6({0,1})
= £(A)-1-1=¢(A)

13



= (& P
(since, by definition, P%(z, A) = 1)

Let n = 1. In formula (2) the role of the argument z; is played by the
triple (x;, x},d;). We have

(Z1 € Ax X x{0,1}) (Zo€ Z;:Z, € Ax X x{0,1})

= ((Zo,Z1) € Z x (Ax X x {0.1}));

Iz (axxx{0,1}) (@0, Ty, do; 21, 27, dv) = Laxxxiony (@1, o, dy).
According to the formula (2), we get that

P§®§/®5O(Zl € Ax X x {0, 1}) = P§®5/®(50 ((ZO, Zl) € Zx (A X X X {0, 1}))

= /5@5'®5o(d($0,$67d0))/IAxXx{o,1}(I1,55/17dl)P(l‘o,%,do;d(ﬂl?l,ﬂ?/l;d/l))
Z Z

= [ €€ @ do(d(wo, 7h,do) - Plao, ahydos A x X x {0,1})
zZ

;From (9) we have that P ((zq, x}, do); A x X x {0,1}) =

=\ Vo, (ANX) + (1 = €)R(wo, 20; A x X)  if d =0 and (z0,2) € C
P(xo,zh; A x X) if d =0 and (xg,z}) ¢ C

= Vgt (A) + P10, A) — €y o (A)  if d =0 and (20, ) €
if d =0 and (zg,2}) ¢ C

P(SC(),A)
= P(x9, A) if d =0 and (zg, 7)) € C
P(xg, A) if d =0 and (zg, 7)) ¢ C

Thus, P ((zo, ), do); A x X x {0,1}) = P(z0, A), and therefore

Peogon(Zi € Ax X x{0,1}) = [ €& @ dold(wo, ), do) Plav, A)
Z

14



= [ doldtdo)) [ €ty [ &) Plao. 4)
{0,1} i x
(by Fubini Theorem)

= (€ P)(A) [ do(d(do)) [ ()
{0,1} X

= (£ P)(A)5({0,1})'(X) = (£~ P)(A)

Now, let’s show that (10) is true for any n.
We have that

(Zn € Ax X x{0,1}) = (ZheZ,...Zn 1€ Z;Z,€ AXx X x{0,1})

= ((ZO, s Zn) € Z X X ZXx(Ax X x {0, 1})) ;

n

/ . / / _ /
IZX...XZX(AXXX{O,l})(x()? ny do, X1, Ly, dla vy Ly Loy dn) == ]AXXX{O,l} (xm Ly dn)

By the formula (2), we have that Pegegs,(Z, € A X X x {0,1}) =
= /§®f ®50( ($0,-To,do /]AXXX{O 1}(1‘n,$md )P(xn 1s L 17dn—1;d($n7$;,dn))

== /£®€ ®50( <x07x07d0 /P Lp— 27'1:11 27dn 27d('rn 17'rn 17dn 1))
zZ

P(a:n_l,a:n_l,dn_l;A x X x{0,1})

Like we did above, we can show that

p(xnfla xl

n—1

dp—1; A x X x{0,1}) = P(2,,-1, A) for all fixed A € B(X).
And, since from (9) for D = B x X x {0,1} we also have that

P2y 9,2 5, dp_o;D) = P(2,_5, B) for all B € B(X),
then for any bounded function g on X it follows that

90 ) P, @y, i dl@nr 2y d)) = [ (o) P, o)

XxXx{0,1} X

(since the intergrand depends only on z,_1, i.e.

9(wn-1) = g(xn-1) - 10, 1) - 1(dn-1),

15



where 1(x/,_;) = 1 = 1(d,_1) and the integration with respect to x,_; and
d,—1 gives us the indentity.)

Hence,

/P Lp—2,T n—29 TL 27d(xn lax;L 17dn 1))P(‘ITL—17A) == (taklng g(xn—l)
zZ

= /P Tn— 1, .’L'n,

If we keep going in the same direction, we shall get that

P§®f’®50(Zn ceAx X x {0, 1}) =

= /§®f/ ® 50(d($07$67d0)) : /P(Im%,do;d(%o,l’é;do)) : Pn*l(be)
Z Z

- /6@6’ ® do(d(xo, 24, do)) - P" (20, A)

= [P0, A)gldn) - [ o) [ duldl)
X x {0,1}
(by Fubini Theorem)

= (¢ P)(4).

Similarly, we can prove (11).

2.2 An Auxiliary Lemma

Again following (3], denote by P* a Markov kernel defined for (z,2") € X x X,
A € B(X x X) by formula
Peloat A) { Pl ', A) if (r,4) ¢ ©
R(z,a', A) if (z,2") € C
For a probability measure p on B(X x X') denote by P and E}, a probabil-
ity and expectation, respectively, on ( P AXX, R B(X XX )) induced

by w and P* according to formulas (2) and (3).

16
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Lemma. Let (A1) hold (thus, P, R are defined). Then for any n > 0
and any non-negative Borel function ¢ : (X x X)"™! — R* the following

equality holds:
E§®§’®50{¢(X0’ X(/)’ ) Xm X7/L> ’ ]{dn=0}} = E;@&’{gb(XO? X(/)7 ) Xm X:z)(l - G)Nnil}(12)
where N, = Z;ZO I5(X;, X}), Ny =0, and

1 ifd,=0

[{dnio}(X07X(l)7d0; 7Xn>Xr/wdn> =
0 ifdy £ 0

Before we prove this lemma let us discuss some facts from the measure

theory.

2.2.1 A Useful Property of Expectations

Let X be a set, F be a c-algebra of subsets from X, and P;, P, be two
probability measures on F. Let’s give one sufficient condition for the equality
Pi(A) = P(A) for all A € F, and, thus, for the equality [ fdP, = [ fdP, for
any non-negative measurable function f : (X, F) — (R,)ZS(R)), Wﬁere B(R)
is a Borel o-algebra (i.e. f~1(B) € F VB € B(R); such functions are called
Borel functions).

Definition 2.2.1.1. A system N of subsets from X is called a semiring,
if

1. 0 e N;
2. ANBeN,if A,BeN;

3. If Ay Cc A, A, A € N, then we can represent A as a union, i.e. A =
U?:lAh AZ €N> AZQAJZQ,Z%], Z?jzlan

Examples of Semirings:

1. N ={(a,b),la,b],a,b),(a,b] : a <b,a,b € R} is a semiring of subsets
in R;
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2. (Important for us) Let (X, F) be a given set with a fixed o-algebra.
Consider Y = [[l, X and let N = { ToA A€ f} be a system
of all n-parallelepipeds in ). Clear that ) = [[,0 € N. If F} =

P oA eEN, Fy =111 gB; € N, then FiNFy, =[], AiNB; € N. Let
F=1'yA e Nand Fy =[[.,B; € N, I} C F. Hence, B; C A,
i =0,n. Take F, = (Ag\ Byg) X By X ... Xx B, € N. Then F} N F, =),
FiUF, = Agx By X...x B,,. Now, let Fy = Agx(A;\By)x By X...x B, =
FaeN, FsNE,=0,i=1,2, FUF,UF;= Ay x A X By X ... X B,,.
Continuing we construct F, ..., Fj,+1 € N such that F;U F; =0, i # j

and U F; = F. Hence, N is a semiring.

Now let’s introduce well-known properties of semirings.

Lemma 2.2.1.2.If ' is a semiring, Ay, ..., A,, A€ N, A, C A, AiNA; =
0,4 +# j,14,j = 1,n, then there exist A, 1, ..., A, € N such that A =", A;.

Lemma 2.2.1.3. If NV is a semiring, Ay,..., A, € N, then there exist
Bi,...,B; € N such that BN B; =0, i # j, i,j = 1,k and A; = Uj(;{ B,

for some s; < ... < s,y and all i = 1, n.

Lemma 2.2.1.4. The smallest algebra of sets A(N) containing a semir-
ing A with an identity X € N consists of the sets of the form A = U}_; Ay,
where Ay, e N, k=1,n,n € N.

. From this lemma it follows that

Lemma 2.2.1.5. Any set A € A(N) can be represented as A = U}, B;,
where B; e N, BBNB; =0,i+# j,1,j =1,k

Let F be the smallest o-algebra generated by a semiring N with identity
X, ie. F is generated by algebra A(N).

Theorem 2.2.1.6. If y is a o-finite measure on algebra A(N), then
there exists a unique measure p' on algebra F, for which p/(A) = p(A) for
any A € AN).

JFrom this theorem we get what we wanted:

Theorem 2.2.1.7. If P;, P, are two o-finite measures on F and P;(B) =
P3(B) for any B € N, then P(A) = P,(A) VA € F and )j{’fdPl :)j{’fdPQ
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for any positive Borel function f: (X, F) — R.
Proof: From lemma 2.2.1.5 it follows that YA € AN) A = U, B;,
Bie N, BiNB; =0,i+# j,i,j =1,k. Therefore

Pi(A) = ;Pl(Bi) - ;pQ(BZ-) = Py(A),

i.e. measures P and P, are equal on A(N'). Hence, by theorem 3.1.6, it

follows that Pj(A) = Py(A) VA € F, and, thus, [ fdP, = [ fdP, for any
X X

positive Borel function f: (X, F) — R.

O

Let’s now apply theorem 2.2.1.7 to our case. Let X be a set, B be a
o-algebra of all subsets in X. Consider YV = [[l.y X and A = ", B.

As we noted earlier (see section 1.1), o-algebra A is the smallest o-algebra

containing semiring A of all n-rectangulars Ay X ... x A,, A4; € B, i =0,n
(see example 2 of the previous section).

Thus, we have

Theorem 2.2.1.8. Let P, P, be two finite measures on Q! ,B. If
Pi(Ag X ... x A,) = Py(Ag X ... x A,) for any A; € B, i = 0,n, then P,(D) =
Py(D) for any D € Q:, B and

Ep (f) :/f(xl,...,xn)dPl :/f(xl,...,xn)dPQ:EPQ(f)
Yy y

for any positive Borel function f: (Y, ®,B) — R.

Now we can move to the lemma’s proof.

2.2.2 Proof of the Lemma

*

The expectation Efy, is constructed by measure P¢,. defined by an initial
distribution £ ® £’ given on B(X x X), and by a Markov transition function
P*(x,2', A). In particular formula (3) holds for Efy, i.e.

E§®£,(g(x0,:z:6,...,xn,x;)) = /d(&@f/) / P*(zg, xy; d(z1,27)) - ...

XxX XxX
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’ / g($0ax67"'7wn7x;)P*(l’n—1al‘;—1;d(x’rul{n))
XxX

(13)
For each A € Q7 B(X x &) let
lul(A) = Eg®g/([A($0, 513/0, vees T, x;)(l — G)N”—l),

Since 0 < T4 - (1 — €)Mt < 1, then puy is a finite countably additive
measure on @7 B(X x X).

The expectation Fegergg, is constructed by measure Pegegs, defined by an
initial distribution £ ® £’ ® &y given on B(Z), where Z = X x X x {0, 1}, and
by a Markov transition function P((z,2’,d); D) (see (9)), where (z,2) € X,
d€{0,1}, D € B(Z). For E¢gegs, the formula (3) also holds, i.e.

Eegergo, (h(xo, T, doy ooy T,y )y diy)) = /d(f ®RE® 50)/f’(wo,xg,do;d(m,m’l,do)) _—
Z Z
L /h(xo,xg,do, s Ty @A) P, @1 d ;s d(m, 2 ) (14)
Z

For each A € Q' , B(X xX) consider an integrable function on (2", Q}_, B(Z))

i=0
/ .. / _ / /
ha(xo, xy, do; -..; T, @, d) = La(20, T, ooy Ty ) - L1d,=0} -

Let p2(A) = Eegergs, (ha(xo, ), do; ...; T, ), dy)).

Since Fegergs, 15 an expectation, then ps is a finite countably additive
measure on Qo B(X x X). (For example, if A = U;>_; Ay, where A,,NA; =
0, m#k, mk=100, A € Q- B(X x X), then

:uQ( ) = E§®§’®5o(hU::1Am(x07x67dO;"';xmx;wdn))

1

P C8

= Eeogon (| y>_ 4, - ia.=0})

= E£®§’®5o< > 14, 'I{dn:O})

m=1

- Z Eewerwsy(La,, - Iid,=o})

m=1

= 3 m(4)
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So, we have two finite measures y; and ps on @7, B(X x X). If we show
that p1(Bg X ... X By,) = pa(Bg X ... X By,) for any B; = A; x Al € B(X x X),
A;, AL € B(X), i = 0,n, then, by theorem 2.2.1.7, we’ll get that ui(D) =
(D) VD € @ B(X x X), since the sets (A x Aj) X ... x (A, x A),
A;, AL € B(X) form a semiring in B(X x X) = B(X) ® B(X) (can be shown

as in example 2). Therefore for any linear combination h(xq, 2}, ..., z,, z) =

Smailp, a; € Ry D€ Qo B(X x X), i =1, m we have

Eeserws, (Mo, 20, oy Ty ) g, —0y) = D ®iBeserws,(Ip, - Iia,~o})

i=1
= Z Qipa(D;) = Z ;i (D;)
i=1 i=1
i=1
= Elgo(h-(1—¢)n ).

Now let ¢ : (X x X)"*' — R™ be any non-negative Borel function. Then

there exists a sequence of step functions hy(xg, zj, ..., Tp, ¥)) = s o D

such that 0 < hy T ¢ = hy - Ijg,—0y 1 ¢ - I{a,—0y. Therefore

Eewerss, (2o, 0y e Tny Ty) - [{dn=0}) - khigo Eeaeras, (h - ]{dn=0})
= Jim oo (- (1- 0"
- Eg®§/(¢(x(]?l’6”xn’x;1)(1 — €>Nn71>

Thus, to prove the lemma it’s enough to check the equality

,LLl(BO X ... X Bn) = ,LLQ(BO X ... X Bn)

for any B; = A; x A, € B(X x X)), A;, A, € B(X), i

0, n, or, the equality
E;@gl(IBOX---XBn(]‘ - E)Nnil) = Efxle(SO(]BOX---XBn : I{dn:O}) (15)
From formula (13) we have that

Efger(IByx..xB, (1 — €)Nn1) = / dE¢E ..

XXX
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P i@ @ ) [ T, (1= N P @, 2yl 2)
x X

X XXX
= / E®f) / I, (zo,20) .- Ip, (Tp_1,2),_4) -

XXX XXX

(1= N P g, g s, )+ [ L2 P s, )

XXX

From the definition of P*(x,z’, A) we have that

[ 15,0 ) P a1, il 1)) = P (s, i Ba)

XxX
) P@a-v, 2,4, By) i (wa-,2p4) ¢ C
| Ran,a_ By if (wn1,7. ) €T
Since
(1- E)Nn_l(xo,:c6 ..... Tn-1,T_,)  _ (1—e)M2.(1- ¢)felon— 1)
B (1 —e)Ne—2t1 if (1,2 ) € C,
I L R RN X e
then
EfgeUnpin, (1= V) = [ di¢@ ) [ Pr(@n g0} 5 d(wn 2,7}, 2))
XxX XxX
(/[Box...xBnl(l — &) Rz 1, 21, Bo) P (Tn2, @)y _o; d(T—1, 2 _)) +

c
+ /[BOX...XBn_l(l — &)V 2 P(w, 2l Bn)P*(fEn-z,x;_g;d(xn_l,x;_l))>

60
= [ dg@e) o [ P st d(a, 7))
XxX XxX
/ IByx..xBy s <[C<xn17 z,_)(1— E)N"_lﬁ(l’nfl, z,_, Bn) +
XXX

+ I (Tn—1, 75, 1)(1_6) nQP(xn—lvxn—lvBn)>P*(In—2a$Zz—2;d(xn—lvﬁiz—l))

= E§®§’ IBo><~~-><Bn—1 ($0, 37/0» ooy Tn—1, x/n—l)(lé(xnfb x;—l)(l - €>Nn_lﬁ($nfla .%;1_1, Bn) +
I ) (1= Y Pla, ol By) (16)

Now let D; = B; x {0,1},i=0,(n— 1), D!, = B,, x {0}. We have that
IBos...x B (X0 Ty ooy Ty Thy) - Tia =0y = Iy (@0, 20) « oo - I, (@1, 1) - 1B, (Tn, 2),) - T{a, =0}

22



= IBo(flfo,ﬂfE))'[{m}(do) [Bn 1(% 1, Ly 1) [{01}(dn 1) anx{o}(wn,iU;,dn)
= IDo(x07$67d0)'---'IDn,l(xn—lyx{n_ladn—l) ID/ (ZEn,ZE d)

/ o /
ID0><...><Dn71><D§L (,To, Lo, dOJ ey Ly Ty dn)

Thus, from formula (14) we have that

EewewsoUBox...xBy - Lia,=0}) = /d(§ ®E& ®d) -

z

/ [Do (.1'0, :EE)v dO) Tt [Dn_1 (xnfb x%—la dnfl)p(xnf% x;-?a dn72; d(xnfla xgz—la dnfl))
[ T s s ) P4,y s, 7, )

z

From the definition of P(x, ', d; D) (see (9)) we have that

/]D;(xn,x;,dn)p(xn_l,x;_l,dn_l;d(xn,xiudn)) —

= /IAnxA;lx{O}<In7x;ud)p(xn LT 1, dn_1;d(2n, 2, dy))
z

= Pz, , 2, |, dy1; A, x A x {0})

O lf dn71 =1
= (]_ — E)E(In—ly x;_l; A, X A;) ifd, 1= 0, (xn—h x;—l) el
F(l‘n—lax{n—l;An X A;L) if dn—l = 07 ('In—la'rfn—l) ¢ 6

Thus,
Eeserwsn(IBox...x B, Idn=0}) = /d(€ ®E @) ...
Z

/IDO(IO,%, do) - oo Ip, o (Tn 2,7, dn—2)15($n—3, Ty 3, dn—3; A(Tn—2, ), o, dn_2)) -

/IDn_l(iCnflaiU;%pdnﬂ)p(ﬂfn 2, ;1 2,dn72;d($n71,9€;71,dn71))'

0 ifd,.1 =1
(1 - R(xp_1, 2, ;A x A ifd, 1 =0,(x,1,2, ) €C
P(xy_q, 2 A, x A) ifd, 1 =0,(x, 1,2, )¢ C

= (since D), _, =A, 1 x A _, x{0})=
— [a€2g @) [ Plan-o @ g dosid(@n s, Ty du-2)
zZ zZ
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/[Dox.--an-sz;,l (Ic(xn 1 Ty 1)(1_5)E($n—17 Lp— 1,A X A/)
Z

+ Iac (xn—h x;—l)?(l‘n—h x;’t—l; An X A;L)>dp(xn—27 xfn—Q: dn—Q; d(wn—la x;_p dn—l)

= E§®§/®6o

[BOX XBn-1 I{dn—O}(I (xn 1y Lpy 1)(1_6>§(xn717x;1—1;/4n XAIn)“_

b T (a1, 2l P, Ay x AL)) a7

Now using (16), (17) and mathematical induction show that (15) is true
for any B; = A; x A, € B(X x X), A;, A, € B(X), i =0,n. For n =0 from
No_1 = N_1 =0, and (13), (14) we have that

Fioolln) = [ Ind(€®€) = (€0 €)(A x ) = €(Ar) - €(A)):

XxX

Eeoerwsy (I, lda=0}) = / Lao(20) - Lay (20) - Tag=0yd(§ @ &' @ o)
XxXx{0,1}
= (by Fubini’s Theorem) = &(Ag)&'(Ay)do({0})

= (since 6o({0}) = 1) = &(A¢)€'(Ap),
i.e. (15) is true for n = 0. Let (15) be true for (n — 1), i.e
Eeoe(Ipyx..xp,y - (1= €)""?) = Eeapas, Ipox...xB_y - Ita, \—o})
for all B; = A; x A, € B(X x X), A;, A, € B(X),i=0,(n—1), i.e
p1(Bo X ... X Bp_1) = p2(By X ... X By_1).
Then, as shown above, we have that
Egger (620, 2, oy Tn1, 27, 1) - (1= €)V72) = Begrasy (9(20, 0, s Tum1, 07, 1) * Ia, 1=0y(18)

for any non-negative Borel function ¢ : (X x X)"~! — RT. Take

¢($0,I6, "'7xn717'r;71) = IBOX...XBTL,1 (IC(QZH 15 Loy 1)(1 - €)R<xn717$;71; An X A;L) +

+ Tge(Tna1, @) P(@no1, 2 g5 Ay X A%))
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Then from (16), (17) and (18) it follows that

Efoe(Ipox..xp, - (L= 1) = (by (16) ) = Efye <¢($o»$67 oy Tty Ty ) (1 — E)N“)
= (by (18)) = Eewerss (d(x0, 20, s Tno1, Z),_1) I {d,_1=0})

= (by (17)) = Eeeees,(IBox...xB, - L{d.=0});

i.e. (15) is true, and this finishes the proof of the lemma.

2.3 Main Time-Homogeneous Result

Let X, F = B(X) be the same as before, £, & be probability measures
on B(X), and P(z,A), where x € X, A € B(X), be a Markov transition
function.

For function f : X — [1,00) define an f-norm of a signed measure p on
B(X) by

[lplly == sup [u()],
ol<f

where ¢ : (X, B(X)) — R is a Borel function.
If f =1, then by definition we have

il 1= [l 7w,

where || - ||7v is a total variation norm.

Our goal is to obtain an estimation for f-norms
16P™ = &'P"[[f and [|SP" = &'P"||rv

in order to find conditions when these f-norms approach zero.

Lemma 2.3.1. Let f: X — [1,00) and ¢ : (X, B(X)) — R be a Borel

function such that sup,c |?E;gl < 005 &, & be probability measures on B(X),

and P(x, A) be a Markov transition function. Let condition (A1) be satisfied.
Then

vy e G 11— o)
67" — &P < (sup "G B (/X0 + (X001 = 0™ ) - (19)
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Proof: By Proposition 2.1.1, for any A € B(X) we have

(EP™)(A) = Pegeras,(Zn € Ax X x{0,1}) = (see the proof of Proposition 2.1.1)

/ A€ R @) / Lty (n, T, o) P, 0y, 13, 7, )

Thus, two finite measures
pa(A) = (EP")(A) and p2(A) = Peoewsy (Zn € A X X x {0, 1})

coincide on o-algebra B(X). Hence, the expectations constructed by these

measures also coincide, i.e. for any integrable (with respect to measures f

and ps) Borel function ¢ : (X, B(X)) — R we have
(€P")(6) = [ (zn)d(€P") = [ G(ea)dPeserss, = Beogea (0(X,))  (20)
X X

Similarly,

(E'P")(0) = Eesers (9(Xy,)) (21)
By definition, chain Z,, was constructed as follows: Zy, = (Xo, X{),dp), and
if we define 7,1 = (X,,-1,X,,_1,dn-1), n > 1, then for 7, = (X,,, X}, d,)
when d,_; = 1 we let X! = X,, ~ P(X,,_1), d,, = 1, and when d,,_; = 0 we
let
X =X, =X ~vx,xdy =1 if (X, 1, X! ) €
(X0, X0) ~ (X1, X)), dy =0 i (X, 1, X)) €T
(X, X7) ~ F(Xn—thzq)? dp =0 if (Xp-1,X51) ¢
Thus, it’s always true that X,, = X/ when d,, = 1.
Then it follows that

oy (dn) - (6(Xa) = 6(X.) = (6(X2) = 6(X2)) - Ty
Therefore from (20) and (21) we have that
€P"6— POl = |Beocros, (0(Xa) — (X)) - Ta,coy
< Beoeisso((1900)] + 160X - Tia,oo)

< (since 19(Xn)| = [$(Xn(w))] = I(b(XnJ(fLEJ))()lh(fw()))(n(w)) < SUPgex
< Sup ‘?E §|E§®E’®60 <(f(Xn) + f(X})) - f{dn=0})
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Therefore from the main Lemma (see section 2.2) we obtain that

n ! pn |¢(l‘)| * ! Np—1
67" —€/P"0] < sup L B (X + F(X)) (L =)™ ).

O

Now, consider the following condition for Markov transition function
P*(z, o', A):
(A2) There exist a function V : X x X — [1,00) and constants b > 0,
A € (0,1) such that
PV <AV + biz (22)

Theorem 2.3.2. Let conditions (A1) and (A2) hold. Let f: X — [1,00)
be such that f(x) + f(z') < 2V(z,2') V(z,2') € X x X. Then for any
j €{l,...,n+ 1} and any initial probability measures £ and & on B(X) the

following inequalities are true:

1€P" = &'Plrv < 2(1 — €)' Ijeny + 2X"BTH(E @ (V) (23)

l€P™ — &Py < 2(1 = ) (bu ST A 5’><V>)1{j<n} 2B (E@ E)(V),
(24)

where B = ma:v(l, (1 =A™ sup, e RV (2, 1:/)>
Proof: For any j € {1,...,n + 1} we have

Flae | (£(X0) + FX)(1 = 9% | =
= (since I{n, 55y + v, y<jy = 1 and {Nyoy 2 N {N,1 < j} =0)
= Bioo|(F(X) + FX0)0 = 9 iy, oy | +

+ e | (F(X0) + FX)0 = ™ i, i

(since F(X) + f(X) < 2V(Xn,X;L>)

IN

IN

Froe [(F(0) + FX)(1 = 94w, o] +

b 2B | V(X X1)(1 — e)N"‘lf{anq}]

(25)
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Since (1 — €)1 Iy, 15 < (L —€) - Iy, 155 < (1 —€)?, then
Egge |(f(Xn) + F(X) (1= €)™ w2y | < (L= € Bgge [ £(Xn) + (X))

If f=1, then f(X,)+ f(X]) =2 and the first term in inequality (25) is
estimated by number 2(1 — €)’.
Using condition (A2) we have that

(PYV = ()

IA

(P HAV + bIg) (by (A2))

IA

AP WV 4+ b < AAP)" 2V +b) +b

n—1
— NPV 414N <. <AV 453N
k=0

— b
< AV 4+ X (since 3720 = )

Then from the inequality f(z) + f(z') < 2V (z,2’) and formula (3) for
P*(z,2', A) we have

Blao|F(X) + F(X0)| < 2E55(V)

= 2 / d®¢) - ... /V(:En,m;)P*(mn_l,x;_l;d(xn,:p;))

XxX XxX

_ _ b
— 9 / (PY"Vd(E® ) < 2\ / Vd(E®€) + 12_

A
XXX XXX

— e Re)T) + 2o

= (26)

By lemma 2.3.1 we have

e n D) 1
€70~ ¢ P < (sup T )

Thus, (see (25) and (26))

(F(X0) + X = ],

67" — € Pl; = sup 69" — €' P61 < B |(£(X0) + FX0) (1=

< 21 =P (b1 N NEDENT)) + 2

‘/()(n7}(;)(1 __G)NWJ1 ']{A%—1<j}]7
(27)
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and in the case when f =1 we have

1P = &P lry < 2(1 =€) + 2B | V(Xa, X7) - (1= €)Y I,y <y

(28)

Note that if j > n, then Iy, ,>; = 0, since 0 < Ny, (z0, g, ..., Tne1, Thp_q) <
n. Therefore in this case we don’t have the first term in (25), (27) and (28),

and we can rewrite inequalities (27) and (28) as

P =Pl < 201- 0 (ML= + N EDENT)) T +

b 2B V(X X1 9™ T ] (29)

and

I6P" =€ Pllry <201 = €)' Ty + 2B0e V(X X)) (L= ™ I, 1| (30)

Now let’s estimate the second term in (29) and (30).
Let B = max(l, (1 = e)A " sup, o BV (2, x’)) For each s > 0 define

M, = A"*B™ V1V (X, XI)(1 — €)™,

and show that {M,,s > 0} is a (F, Piyx)-supermartingale, where F :=
{Fs :=0(X;, X[;i < s),s >0} is a o-algebra in ®:°, B(X x X') generated by
o-subalgebra o(X;, X!;i < s)=(the smallest o-subalgebra in @;°, B(X x X))
with respect to which (X, X!) are measurable, i < s).

Note that F, := 0(X;, X[;1 < 5) C{AQII2, 11 (XAXX) : A e Qj_B(Xx
X)}.

Now we shall need the following theorem from homogeneous Markov
chains theory:

Theorem 2.3.3. Let {Y,}>°, be a homogeneous Markov chain with
state space (X', B(X)), initial distribution x4 and transition function P(z, A).
Let E, be an expectation defined by p and P(z, A) according to formula
(3). Let E,(-|Y,) be a conditional expectation constructed by E, with re-
spect to o-subalgebra o(Y;,) (the smallest o-subalgebra in @;°,B(X) with
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respect to which Y, is measurable; this subalgebra consists of sets of the form

170 X x (Y7 Y(B)) x [I:%,,1 X, where B € B(X)). Then for any positive

n

Borel function ¢ : (X, B(X)) — [0,00) we have

Eu(0(Yni1)[Yn) = (P9)(Ya) (31)

Going back to the proof of Theorem 2.3.2, since Ny(Xo, X, ..., X5, X.) =
Z;:O I@(Xja X],)v then

Iee (X, X1) - No(Xo, X4y ooy X, X)) =

s—1
= (S, X)) - o (X X0) + Fo(Xe, X0) - T (X, X2)
=0

= (since I=(X,, X)) ~ICc(XS,Xg):O> =

= ITpe(X5, X)) - Noo1(Xo, X0y ooy X1, X _4) (32)
Moreover, from (A2) it follows that
Tge (Xo, XO(PV)(Xe, X{) < T (X, XOAV (X, XJ) (33)

Since I5¢ (X, X]) is measurable with respect to F, (because for any Borel

function ¢ : (X x X) x ... x (X x X) — R we have that ¢(X,, X{, ..., Xs, X})

s+1
is measurable with respect to Fy), then by the property of expectations we

have that

E*(Ms+1|]:5) ’ IGC(X&XQ) =E" (ICC(X&XD ) Ms+1|~7:8>

= B (VOB NT(X, 0, X0 - O T (X X))

= by (32) = N EE (BT (X, X)) (L= 9 L (X, XD

= (since B Ne-1 (1 — )Mot e (X, X1) are fs—measurable) =
= ATEHIBTN (1 = N e (X, X B (V<Xs+1, X;+1)|fs)

= (by (B)) = AN (1 Vet Fe (X, X0 (P (X, X0)
< (by (33)) < AR TNe1( N1 o (X, XAV (X, X1)

= M, Iz(X;, X)).
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Now let’s estimate E*(M,41|F;) - I(Xs, X]).

From the definition of number B we have that

sup RV (z,2') < A1 —¢€)'B.
(z,2)eC

Since P*(z, ', A)-Iz(z,2") = R(x,2', A)-Iz(x, ') then Iz P*V = I5-RV.
Using (31) (theorem 2.3.3), we get that

B (VXort X)) - To(Xa X0 = (PTV)(Xe X)X, X))
= W(XS,XQ)-_%(XS,X;)

< A1-o)'B-I5(X,, X)),

Since

s

I Xy XDNo(Xo, Xpy ooy Xy X2) = T(Xo, X2 S I( X, X) = T(Xo, X0 (Nyo141),

j=0

measurable we’ll get that

EY(Myl ) Ip(Xo, X0) = ACBN (1= VB (V(Xoor, X)L ) - T(Xe X0)

)\*(‘#1)371\75(1 _ E)NSA(l _ E)le . I@(XS’X;)

IA

= A B V(1 — )Nt I5(X, X)) = M - I5(X, X))
(35)
From (34) and (35) we obtain that
E*(Mgn|Fs) = E*(Mgn|Fy) - Ioe + B (Mo |[Fy) - Iz

< Ms'[6C+Ms'[6:Msa

ie. {M}2, is a (F, Pfgye)-supermartingale. By the stopping time theorem
we have that Ef,.(M,) < Efye (M), ie.
Broe (N BV, X1 - 0% ) < B (V(X0, X))

= [ V(X XD €)= (€2 E)D). (36)

XXX
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By definition, B > 1. Therefore
TNy iy = Tinvgi<iy = Igo1-n,_y20p < Bt = pIot gt

Keeping in mind this and (36), we have that

Biae VX X)L = 0% T, | S Bl BBV 06, X0 (1= 0
= NBTE e VBTG, X0 (- Y]
< N'BTHE@)(V) (37)

From (29), (30) and (37) we obtain
&P" € Pl < 2(1-6P (1NN (€0E)(V) ) Iy 123" B (€2€)(V)

and
1P" = &P lrv <201 = &) [jem + 22" B E 2 €)(V),

which finishes the proof of the theorem.

3 f-Uniform Ergodicity of Markov Chains

The goal of this section is to find necessary and sufficient conditions for the
f-uniform ergodicity of Markov chains.

Let X, B(X), P(z,A) be the same as in the previous sections. Recall
that a probability measure m on B(X) is called stationary distribution for a

Markov chain with transition function P(z, A), if 7P =, i.e.
/P@Amu@:wm)
X

for all A € B(X).
Definition 3.1. A Markov chain with a stationary distribution 7 and

transition function P(x, A) is called uniformly ergodic, if

sup||P"(x,-) —7(-)|] — 0 when n — oo . (38)
reX
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(Here || — v[| := supepxy [1(A) — v(A)|, where i, v are measures on
B(¥x).)

Let f : X — [1,00) and ||pu||f = sup|¢|§f|/{¢du|, ¢ is a measurable
function.

Definition 3.2. A Markov chain with a stationary distribution 7= and

transition function P(z, A) is called f-uniformly ergodic, if

1Pz, ) — 7 ()]l

P" — 7|l = su — 0 when n — oo . 39
1P = 7l = sup (3)
1-uniform ergodicity means that
|| P" — «|||rv = SU)I? ||P"(x,-) —7(-)||7v — 0 when n — oo . (40)
e

Since f(x) > 1, then f-ergodicity always follows from 1-ergodicity.
Lemma 3.3. [||P" — ||| = 5|[|P" — 7|7v-

Proof: According to Proposition 3(b) from [1], we have that
1
[l = vl = Sllu=vllrv
for any probability measures u, v on B(X). In particular,
n 1 n
1P, ) =7 ()l = SlIP"(z, ) = 7()l[rv-
Taking sup with respect to x € X we get that

n 1 n
I1P* =il = Sl[IP" = lllrv.

O

By Lemma 3.3, the uniform ergodicity and 1-uniform ergodicity are equiv-

alent.
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3.1 Sufficient Conditions of f-Uniform Ergodicity for

Homogeneous Markov Chains

First, let’s state and proof a theorem which is sort of a corollary of what we
proved before.

Theorem 3.1.1. Let the conditions of Theorem 2.3.2 be satisfied and let
7 be a stationary distribution for a given Markov chain. Then this Markov
chain is f-uniformly ergodic.

Proof: Without lost of generality we can assume that

y= sup V(z,2') < o0
(z,2")eX xX

(see, for example, [1]). Therefore (€ @ 7)(V) < v(€@7)(X x X) = v for any
£ € M(B(X)).
Fix § > 0 and choose j = j() so that

2(1 = o (b(1 = N+ N (€@ M(T) Ty < d

for all n > j.
Now let’s choose n(d) > j(d) so that

A" B¢ @ 1) (V) < g

for n > n(d). Then, by Theorem 2.3.2, we have that
1EP" —ml[f <

for n > n(0) for all £ € M(B(X)).
Fix z € X and take d-measure
1 ifzc A
0z(A) =
0 ifx¢gA
Then we have

(0:P)0) = [ oly) [ P"(z,dy)on(dz)

X X

= (Sinceig(z)csx(dz) :9(95)> = /¢(9)Pn(x>dy)-

X
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Therefore ||P"(z, ) —7(-)||f = ||6.P" — 7||f < d for n > n(d) and for all
x € X. Since f(z) > 1, z € X, then

1P () — =)l
O

for n > n(0). This means that (39) holds, and, thus, chain X is f-uniformly

|[P" = 7| = sup
TEX
ergodic.

O

Now, let us give one more simple sufficient condition for f-uniform er-
godicity of Markov chain X = {X,,}2°, with the state space (X, B(X)) and
defined by a transition function P(z, A) and initial distribution p. For this
purpose we shall need to recall the following definition of (ng, €, v)-small set:

Definition 3.1.2. A subset C' C X is (ng,€,v)-small if there exist a
positive integer ng, € > 0, and a probability measure v on X such that the

following minorisation condition holds:

P (x, A) > ev(A) (41)

for all z € C, A € B(X).
Denote by M (B(X)) the set of all probability measures on B(&X').
Proposition 3.1.3. A subset C' C X is (no, €, v)-small if and only if

(EP™)(A) = ev(A) (42)

for all £ € M(B(X)), A € B(X).
Proof: If (41) holds, £ € M(B(X)), then
(£P™)(A) = [ P, A)(dr) = ev(A) [ €(da) = e (A),

i.e. (42) is true for all A € B(X).
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Conversely, let (42) be true for all £ € M(B(X)), A€ B(X). Fixx € X
and take d-measure §,(A). Then we have

v(4) < (5, P)(A) = [ P(y, A)s.(dy) = P™(x, A),

X

i.e. inequality (41) holds for all z € X', A € B(X).

O

In the article [1] the following theorem is proved using the coupling
method:

Theorem 3.1.4. Let X be a (ng,¢,v)-small set for a homogeneous
Markov chain X that has a stationary distribution w. Then ||P™(z,-) —
7()|| < (1 — e)*/ml for all # € X, where [r] is the greatest integer not
exceeding 7.

Since [[£]] = 5|[€]|rv for any & € M(B(X)) (see Proposition 3 (b) in [1]),

then in terms of Theorem 3.1.4 we have that
1P () = 7 ()[|rv < 2(1 — e)l/mo]
for all x € X, and, thus,
sup [|P"(z, ) = 7 (4){lrv < 2(1 = e)ln/mel.

This means that the Markov chain X is 1-uniformly ergodic.
Now let us give another proof of Theorem 3.1.4 without using the coupling
method. For this purpose we shall need the following

Proposition 3.1.5. Let X be a (ng, €, v)-small set. Then
[€P" — &P |z < 2(1 — )"/ (43)

for all £, € M(B(X)).
Proof: By Proposition 3.1.3.,

(EP)(A) —ev(4) _

él(A): 1_¢ = Y
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6ia) = €PN~ ot

for all A € B(X), and £ (X) =1 = (X)), ie. &,8 € M(B(X)). Again

>0

using condition (42), define

&= Y e Ms())
— €
g =" ),
and
EP =P = (1—€)(& — &)
&P — 6P = (1- (& - &)
and, thus,

EPP — P = (§P" — PP = (1= (6P —§P™) = (1 - & — &)
Repeating this process, after k steps we’ll get that
EPA — PR = (1 - (G — &),

Any natural number n can be written as n = k + r, where k = [n/ng,

0 <17 < ng. Therefore
EP" — P = (€P™™ — ¢PMO)P" = (1 — o) (g — &) P
Let ¢ : X — [—1,1] be a measurable function on (X, B(X)). Then
(€PM®) = E€PYG] = (1= H(E&P)6) - EP6)
(1= 9 (&P + E&P)1o)) )

(since |¢| < 1) <

(1= (&P + EPIW)) =201 - 9"

INIA

IN

Thus,

[€P" = €' P"|lry = sup [(€P")(9) — (€'P")(0)] < 2(1 — )"/

lp|<1
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for any &, € M(B(X)).

O

The proof of Theorem 3.1.4 is following from the equalities ||£|| = %||§| l7Tv,
[|P™(z,) — 7()||lrv = ||0.P™ — 7||rv (see the proof of theorem 3.1.1) and
inequality (43) for £ = .

Important Note: In terms of Theorem 3.1.3 we may not demand the
existence of a stationary distribution 7, since its existence follows from the
condition that X is a (ng, €, v)-small set and the following proposition takes
place:

Proposition 3.1.6. Let X be a (ng, €, v)-small set for a homogeneous
Markov chain X. Then there exists a unique stationary distribution 7 for X.

Proof: Let £ € M(B(X)), m >n > 1, k = m —n. Clear that (PF =
¢ e M(B(X)). From (43) it follows that

[(EP™)(A) = (EP™)(A)| = [(€P™)(A) — (€' P")(A)] < 2(1 — )"/,

and,thus, {(¢P")(A)} is a Cauchy sequence in R for all A € B(X'). Therefore,
there exists a limit

me(A) = lim (€P")(A).

By the well-known Vitali-Hahn-Saks Theorem (for references see [8], Chapter
IV, §2), ¢ is a probability measure on B(X), i.e. m¢ € M(B(X)), and

n—oo

/gb(x)ﬁg(da: lim /gb (EP™)(dx)

for any bounded measurable function ¢ : X — R. In particular,

n—oo

(me - P)(A) = / P(r, A)re(dz) = lim [ P(a, A)(€P")(dx)

= lim /P x, A) / "(y, dz)&(dy)
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= lim [ P""(y, A)é(dy) = lim (EP")(A)

= Jlim (£P")(A) = 7e(A),

n—oo

i.e. m¢ - P = ¢, which means that ¢ is a stationary distribution.

Similarly, for n € M(B(X)) there exists a probability measure , €
M(B(X)) for which m,(A) = lim,_(nP™)(A) for all A € B(X). From
the inequality (43) it follows that

|(EP™)(A) — (nP™)(A)] — 0 when n — oo

for all A € B(X). Therefore m¢ = m, := m. In particular, if nP = 7, then
m(A) = (my)(A) = limy oo (nP")(A) = limy o n(A) = 1(A), A € B(X).

Thus, 7 is a unique stationary distribution for a Markov chain X.

O

From Propositions 3.1.4 and 3.1.6 we get the stronger version of Theorem
3.1.3:
Theorem 3.1.7. Let X be a (ng,¢,v)-small set for a homogeneous

Markov chain X. Then X has a unique stationary distribution 7 and
1P (@,) = 7()|| < (1 — )t/

for all x € X, in particular, X is 1-uniformly ergodic.

3.2 Necessary Conditions of f-Uniform Ergodicity for

Homogeneous Markov Chains
As shown in subsection 3.1, conditions (A1) and (A2) provide the f-uniform
ergodicity for homogeneous Markov chain. In the current subsection we shall

consider some versions of conditions (A1) and (A2) and show that they are

necessary conditions for f-uniform ergodicity of a Markov chain.
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Recall that chain X is called ¢-irreducible if there exists a non-zero o-
finite measure ¢ on B(X) such that for all A € B(X) with ¢(A) > 0 and for
all x € X there exists a positive integer n = n(x, A) such that P"(z, A) > 0.

The following proposition is obvious:

Proposition 3.2.1. Let X be a homogeneous Markov chain with a sta-
tionary distribution 7 and transition function P(x, A), which is f-uniformly
ergodic. Then X is w-irreducible.

The proof follows from (39).

The ¢-irreducible Markov chains have many useful properties. One of
them is the existence of (ng, €, v)-small sets. The detailed proof of this fact
is given in [2] (theorems 5.2.1 and 5.2.2). Therefore we shall just state this
fact as a theorem:

Theorem 3.2.2. If X is ¢-irreducible, then for every A € B(X) with
®(A) > 0, there exists ng > 1, € € (0,1) and (ng, €, v)-small set C C A such
that ¢(C) > 0 and v(C) > 0.

From Theorem 3.2.2 and Proposition 3.2.1 we get

Corollary 3.2.3. If a Markov chain X with a stationary distribution 7
is f-uniformly ergodic, then there exists (ng, €, v)-small set C' € B(X) for X
such that 7(C) > 0.

We shall need the following simple criterion for f-uniform ergodicity of
Markov chains (see theorem 16.0.1 in [2]):

Proposition 3.2.4. For a Markov chain X with a stationary distribution
7 and transition function P(z, A) the following conditions are equivalent:

(i) X is f-uniformly ergodic;

(i) There exists r > 1 and L < oo such that for all n € Z*
|P* = mll[y < Lr™" (44)
(iii) There exists some n > 1 such that |||P* — 7|||; < oo for ¢ < n and
I1P* —=ll[y < 1. (45)
Proof: Implications (i) = (iii), (ii) = (i) and (4i) = (iii) are obvious.
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Show (#ii) = (ii). Let (di7) be satisfied. Since

(- m(A) = [l An(d)
= (where 7(z,A) = 7(x) for all z € X) =
= m(4) [ n(dz) = 7(4),

X

then from equalities

7P =7 and (Pr)(A) = / Pz, dy)r(y, A) = 1(A) / P(z,dy) = m(A)P(z, X) = 7(A)

we get that
(P —m)(A) = (P" = m)(P — m)(A).

Since for a measurable function ¢ : (X, B(X)) — R with || < f we have
that

1 n—+1 _ n_ o (P_W)W)

I
< 1P =7y (P" = m)(1)] (since L2211 — gl )
< e =i, [ =2

f

< [llP =iy - l1P" ==l

Therefore,
1P = xllly < (1P ==l - [[1P" = =l
Similarly, (P"*% — 7)(A) = (P" — 7)(P% — 7)(A), and therefore
1122 =zl < [[I1P? ==l - [1P" = =l

Continuing this process we’ll get that for any m € Z7* the following
inequality is true: |||P"T™ —x|||s < |[|P™ —7|||f - ||/|P™ — 7||| . According to
(45), we have that v = |||P™ —x|||; < 1 for some ng > 1 and |||P'—7||| < oo,
1 < ny.

Any natural number n can be written in the form n = kng + ¢, where

k = [n/ng], 1 <i < ngy. Therefore
1P ==l = ([P ==l < |[P7lll - 1P = =|[F < Ko,
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where K = maxj<i<n, H]PZ —7l|||;. Let L = K - maxi<jcp, 7_%, r = ’y_%.

Then
I1P" = 7|ll; < Ky = K~y 7w - (y70)" < Lr™,

i.e. (44) is satisfied.

O

Definition 3.2.5. (See [2], §15.2.2) We say that chain X satisfies condi-
tion (f4), if there exist a real-valued function f : X — [1,00), aset C € B(X)
and constants A € (0,1), b € (0,00) such that

Pf < Af +blc. (46)

Theorem 3.2.6. If the condition (f4) is satisfied for (ng, €, v)-small set
C, then the chain X is f-uniformly ergodic.

Proof: Consider a chain Y corresponding to the transition function
Pz, A), x € X, A € B(X). Since C is (ng,€,v)-small for X, then C
is (1,¢,v)-small for Y and, thus, for Y the condition (Al) is satisfied for
C=CxC.

Now, from (46) it follows that

Puf = PP < PYYAf 4 ble) < AP 4 b

no—1
< AP+ b) +b <L <A+ Y A
k=0
< )\”(’f—l—L (47)
- 1—X
Let § = 1(1—-A"), D ={z e C: f(z) < ﬁ} If x ¢ D, then

Bf(z) > %, and using (47), we have that

b b
Prof—f € NOf+—e = f=—28f+

= B+ (o~ B) < —BF +

Ip.
11—\ 7

Thus,

prf<(1=p)f+ Ip,

1—A
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i.e. for the chain Y the condition (f4) is satisfied for the (1,¢, v)-small set
DccC.

Take D = D x D. We shall get that for the chain Y the conditions (A1)
and (A2) are satisfied, and but Theorem 3.1.1, Y is f-uniformly ergodic, i.e.
(see Proposition 3.2.4)

[P =zl < L™

for some L > 0,r >1and allm=1,2,....
Any n > 1 can be written as n = kng + 4, where k = [n/ng], 1 <i < ng.

Then (see the proof of Proposition 3.2.2) we have
1P = allly < 1P =l - [IP*™ = 7]l < K- Lr™",

where K = maxi<jcp, |||P* — 7|||s. This means that [||P" — 7|||; — 0 when

n — 00, i.e. the chain X is f-uniformly ergodic.

O

The next theorem shows that satisfaction of the condition (f4) for some
(no, €,v)-small set is also a necessary condition for f-uniform ergodicity of
the chain (but instead of f we consider an equivalent to f function).

Theorem 3.2.7. If a chain X is f-uniformly ergodic, then X satisfies
the condition (fo4) for some (ng, €, v)-small set, where % f < fo <k for some
k> 1.

Proof: According to Corollary 3.2.3, there exists a (ng, €, v)-small set C'
for X. From Proposition 3.2.4 we have that

P =l _
TEX f(.l’)

for some L > 0,r > 1 and all n = 1,2, 3, .... Hence,

[P ==l < Lr"

[P"f = (N < [[P" =7l < Lr" f(x)
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for all x € X. Therefore,
pPrf < Lr7"f(z) + 7(f) (48)

for all z € X.

Fix n for which Lr~" < e~! and set
n_l . .
fo(x)=>"e/"Pif > PO f = f(a).
i=0

From (48) it follows that

Jo < gei<Lr_if+7r(f)> < (gei)Lf—i—mr(f)

< neLf +nn(f) < (since f(@) 2 1) < (neL+nn(f))f < kf

for big enough k£ > 1. Thus,

ST

Now, using (48), we get
n—1 . n P ]
Pfy = PY enPf=> e apf
i=0 i=1
1 n—l 1 . 1
= en Z en P'f +el"npPf
i=1

n-1 = L N

< (since Lr" < el) < e SenPif+enf+enn(f)
=1

= e fo+eTma(f) = Nofo + b,

where Ay = ¢ % € (0,1), 0 < b= e "nr(f) < oo.
Repeating the part of the proof of Theorem 3.2.6 (the one after inequality

(47)), we get that
b

1—A

for some (ng, €, v)-small set D C C', and this finishes the proof of the theorem.

Pfo<(1-0)fo+ Ip
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From theorems 3.2.6 and 3.2.7 we obtain the following main theorem:
Theorem 3.2.8. Let X be a homogeneous Markov chain with a station-

ary distribution 7, and let f : X — [1,00). Then the following conditions

are equivalent:
(i) X is f-uniformly ergodic;

(ii) X satisfies condition ( fo4) for some (ng, €, v)-small set C' and fy, where

%fﬁfogkfforsomekZL

The End !!!
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4 Appendix: The Topological Structure of
the State Space for Time-Homogeneous Markov

Chains

Let X be the state set for a time-homogeneous Markov chain defined by
the initial distribution 7 on a o-algebra B of all subsets from X and the
transition function P(z,B), x € X, B € B. We require (X,B) to be a
countably generated state space , i.e. there exists a countable subset D C B
for which o(D) = B, where o(D) is the smallest g-algebra of subsets from X
containing D (i.e. a o-algebra generated by D).

It is known that o-algebra B forms an algebraic ring, if we define the

algebraic operations on B as follows:
A+B:=AAB=(A\B)U(B\A)
A-B:=ANBKB,

and then Y\ A =X+ A, A+ A=0,A-A=A X -A= A Clear that
any subring A with identity X in (B, +, ') is a subalgebra in B, since X € A,
P=X+XecA X\A=X+AcAVAc A and ANB=A-Be A
VA, B € A.

Let’s take a subring D’ generated by a countable subset D and X, i.e.

Clear that D’ is also countable.

Thus, we have the following

Proposition 4.1. If B is countably generated, then there exists a count-
able subalgebra D’ such that o(D’) = B.

Now, let’s consider some probability measure P on B. Factor B with
respect to sets of measure zero, i.e. define an equivalence relationship on B

as follows:

A~Bif P(AAB) =0.
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Denote by V = B|. the set of all equivalence classes. Define on V the partial
order relationship: [A] < [B], if 3A’ € [A], B’ € [B] such that A’ C B’,
where [A] = {D € B : A ~ D} is an equivalence class containing set A.
With respect to this partial order (V, <) becomes a Boolean algebra. Recall:
Definition 4.2. A partially ordered set (V, <) is called a Boolean algebra,
if

1. (V,<) is a distributive lattice , i.e. Vx,y € V there exist upper and
low bounds z V y = sup(z,y), v Ay = inf(x,y), and

(xVy)ANz=(xAz)V(yAz)foral z,y,z € V;

2. There exists the biggest element 1 € V (i.e. 1 > x Vo € V) and the
smallest element 0 € V (i.e. 0 < x Vz € V), such that 0 # 1;

3. For all € V there exists a complement z¢ € V, i.e. an element such

that zVz¢ =1 and z A 2z¢ = 0.

As an example of a Boolean algebra we can consider B for which the
partial order A < B is defined as A C B. In this case, 1 = X, 0 = (),
AVB=AUB, ANB=ANB, A° =X\ A.

So, we have a Boolean algebra V = B|. and there is a measure p on this
Boolean algebra defined by u([A]) = P(A) (easy to check that if A ~ A’
then P(A) = P(A’), i.e. measure p([4]) is well-defined).

Recall that a measure on a Boolean algebra V is a function v : V — [0, 0o]
such that v(e V g) = v(e) + v(g), if e,9 € V,e A g = 0. The measure v is
called countably additive if

where e; € V, ¢; Aej = 0 for ¢ # j. The measure v is called strictly positive,
if from v(e) = 0 it follows that e = 0.
We can state as a fact that the constructed measure p([A]) = P(A) on

V = B|. is a strictly positive countably additive measure.
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Definition 4.3. A Boolean algebra V is called complete (o-complete)
if for any collection {e;};c; C V (for any countable collection {e;}2, C V,

respectively) there exists
supe; = \/ei e V.
i i

Definition 4.4. A Boolean algebra V is of the countable type, if any
collection of non-zero pairwise disjoint elements from V is countable (note:
by pairwise disjoint elements e, g € V we mean here that e A g = 0).

The following proposition we state as a fact (for references see [6])

Proposition 4.5. (i) (see [6], chapter I, §6) If there exists a strictly
positive measure on V, then V is of the countable type;

(ii) (see [6], chapter III, §2) If V is a o-complete Boolean algebra of the
countable type, then V is a complete Boolean algebra.

Let v be a strictly positive and countably additive measure on a o-
complete algebra V (in our case, V = B|. is o-complete, since B is a o-
algebra and Vi2,[A;] = {Uf; Ai], and g is a strictly positive countably
additive measure on B|.).

Consider a metrics p(e, g) on V such that p(e,g) = v(e + g). It’s known

Theorem 4.6. (see [6], chapter V, §1) (i) (V,p) is a complete metric
space;

(i) If V; is a Boolean subalgebra in V, then the smallest o-algebra in V
containing V; coincides with the closure V in (V, p).

From Theorem 4.6 (ii) it follows that if there is a countable subalgebra
V1 in V such that Vi = V, then (V, p) is a separable metric space. Thus,
we have

Corollary 4.7. (B|.,p) is a complete separable metric space, where
p([A], [B]) = P(A A B).

Definition 4.8. An non-zero element ¢ € V is called an atom in a
Boolean algebra V| if from ¢ > e #£ 0, e € V it follows that ¢ = e. A Boolean

algebra is called atomic, if 1 = supA, where A is the set of all atoms in
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V. A Boolean algebra which does not contain atoms is called a non-atomic
Boolean algebra.

Examples:

1. Let V be a Boolean algebra of all subsets in X. Then every point
{z} = eisan atom in V, and 1 = X = Uycr{x}, i.e. V is an atomic

Boolean algebra.

2. The Boolean algebra B|., where B is a Lebesgue algebra on [0, 1] and

P is a Lebesgue measure, is a non-atomic Lebesgue algebra.

Theorem 4.9. (see [6], chapter III, §7) Let V be a complete Boolean
algebra. Then there exists a unique element ey € V such that eq - V = {e €
V :e < ey} is a non-atomic Boolean algebra, e§ -V = {e € V : e < ef} is
an atomic Boolean algebra.

Now let’s discuss the structure of complete separable non-atomic and
atomic Boolean algebras.

Theorem 4.10. (see [7], chapter VIII, §41) Let (V,v) be a complete
separable non-atomic Boolean algebra. Then V is isomorphic to a Boolean
algebra B|., where B is a o-algebra of Lebesgue subsets on [0,1], P is a
linear Lebesgue measure on [0,1]. (Recall that two Boolean algebras V;
and Vs are isomorphic, if there exists a bijection ¢ : V; — V, such that
bV g) = 6le) V 6(g), 6(e) = é(e)°, in particular, 6(1) = 1, 9(0) = O,
ple Ag) = d(e) N (g).)

It’s also known that

Proposition 4.11. If V is a complete atomic Boolean algebra and A
is the set of all atoms in V, then V is isomorphic to a Boolean algebra of
all subsets in A. In particular, if V is separable, then A is no more than
countable, and V is a Boolean algebra of all subsets in a finite or countable
set.

From theorem 4.9 it follows that if V is a complete Boolean algebra,

V1 = ¢V is a non-atomic Boolean algebra, V, = eOCV is an atomic Boolean

49



algebra, then setting ¢ : V. — V; x Vs defined by ¢(e) = (epe, efe), we
get that ¢ is an isomorphism of Boolean algebras (note that Vi x Vo =
{(e1,e2) : e1 € Vq,e9 € Va} is a Boolean algebra with respect to the partial
order (e1,e2) < (€),6) < e; < €l,es < €, and 1y,xv, = (1v,,1v,),
0v,xv, = (0v,,0v,), (e1,€2) V (g1,92) = (€1 Vez, g1V g2), (e1,€2) A(g1,92) =
(e1 Agr,ea A ga), (e1,e2) = (ef s €f)).

Thus, any complete Boolean algebra can be considered as collections of
elements (e, g), where e is from a non-atomic Boolean algebra, and ¢ is from
an atomic Boolean algebra (with coordinate-wise Boolean operations).

Therefore, by theorem 4.10 and proposition 4.11, any complete separable
Boolean algebra can be interpreted as a Boolean algebra of collections of
elements (e, g), where e € [0, 1] - Lebesgue Boolean algebra on the interval
[0,1], and g € B(K) - o-algebra of all subsets of a finite or countable set K.

Consider now Q; = [0,1], F - Borel o-algebra on [0,1], P, - linear
Lebesgue measure on F. If we extend P; by Lebesgue, we get a Lebesgue
o-algebra B; and a complete Lebesgue measure P, extension of P;.

Let Q2 = {1, ..., a}, where a = n, or @ = 00, and Bs be a o-algebra of all
subsets in (2y. Let P, be a probability measure on Bs.

Let @ = Q1 UQ, A ={A1UAA € B, Ay € By}, P(AJUAy) =
Pi(A;) + P2(Ay). Consider Vg = Al..

From above we have the following theorem (the main theorem in this
section):

Theorem 4.12. Let X be a set with a countably generated o-algebra
B, and P be a probability on B. Then a Boolean algebra B|. is isomorphic
to Vq.

Many examples of sets with countably generated o-algebras are given by
complete separable metric spaces.

Let (X,p) be a complete separable metric space, B be a g-algebra of
all its Borel subsets, i.e. the smallest o-algebra containing all open subsets

from X. Since X is separable, X has a countable collection of open sets

50



such that all open sets can be obtained from their union. It means that
there exists a countable collection that generates B. If there is a probability
measure defined on B, then the Boolean algebra B|. is isomorphic to Vg
(see theorem 4.12).

Conclusion: Talking about a general state set X for a homogeneous
Markov chain with an initial countably generated o-algebra B, and keeping
in mind that P(z,-) is a probability measure on B with respect to which
the Boolean algebra B|. has the same structure as Vg, or, equivalently, as
a Boolean algebra of classes of equivalent Borel subsets of a complete sepa-
rable metric space, we can from the beginning assume that X is a complete
separable metric space, and B is a g-algebra of Borel subsets in X.

The second argument to accept this conclusion is that for the study of
homogeneous Markov chains, defined by = and P(z, B), the central role is
played by probabilities and expectations on (X, Q:°, B), defined as in (2)
and (3). Such construction is possible only with the help of Kolmogorov’s
theorem, which is true only for the case when X is a complete separable
metric space and B is a o-algebra of Borel subsets in X.

Examples of Complete Separable Metric Spaces:
1. R;

2. R™;

3. Cla, 0] with p(f, g) = supyep | f(t) — g(t)];

4. Any finite or countable set with a discrete metrics;

5. Any closed subset in a complete separable metric space is again a com-
plete separable metric set, i.e., for example, closed balls, parallelepipeds

in R™ are all complete separable.
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