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Abstract

In this paper, we shall optimize the efficiency of random walk Metropolis algorithms
for multidimensional target distributions with scaling terms possibly depending on the
dimension. We propose a method to determine the appropriate form for the scaling of
the proposal distribution as a function of the dimension, which leads to the proof of an
asymptotic diffusion theorem. We show that when there does not exist any component
having a scaling term significantly smaller than the others, the asymptotically optimal
acceptance rate is the well-known 0.234.

1 Introduction

The characteristic of Metropolis-Hastings algorithms ([12], [11]) resides in the necessity of
choosing a proposal density for their implementation. When this proposal distribution is
chosen such that the kernel driving the chain is a random walk, the algorithm is referred to
as a random walk Metropolis (RWM) algorithm, which is the most commonly used class of
Metropolis-Hastings algorithms. Their ease of implementation and wide applicability have
conferred their popularity to RWM algorithms and they are frequently used nowadays by all
levels of practitioners in various fields of application. Their versatility however implies that
they are not problem-specific and their convergence can sometimes be lengthy, which calls
for an optimization of their performance. Because the efficiency of Metropolis-Hastings algo-
rithms depends crucially on the scaling of the proposal distribution, it is thus fundamental
to judiciously choose this parameter.
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Informal guidelines for the optimal scaling problem have been proposed among others by
[3] and [4], but the first theoretical results have been obtained by [14]. In particular, the
authors considered d-dimensional target distributions with iid components and studied the
asymptotic behavior (as d →∞) of RWM algorithms with Gaussian proposals. It was proved
that under some regularity conditions for the target distribution, the asymptotic acceptance
rate should be tuned to be approximately 0.234 for optimal performance of the algorithm.
It was also shown that the correct proposal scaling is of the form `2/d for some constant ` as
d →∞. The simplicity of the obtained asymptotically optimal acceptance rate makes these
theoretical results extremely useful in practice. Optimal scaling issues have been explored
by other authors, namely [15], [7], [6], [8] and [13]. A good review of general optimal scaling
results is given in [16].

In this paper, we carry out a similar study for d-dimensional target distributions with in-
dependent components. The particularity of our model resides in the fact that the scaling
term of each component is allowed to depend on the dimension of the target distribution.
This results in a high instability of the scaling terms, as they are allowed to converge both
to 0 and ∞ as the dimension increases. Despite the independence of the various target
components, the disparities exhibited by the scaling terms constitute a critical distinction
with the iid case. Furthermore, because Gaussian distributions are invariant to orthogonal
transformations, the model studied also includes multivariate normal target distributions
with correlated components.

We provide a necessary and sufficient condition under which the algorithm will admit the
same limiting diffusion process and the same asymptotically optimal acceptance rate as those
found in [14]. To this end, an appropriate rescaling of space and time allows us to obtain
a nontrivial limiting process as d → ∞. This is achieved in the first place by presenting a
method to determine the appropriate scaling form of the proposal distribution as d → ∞,
which is now different from the iid case. Then, by verifying L1 convergence of generators,
we prove that the sequence of stochastic processes formed by say the i-th component of
each Markov chain converges to a Langevin diffusion process with a certain speed measure.
Obtaining the asymptotically optimal acceptance rate is thus a simple matter of optimizing
the speed measure of the diffusion.

The paper is structured as follows. In Section 2, we outline the MCMC setup and introduce
some definitions. Section 3 aims to describe the target distribution setting, while Section 4
is used to define the proposal distribution and its optimal scaling form. The main results
are presented in Section 5. Inhomogeneous targets are then discussed in Section 6, along
with some extensions. We prove the theorems in Section 7 using lemmas proved in Sections
8 and 9, finally concluding the paper with a discussion in the last section.
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2 Algorithm and Definitions

Metropolis-Hastings algorithms provide a way to generate a Markov chain X0,X1, . . . hav-
ing the target distribution as a stationary distribution. In particular, suppose that π is
a d-dimensional probability density of interest with respect to some measure µ. Also, let
Q (x, ·) be some chosen proposal kernel having density q (x,y) with respect to the same
measure µ. The Metropolis-Hastings algorithm thus proceeds as follows. Given Xt, the
state of the chain at time t, a value Yt+1 is generated from q (Xt,y) µ (dy). The probabil-
ity of accepting the proposed value Yt+1 as the new value for the chain is α (Xt,Yt+1), where

α (x,y) =

{
min

(
1, π(y)q(y,x)

π(x)q(x,y)

)
, π (x) q (x,y) > 0

1, π (x) q (x,y) = 0
.

If the proposed move is accepted, the chain jumps to Xt+1 = Yt+1; otherwise, it stays where
it is and Xt+1 = Xt.

The density q is arbitrary, subject to the condition that the transition kernel be irreducible
and aperiodic. The acceptance probability α (x,y) being chosen to ensure that the chain is
reversible with respect to π (y) µ (dy), it then follows that the target distribution is stationary
for the chain and that the generated Markov chain converges to its stationary distribution.

In this work, the proposed moves are taken to be normally distributed around x, that is
Yt+1 ∼ N (Xt, σ

2Id×d) for some σ2 and with Id×d the d-dimensional identity matrix. An ad-
vantage of this proposal is that it uses the current state of the chain to propose a new value,
but yet the proposed value is easily generated. Furthermore, the acceptance probability
reduces to

α (x,y) =

{
min

(
1, π(y)

π(x)

)
, π (x) q (x,y) > 0

1, π (x) q (x,y) = 0
.

In order to have some level of optimality in the performance of the algorithm, care must
be exercised when choosing σ2. If it is too small, the proposed jumps will be too short and
therefore simulation will move very slowly to the target distribution in spite of the fact that
the proposed moves will be almost all accepted. At the opposite, a large scaling value will
generate jumps in low target density regions, resulting in the rejection of the proposed moves
and in a chain that stands still most of the time.

To find an appropriate value for σ2 we need to define a criterion by which measuring efficiency.
Roberts et al. in [14] introduce the notion of π-average acceptance rate, which is defined by∫ ∫

π (x) α (x,y) q (x,y) dxdy = E

[
1 ∧ π (Y)

π (X)

]
(1)

for the d-dimensional symmetric RWM algorithm. We shall see that this is closely connected
to the asymptotic efficiency of the algorithm.
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3 The Target Distribution

Consider the following d-dimensional target density

π
(
d,x(d)

)
=

d∏
j=1

θj (d) f (θj (d) xj) . (2)

In what follow, we shall refer to θ−2
j (d), j = 1, . . . , d as the scaling terms of the target

distribution.

We impose the following regularity conditions on the density f : f is a positive C2 func-
tion, (log f (X))′ is Lipschitz continuous,

E

(f ′ (X)

f (X)

)4
 =

∫
R

(
f ′ (x)

f (x)

)4

f (x) dx < ∞,

and

E

(f ′′ (X)

f (X)

)2
 =

∫
R

(
f ′′ (x)

f (x)

)2

f (x) dx < ∞.

The product form of the density implies that the d components are independent. They are
however not identically distributed, as ascertained by the θj (d)’s. In particular, we consider
the case where the scaling terms θ−2

j (d) take the following form

Θ−2 (d) =

K1

dλ1
, . . . ,

Kn

dλn
,
Kn+1

dγ1
, . . . ,

Kn+1

dγ1︸ ︷︷ ︸
c(J (1,d))

, . . . ,
Kn+m

dγm
, . . . ,

Kn+m

dγm︸ ︷︷ ︸
c(J (m,d))

 . (3)

That is, some of the terms appear only a fixed number of times while the repetition of others
grows with the dimension. Ultimately, we shall be interested in the limit of the target distri-
bution as d →∞. There is then a need to separate the scaling terms in (3) that will appear
only a finite number of times from those that will appear infinitely often as the dimension
increases.

More specifically, let n < ∞ denote the number of components whose scaling term ap-
pears a fixed number of times in Θ−2 (d). Also, let the j-th of these n scaling terms be
Kj/d

λj , j = 1, . . . , n, where Kj is some positive and finite constant.

Similarly, let 0 < m < ∞ denote the number of different scaling terms appearing infinitely
often in the limit. These m scaling terms are taken to be Kn+i/d

γi , i = 1, . . . ,m. For now,
we assume that the constants 0 < Ki+n < ∞ are the same for all scaling terms within each
of the m groups. We shall relax this assumption in Section 6.

4



Without loss of generality, we assume the first n and the last d−n scaling terms to be respec-
tively arranged according to an asymptotic increasing order. If � means ”is asymptotically
smaller than”, then we have θ−2

1 (d) � . . . � θ−2
n (d) and similarly θ−2

n+1 (d) � . . . � θ−2
d (d),

which respectively implies −∞ < λn ≤ λn−1 ≤ . . . ≤ λ1 < ∞ and −∞ < γm ≤ γm−1 ≤
. . . ≤ γ1 < ∞. In particular, this means that we usually do not consider the constant terms
in the determination of this increasing order unless two components have the same power of
d, in which case we refer to their constant to determine which term is smaller. Note that
with the present notation, two of the first n scaling terms might be identical, in which case
we still refer to them as Kj/d

λj and Kj+1/d
λj+1 with Kj = Kj+1 and λj = λj+1.

According to this ordering, we can easily determine the asymptotically smallest scaling term
θ̂−2 (d), which obviously has to be either the first or the (n + 1)-st one

θ̂−2 (d) =


K1/d

λ1 , if limd→∞
K1/dλ1

Kn+1/dγ1
= 0

Kn+1/d
γ1 , if limd→∞

K1/dλ1

Kn+1/dγ1
diverges

min
(
K1/d

λ1 , Kn+1/d
γ1

)
, if limd→∞

K1/dλ1

Kn+1/dγ1
= K1/Kn+1

. (4)

To easily refer to the different groups of components whose scaling term appears infinitely
often, we define the sets

J (i, d) =
{
j ∈ {1, . . . , d} ; θ−2

j (d) =
Ki+n

dγi

}
for i = 1, . . . ,m. The i-th set thus contains positions of components with a scaling term
equal to Ki+n/d

γi . These sets are mutually exclusive and their union satisfies
⋃̇m

i=1J (i, d) =
{n + 1, . . . , d}. We can then write the d-dimensional product density in (2) as

π
(
d,x(d)

)
=

n∏
j=1

(
dλj

Kj

)1/2

f

(dλj

Kj

)1/2

xj

 m∏
i=1

∏
j∈J (i,d)

(
dγi

Kn+i

)1/2

f

( dγi

Kn+i

)1/2

xj

 .

It is also important to define the cardinality of the sets J (i, d) since each of the m groups
of scaling terms might occupy different proportions of the vector in (3). For i = 1, · · · , m,

c (J (i, d)) = d− n−
m∑

j=1,j 6=i

c (J (j, d)) = #
{
j ∈ {1, . . . , d} ; θ−2

j (d) =
Ki+n

dγi

}
, (5)

where c (J (i, d)) is some polynomial function of the dimension satisfying limd→∞ c (J (i, d)) =
∞ and subject to the constraint that the total number of components in the target is d.

To be able to study every component and avoid that some groups of components be un-
defined as d →∞, we rearrange the scaling terms in (3):

Θ−2 (d) =
(

K1

dλ1
, . . . ,

Kn

dλn
,
Kn+1

dγ1
, . . . ,

Kn+m

dγm
,
Kn+1

dγ1
, . . . ,

Kn+m

dγm
, . . . ,

Kn+1

dγ1
, . . . ,

Kn+m

dγm

)
. (6)
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That is, we take one scaling term from each of the m groups and we put them behind the
n scaling terms appearing a fixed number of times. This helps to clearly identify each com-
ponent being studied as d → ∞ without referring to a component that would otherwise
be at an infinite position. Afterwards, we cycle through the components belonging to the
different groups of scaling terms, in exercising some caution to preserve the proportion oc-
cupied by each of the m groups. This avoids, when d → ∞, assigning infinite positions to
the components belonging to the last m−1 groups whose scaling term appears infinitely often.

Our goal is to study the limiting distribution of the process for each individual component
of the target distribution. To this end, we have to set the scaling term of the component
of interest equal to 1. This can be done without loss of generality by applying a linear
transformation to the target distribution. This operation is necessary to the obtention of a
nontrivial limit for the process involving the component of interest.

4 The Proposal Distribution and its Scaling

A crucial step in the implementation of RWM algorithms is the determination of the optimal
form for the proposal scaling as a function of d. Intuitively it would make sense that σ2 (d)
somehow depends on θ̂−2 (d), the asymptotically smallest scaling term in Θ−2 (d). Otherwise,
the proposed moves might be too large for the components with smaller scaling terms,
resulting in a high rejection rate and compromising the convergence of the algorithm. To
get a clearer picture of this situation, we can imagine the case where f is the density of
the standard normal distribution, in which case θ−2

j (d) becomes the variance of the j-th
component.

Moreover, as the dimension increases the target has more and more components having the
same scaling term. Since there is a larger number of individual moves proposed in a single
step, it is thus more likely to generate an improbable move for one of the components. To
rectify the situation, it is recommended to decrease the proposal scaling as a function of the
dimension.

The optimal form for the scaling of the proposal distribution turns out to be σ2 (d) = `2/dα,
where `2 is some constant and α is the smallest number satisfying

lim
d→∞

dλ1

dα
< ∞ and lim

d→∞

dγic (J (i, d))

dα
< ∞, for i = 1, . . . ,m. (7)

Therefore, at least one of these m + 1 limits will converge to some positive constant, while
the other ones will converge to 0. Since the scaling term of the component of interest is
taken equal to one, this implies that the largest possible asymptotical form for the proposal
scaling is σ2 = σ2 (d) = `2, and hence it will never diverge as the dimension grows.

The rationale behind the consideration of all d − n last scaling terms in the determination
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of α is related to the proportion they occupy in Θ−2 (d), that is to their corresponding car-
dinality function c (J (i, d)), i = 1, . . . ,m. Indeed, it might turn out that one of these m
groups appears in a big enough proportion so as to have more impact than the asymptotically
smallest scaling term. In other words, it is possible that the difference in the proportions of
two of these groups asymptotically exceeds the difference in the size of the scaling terms.

Having found the optimal form for the scaling of the proposal distribution, we can thus
write

Y(d) − x(d) ∼ N

(
0,

`2

dα
Id×d

)
.

By its nature, the RWM algorithm is a discrete-time process. Since space (the proposal
scaling) is function of the dimension of the target distribution, we also have to rescale the
time between each step in order to get a nontrivial limiting process as d → ∞. We can
make a parallel between our case and Brownian motion expressed as the limit of a simple
symmetric random walk. Since we rescaled space through the factor d−α/2 (the proposal
standard deviation), we have to compensate by speeding up time by a factor of dα.

Let Z(d) (t) be the time-t value of the RWM process sped up by a factor of dα. In par-
ticular,

Z(d) (t) = X(d) ([dαt]) =
(
X

(d)
1 ([dαt]) , . . . , X

(d)
d ([dαt])

)
,

where [·] is the integer part function. Instead of proposing only one move, the sped up
process has the possibility to move on average dα times during each time interval.

We are now ready to study the limiting comportment of every component in the sequence of
processes

{
Z(d) (t) , t ≥ 0

}
as d →∞. That is, for each d-dimensional process

{
Z(d) (t) , t ≥ 0

}
we choose a particular component and study the limiting comportment of this sequence of
processes as the dimension increases.

5 Optimal Value for `

We shall now present explicit asymptotic results allowing to determine sensible values for `2,
the constant term of the proposal scaling. We first introduce a weak convergence result for
the process

{
Z(d) (t) , t ≥ 0

}
and most importantly in practice, we transform the conclusion

achieved in a statement about efficiency as a function of acceptance rate, as was done in [14].

We denote weak convergence in the Skorokhod topology by ⇒, standard Brownian mo-
tion at time t by B (t), and the standard normal cumulative distribution function (cdf ) by
Φ (·). Moreover, recall that the scaling term of the component of interest Xi∗ is taken to be
one, which might require a linear transformation on the target distribution.
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Theorem 1. Consider a RWM algorithm with proposal distribution

Y(d) ∼ N

(
x(d),

`2

dα
Id×d

)
,

where α satisfies (7), and applied to a target density as in (2) satisfying the specified con-
ditions on f , with θ−2

j (d), j = 1, . . . , d as in (6). Consider the i∗-th component of the

process
{
Z(d) (t) , t ≥ 0

}
, that is

{
Z

(d)
i∗ (t) , t ≥ 0

}
=
{
X

(d)
i∗ ([dαt]) , t ≥ 0

}
, and let X(d) (0) be

distributed according to the target density π in (2).

We have {
Z

(d)
i∗ (t) , t ≥ 0

}
⇒ {Z (t) , t ≥ 0} ,

where Z (0) is distributed according to the density f and {Z (t) , t ≥ 0} satisfies the Langevin
stochastic differential equation (SDE)

dZ (t) = υ (`)1/2 dB (t) +
1

2
υ (`) (log f (Z (t)))′ dt,

if and only if

lim
d→∞

θ2
1 (d)∑d

j=1 θ2
j (d)

= 0. (8)

Here,

υ (`) = 2`2Φ

(
−`
√

ER

2

)
,

and

ER = lim
d→∞

m∑
i=1

c (J (i, d))

dα

dγi

Kn+i

E

(f ′ (X)

f (X)

)2
 , (9)

with c (J (i, d)) as in (5).

Intuitively, we might say that when there is no component converging significantly faster
than the others, the limiting process is the same as that found in [14]. In other words, this
happens when none of the components possesses a scaling term significantly smaller than
the scaling terms of the other components. What we really want is in fact

lim
d→∞

θ̂2 (d)∑d
j=1 θ2

j (d)
= 0,

with the reciprocal of θ̂2 (d) as in (4). However, in the case where θ−2
n+1 (d) � θ−2

1 (d), the
previous condition is automatically satisfied since in the limit θn+1 (d) is added an infinite
number of times at the denominator, yielding

lim
d→∞

θ2
1 (d)∑d

j=1 θ2
j (d)

≤ lim
d→∞

θ2
n+1 (d)∑d

j=1 θ2
j (d)

= 0.
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The only case where this condition might be violated is thus when θ1 (d) ≺ θn+1 (d), from
where the importance of Condition (8).

Here υ (`) is sometimes interpreted as the speed measure of the diffusion process. This means
the limiting process can be expressed as a sped up version of {U (t) , t ≥ 0}, a Langevin dif-
fusion process with unity speed measure:

{Z (t) , t ≥ 0} = {U (υ (`) t) , t ≥ 0} ,

where

dU (t) = dB (t) +
1

2
(log f (U (t)))′ dt.

In fact, letting s = υ (`) t gives ds = υ (`) dt and thus

dU (s) = (ds)1/2 +
1

2

d

dU (s)
log f (U (s)) ds

= (υ (`) dt)1/2 +
1

2

d

dU (υ (`) t)
log f (U (υ (`) t)) υ (`) dt

= (υ (`))1/2 dB (t) +
1

2
υ (`)

d

dZ (t)
log f (Z (t)) dt

= dZ (t) .

The speed measure of the diffusion being proportional to the mixing rate of the algorithm,
it suffices to maximize the function υ (`) in order to optimize the efficiency of the algorithm.

Let a (d, `) be the π-average acceptance rate defined in (1), but where the dependence on
the dimension and the proposal scaling are now made explicit. The following corollary in-
troduces the value of ` maximizing the speed measure, and thus the efficiency of the RWM
algorithm. It also presents the asymptotically optimal acceptance rate, which is of great use
for applications.

Corollary 2. In the settings of Theorem 1 we have limd→∞ a (d, `) = a (`), where

a (`) = 2Φ

(
−`
√

ER

2

)
.

Furthermore, υ (`) is maximized at the unique value ˆ̀ = 2.38/
√

ER for which a
(
ˆ̀
)

= 0.234

(to three decimal places).

It is possible to give a simple interpretation to these results. Consider a high-dimensional
target distribution as defined in Section 3 to which is applied the RWM algorithm defined in
Sections 2 and 4. If there is no component converging significantly faster than the others, the
value ` should be chosen such that the acceptance rate is close to 0.234 in order to optimize
the efficiency of the algorithm. If it is realized that the acceptance rate is substantially larger
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or smaller than 0.234, the value of σ2 (d) should be modified accordingly.

The results presented in this section provide a necessary and sufficient condition to de-
termine in which cases the well-known acceptance rate 0.234 is asymptotically optimal for
the target distribution described in Section 3. In particular, these results can be applied to
the case where f (x) = (2π)−1/2 exp (−x2/2), yielding a multivariate normal target distribu-
tion with independent components. In that case, note that the scaling terms in (6) represent
the variances of the individual components. The drift and volatility terms of the limiting
Langevin diffusion thus become −Z (t) /2 and 1 respectively, and the expression for ER in

(9) can be simplified since E
[(

f ′(X)
f(X)

)2
]

= 1.

More interestingly however, the conclusions of Theorem 1 are also valid for any multivariate
normal distribution with correlated components. In fact, since normal random variables
are invariant under orthogonal transformations we can transform their covariance matrix in
a diagonal matrix where the eigenvalues of the covariance matrix constitute the diagonal
elements. The eigenvalues can then be used to verify if Condition (8) is satisfied, and hence
to determine whether or not 2.38/

√
ER is the optimal scaling for the proposal distribution.

For example, consider a nontrivial covariance matrix where the variance of each component
is 2 and where each covariance term is equal to 1. The d eigenvalues of this matrix are
(d, 1, . . . , 1) and clearly satisfy Condition (8). For a relatively high-dimensional multivariate
normal with such a correlation structure, it is thus optimal to tune the acceptance rate to
0.234.

Theorem 1 can also be used to determine if 0.234 is optimal for any normal hierarchical
model, since such models possess a distribution which is jointly normal. Consider for in-
stance the simple model where X1 ∼ N (0, 1) and Xj ∼ N (X1, 1) for j = 2, . . . , d. The joint
distribution of X(d) is multivariate normal with mean 0 and d × d covariance matrix such
that σ2

1 = 1, σ2
2 = . . . = σ2

d = 2 and σ2
jk = 1, ∀j 6= k. Using the d eigenvalues, which are

O (d), O (1/d) and 1 with multiplicity d− 2, we thus conclude that Condition (8) is violated
and that 0.234 is not optimal, even though the distribution is normal. It is worth mentioning
that when the eigenvalues of the covariance matrix take a form different from that assumed
in (6) as is the case now, we can apply the more general Theorem 5 in Section 6 instead of
Theorem 1.

The previous example might seem surprising as multivariate normal distributions have long
been believed to behave as iid target distributions in the limit. A natural question to ask is
then, what happens when Condition (8) is not satisfied? In such a case, the algorithm can
be shown to admit the same limiting Langevin diffusion process but with a different speed
measure. Furthermore, the asymptotically optimal acceptance rate is found to be smaller
than the usual 0.234. For more details on this case, see [1]. For a better picture of the
applicability of these results, examples and simulation studies for various statistical models
are presented in [2].
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6 Inhomogeneous Proposal Scaling and Extensions

So far, we have assumed the proposal scaling σ2 (d) = `2/dα to be the same for all d com-
ponents. It is natural to wonder if adjusting the proposal scaling as a function of d for each
component would yield a better performance of the algorithm. An important point to keep
in mind is that for

{
Z(d) (t) , t ≥ 0

}
to be a stochastic process, we must speed up time by

the same factor for every component. Otherwise, we would face a situation where some
components move more frequently than others in the same time interval, and since the ac-
ceptance probability of the proposed moves depends on all d components this would violate
the definition of a stochastic process. Since dα is the only time factor yielding a nontrivial
limit as d →∞, we must then keep this parameter fixed. Consequently, the proposal scaling
of the component of interest must be `2/dα in order to get a nontrivial limiting distribution.
Given that we want to study each of the first n + m components, we can thus personalize
the proposal scaling of the last d− n−m terms only.

In particular, consider the θj (d)’s appearing in (6) and let Z(d) (t) = X(d) ([dαt]) as be-
fore. We set the proposal scaling as follows: for j = 1, . . . , n + m let σ2 (d) = `2/dα and for
j = n + m + 1, . . . , d, j ∈ J (i, d), let σ2 (d) = `2/ (c (J (i, d)) dγi). We have the following
result.

Theorem 3. In the settings of Theorem 1 but with the proposal scaling as just described,
the conclusions of Theorem 1 and Corollary 2 are preserved.

Since the scaling is now adjusted every constant term Kn+1, . . . , Kn+m has an impact on the
limiting process, yielding a larger value for ER. Hence, the optimal value ˆ̀ = 2.38/

√
ER is

smaller than with homogeneous proposal scaling. When the proposal scaling of all compo-
nents was based on α, the algorithm had to compensate for the fact that α is chosen as small
as possible, and thus maybe too small for certain groups of components, with a larger value
for `2. Since the scaling is now personalized, a smaller value for ˆ̀ is more appropriate. We
note that of course, if the inhomogeneous proposal scaling is identical to the homogeneous
one, then both methods will yield the same results and so it is pointless to take about inho-
mogeneity.

It is also important to see how the conclusions of Section 5 extend to more general target
distribution settings than those considered in Section 3. First, we can relax the assumption
of equality among the scaling terms θ−2

j (d) for j ∈ J (i, d). That is, we assume the constant
terms within each of the m groups to be random and come from some distribution satisfying
certain moment conditions. In particular, let

Θ−2 (d) =

K1

dλ1
, . . . ,

Kn

dλn
,
Kn+1

dγ1
, . . . ,

Kn+c(J (1,d))

dγ1
, . . . ,

K
n+
∑m−1

i=1
c(J (i,d))+1

dγm
, . . . ,

Kd

dγm

 . (10)

We assume that {Kj, j ∈ J (i, d)} are iid and chosen randomly from some distribution

with E
[
K−2

j

]
< ∞. Without loss of generality, we also take E

[
K
−1/2
j

]
= 1 and denote

11



E
[
K−1

j

]
= bi for j ∈ J (i, d). Recall that the scaling term of the component of interest does

not depend on d, and we therefore have θ−2
i∗ (d) = Ki∗ .

To support the previous modifications, we now suppose that −∞ < γm < γm−1 < . . . <
γ1 < ∞. In addition, we suppose that there does not exist a λj, j = 1, . . . , n equal to one
of the γi, i = 1, . . . ,m. This means that if there is an infinite number of scaling terms with
the same power of d, they must necessarily belong to the same of the m groups. We obtain
the following result.

Theorem 4. Consider the settings of Theorem 1 with Θ−2 (d) as in (10) and θi∗ = K
−1/2
i∗ .

We have {
Z

(d)
i∗ (t) , t ≥ 0

}
⇒ {Z (t) , t ≥ 0} ,

where Z (0) is distributed according to the density θi∗f (θi∗x) and {Z (t) , t ≥ 0} satisfies the
Langevin SDE

dZ (t) = (υ (`))1/2 dB (t) +
1

2
υ (`) (log f (θi∗Z (t)))′ dt,

if and only if

lim
d→∞

dλ1∑n
j=1 dλj +

∑m
i=1 c (J (i, d)) dγi

= 0. (11)

Here, υ (`) is as in Theorem 1 and

ER = lim
d→∞

m∑
i=1

c (J (i, d)) dγi

dα
biE

(f ′ (X)

f (X)

)2
 ,

with
c (J (i, d)) = #

{
j ∈ {n + 1, . . . , d} ; θj (d) is O

(
dγi/2

)}
.

Furthermore, the conclusions of Corollary 2 are preserved.

It is important to notice that Conditions (8) and (11) are equivalent since the constant terms
are assumed to be finite. Condition (11) is however easier to verify in the present case due
to the randomness of the constant terms.

The previous results can also be extended to more general functions c (J (i, d)), i = 1, . . . ,m
and θj (d), j = 1, . . . , d. In order to have sensible limiting theory, we however restrict our
attention to functions for which the limit exists as d → ∞. As before, we must also have
c (J (i, d)) → ∞ as d → ∞. We can even allow the scaling terms

{
θ−2

j (d) , j ∈ J (i, d)
}

to vary within each of the m groups, as long as they are of the same order. That is, for
j ∈ J (i, d) we suppose

lim
d→∞

θj (d)

θ′i (d)
= K

−1/2
j ,

for some reference function θ′i (d) having no constant term (i.e. a constant term equal to 1)
and some constant Kj coming from the distribution described for Theorem 4. Note that the

12



reference functions are taken to be as simple as possible. For instance, if all components in
a given group i ∈ {1, . . . ,m} are O (d), then θ′i (d) = d and not d + 1.

As for Theorem 4, we assume that if there is infinitely many scaling terms of a certain
order they must all belong to one of the m groups. Hence, Θ−2 (d) contains at least m and
at most n + m functions of different order. The positions of the elements belonging to the
i-th group for i ∈ {1, . . . ,m} are thus given by

J (i, d) =
{
j ∈ {1, . . . , d} ; 0 < lim

d→∞
θ−2

j (d) θ′2i (d) < ∞
}

. (12)

We again suppose that the scaling terms are classified according to an asymptotic increasing
order. In particular, the first n terms of Θ−2 (d) satisfy θ−2

1 (d) ≺ . . . ≺ θ−2
n (d) and the order

of the following m terms is chosen to satisfy θ′ −2
1 (d) ≺ . . . ≺ θ′ −2

m (d).

For such target distributions we define the proposal scaling to be σ2 (d) = `2σ2
α (d), with

σ2
α (d) the function of largest possible order such that

lim
d→∞

θ2
1 (d) σ2

α (d) < ∞ and lim
d→∞

c (J (i, d)) θ′2i (d) σ2
α (d) < ∞ for i = 1, . . . ,m. (13)

We then have the following result.

Theorem 5. Under the settings of Theorem 4, but with proposal scaling σ2 (d) = `2σ2
α (d)

where σ2
α (d) satisfies (13) and with general functions for c (J (i, d)) and θj (d) as defined

previously, the conclusions of Theorem 4 are preserved, provided that

lim
d→∞

θ2
1 (d)∑n

j=1 θ2
j (d) +

∑m
i=1 c (J (i, d)) θ′2i (d)

= 0

holds instead of Condition (8) and with

ER = lim
d→∞

m∑
i=1

c (J (i, d)) θ′2i (d) σ2
α (d) biE

(f ′ (X)

f (X)

)2
 ,

where c (J (i, d)) is the cardinality function of (12).

This theorem assumes quite a general form for the target distribution and allows for a lot
of flexibility. Interestingly, the asymptotically optimal acceptance rate can be shown to be
0.234 as before. For examples such as those discussed at the end of Section 5, Theorem 1
cannot always be applied due to the form of the eigenvalues; this is thus where the general
form of Theorem 5 becomes important.

7 Theorems Proofs

We now present the proof of Theorem 1 in Section 5. The proofs of the theorems in Section
6 are similar, so we shall just outline the main differences at the end of this section.

13



The proof of Theorem 1 is based on Corollary 8.1 of Chapter 4 in [9]. This corollary roughly
says that for the finite-dimensional distributions of a sequence of processes to converge weakly
to those of some Markov process, it is enough to verify L1 convergence of their generators.
To reach weak convergence of the stochastic processes themselves, Theorem 7.8 of Chapter
3 in [9] states that it is sufficient to verify relative compactness for each stochastic process
in the sequence. This step is easily checked using Corollary 7.4 and Theorem 8.6 of Chapter
3 in [9] along with a continuity of probabilities argument and the fact that the algorithm
starts in stationarity.

Our task is then to focus on the proof of the convergence in mean of the generators. To this
end, we base our approach on the proof for the RWM algorithm case in [13]. Note however
that the authors instead prove uniform convergence of generators, which could not be used
in the present situation.

The definition of generators is written in term of an arbitrary test function h, which can
usually be any smooth function. In the present case, we can however restrict our attention
to functions in C∞

c , the space of infinitely differentiable functions on compact support. Since
the limiting process obtained is a diffusion process, then C∞

c is a core for the generator by
Theorem 2.1 of Chapter 8 in [9]. A core is roughly defined to be representative enough so
as to focus on the functions it contains only.

In order to lighten the formulas, we adopt the following convention for defining vectors.
The number in parentheses (say a) appearing at the exponent denotes the first a compo-
nents of the d-dimensional vector. When a substraction of terms appears in the parentheses
(say b− a), the vector contains the first b components from which we removed the first a, so
it is formed of the components a + 1, . . . , b. The minus sign appearing outside the brackets
informs us that the i∗-th component, i.e. the component of interest, is excluded from the
vector. For instance, the vector X(d−n)− contains the last d−n target random variables, i.e.
the components having a scaling term appearing infinitely often and from which we excluded
the i∗-th component.

We also adopt the following convention for conditional expectations. The expectation is
computed with respect to the variables appearing as a subscript on the right of the operator
E. When there is no such subscript, this means that the expectation is taken with respect to
all random variables included in the expression. When there is possibility of confusion, we
include the subscript even if it is not necessary according to this convention. For instance,
we write

E [f (X,Y )] = E [E [f (X,Y ) |Y ]] = EY [EX [f (X, Y )]] .

14



7.1 Restrictions on the Proposal Scaling

The first step of the proof is to transform Condition (8) in a statement about the proposal
scaling and its parameter α. Developing the denominator of the condition yields

d∑
j=1

θ2
j (d) =

dλ1

K1

+ . . . +
dλn

Kn

+ c (J (1, d))
dγ1

Kn+1

+ . . . + c (J (m, d))
dγm

Kn+m

.

In order for the condition to be satisfied, we must equivalently have

lim
d→∞

d∑
j=1

θ−2
1 (d) θ2

j (d)

= lim
d→∞

K1

dλ1

(
dλ1

K1

+ . . . +
dλn

Kn

+ c (J (1, d))
dγ1

Kn+1

+ . . . + c (J (m, d))
dγm

Kn+m

)
= ∞.

Letting b = max (j ∈ {1, . . . , n} ; λj = λ1) the number of components with a scaling term of
the same order as that of X1, we obtain

lim
d→∞

θ−2
1 (d)

(
dλ1

K1

+ . . . +
dλn

Kn

)
= 1 +

b∑
j=2

K1

Kj

< ∞.

To have an overall limit that is infinite, it must then be true that

lim
d→∞

θ−2
1 (d)

(
c (J (1, d))

dγ1

Kn+1

+ . . . + c (J (m, d))
dγm

Kn+m

)
= ∞,

that is for at least one i ∈ {1, · · · , m},

lim
d→∞

θ−2
1 (d) c (J (i, d))

dγi

Kn+i

= lim
d→∞

K1

Kn+i

c (J (i, d)) dγi

dλ1
= ∞. (14)

This implies that the form of the scaling of the proposal distribution, i.e. the choice of the
parameter α, must be based on one of the groups of scaling terms appearing infinitely often.
In other words, it cannot possibly be based on K1/d

λ1 , the smallest scaling term appearing
a fixed number of times. If it was, this would mean that

lim
d→∞

c (J (i, d)) dγi

dα
= lim

d→∞

c (J (i, d)) dγi

dλ1
= ∞,

for all i for which (14) was diverging, which would contradict the definition of α. Therefore
when Condition (8) is satisfied, it follows that limd→∞ dλ1/dα = 0 and θ−2

1 (d) does not have
any impact on the determination of the parameter α. This thus implies that α is always
strictly greater than 0, no matter which component is under study.
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7.2 Proof of Theorem 1

We now demonstrate that the generator of the RWM algorithm converges in mean to that
of the Langevin diffusion. To this end, we shall use the results appearing in Sections 8 and
9.

Proof. We need to show that for an arbitrary test function h ∈ C∞
c ,

lim
d→∞

E [|Gh (d,Xi∗)−GLh (Xi∗)|] = 0,

where

Gh (d,Xi∗) = dαEY(d),X(d)−

(h (Yi∗)− h (Xi∗))

1 ∧
π
(
d,Y(d)

)
π (d,X(d))


is the discrete-time generator of the sped up Metropolis-Hastings algorithm, and

GL (Xi∗) = υ (`)
[
1

2
h′′ (Xi∗) +

1

2
h′ (Xi∗) (log f (Xi∗))

′
]

is the generator of a Langevin diffusion process with speed measure υ (`) as in Theorem 1.

We begin by introducing a third generator G̃h (d,Xi∗) (as in (15) of Lemma 7) that is
asymptotically equivalent to the original generator Gh (d,Xi∗). By the triangle’s inequality,

E
[∣∣∣Gh (d,Xi∗)− G̃h (d,Xi∗) + G̃h (d,Xi∗)−GLh (Xi∗)

∣∣∣]
≤ E

[∣∣∣Gh (d,Xi∗)− G̃h (d,Xi∗)
∣∣∣]+ E

[∣∣∣G̃h (d,Xi∗)−GLh (Xi∗)
∣∣∣] .

From Lemma 7, the first expectation on the RHS converges to 0 as d → ∞. To prove the
theorem, we are thus left to show L1 convergence of the generator G̃h (d,Xi∗) to that of the
Langevin diffusion.

Substituting explicit expressions for the generators and the speed measure, grouping some
terms and using the triangle’s inequality yield

E
[∣∣∣G̃h (d,Xi∗)−GLh (Xi∗)

∣∣∣]
≤ `2

∣∣∣∣∣12E
[
1 ∧ e

∑d

j=1,j 6=i∗ ε(d,Xj ,Yj)
]
− Φ

(
−`
√

ER

2

)∣∣∣∣∣E [|h′′ (Xi∗)|]

+ `2

∣∣∣∣∣∣E
e∑d

j=1,j 6=i∗ ε(d,Xj ,Yj);
d∑

j=1,j 6=i∗
ε (d,Xj, Yj) < 0

− Φ

(
−`
√

ER

2

)∣∣∣∣∣∣
× E

[∣∣∣h′ (Xi∗) (log f (Xi∗))
′
∣∣∣] .

Since the function h has compact support, it implies that h itself and its derivatives are
bounded by some constant. Therefore, E [|h′′ (Xi∗)|] and E

[∣∣∣h′ (Xi∗) (log f (Xi∗))
′
∣∣∣] are both

bounded by K, say. Using Lemmas 8 and 9, we then conclude that the first absolute
difference on the RHS goes to 0 as d →∞, and we reach the same conclusion for the second
absolute difference by applying Lemmas 10 and 11.
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7.3 Proof of Theorem 4

Most of the proof is very similar to that of Theorem 1. The main difference happens when
working with any one of the m different groups formed of infinitely many components. Since
the constant terms are now random, we cannot factorize the scaling terms of components
belonging to a same group. This difficulty is however easily overcome by changes of variables
and the use of conditional expectations; for instance, a typical situation we face is

E
Θ

(d)

J (i,d)
,X

(d)

J (i,d)

 ∑
j∈J (i,d)

(
d

dXj

log θj (d) f (θj (d) Xj)

)2


= E
Θ

(d)

J (i,d)

 ∑
j∈J (i,d)

∫ (
f ′ (θj (d) xj)

f (θj (d) xj)

)2

θj (d) f (θj (d) xj) dxj


=

∑
j∈J (i,d)

E
[
θ2

j (d)
] ∫ (

f ′ (x)

f (x)

)2

f (x) dx

= c (J (i, d)) bid
γiE

(f ′ (X)

f (X)

)2
 ,

where X
(d)
J (i,d) is the vector containing the random variables {Xj, j ∈ J (i, d)} and similarly

for Θ
(d)
J (i,d). Instead of carrying the term θ2

n+i (d) = dγi/Kn+i, we thus carry bid
γi .

7.4 Proof of Theorem 5

The general forms of the functions c (J (i, d)), i = 1, . . . ,m and θj (d), j = 1, . . . , d necessitate
a fancier notation, but do not affect the body of the proof. What alters the demonstration
is rather the fact that the scaling terms θj (d) for j ∈ J (i, d) are allowed to be different
functions of the dimension as long as they are of the same order. Because of this particularity
of the model, we have to write

θj (d) = K
−1/2
j θ′i (d)

θ∗j (d)

θ′i (d)
,

where θ∗j (d) is implicitly defined. We can then carry with the proof as usual, factor-
ing the term biθ

′
i (d) instead of θ2

n+i (d) in Theorem 1 (or bid
γi in Theorem 4). Since

limd→∞ θ∗j (d) /θ′i (d) = 1, the rest of the proof can be repeated with minor modifications.
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8 Approximate Generator and Other Results

8.1 Convergence of an Approximation Term

The following result shall be of great use in the demonstration of many of the subsequent
lemmas, which in turn will be used to prove Theorem 1.

Lemma 6. For i = 1, . . . ,m, let

Wi

(
d,X

(d)
J (i,d),Y

(d)
J (i,d)

)
=

1

2

∑
j∈J (i,d)

(
d2

dX2
j

log θj (d) f (θj (d) Xj)

)
(Yj −Xj)

2

+
`2

2dα

∑
j∈J (i,d)

(
d

dXj

log θj (d) f (θj (d) Xj)

)2

,

where Yj |Xj ∼ N (Xj, `
2/dα) and Xj is distributed according to the density θj (d) f (θj (d) xj),

independently for all j = 1, ..., d. Then for i = 1, . . . ,m

E
[∣∣∣Wi

(
d,X

(d)
J (i,d),Y

(d)
J (i,d)

)∣∣∣] → 0 as d →∞.

Proof. By Jensen’s inequality

E
Y

(d)

J (i,d)

[∣∣∣Wi

(
d,X

(d)
J (i,d),Y

(d)
J (i,d)

)∣∣∣] ≤ √
E

Y
(d)

J (i,d)

[
W 2

i

(
d,X

(d)
J (i,d),Y

(d)
J (i,d)

)]
.

Developing the square, taking the expectation conditional on X
(d)
J (i,d) and factoring out `4

4d2α

yield

E
Y

(d)

J (i,d)

[
W 2

i

(
d,X

(d)
J (i,d),Y

(d)
J (i,d)

)]
=

`4

4d2α
×3

∑
j∈J (i,d)

(
d2

dX2
j

log θj (d) f (θj (d) Xj)

)2

+
∑

j∈J (i,d)

(
d

dXj

log θj (d) f (θj (d) Xj)

)4

+2
∑

k∈J (i,d)

Jc(J (i,d))(i,d)∑
j=Jk+1(i,d)

d2

dX2
j

log θj (d) f (θj (d) Xj)
d2

dX2
k

log θk (d) f (θk (d) Xk)

+2
∑

k∈J (i,d)

Jc(J (i,d))(i,d)∑
j=Jk+1(i,d)

(
d

dXj

log θj (d) f (θj (d) Xj)

)2 (
d

dXk

log θk (d) f (θk (d) Xk)

)2

+2
∑

k∈J (i,d)

∑
j∈J (i,d)

d2

dX2
j

log θj (d) f (θj (d) Xj)

(
d

dXk

log θk (d) f (θk (d) Xk)

)2
 .

The previous expression can be reexpressed as

E
Y

(d)

J (i,d)

[
W 2

i

(
d,X

(d)
J (i,d),Y

(d)
J (i,d)

)]
=

`4

2d2α

∑
j∈J (i,d)

(
d2

dX2
j

log θj (d) f (θj (d) Xj)

)2
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+
`4

4d2α

 ∑
j∈J (i,d)

 d2

dX2
j

log θj (d) f (θj (d) Xj) +

(
d

dXj

log θj (d) f (θj (d) Xj)

)2


2

,

and hence√
E

Y
(d)

J (i,d)

[
W 2

i

(
d,X

(d)
J (i,d),Y

(d)
J (i,d)

)]
≤ `2

√
2dα

 ∑
j∈J (i,d)

(
d2

dX2
j

log θj (d) f (θj (d) Xj)

)2
1/2

+
`2

2dα

∣∣∣∣∣∣
∑

j∈J (i,d)

 d2

dX2
j

log θj (d) f (θj (d) Xj) +

(
d

dXj

log θj (d) f (θj (d) Xj)

)2
∣∣∣∣∣∣ .

Using changes of variables, the unconditional expectation then satisfies

E
[∣∣∣Wi

(
d,X

(d)
J (i,d),Y

(d)
J (i,d)

)∣∣∣] ≤ `2

√
2dα

θ2
n+i (d)

√
c (J (i, d))E

( d2

dX2
log f (X)

)2
1/2

+
`2

2dα
θ2

n+i (d) c (J (i, d)) E

∣∣∣∣∣∣ 1

c (J (i, d))

∑
j∈J (i,d)

 d2

dX2
j

log f (Xj) +

(
d

dXj

log f (Xj)

)2
∣∣∣∣∣∣
 .

Considering that dα < dγi

√
c (J (i, d)) along with the fact that the expectation in the first

term on the RHS is bounded by some constant, it implies that this term converges to 0 as
d →∞. It thus remains to verify the convergence of the second term. Since

`2

2dα

dγi

Kn+i

c (J (i, d))

is O (1) for at least one i ∈ {1, . . . ,m}, we must then show that the expectation converges
to 0 as the dimension increases. We have

E

 d2

dX2
j

log f (Xj) +

(
d

dXj

log f (Xj)

)2
 = E

[
f ′′ (X)

f (X)

]
=
∫

f ′′ (x) dx = 0

and

Var

(
f ′′ (X)

f (X)

)
= E

(f ′′ (X)

f (X)

)2
 < ∞

by assumption. By the WLLN,

|Si (d)| ≡

∣∣∣∣∣∣ 1

c (J (i, d))

∑
j∈J (i,d)

 d2

dX2
j

log f (Xj) +

(
d

dXj

log f (Xj)

)2
∣∣∣∣∣∣→p 0 as d →∞.

We now want to verify if we could bring the limit inside the expectation. By independence
between the Xj’s, we find

E
[
(Si (d))2

]
= E


 1

c (J (i, d))

∑
j∈J (i,d)

f ′′ (Xj)

f (Xj)

2
 =

1

c (J (i, d))
E

(f ′′ (X)

f (X)

)2
 < ∞
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for all d. Then,

sup
d

E
[
|Si (d)|1{|Si(d)|≥a}

]
≤ sup

d

1

a
E
[
(Si (d))2 1{|Si(d)|≥a}

]
≤ K

a
→ 0 as a →∞.

Since the uniform integrability condition is satisfied (see for instance [5], [10] or [18]), we can
bring the limit inside the expectation and find

lim
d→∞

E [|Si (d)|] = E
[
lim
d→∞

|Si (d)|
]

= 0,

which completes the proof of the lemma.

8.2 Convergence to the Approximate Generator G̃h (d,Xi∗)

We prove a result stating that the discrete-time generator of the sped up RWM algorithm is
asymptotically equivalent to the approximate generator G̃h (d,Xi∗).

Lemma 7. For any function h ∈ C∞
c , let

G̃h (d,Xi∗) =
1

2
`2h′′ (Xi∗) E

[
1 ∧ e

∑d

j=1,j 6=i∗ ε(d,Xj ,Yj)
]

(15)

+ `2h′ (Xi∗) (log f (Xi∗))
′ E

e∑d

j=1,j 6=i∗ ε(d,Xj ,Yj);
d∑

j=1,j 6=i∗
ε (d,Xj, Yj) < 0

 ,

where

ε (d,Xj, Yj) = log
f (θj (d) Yj)

f (θj (d) Xj)
. (16)

Then if α > 0 as defined in (7),

lim
d→∞

E
[∣∣∣Gh (d,Xi∗)− G̃h (d,Xi∗)

∣∣∣] = 0.

Proof. The generator of the sped up RWM algorithm is

Gh (d,Xi∗) = dαEY(d),X(d)−

(h (Yi∗)− h (Xi∗))

1 ∧
π
(
d,Y(d)

)
π (d,X(d))


= dαEYi∗

(h (Yi∗)− h (Xi∗)) EY(d)−,X(d)−

1 ∧ π
(
d,Y(d)

)
π (d,X(d))


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We first concentrate on the inner expectation. Using properties of the log function, we get

EY(d)−,X(d)−

1 ∧ π
(
d,Y(d)

)
π (d,X(d))


= EY(d)−,X(d)−

1 ∧ exp

log
f (Yi∗)

f (Xi∗)
+

d∑
j=1,j 6=i∗

log
f (θj (d) Yj)

f (θj (d) Xj)




= EY(d)−,X(d)−

1 ∧ exp

ε (Xi∗ , Yi∗) +
d∑

j=1,j 6=i∗
ε (d,Xj, Yj)


 ,

where

ε (Xi∗ , Yi∗) = log
f (Yi∗)

f (Xi∗)
and ε (d,Xj, Yj) = log

f (θj (d) Yj)

f (θj (d) Xj)
.

We can thus express the generator as

Gh (d,Xi∗) = dαEYi∗

[
(h (Yi∗)− h (Xi∗)) EY(d)−,X(d)−

[
1 ∧ e

∑d

j=1
ε(d,Xj ,Yj)

]]
. (17)

We shall compute the outside expectation. To this effect, a Taylor expansion of the min-
imum function with respect to Yi∗ and around Xi∗ is used. Since f is a C2 density func-
tion, the minimum function will be twice differentiable as well except at the points where∑d

j=1 ε (d,Xj, Yj) = 0. This will however not affect the expectation, since the set of val-
ues at which the derivatives do not exist has Lebesgue probability 0. The first and second
derivatives of the minimum function are

∂

∂Yi∗
1 ∧ e

∑d

j=1
ε(d,Xj ,Yj) =

 ∂
∂Yi∗

ε (Xi∗ , Yi∗) e
∑d

j=1
ε(d,Xj ,Yj) if

∑d
j=1 ε (d,Xj, Yj) < 0

0 if
∑d

j=1 ε (d,Xj, Yj) > 0
,

and

∂2

∂Y 2
i∗

1 ∧ e
∑d

j=1
ε(d,Xj ,Yj)

=


(

∂2

∂Y 2
i∗

ε (Xi∗ , Yi∗) +
(

∂
∂Yi∗

ε (Xi∗ , Yi∗)
)2
)

e
∑d

j=1
ε(d,Xj ,Yj) if

∑d
j=1 ε (d,Xj, Yj) < 0

0 if
∑d

j=1 ε (d,Xj, Yj) > 0
.

Expressing the inner expectation in (17) as a function of these derivatives, we find

EY(d)−,X(d)−

[
1 ∧ e

∑d

j=1
ε(d,Xj ,Yj)

]
= EY(d)−,X(d)−

[
1 ∧ e

∑d

j=1,j 6=i∗ ε(d,Xj ,Yj)
]

+ (Yi∗ −Xi∗) (log f (Xi∗))
′ EY(d)−,X(d)−

e∑d

j=1,j 6=i∗ ε(d,Xj ,Yj);
d∑

j=1,j 6=i∗
ε (d,Xj, Yj) < 0


+

1

2
(Yi∗ −Xi∗)

2
(
(log f (Ui∗))

′ + (log f (Ui∗))
′′
)

EY(d)−,X(d)−

[
eg(Ui∗ ); g (Ui∗) < 0

]
,
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where

g (Ui∗) = ε (Xi∗ , Ui∗) +
d∑

j=1,j 6=i∗
ε (d,Xj, Yj) ,

for some Ui∗ ∈ (Xi∗ , Yi∗) or (Yi∗ , Xi∗).

Using this expansion, the generator becomes

Gh (d,Xi∗)

= dαEYi∗ [(h (Yi∗)− h (Xi∗))] EY(d)−,X(d)−

[
1 ∧ e

∑d

j=1,j 6=i∗ ε(d,Xj ,Yj)
]

+ dα (log f (Xi∗))
′ EYi∗ [(h (Yi∗)− h (Xi∗)) (Yi∗ −Xi∗)]

× EY(d)−,X(d)−

e∑d

j=1,j 6=i∗ ε(d,Xj ,Yj);
d∑

j=1,j 6=i∗
ε (d,Xj, Yj) < 0


+

dα

2
EYi∗

[
(h (Yi∗)− h (Xi∗)) (Yi∗ −Xi∗)

2 (log f (Ui∗))
′ EY(d)−,X(d)−

[
eg(Ui∗ ); g (Ui∗) < 0

]]
+

dα

2
EYi∗

[
(h (Yi∗)− h (Xi∗)) (Yi∗ −Xi∗)

2 (log f (Ui∗))
′′ EY(d)−,X(d)−

[
eg(Ui∗ ); g (Ui∗) < 0

]]
.

Again, a Taylor’s expansion yields

h (Yi∗)− h (Xi∗)

= h′ (Xi∗) (Yi∗ −Xi∗) +
1

2
h′′ (Xi∗) (Yi∗ −Xi∗)

2 +
1

6
h′′′ (Vi∗) (Yi∗ −Xi∗)

3 , (18)

for some Vi∗ lying between Xi∗ and Yi∗ . Since the function h has compact support, then h
itself and its derivatives are bounded by some positive constant (say K), which gives

dαEYi∗ [h (Yi∗)− h (Xi∗)] ≤ `2

2
h′′ (Xi∗) +

`3

6

√
8

π

K

dα/2
,

along with

dαEYi∗ [h (Yi∗)− h (Xi∗) (Yi∗ −Xi∗)] ≤ `2h′ (Xi∗) +
`4

2dα
K.

Substituting these expressions in the equation for Gh (d,Xi∗), noticing that all expectations

computed with respect to Y(d)− and X(d)− are bounded by one and that
∣∣∣(log f (Ui∗))

′′
∣∣∣ is

bounded by some positive constant K, we obtain

Gh (d,Xi∗) ≤ G̃h (d,Xi∗) +
`3

6

√
8

π

K

dα/2
+

`4

2dα
K
∣∣∣(log f (Xi∗))

′
∣∣∣

+
dα

2
EYi∗

[
|h (Yi∗)− h (Xi∗)| (Yi∗ −Xi∗)

2
∣∣∣(log f (Ui∗))

′
∣∣∣] (19)

+
dα

2
KEYi∗

[
|h (Yi∗)− h (Xi∗)| (Yi∗ −Xi∗)

2
]
.
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Using a two-term Taylor expansion around Xi∗ , we find∣∣∣(log f (Ui∗))
′
∣∣∣ =

∣∣∣(log f (Xi∗))
′ + (log f (Vi∗))

′′ (Ui∗ −Xi∗)
∣∣∣

≤
∣∣∣(log f (Xi∗))

′
∣∣∣+ K |Yi∗ −Xi∗| ,

where Vi∗ ∈ (Xi∗ , Ui∗) or (Ui∗ , Xi∗). In addition, using (18) yields

dαEYi∗

[
|h (Yi∗)− h (Xi∗)| (Yi∗ −Xi∗)

2
]
≤ `3

dα/2

√
8

π
K +

3`4

2dα
K +

`5

d3α/2

√
32

π

K

3
,

and

dαEYi∗

[
|h (Yi∗)− h (Xi∗)| |Yi∗ −Xi∗|3

]
≤ 3

`4

dα
K +

√
32

π

`5

d3α/2
K +

5

2

`6

d2α
K.

We can then simplify (19) further and write

Gh (d,Xi∗)− G̃h (d,Xi∗)

≤ `3

6

√
8

π

K

dα/2
+

`4

2dα
K
∣∣∣(log f (Xi∗))

′
∣∣∣+ `3

dα/2

√
8

π

K2

2
+

3

4

`4

dα
K2 +

`5

d3α/2

√
32

π

K2

6

+
∣∣∣(log f (Xi∗))

′
∣∣∣
 `3

dα/2

√
8

π

K

2
+

3

4

`4

dα
K +

`5

d3α/2

√
32

π

K

6


+

3

2

`4

dα
K +

√
32

π

`5

d3α/2

K

2
+

5

4

`6

d2α
K.

By assumption we have

E
[∣∣∣(log f (Xi∗))

′
∣∣∣] = E

[∣∣∣∣∣f ′ (Xi∗)

f (Xi∗)

∣∣∣∣∣
]
≤ 1 + E

(f ′ (Xi∗)

f (Xi∗)

)4
 < ∞,

so it follows that E
[∣∣∣Gh (d,Xi∗)− G̃h (d,Xi∗)

∣∣∣] converges to 0 as d →∞, which proves the
lemma.

9 Volatility and Drift of the Diffusion

9.1 Convergence to an Approximate Volatility

The aim of the following result is to replace the volatility term of the approximate generator
G̃h (d,Xi∗) by an asymptotically equivalent, but more convenient expression.
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Lemma 8. We have

lim
d→∞

∣∣∣∣E [1 ∧ e
∑d

j=1,j 6=i∗ ε(d,Xj ,Yj)
]
− E

[
1 ∧ ev(d,Y(d)−,X(d)−)

]∣∣∣∣ = 0,

where ε (d,Xj, Yj) is as in (16) and

v
(
d,Y(d)−,X(d)−

)
=

n∑
j=1,j 6=i∗

ε (d,Xj, Yj) +
m∑

i=1

∑
j∈J (i,d),j 6=i∗

d

dXj

log f (θj (d) Xj) (Yj −Xj)

− `2

2dα

m∑
i=1

∑
j∈J (i,d),j 6=i∗

(
d

dXj

log f (θj (d) Xj)

)2

. (20)

Proof. The first step consists in taking the volatility term of G̃h (d,Xi∗) and separating the
components whose variance appear only a finite number of times from the other components

E
[
1 ∧ e

∑d

j=1,j 6=i∗ ε(d,Xj ,Yj)
]

= E

1 ∧ exp


n∑

j=1,j 6=i∗
ε (d,Xj, Yj) +

d∑
j=n+1,j 6=i∗

(log f (θj (d) Yj)− log f (θj (d) Xj))


 .

Writing the difference of log functions as a Taylor expansion with three terms and grouping
the components whose scaling term appears infinitely often result in

E
[
1 ∧ e

∑d

j=1,j 6=i∗ ε(d,Xj ,Yj)
]

= E

1 ∧ exp


n∑

j=1,j 6=i∗
ε (d,Xj, Yj) +

m∑
i=1

∑
j∈J (i,d),j 6=i∗

[
d

dXj

log f (θj (d) Xj) (Yj −Xj)

+
1

2

d2

dX2
j

log f (θj (d) Xj) (Yj −Xj)
2 +

1

6

d3

dU3
j

log f (θj (d) Uj) (Yj −Xj)
3

]}]
, (21)

for some Ui ∈ (Xi, Yi) or (Yi, Xi) .

We shall now verify if the approximate volatility formed with the function v
(
d,Y(d)−,X(d)−

)
is asymptotically equivalent to the original one. By the triangle’s inequality, we have∣∣∣∣E [1 ∧ e

∑d

j=1,j 6=i∗ ε(d,Xj ,Yj)
]
− E

[
1 ∧ ev(d,Y(d−),X(d−))

]∣∣∣∣
≤ E

[∣∣∣∣(1 ∧ e
∑d

j=1,j 6=i∗ ε(d,Xj ,Yj)
)
−
(
1 ∧ ev(d,Y(d)−,X(d)−)

)∣∣∣∣] .

By the Lipschitz property of the function 1 ∧ ex (see Proposition 2.2 in [14]), and noticing

that the first two terms of the function v
(
d,Y(d)−,X(d)−

)
cancel out with the first two terms

of the exponential function in (21), we get

E
[∣∣∣∣(1 ∧ e

∑d

j=1,j 6=i∗ ε(d,Xj ,Yj)
)
−
(
1 ∧ ev(d,Y(d)−,X(d)−)

)∣∣∣∣]
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≤ E

∣∣∣∣∣∣
d∑

j=1,j 6=i∗
ε (d,Xj, Yj)− v

(
d,Y(d)−,X(d)−

)∣∣∣∣∣∣


= E

∣∣∣∣∣∣
m∑

i=1

∑
j∈J (i,d),j 6=i∗

1

2

d2

dX2
j

log f (θj (d) Xj) (Yj −Xj)
2 − `2

2dα

(
d

dXj

log f (θj (d) Xj)

)2


+
1

6

m∑
i=1

∑
j∈J (i,d),j 6=i∗

d3

dU3
j

log f (θj (d) Uj) (Yj −Xj)
3

∣∣∣∣∣∣
 .

Since the first double sum forms the random variables Wi

(
d,X

(d)
J (i,d),Y

(d)
J (i,d)

)
’s and the

derivative appearing in the second term is bounded by some constant, then

E

∣∣∣∣∣∣
d∑

j=1,j 6=i∗
ε (d,Xj, Yj)− v

(
d,Y(d)−,X(d)−

)∣∣∣∣∣∣


≤
m∑

i=1

E
[∣∣∣Wi

(
d,X

(d)−
J (i,d),Y

(d)−
J (i,d)

)∣∣∣]+
m∑

i=1

c (J (i, d))
K

6

√
8

π

`3

d3α/2

d3γi/2

K
3/2
i

.

Hence by Lemma 6, the RHS converges to 0 as d →∞, which proves the lemma.

9.2 Simplified Expression for the Approximate Volatility

Lemma 8 established that on average the acceptance probability of the (d− 1)-dimensional

RWM algorithm is asymptotically equivalent to the function 1 ∧ ev(d,Y(d)−,X(d)−). We now
wish to find a simpler expression for this new function. This is achieved in the following
lemma.

Lemma 9. If Condition (8) is satisfied, then

lim
d→∞

∣∣∣∣∣E
[
1 ∧ ev(d,Y(d)−,X(d)−)

]
− 2Φ

(
−`
√

ER

2

)∣∣∣∣∣ = 0,

where v
(
d,Y(d)−,X(d)−

)
and ER are as in (20) and (9) respectively.

Proof. We shall first introduce some notation that will reveal useful for the present proof,
as well as for those of the remaining lemmas. For each group of components whose scaling
term appears infinitely often in the limit, i.e. for i = 1, . . . ,m let

Ri

(
d,x

(d)−
J (i,d)

)
=

1

dα

∑
j∈J (i,d),j 6=i∗

(
d

dxj

log θj (d) f (θj (d) xj)

)2

. (22)

Under this definition, note that the last term of v
(
d,Y(d)−,X(d)−

)
in (20) can be expressed

as −`2∑m
i=1 Ri

(
d,x

(d)−
J (i,d)

)
/2.
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Making use of conditioning allows us to express the expectation involved in the limit as

E
[
1 ∧ exp

(
v
(
d,Y(d)−,X(d)−

))]
= EY(n)−,X(d)−

[
EY(d−n)−

[
1 ∧ exp

(
v
(
d,Y(d)−,X(d)−

))]]
. (23)

To solve the inner expectation, we need to find the distribution of v
(
d,Y(d)−,X(d)−

) ∣∣∣Y(n)−,X(d)− .

Since (Yj −Xj) |Xj , j = 1, · · · , d, are iid and normally distributed with mean 0 and variance
`2/dα, then

v
(
d,Y(d)−,X(d)−

) ∣∣∣Y(n)−,X(d)−

∼ N

 n∑
j=1,j 6=i∗

ε (d,Xj, Yj)−
`2

2

m∑
i=1

Ri

(
d,X

(d)−
J (i,d)

)
, `2

m∑
i=1

Ri

(
d,X

(d)−
J (i,d)

) .

Applying Proposition 2.4 in [14] allows to express the inner expectation in (23) in terms of
Φ (·), the cdf of a standard normal random variable

EY(d−n)−

[
1 ∧ ev(d,Y(d)−,X(d)−)

]

= Φ


∑n

j=1,j 6=i∗ ε (d,Xj, Yj)− `2

2

∑m
i=1 Ri

(
d,X

(d)−
J (i,d)

)
√

`2
∑m

i=1 Ri

(
d,X

(d)−
J (i,d)

)


+ exp

 n∑
j=1,j 6=i∗

ε (d,Xj, Yj)

Φ

−
∑n

j=1,j 6=i∗ ε (d,Xj, Yj)− `2

2

∑m
i=1 Ri

(
d,X

(d)−
J (i,d)

)
√

`2
∑m

i=1 Ri

(
d,X

(d)−
J (i,d)

)


≡ M
(
d,Y(n)−,X(d)−

)
.

We are then left to evaluate the expectation of M (·). Again using conditional expectations

E
[
M
(
d,Y(n)−,X(d)−

)]
= EX(d−n)−

[
EY(n)−,X(n)−

[
M
(
d,Y(n)−,X(d)−

)]]
,

From Proposition 12, we find that both terms forming the function M
(
d,Y(n)−,X(d)−

)
have

the same inner expectation. The unconditional expectation thus simplifies to

E
[
M
(
d,Y(n)−,X(d)−

)]
= 2E

Φ

∑n

j=1,j 6=i∗ ε (d,Xj, Yj)− `2

2

∑m
i=1 Ri

(
d,X

(d)−
J (i,d)

)
√

`2
∑m

i=1 Ri

(
d,X

(d)−
J (i,d)

)

 .

We now find the limit of the term inside the function Φ (·) as d → ∞. From Proposition
13, ε (d,Xj, Yj) converges in probability to 0 for all j ∈ {1, . . . , n} but excluding j = i∗.

Similarly, we use Proposition 14 to conclude that
∑m

i=1 Ri

(
d,X

(d)−
J (i,d)

)
→p ER. Furthermore,

ER > 0 since there is at least one i ∈ {1, . . . ,m} such that limd→∞ c (J (i, d)) dγi/dα > 0.
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By applying Slutsky’s Theorem, the Continuous Mapping Theorem and by recalling that
convergence in probability and convergence in distribution are equivalent when the limit is
a constant, we conclude that

Φ


∑n

j=1,j 6=i∗ ε (d,Xj, Yj)− `2

2

∑m
i=1 Ri

(
d,X

(d)
J (i,d)

)
√

`2
∑m

i=1 Ri

(
d,X

(d)
J (i,d)

)
→p Φ

(
−`
√

ER

2

)
.

Since Φ (·) is positive and bounded by 1, we finally use the Bounded Convergence Theorem
to find

E
[
1 ∧ ev(d,Y(d−),X(d−))

]
= 2E

Φ

∑n

j=1,j 6=i∗ ε (d,Xj, Yj)− `2

2

∑m
i=1 Ri

(
d,X

(d)
J (i,d)

)
√

`2
∑m

i=1 Ri

(
d,X

(d)
J (i,d)

)



→ 2Φ

(
−`
√

ER

2

)
as d →∞,

which completes the proof of the lemma.

9.3 Convergence to an Approximate Drift

The following result aims to replace the drift term of the approximate generator G̃h (d,Xi∗)
in Lemma 7 by an asymptotically equivalent, but more convenient expression.

Lemma 10. We have

lim
d→∞

∣∣∣∣∣∣E
e∑d

j=1,j 6=i∗ ε(d,Xj ,Yj);
d∑

j=1,j 6=i∗
ε (d,Xj, Yj) < 0


−E

[
ev(d,Y(d)−,X(d)−); v

(
d,Y(d)−,X(d)−

)]
< 0

∣∣∣∣ = 0, (24)

where the functions ε (d,Xj, Yj) and v
(
d,Y(d)−,X(d)−

)
are as in (16) and (20) respectively.

Proof. First, let

T (x) = ex1(x<0) =

{
ex, x < 0
0, x ≥ 0

.

It is important to realize that the function T (x) is not Lipschitz, which keeps us from
reproducing the proof of Lemma 8. The approach we use is to show that

T

 d∑
j=1,j 6=i∗

ε (d,Xj, Yj)

→p T
(
v
(
d,Y(d)−,X(d)−

))
, (25)
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and then use this result to prove convergence of expectations.

Let

A
(
d,Y(d)−,X(d)−

)
= T

 d∑
j=1,j 6=i∗

ε (d,Xj, Yj)

− T
(
v
(
d,Y(d)−,X(d)−

))

and

δ (d) =

 m∑
i=1

E
[∣∣∣Wi

(
d,X

(d)−
J (i,d),Y

(d)−
J (i,d)

)∣∣∣]+
m∑

i=1

c (J (i, d))
K

6

√
8

π

`3

d3α/2

d3γi/2

K
3/2
i

1/2

.

In order to simplify the expressions involved in the following development, we shall omit the
arguments Y(d)− and X(d)− in the functions ε (·), v (·) and A (·). We have

P (|A (d)| ≥ δ (d))

= P
(
|A (d)| ≥ δ (d) ;

∑
ε (d) ≥ 0; v (d) ≥ 0

)
+ P

(
|A (d)| ≥ δ (d) ;

∑
ε (d) < 0; v (d) < 0

)
+P

(
|A (d)| ≥ δ (d) ;

∑
ε (d) ≥ 0; v (d) < 0

)
+ P

(
|A (d)| ≥ δ (d) ;

∑
ε (d) < 0; v (d) ≥ 0

)
.

We can bound the third term on the RHS by

P
(
|A (d)| ≥ δ (d) ;

∑
ε (d) ≥ 0; v (d) < 0

)
≤ P

(∑
ε (d) ≥ 0; v (d) < 0;

∣∣∣∑ ε (d)− v (d)
∣∣∣ < δ (d)

)
+P

(∑
ε (d) ≥ 0; v (d) < 0;

∣∣∣∑ ε (d)− v (d)
∣∣∣ ≥ δ (d)

)
and similarly for the fourth term. Also note that if

∑
ε (d) ≥ 0 and v (d) ≥ 0, or

∑
ε (d) < 0

and v (d) < 0, then

|A (d)| ≤
∣∣∣∑ ε (d)− v (d)

∣∣∣ .
Therefore,

P (|A (d)| ≥ δ (d)) ≤ P
(∣∣∣∑ ε (d)− v (d)

∣∣∣ ≥ δ (d)
)

+P
(∑

ε (d) ≥ 0; v (d) < 0;
∣∣∣∑ ε (d)− v (d)

∣∣∣ < δ (d)
)

+P
(∑

ε (d) < 0; v (d) ≥ 0;
∣∣∣∑ ε (d)− v (d)

∣∣∣ < δ (d)
)
.

Since
∑

ε (d) and v (d) are of different sign but the difference between them must be less
than δ (d), we can bound the last two terms and obtain

P (|A (d)| ≥ δ (d)) ≤ P
(∣∣∣∑ ε (d)− v (d)

∣∣∣ ≥ δ (d)
)

+P (−δ (d) < v (d) < 0) + P (0 ≤ v (d) < δ (d))

= P
(∣∣∣∑ ε (d)− v (d)

∣∣∣ ≥ δ (d)
)

+ P (−δ (d) < v (d) < δ (d)) . (26)
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By Markov’s inequality and the proof of Lemma 8 the first term on the RHS of (26) satisfies

P

∣∣∣∣∣∣
d∑

j=1,j 6=i∗
ε (d,Xj, Yj)− v

(
d,Y(d)−,X(d)−

)∣∣∣∣∣∣ ≥ δ (d)


≤ 1

δ (d)
E

∣∣∣∣∣∣
d∑

j=1,j 6=i∗
ε (d,Xj, Yj)− v

(
d,Y(d)−,X(d)−

)∣∣∣∣∣∣
 ≤ √

δ (d) → 0 as d →∞.

Now consider the second term on the RHS of (26). From the proof of Lemma 9, we know

the distribution of v
(
d,Y(d)−,X(d)−

) ∣∣∣Y(n)−,X(d)− . Using conditional theory, we have

P
(∣∣∣v (d,Y(d)−,X(d)−

)∣∣∣ < δ (d)
)

= EY(n)−,X(d)−

[
PY(d−n)−

(∣∣∣v (d,Y(d)−,X(d)−
)∣∣∣ < δ (d)

)]
.

Focusing on the conditional probability, we write

PY(d−n)−

(∣∣∣v (d,Y(d)−,X(d)−
)∣∣∣ < δ (d)

)

= Φ

δ (d)−∑n
j=1,j 6=i∗ ε (d,Xj, Yj) + `2

2

∑m
i=1 Ri

(
d,X

(d)−
J (i,d)

)
`

√∑m
i=1 Ri

(
d,X

(d)−
J (i,d)

)


−Φ

−δ (d)−∑n
j=1,j 6=i∗ ε (d,Xj, Yj) + `2

2

∑m
i=1 Ri

(
d,X

(d)−
J (i,d)

)
`

√∑m
i=1 Ri

(
d,X

(d)−
J (i,d)

)
 .

Using the convergence results developed in the proof of Lemma 9 along with the fact that
δ (d) → 0 as d → ∞, we deduce that PY(d−n)−

(∣∣∣v (d,Y(d)−,X(d)−
)∣∣∣ < δ (d)

)
→p 0. Us-

ing the Bounded Convergence Theorem, we then find that the unconditional probability
P
(∣∣∣v (d,Y(d)−,X(d)−

)∣∣∣ < δ (d)
)
→p 0 as well. Since we showed that P (|A (d)| ≥ δ (d)) → 0

as d → ∞, this means that (25) is true and thus (24) can be verified with the Bounded
Convergence Theorem.

9.4 Simplified Expression for the Approximate Drift

The goal of this section is to determine a simpler expression for the approximate drift term
introduced in Lemma 7.

Lemma 11. If Condition (8) is satisfied, then

lim
d→∞

∣∣∣∣∣E
[
ev(d,Y(d)−,X(d)−); v

(
d,Y(d)−,X(d)−

)
< 0

]
− Φ

(
−`
√

ER

2

)∣∣∣∣∣ = 0,

where the functions ε (d,Xj, Yj) and v
(
d,Y(d)−,X(d)−

)
are as in (16) and (20) respectively.
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Proof. The proof is similar to that of Lemma 9 and for this reason, we just outline the
differences. We know the distribution of v

(
d,Y(d)−,X(d)−

) ∣∣∣Y(n)−,X(d)− from the proof of

Lemma 9, so we can use Proposition 2.4 in [14] to obtain

EY(d−n)−

[
ev(d,Y(d)−,X(d)−); v

(
d,Y(d)−,X(d)−

)
< 0

]

= exp

 n∑
j=1,j 6=i∗

ε (d,Xj, Yj)

Φ

−
∑n

j=1,j 6=i∗ ε (d,Xj, Yj)− `2

2

∑m
i=1 Ri

(
d,X

(d)−
J (i,d)

)
√

`2
∑m

i=1 Ri

(
d,X

(d)−
J (i,d)

)
 .

Applying Proposition 12, we find

E
[
ev(d,Y(d)−,X(d)−); v

(
d,Y(d)−,X(d)−

)
< 0

]

= E

Φ

∑n

j=1,j 6=i∗ ε (d,Xj, Yj)− `2

2

∑m
i=1 Ri

(
d,X

(d)−
J (i,d)

)
√

`2
∑m

i=1 Ri

(
d,X

(d)−
J (i,d)

)

 .

Repeating the reasoning of the proof of Lemma 9 completes the demonstration of the present
lemma.

10 Discussion

The theorems in this paper basically extend the iid work of [14] to a more general setting
where the scaling term of each target component is allowed to depend on the dimension of
the target distribution. The conclusions achieved in these theorems are very similar to those
in [14] in the sense that the obtained asymptotically optimal acceptance rates are identical,
the only difference lying in the optimal scaling values themselves. However, crucial to the
validity of these results is the fulfilment of an important condition; condition (8) is in fact
the key point ensuring that the process will asymptotically behave as in the iid case. The
intuition behind this statement is that there will be no component converging significantly
faster than the others, justifying the regular asymptotic behavior of the algorithm. This
work thus partially answers Open Problem #3 of [17].

The well-known acceptance rate 0.234 has long be believed to hold under certain pertur-
bations of the target density. The particularity of our results is that they provide, for the
specified target setting, a necessary and sufficient condition under which the optimality of
0.234 is verified. Moreover, they allow determining with certitude whether or not this ac-
ceptance rate is optimal for virtually any correlated multivariate normal target distribution.
Contrarily to what seemed to be a common belief, multivariate normal distributions do not
always adopt a conventional limiting behavior. There indeed exist cases where the asymp-
totically optimal acceptance rate is significantly smaller than 0.234, which is discussed in [1].
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It was shown in the iid case that even though the results are of asymptotic nature, they are
also pretty accurate in small dimensions (d ≥ 10). In the present case however, this fact is
not always verified and care must be exercised in practice. In particular, if there exists a
finite number of scaling terms such that λj is close to α (but with λj < α of course, other-
wise Condition (8) would be violated) then the optimal acceptance rate converges extremely
slowly to 0.234 from above. For instance, suppose that the variances of a d-dimensional
multivariate normal target with independent components are

(
d−λ, 1, . . . , 1

)
, where λ < 1.

The proposal scaling is then of the form σ2 (d) = `2/d and the closer to 1 is λ, the slower is
the convergence of the optimal acceptance rate to 0.234. In fact, for λ = 0.75, simulations
show that d must be as big as 200, 000 for the optimal acceptance rate to be reasonably close
to 0.234. Simulations also show that for α− λ ≤ 0.5, the asymptotic results are accurate in
relatively small dimensions, just as in the iid case. Detailed examples and simulation studies
illustrating this paper’s results as well as those introduced in [1] are presented in [2].

Appendix

The following results are useful for proving lemmas of Section 9. The first result demonstrates
the equivalence between two expectations. The second and third propositions aim to prove
the convergence in probability of some variables to a constant.

Proposition 12. Let Xj be distributed according to the density θj (d) f (θj (d) xj) for j =

1, . . . , d. Also let Y(d)
∣∣∣X(d) ∼ N

(
X(d), σ2 (d) Id×d

)
and ε (d,Xj, Yj) as in (16). We have

EY(n)−,X(n)−

exp

 n∑
j=1,j 6=i∗

ε (d,Xj, Yj)

Φ

−
∑n

j=1,j 6=i∗ ε (d,Xj, Yj)− `2

2

∑m
i=1 Ri

(
d,X

(d)−
J (i,d)

)
√

`2
∑m

i=1 Ri

(
d,X

(d)−
J (i,d)

)



= EY(n)−,X(n)−

Φ

∑n

j=1,j 6=i∗ ε (d,Xj, Yj)− `2

2

∑m
i=1 Ri

(
d,X

(d)−
J (i,d)

)
√

`2
∑m

i=1 Ri

(
d,X

(d)−
J (i,d)

)

 .

Proof. Developing the first expectation and simplifying the integrand yield

EY(n)−,X(n)−

 n∏
j=1,j 6=i∗

f (θj (d) Yj)

f (θj (d) Xj)
Φ

− log
∏n

j=1,j 6=i∗
f(θj(d)Yj)

f(θj(d)Xj)
− `2

2

∑m
i=1 Ri

(
d,X

(d)−
J (i,d)

)
√

`2
∑m

i=1 Ri

(
d,X

(d)−
J (i,d)

)



=
∫ ∫

Φ

 log
∏n

j=1,j 6=i∗
f(θj(d)xj)

f(θj(d)yj)
− `2

2

∑m
i=1 Ri

(
d,X

(d)−
J (i,d)

)
√

`2
∑m

i=1 Ri

(
d,X

(d)−
J (i,d)

)


n∏
j=1,j 6=i∗

θj (d) f (θj (d) yj) C exp

− 1

2σ2 (d)

n∑
j=1,j 6=i∗

(xj − yj)
2

 dy(n)−dx(n)−.
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Since the integrand is positive we can use Fubini’s Theorem to change the order of integration.
Substituting y(n−) for x(n−) and vice versa then yields the desired result.

Proposition 13. Let

ε (d,Xj, Yj) = log
f (θj (d) Yj)

f (θj (d) Xj)
,

where θj (d) = Kj/d
λj for j ∈ {1, . . . , n}. If λj < α, then ε (d,Xj, Yj) →p 0.

Proof. By Taylor’s Theorem, we have the following three-term expansion

ε (d,Xj, Yj) = (log f (θj (d) Xj))
′ (Yj −Xj) +

1

2
(log f (θj (d) Xj))

′′ (Yj −Xj)
2

+
1

6
(log f (θj (d) Uj))

′′′ (Yj −Xj)
3 ,

for some Uj ∈ (Xj, Yj) or (Yj, Xj).

Using conditional expectations, changes of variables and the triangle’s inequality, we find

E [ε (d,Xj, Yj)] ≤ `2

2dα
θ2

j (d) E
[∣∣∣(log f (X))′′

∣∣∣]+
1

6
θ3

j (d) E
[∣∣∣(log f (U))′′′

∣∣∣ |Yj −Xj|3
]
.

Since
∣∣∣(log f (X))′′

∣∣∣ and
∣∣∣(log f (U))′′′

∣∣∣ are bounded by some constant (say K) and since
λj < α, we have

E [ε (d,Xj, Yj)] ≤ `2

2dα

dλj

Kj

K +
1

6

√
8

π

`3

d3α/2

(
dλj

Kj

)3/2

K

→ 0 as d →∞,

We now use the previous Taylor expansion to bound the variance

Var (ε (d,Xj, Yj))

≤ E
[
ε2 (d,Xj, Yj)

]
= E

[(
(log f (θj (d) Xj))

′ (Yj −Xj) +
1

2
(log f (θj (d) Xj))

′′ (Yj −Xj)
2

+
1

6
(log f (θj (d) Uj))

′′′ (Yj −Xj)
3
)2
]
.

Developing the square, applying changes of variables and using conditional expectations
result in

E
[
ε2 (d,Xj, Yj)

]
=

`2

dα
θ2

j (d) E
[(

(log f (X))′
)2
]

+
3

4

`4

d2α
θ4

j (d) E
[[

(log f (X))′′
]2]

+
1

36
θ6

j (d) E
[[

(log f (U))′′′
]2

(Yj −Xj)
6
]
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+

√
8

π

`3

d3α/2
θ3

j (d) E
[
(log f (X))′ (log f (X))′′

]
+

1

3
θ4

j (d) EX

[
(log f (X))′ EYj

[
(log f (U))′′′ (Yj −Xj)

4
]]

+
1

6
θ5

j (d) EX

[
(log f (X))′′ EYj

[
(log f (U))′′′ (Yj −Xj)

5
]]

.

By the triangle’s inequality, and again using the fact that
∣∣∣(log f (X))′′

∣∣∣ and
∣∣∣(log f (U))′′′

∣∣∣
are bounded, we obtain

E
[
ε2 (d,Xj, Yj)

]
≤ `2

dα

dλj

Kj

E
[(

(log f (X))′
)2
]

+
3

4

`4

d2α

d2λj

K2
j

K2 +
15

36

d3λj

K3
j

`6

d3α
K2

+

√
8

π

`3

d3α/2

d3λj/2

K
3/2
j

KE
[∣∣∣(log f (X))′

∣∣∣]

+
d2λj

K2
j

`4

d2α
KE

[∣∣∣(log f (X))′
∣∣∣]+

5

2

d5λj/2

K
5/2
j

`5

d5α/2
K2.

By assumption, E
[(

(log f (X))′
)2
]

is bounded by some finite constant. Since λj < α, the

previous expression converges to 0 as d →∞.

To complete the proof of the proposition we use Chebychev’s inequality and find that for all
ε > 0

P (|ε (d,Xj, Yj)| ≥ ε) ≤ 1

ε2
Var (ε (d,Xj, Yj)) ≤

1

ε2
E
[
ε2 (d,Xj, Yj)

]
→ 0 as d →∞.

Proposition 14. Let Ri

(
d,X

(d)−
J (i,d)

)
be as in (22), with i ∈ {1, . . . ,m}. We then have∑m

i=1 Ri

(
d,X

(d)−
J (i,d)

)
→p ER, where ER is as in (9).

Proof. The expectation of each variable satisfies

E
[
Ri

(
d,X

(d)−
J (i,d)

)]
=

1

dα

∫
R

...
∫
R

∑
j∈J (i,d),j 6=i∗

(
d

dxj

log θj (d) f (θj (d) xj)

)2 ∏
k∈J (i,d),k 6=i∗

θk (d) f (θk (d) xk) dxk

=
θ2

n+i (d)

dα

∑
j∈J (i,d),j 6=i∗

∫
R

(
f ′ (θn+i (d) xj)

f (θn+i (d) xj)

)2

θj (d) f (θj (d) xj) dxj

=
dγi

Kn+idα

∑
j∈J (i,d),j 6=i∗

∫
R

(
f ′ (x)

f (x)

)2

f (x) dx,
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and writing the integral as an expectation yields

E
[
Ri

(
d,X

(d)−
J (i,d)

)]
=

c (J (i, d))

dα

dγi

Kn+i

E

(f ′ (X)

f (X)

)2
 . (27)

In the limit, the expectation of the sum of variables then becomes

ER = lim
d→∞

m∑
i=1

E
[
Ri

(
d,X

(d)−
J (i,d)

)]
= lim

d→∞

m∑
i=1

c (J (i, d))

dα

dγi

Kn+i

E

(f ′ (X)

f (X)

)2
 ,

which in the present case is positive but finite.

Since all Xj’s are independent, the variance of this sum is given by

Var

(
m∑

i=1

Ri

(
d,X

(d)−
J (i,d)

))
=

m∑
i=1

1

d2α

∑
j∈J (i,d),j 6=i∗

Var
([

(log θj (d) f (θj (d) Xj))
′
]2)

,

and using the fact that Var (X) ≤ E [X2] along with a change of variable yield

Var

(
m∑

i=1

Ri

(
d,X

(d)−
J (i,d)

))
≤

m∑
i=1

1

d2α

∑
j∈J (i,d),j 6=i∗

θ4
j (d) E

[[
(log f (X))′

]4]

=
m∑

i=1

1

d2α

d2γi

K2
n+i

c (J (i, d)) E

(f ′ (X)

f (X)

)4
 .

By assumption, we know that the expectation involved in the previous expression is finite.
Since c (J (i, d)) dγi ≤ dα and c (J (i, d)) →∞ as d →∞ for i = 1, . . . ,m, the variance thus
converges to 0 as d →∞.

To conclude the proof of the lemma, we use Chebychev’s inequality and find that for all
ε > 0

P

(∣∣∣∣∣
m∑

i=1

Ri

(
d,X

(d)−
J (i,d)

)
− ER

∣∣∣∣∣ ≥ ε

)
≤ 1

ε2
Var

(
m∑

i=1

Ri

(
d,X

(d)−
J (i,d)

))
→ 0 as d →∞.
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