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1. Introduction.

This paper contains theoretical results related to the practical implementation of

certain Metropolis-Hastings algorithms (Metropolis et al., 1953; Hastings, 1970; Smith

and Roberts, 1993) as used to explore probability distributions, for example in Bayesian

statistics. Specifically, we consider issues related to discrete approximations to Langevin

diffusions, as proposed in Grenander and Miller (1994), Phillips and Smith (1994), and

Roberts and Tweedie (1995).

Hastings-Metropolis algorithms are now routinely used in many statistical applications

(see for example Smith and Roberts, 1993; Besag and Green, 1993). The most commonly

used algorithm of this type is the random walk algorithm, which is largely appealing

because it is not problem-specific and hence is easy to implement. However, as a result of

this, it can frequently be slow to converge. Langevin algorithms use local problem-specific

information, and are therefore often almost as easy to implement.

In recent work of Roberts, Gelman and Gilks (1994), the problem of optimal scaling of

proposal variances for random-walk Metropolis algorithms was considered. It was proved

that, for Gaussian proposals and certain target distributions, the asymptotic acceptance

probability should be tuned to be approximately 0.234 for optimal performance of the

algorithm. Furthermore, it was shown that the proposal variance should scale as n−1 as

the dimension n →∞. The paper thus provided a useful heuristic for running Metropolis

algorithms efficiently. Although the result applied only asymptotically as n → ∞, nu-

merical studies (Gelman, Roberts, and Gilks, 1994) indicated that the result was a good

approximation even in low dimensions. However, this result does not apply to more gen-

eral Hastings algorithms. If the proposal density makes use of the structure of the target

density, intuition suggests that a higher acceptance probability is likely to be preferred.

In this paper we carry out a similar study for a class of algorithms given by discrete

approximations to Langevin diffusions. A Langevin diffusion for a multivariate probability

density function π (with respect to Lebesgue measure) is the unique (up to a speed factor)

non-explosive diffusion which is reversible with respect to π. It makes use of the gradient of

π to move more often in directions in which π is increasing. Thus, a discrete approximation

to a Langevin diffusion should have an optimal acceptance probability which is larger than

the 0.234 figure for random-walk proposals.

Roberts and Tweedie (1995) demonstrate that Langevin algorithms can converge at

sub-geometric rates (at least for certain classes of target densities). However it is also well
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known that Langevin algorithms can be significantly more efficient than their natural com-

petitors, random walk Metropolis algorithms, particularly in high dimensional problems.

In fact we shall be able to make direct comparisons of the efficiency of these algorithms

asymptotically in dimension.

Our main results may be summarised as follows. For discrete approximations to

Langevin diffusions for certain target distributions π, the optimal asymptotic scaling can

be characterised as being that algorithm which has limiting acceptance probability in high

dimensions (i.e. as n → ∞) approximately 0.574. Furthermore, the proposal variance

should scale as n−1/3, and thus O(n1/3) steps are required for the Langevin algorithm to

converge. Therefore, Langevin algorithms are considerably more efficient than random-

walk based Metropolis methods which require O(n) steps for the same class of target

densities.

To understand the above, we need to know by what criterion we are measuring op-

timality. Suppose X is our Markov chain, and f is some function of interest: that is, we

wish to estimate π(f) ≡ Eπ[f(X)]. Assuming that a central limit theorem holds for X

and f , a natural measure of efficiency is related to the variance of the ergodic estimate of

π(f):

ef =

(
lim

t→∞
tVar

(∑t
i=1 f(Xi)

t

))−1

.

Therefore e−1
f is proportional to the number of iterations needed to achieve a particular

accuracy for the ergodic estimate of π(f). Unfortunately, the efficiency ef varies with f ,

and furthermore, there is no clear relationship between ef and other natural measures of

efficiency (perhaps to do with convergence rates of algorithms). However, for the diffusion

limit, there is only one sensible measure of its efficiency, its speed measure. All other

measures of efficiency are equivalent (up to a normalization constant) including those

described above.

We note also that, while 0.574 is the optimal acceptance probability, the speed of the

algorithm remains relatively high for acceptance probabilities between, say, 0.4 and 0.8.

Practical implications such as these are considered in Section 3, and a number of simula-

tions are described that show the asymptotic behaviour of the algorithms. In particular, a

comparison between the Langevin algorithm and the random walk Metropolis algorithm,

and a comparison with the asymptotically optimal algorithm is given in Fig 3.1.

We prove our results formally only for target distributions of the form πn(x) =
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∏n
i=1 f(xi) corresponding to i.i.d. components. However, various generalisations are possi-

ble; see Section 4 and the similar discussion in Roberts, Gelman, and Gilks (1994, Section

3). Furthermore, such optimal-scaling results appear to be quite robust over changes in

the model; see for example Gelman, Roberts, and Gilks (1994).

Similar algorithms have been studied in various contexts in the physics literature

(Neal, 1993, Section 5.3; Neal, 1994). Algorithms similar to discrete Langevin diffusions

were proposed by Rossky, Doll, and Friedman (1978). The idea that the proposal vari-

ance should scale as n−1/3 is suggested in Kennedy and Pendleton (1991). Also, optimal

acceptance probabilities are considered though simulations in Mountain and Thirumalai

(1994).

Our formal definitions are as follows. The reversible Langevin diffusion for the n-

dimensional density πn, with variance σ2, is the diffusion process {Λt} which satisfies the

stochastic differential equation

dΛt = σ dBt +
σ2

2
∇ log πn(Λt) dt ,

where Bt is standard n-dimensional Brownian motion. Thus, the natural discrete approx-

imation can be written

Λ̃t+1 = Λ̃t + σnZt+1 +
σ2

n

2
∇ log πn(Λ̃t)

where the random variables Zt are distributed as independent standard normal, and where

σ2
n is the chosen step variance. However, such discrete approximations can have vastly

different asymptotic behaviours from the diffusion process they attempt to approximate

(Roberts and Tweedie, 1995). Specifically, these approximations can be transient, no

matter how small the step variance σ2
n. Therefore, to construct a sound algorithm based

on the Langevin diffusion, it is not sufficient to merely approximate the diffusion itself. It

is necessary to introduce a Metropolis accept/reject step (Metropolis et al., 1953; Hastings,

1970) which serves to ensure that πn is a stationary distribution for the process.

The algorithm proceeds as follows. Given Xt, we choose a proposal random variable

Yt+1 by

Yt+1 = Xt + σnZt+1 +
σ2

n

2
∇ log πn(Xt)

and then set Xt+1 = Yt+1 with probability

αn(Xt,Yt+1) =
πn(Yt+1)qn(Yt+1,Xt)
πn(Xt)qn(Xt,Yt+1)

∧ 1
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where

qn(x,y) =
1

(2πσ2
n)n/2

exp
(
−1
2σ2

n

‖y − x− σ2
n

2
∇ log πn(x)‖22

)
≡

n∏
i=1

q(xn
i , yi) ,

and ‖ · ‖2 is the usual L2-norm. Otherwise, with probability 1 − αn(Xt,Yt+1), we set

Xt+1 = Xt.

Thus the discrete algorithm has the desired stationary distribution πn. However, the

practical problem of determining the size of σ2
n remains. Specifically, a larger value of σ2

n

corresponds to a larger proposal step size. This potentially allows for faster mixing, but

only if the acceptance probabilities do not become unacceptably small. Such issues are the

subject of the present paper.

2. Main results.

We consider the Metropolis-adjusted discrete approximations {Xt} to the Langevin

diffusion for πn as above, with

πn(x) =
n∏

i=1

f(xi) =
n∏

i=1

eg(xi) (2.1)

a fixed probability distribution on Rn. Throughout, we shall assume that X0 is distributed

according to the stationary measure π. We further assume that g is a C8 function with

derivatives g(i) satisfying

|g(x)|, |g(i)(x)| ≤ M0(x) (2.2)

1 ≤ i ≤ 8, for some polynomial M0(·), and that∫
R

xk f(x) dx < ∞ , k = 1, 2, 3, . . . . (2.3)

Finally, in order to apply standard SDE results, we assume that g′ is a Lipschitz function.

In order to compare these discrete approximations to limiting continuous-time pro-

cesses, it is convenient to define the discrete approximations as jump processes with ex-

ponential holding times. Specifically, we let {Jt} be a Poisson process with rate n1/3, and

let Γn = {Γn
t }t≥0 be the n-dimensional jump process defined by Γn

t = XJt
where we take

σ2
n = `2n−1/3 in the definitions from the previous section, with ` an arbitrary positive

constant. We assume throughout that {Xt} is non-explosive. We let

an(`) =
∫ ∫

πn(x)qn(x,y)αn(x,y)dxdy = E
(

πn(Y)qn(Y,X)
πn(X)qn(X,Y)

∧ 1
)

,

be the πn-average acceptance rate of the algorithm which generates Γ.

The two main results in this paper are the following.
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Theorem 1. We have

lim
n→∞

an(`) = a(`) ,

where a(`) = 2 Φ(−K`3/2), with Φ(x) = 1√
2π

x∫
−∞

e−t2/2dt and

K =

√
E
(

5g′′′(X)2 − 3g′′(X)3

48

)
> 0 , (2.4)

with the expectation taken over X having density f = eg.

Theorem 1 gives a formula for the asymptotic acceptance probability of the algorithm.

We note that, in the Gaussian case where g(x) = −x2/2+C, this theorem reduces precisely

to equation (2.3) of Kennedy and Pendleton (1991).

Theorem 2. Let {Un}t≥0 be the process corresponding to the first component of Γn.

Then as n → ∞, the process Un converges weakly (in the Skorokhod topology) to the

Langevin diffusion U defined by

dUt = (h(`))1/2
dBt +

1
2
h(`)

d

dx
log π1(Ut) dt ,

where h(`) = 2 `2 Φ(−K`3/2) is the speed of the limiting diffusion. Furthermore, h(`) is

maximized at the unique value of ` for which a(`) = 0.574 (to three decimal places).

Theorem 2 may be interpreted as follows. For a given target density πn as above, with

n large, suppose a Metropolis-adjusted discrete approximation to the Langevin diffusion for

πn is run with proposal steps of variance σ2
n. Then setting `n = σnn1/6, the theorem says

that the speed (which is proportional to the mixing rate) of the process is approximately

given by h(`n). Furthermore, the optimal value ˆ̀
n of `n which maximizes this speed is that

for which the asymptotic acceptance probability an(ˆ̀n) is approximately 0.574. Hence σ2
n

should be tuned to be approximately ˆ̀2
n n−1/3, which will make the acceptance probability

approximately 0.574. If it is discovered that the acceptance rate is substantially smaller

or substantially larger than 0.574, then the value of σ2
n should be modified accordingly.
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3. Practical implications.

In this section, we will illustrate our results with a collection of simulation studies.

The asymptotic results of Section 2 hold approximately in rather low dimensional problems

as we shall observe. We shall also see the efficiency advantage of the Langevin algorithm

over the Metropolis algorithm (O(n2/3) as discussed earlier).

Measurements of efficiency in low dimensional Markov chains are not unique (see

Gelman et. al., 1994 for a discussion). Perhaps the most natural measure of efficiency

would be the asymptotic variance of a relevant quantity of interest. Since we do not

wish to specify such a quantity of interest, we have opted instead for a different (but

asymptotically equivalent) criterion. We therefore measure the average squared jumping

distance for the algorithm, which we call the first order efficiency.

Definition. First order efficiency of a multi-dimensional Markov chain X with first

component X(1) say.

first order efficiency = E
(
(X(1)

t+1 −X
(1)
t )2

)
where Xt is assumed to be stationary .

We note that maximising this quantity is equivalent to minimizing the lag-1 auto-

correlations. Recall also that all sensible measurements of efficiency of the algorithm are

asymptotically equivalent (up to a normalisation constant) in the diffusion limit.

Figure 3.1 shows estimated first order efficiencies as a function of the acceptance rate

(what we term the efficiency curve) for a product of standard normals. Dimensions 1, 5, 10,

and 20 are given, and in each case two envelopes of curves are given: the upper envelope for

each graph represents the first order efficiency for the Langevin algorithm; and the lower

envelope, the random walk Metropolis algorithm. The solid curve respresents the asymp-

totic efficiency curve normalised to have the same maximum value as the finite-dimensional

Langevin efficiency. Each point on the graph represent an estimate of first order efficiency

based on 2 × 105 iterations of the algorithm, and the roughness of the curves show that

some error in our estimates of efficiency still exist, although the error is not large enough

to obscure the general picture. [Note that we plot first order efficiency times dimension as

this is the scale on which the Metropolis algorithm’s efficiency is asymptotically constant

in dimension.] The value of the first order efficiency of the Langevin algorithm is therefore

an absolute measure of efficiency relative to the Metropolis dynamics.
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Figure 3.1 First order efficiency of Langevin and random walk Metropo-
lis algorithms as a function of overall acceptance rates (efficiency curves).
The solid lines show the asymptotic curve for the Langevin algorithm;
the upper envelope of points show the Langevin algorithm, and the lower
envelope shows the Metropolis algorithm.

The efficiency gain for the Langevin method is immediately obvious, and is increasing

with dimension. In one dimension, the optimal acceptance rate is in excess of 0.7, however

in 5 or more dimensions the optimal acceptance rate is very close to the limiting value of

0.574. Furthermore, the whole efficiency curve is very well approximated by the asymptotic

curve for dimensions greater than 5.

In the case where f is not symmetric, the asymptotic picture is not as clear in low di-

mensions. Figure 3.2 considers the 10-dimensional case where g = −x2/2−exp{x−2/2}, x ≥
0 and g = −x2/2 for x < 0. In this case the efficiency curve is shifted towards lower accep-

tance rates, and in particular the optimal acceptance rate is less than 0.5. Note however

that the asymptotically optimal acceptance rate (0.574) still gives a relative efficiency for
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this particular problem in excess of 0.95. Furthermore, additional simulations done for the

same density f , but in 1000 dimensions, show excellent agreement with the asymptotic

efficiency curve.

Figure 3.2 The relative efficiency of a non-symmetric 10-dimensional
density (points), with the solid line representing the asymptotic curve.

Finally in this section, a word of caution. The main results in this paper require

very smooth regularity conditions in g. It is tempting to suggest that these are technical

conditions required for the proofs, but perhaps inconsequent to the actual asymptotic

efficiency curve in practical situations. Although it is highly unlikely that the C8 condition

we impose on g is necessary for the results in this paper, some smoothness conditions are

necessary.

Consider, for instance, the following example. Suppose f(x) = 2/3 for 0 ≤ x ≤ 1, and

f(x) = 1/3 for −1 ≤ x < 0, with f(x) = 0 for |x| > 1. In this case, since g′(x) = 0 almost

everywhere, the Langevin algorithm coincides exactly with the random-walk Metropolis

algorithm (from almost all starting values). Therefore, since the asymptotic relative effi-

ciency curves for these algorithms are different, it is impossible that our results and those

of Roberts et al. (1994) both apply to this example; this shows the discontinuity of f (and

hence of g) is significant. Furthermore, additional simulations (not given here) involving

continuous log densities g with discontinuous derivatives suggest that the asymptotics are

very different, and asymptotically optimal acceptance rates are likely to be less than 0.574.
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4. Extensions.

Our main results are proved for sequences of densities of the product form (2.1). It

appears that the asymptotic efficiency curve (efficiency against acceptance rate) is robust

to changes in correlation structure in a number of different extensions, although a number

of the technical issues addressed in the proofs of Section 5 are even more delicate in such

extensions. Some of these types of extensions are discussed in Roberts Gelman and Gilks

(1994). Here we will briefly discuss one extension in an attempt to illuminate why the

efficiency curve remains invariant, even in the presence of correlation. No attempt at

formal proof will be made here.

Consider a sequence of densities {πn} with

πn(x) = f0(x0)
n∏

i=0

f(xi)

where we assume that the {xi} are a−vectors for some a > 1, and x0 is a vector (not

necessarily a-dimensional).

Suppose that we use the usual scaling for the proposal variance, σ2
n = `2n−1/3, and

consider the process produced by just looking at the x0 coordinates. The formal asymp-

totics leading to Theorems 1 and 2 still apply here (although with more involved techni-

calities), so that analogously, the x0 process has a multidimensional diffusion limit with

scaling:

h(`) = 2`2Φ(−Kmult`
3/2) (4.1)

where Kmult is a multidimensional analogue of K appearing in (2.4), which incorporates

information about correlation in πn. However, analogously to Theorem 1, the acceptance

rate also satisfies

a(`) = 2Φ(−Kmult`
3/2) . (4.2)

It remains to observe that the efficiency curve from (4.1) and (4.2) only varies with Kmult
via a multiplicative constant. Specifically, given a constant 0 < a0 < 1, and the scaling

`(a0) which achieves acceptance rate a0,

h (`(a0)) =
a
(
−2Φ−1 (a(`)/2)

)2/3

K
2/3
mult

.

Thus, the relative efficiency curve remains unaltered.

10



We stress that the absolute efficiency of the algorithm varies considerably with many

properties of the target density, though the relative efficiency as a function of acceptance

rate remains unaltered. Similar arguments can be used to (at least heuristically) justify

other extensions of the results of Section 2.

We have only considered the spherical proposal case here. For problems where com-

ponents have very different scales, it will be sensible to allow differently scaled proposals

in different dimensions. There are some interesting problems involved in choosing variance

scaling componentwise, perhaps also in an attempt to allow some components to converge

quicker than others. We do not pursue these problems here.

Finally, we note that extensions to weak convergence of multivariate components are

also possible. For instance, with πn of the form given in (2.1), it is possible (by very

similar techniques to those used below) to show that the process described by the first

c > 1 components of Γn converges weakly to an n-dimensional Markov process consisting

of independent components, each of the type given by the U of Theorem 2.

5. Theorem proofs.

Let us define the generators of the discrete approximation process Γn and of the

(first-component) Langevin diffusion process with speed h(`), viz.

GnV (xn) = n1/3E
(

(V (Y)− V (xn))
(

πn(Y)qn(Y,xn)
πn(xn)qn(xn,Y)

∧ 1
))

,

where the expectation is taken over Y ∼ qn(xn, ·); and

GV (xn) = h(`)
(

1
2
V ′′(x1) +

1
2
g′(x1)V ′(x1)

)
(where g(x1) = log f(x1) as above).

To prove the weak convergence of the processes as in Theorem 2, it suffices (Ethier

and Kurtz, 1986, Chapter 4, Corollary 8.7) to show that there exist events F ∗n ⊆ Rn such

that for all t,

P(Γn
s ∈ F ∗n for all 0 ≤ s ≤ t) → 1 (5.1)

and

lim
n→∞

sup
xn∈F∗

n

|GnV (x)−GV (x)| = 0

for all test functions V in the domain of a “core” for the generator G, provided that this

domain strongly separates points. In the present context, by the nature of G, we can
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restrict to functions V which depend only on the first coordinate x1 of xn. Furthermore,

we may restrict (Ethier and Kurtz, 1986, Chapter 8, Theorem 2.1) to functions V which

are in C∞c , i.e. which are infinitely differentiable with compact support.

The essence of the proof will be showing the uniform convergence of Gn to G, as

n → ∞ (and hence σ2
n → 0), as above. This will involve careful Taylor series expansions

with uniform bounds on remainder terms. It will also involve a quantitative version of the

Lindeberg Central Limit Theorem.

To proceed, we expand GnV (x) in a power series involving powers of n−1/6.

Lemma 3. Defining Zi by Yi = xn
i +σnZi+

σ2
n

2 g′(xn
i ) (so that Zi is distributed as standard

normal), and recalling that q(x, y) = 1√
2πσ2

n

exp
(
− 1

2σ2
n
(y − x− σ2

n

2 g′(x))2
)
, there exists a

sequence of sets Fn ∈ Rn, with limn→∞ n1/3πn(FC
n ) = 0, such that

log
(

f(Yi)q(Yi, x
n
i )

f(xn
i )q(xn

i , Yi)

)
= C3(xn

i , Zi)n−1/2 + C4(xn
i , Zi)n−2/3 + C5(xn

i , Zi)n−5/6

+C6(xn
i , Zi)n−1 + C7(xn

i , Zi, σn) ,

where

C3(xn
i , Zi) = `3

(
−1

4
Zig

′(xn
i )g′′(xn

i )− 1
12

Z3
i g′′′(xn

i )
)

;

and where C4(xn
i , Zi), C5(xn

i , Zi), and C6(xn
i , Zi) are (also) polynomials in Zi and the

derivatives of g. Furthermore, if EZ stands for expectation with Z ∼ N(0, 1), and EX

stands for expectation with X having density f(·), then EXEZ(C3(X, Z)) = EXEZ(C4(X, Z)) =

EXEZ(C5(X, Z)) = 0, while EX(EZ(C3(X, Z)2)) = `6K2 = −2EXEZ(C6(X, Z)) > 0. In

addition,

lim
n→∞

sup
xn∈Fn

E

∣∣∣∣∣
n∑

i=2

log
(

f(Yi)q(Yi, x
n
i )

f(xn
i )q(xn

i , Yi)

)
−

((
n−1/2

n∑
i=2

C3(xn
i , Zi)

)
− `6K2/2

)∣∣∣∣∣ = 0 .

Proof. The (Taylor-series) expansion follows from straightforward (but messy) computa-

tion, done using the Mathematica computation system (Wolfram, 1988). By inspection of

the result, the coefficients are polynomials in Zi and in g and its derivatives. The fact that

EXEZ(C3(X, Z)) = EXEZ(C5(X, Z)) = 0 is then immediate because these coefficients

contain only terms involving odd powers of Z. The facts that EXEZ(C4(X, Z)) = 0 and

that EX(EZ(C3(X, Z)2)+2EZ(C6(X, Z))) = 0 follow from first replacing the even powers

of z by the appropriate moments of the standard normal distribution, and then finding
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(again using Mathematica) explicit anti-derivatives of eg(x)C4 and eg(x)((C3)2 + 2C6), re-

spectively, which are of the form eg(x) times a polynomial in derivatives of g(x), and thus

clearly approach 0 as x → ±∞. (Note: the existence of EX(EZ(C3(X, Z)2)), and hence

of EXEZ(C6(X, Z)), follows since all moments of πn exist.)

We now construct the sequence of sets Fn on which we uniformly control each of

the four terms in the expansion (excluding just the C3 term). The only thing to be

ensure is that limn→∞ n1/3πn(FC
n ) = 0. For j = 4, 5, 6, set Cj(x) = EZCj(x, Z), and

Vj(xi) = Var(Cj(xi, Z)). Because of the polynomial restrictions on g, Cj and Vj are

bounded by polynomials. Now,

E

( n∑
i=2

Cj(xi, Zi)−EX(Cj(X))

)2
 =

n∑
i=2

Vj(xi) +

(
n∑

i=2

(Cj(xi)−EX(Cj(X)))

)2

So setting

Fn,j =

{
x;

∣∣∣∣∣
n∑

i=2

(Cj(xn
i )−EX(Cj(X)))

∣∣∣∣∣ < n5/8

}
∩

{
x;

∣∣∣∣∣
n∑

i=2

(Vj(xn
i )−EX(Vj(X)))

∣∣∣∣∣ < n6/5

}

it is easy to show by Markov’s inequality applied to moments of the constrained functions

that n1/3πn(F c
n,j) → 0 as n →∞, and for x ∈ Fn,j , E

(
(
∑n

i=2 Cj(xi, Zi)−EX(Cj(X)))2
)
≤

O(n5/4). L1 convergence of the 4th 5th and 6th terms in the Taylor expansion is thus as-

sured.

It remains to consider C7(xn
i , Zi, σn). However, by using the remainder formula of the

Taylor series expansion, and again using (2.2), we derive the bound

|C7(xn
i , Zi, σn)| ≤ n−7/6p(xn

i , w)

for some polynomial p with either 0 ≤ wi ≤ Zi or Zi ≤ wi ≤ 0. Now we can always take

such a bounding polynomial to be of the form A(1 + xN
i )(1 + wN ) for sufficiently large A

and for a sufficiently large even integer N . Since we can bound this polynomial in turn by

A(1 + xN
i )(1 + ZN

i ) and since all polynomial moments of Zi exist, it follows that we can

write

EZ |C7(xn
i , Z, σn)| ≤ n−7/6p(xn

i )

for a suitable polynomial p(·). Then, setting u7 = EX(p(X)), v7 = VarX(p(X)), and

Fn,7 =

{
xn ∈ Rn ;

∣∣∣∣∣ 1n
n∑

i=1

p(xn
i ) − u7

∣∣∣∣∣ < 1

}
,
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Chebychev’s inequality implies that

πn(FC
n,7) ≤ v7n

−1 .

Furthermore, for xn ∈ Fn,7,

n∑
i=2

EZ |C7(xn
i , Z, σn)| ≤ (u7 + 1)n−1/6 .

We put Fn = Fn,4 ∩Fn,5 ∩Fn,6 ∩Fn,7. On Fn, terms 4, 5, 6 and 7 converge uniformly

on L1, and it follows that the third term must also. Thus the last statement of the lemma

also holds.

The main point of this lemma is that, in the log-expansion of the proposal density

components, the terms corresponding to n−1/6 and n−1/3 vanish, and the next three terms

each have vanishing expectation. (This is in contrast to with the situation for random-walk

Metropolis, in which no terms cancel and only the first has vanishing expectation.)

To continue, we define G̃n by

G̃nV (xn) = n1/3E

(V (Y)− V (xn))

 n∏
i=2

f(yi) exp
(
− 1

2σ2
n
(xn

i − yi − σ2
n

2 g′(yi))2
)

f(xn
i ) exp

(
− 1

2σ2
n
(yi − xn

i −
σ2

n

2 g′(xn
i ))2

) ∧ 1

 .

In fact, G̃n is like Gn except that the product omits the factor corresponding to i = 1.

The following theorem shows that this omission is unimportant.

Theorem 4. There exists sets Sn ⊆ Rn with n1/3πn(SC
n ) → 0 such that for any V ∈ C∞c ,

lim
n→∞

sup
xn∈Sn

∣∣∣GnV (xn)− G̃nV (xn)
∣∣∣ = 0 .

Moreover,

lim
n→∞

sup
xn∈Sn

E

∣∣∣∣∣∣
(

πn(Y)qn(Y,xn)
πn(xn)qn(xn,Y)

∧ 1
)
−

 n∏
i=2

f(yi) exp
(
− 1

2σ2
n
(xn

i − yi − σ2
n

2 g′(yi))2
)

f(xn
i ) exp

(
− 1

2σ2
n
(yi − xn

i −
σ2

n

2 g′(xn
i ))2

) ∧ 1

∣∣∣∣∣∣ = 0

14



Proof. Since the function x 7→ ex ∧ 1 has Lipschitz constant 1, and since Y1 = xn
1 +

σnZ + 1
2σ2

ng′(xn
1 ), where Z ∼ N(0, 1), it follows that∣∣∣GnV (xn)− G̃nV (xn)

∣∣∣ ≤ n1/3E (|V (Y)− V (xn)||R(xn
1 , Z, σn)|)

where

R(x, z, σ) =
1
2

[
z2 −

(
z +

σ

2
g′(x) +

σ

2
g′(x +

σ2

2
g′(x) + σz)

)2
]
+g(x+

σ2

2
g′(x)+σz)−g(x) .

By a first-order Taylor series expansion in σ, as in the argument for the proof of

Lemma 3, with the integral form of the remainder, we obtain

|R(x, z, σn)| ≤ M1(x)M2(z)n−1/3 (5.2)

for suitable positive polynomials M1(·) and M2(·).
Finally, since V ∈ C∞c , there exists a constant K1 such that

|V (Y)− V (xn)| ≤ K1|Y1 − xn
1 | .

Furthermore, since |Y1 − xn
1 | ≤ σn|Z1|+ σ2

n

2 |g
′(xn

1 )|, and recalling that g′ is assumed to be

Lipschitz, we can write g′(x) ≤ K2(1 + |x|) for a constant K2 ≥ 1. It follows that

n1/3|V (Y)− V (xn)||R(xn
1 , Z, σn)| ≤ K1K2(1 + |x|))M1(x)

(
σn|Z|M2(Z) +

σ2
n

2
M2(Z)

)
.

(5.3)

We now set Sn to be the set on which M1(xn
1 ) ≤ n1/12. By (5.3), and recalling that

Z ∼ N(0, 1) so that M2(Z) and |Z|M2(Z) are integrable, and using Markov’s inequality,

we see that

πn(SC
n ) = πn

(
(M1(xn

1 ))5 ≥ n5/12
)
≤ n−5/12E

(
(M1(xn

1 ))5
)

.

The first result follows. The proof of the second is virtually identical, except that the

estimation of V (Y)− V (xn) is not necessary.
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Lemma 5. There exist sets Tn ⊆ Rn with n1/3πn(TC
n ) → 0 such that for any V ∈ C∞c ,

lim
n→∞

sup
xn∈Tn

∣∣∣∣n1/3E (V (Y1)− V (xn
1 )) − `2

2
(V ′′(xn

1 ) + g′(xn
1 )V ′(xn

1 ))
∣∣∣∣ = 0 .

Proof. We write Y1 = xn
1 + σnZ + 1

2σ2
ng′(xn

1 ), and W (x, z, σ) = V (x + σ z + σ2

2 g′(x)). A

second-order Taylor series expansion with respect to σn then gives that

E (V (Y1)− V (xn
1 )) =

σ2
n

2
(V ′′(xn

1 )+g′(xn
1 )V ′(xn

1 )) + E
(∫ σn

0

∂3V

(∂σ)3
(xn

1 , z, ε)
(σn − ε)2

2
dε

)
.

Therefore, by (2.2), and an argument for the remainder term similar to that used in

the proof of Lemma 3, there exists a polynomial M3(·) such that the remainder term is

less than n−1/2M3(xn
1 ). Letting Tn be the set on which M3(xn

1 ) ≤ n1/12, the result follows

by Markov’s inequality as in the previous lemma.

To proceed, we make some further definitions. Let a(x) = − 1
4g′(x)g′′(x) and b(x) =

− 1
12g′′′(x), so that with C3(x, z) as in Lemma 3 we have

C3(x, z) = l3(a(x)z + b(x)z3) .

Set Qn(xn; ·) = L
(
n−1/2

∑n
i=2 C3(xn

i , Zi)
)

and let φn(xn; t) =
∫

eitwQn(dw) be the corre-

sponding characteristic function. Finally, let φ(t) = e−t2K2/2 be the characteristic function

of the distribution N(0,K2), with K as in Theorem 1.

Lemma 6. There exists a sequence of sets Hn ⊆ Rn such that

(1)

lim
n→∞

n1/3πn(HC
n ) = 0 ;

(2) For all t ∈ R,

lim
n→∞

sup
xn∈Hn

|φn(xn; t)− φ(t)| = 0 ;

(3) For all bounded continuous functions r,

lim
n→∞

sup
xn∈Hn

∣∣∣∣∫
R

Qn(xn, dy)r(y)− 1√
2π`6K2

∫
R

r(y) exp{−y2/`6K2}dy

∣∣∣∣ = 0

where K is as in Theorem 1.
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(4)

lim
n→∞

sup
xn∈Hn

∣∣∣∣∣EZ

(
1 ∧ exp

(
n−1/2

n∑
i=2

C3(xn
i , Zi) − `6K2/2

))
− 2 Φ(−`3K/2)

∣∣∣∣∣ = 0 .

Proof. We define Hn as a region on which certain functionals have average value close

to their mean. Specifically, we let Hn be the set of xn ∈ Rn such that∣∣∣∣∣ 1n
n∑

i=2

h(xn
i )−

∫
h(x)f(x)dx

∣∣∣∣∣ ≤ n−1/4

and

|h(xn
i )| ≤ n3/4 , 1 ≤ i ≤ n , (5.4)

for each of the functionals h(x) = a(x)2, b(x)2, a(x)b(x), a(x)4, b(x)4, a(x)3b(x), a(x)2b(x)2,

a(x)b(x)3.

Statement (1) now follows from Chebychev’s inequality together with (2.2) and (2.3).

Assuming (2) for the moment, statement (3) follows by the continuity theorem for

characteristic functions (applied to an arbitrary sequence of {xn;n = 1, 2, . . .} ∈ H1 ×
H2 × . . .).

Statement (4) then follows since if R ∼ N(−α, 2α), then E(1 ∧ eR) = 2Φ(−
√

α/2)

(cf. Roberts, Gelman, and Gilks, 1994, Proposition 2.5), and furthermore w 7→ 1 ∧ ew is a

bounded functional.

It remains to prove (2). Our proof is a quantitative modification of the standard proof

of the Lindeberg Central Limit Theorem (cf. Durrett, 1991, pp. 98-99).

Taking {xn} to be a fixed sequence in H1 ×H2 × . . ., we set Wi = C3(xn
i , Zi), set

v(xn
i ) = VarZ(Wi) = `6(a(xn

i )2 + 6a(xn
i )b(xn

i ) + 15b(xn
i )2) ,

and decompose φn(xn, t) =
∏n

i=2 θn
i (xn

i , t) as a product of characteristic functions of

n−1/2Wi. Note that by (5.4), for any t ∈ R, we have t2

2nv(xn
i ) ≤ 1 for sufficiently large n.

Hence, using equation (3.6) on page 85 of Durrett (1991), for any ε > 0, we have∣∣∣∣θn
i (xn

i , t)−
(

1− t2

2n
v(xn

i )
)∣∣∣∣ ≤ EZ

(
|t|3

n3/2

|Wi|3

3!
∧ 2t2

n

|Wi|2

2!

)
≤ EZ

(
|t|3

n3/23!
|Wi|3; |Wi| ≤ n1/2ε

)
+

t2

n
EZ

(
|Wi|2; |Wi| > n1/2ε

)
≤ ε|t|3

6n
EZ

(
|Wi|2

)
+

t2

ε2n2
EZ

(
|Wi|4

)
.
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Hence, since xn ∈ Hn, and using Lemma (4.3) on page 94 of Durrett (1991),∣∣∣∣∣φn(xn; t)−
n∏

i=2

(
1− t2

2n
v(xn

i )
)∣∣∣∣∣ ≤

n∑
i=2

(
ε|t|3

6n
EZ

(
|Wi|2

)
+

t2

ε2n2
EZ

(
|Wi|4

))

≤ K2 + 22n−1/4

6
`6ε|t|3 +

t2

ε2 n

(
ξ + 14868`12n−1/4

)
.

where ξ = EXEZ(|Wi|4).
Given δ > 0, we choose ε small enough to make the first term less than δ/2, and then

choose n large enough to make the second term less than δ/2, to get that∣∣∣∣∣φn(xn; t)−
n∏

i=2

(
1− t2

2n
v(xn

i )
)∣∣∣∣∣ < δ .

On the other hand,∣∣∣∣∣
n∏

i=2

(
1− t2

2n
v(xn

i )
)
− e−t2`6K2/2

∣∣∣∣∣
≤
∣∣∣e−t2`6K2/2 − e−t2

∑n

i=2
v(xn

i )/2n
∣∣∣ +

∣∣∣∣∣
n∏

i=2

(
1− t2

2n
v(xn

i )
)
−

n∏
i=2

e−t2v(xn
i )/2n

∣∣∣∣∣ .

Now, the first term goes to 0 uniformly for xn ∈ Hn. Also, by Lemma 4.3 on page 94 of

Durrett (1991), the second term is bounded above by
∑n

i=2 t4v2(xn
i )/(4n2), which goes to

0 uniformly for {xn} sequences (such that xn ∈ Hn) since the individual terms of v2(xn
i )

converge uniformly to their respective limits. The result follows.

Proof of Theorem 1. Recalling that

an(`) = E
(

πn(y)qn(y,x)
πn(x)qn(x,y)

∧ 1
)

,

Theorem 1 follows directly from the second statement in Theorems 3 and 4 and from part

(4) of Lemma 6.

Proof of Theorem 2. We take F ∗n = Hn ∩ Sn ∩ Tn ∩ Fn. Then lim
n→∞

n1/3πn(F ∗Cn ) = 0,

and lim
n→∞

P(Γn
t ∈ F ∗n , 0 ≤ t ≤ T ) = 1 for any fixed T . Also, from Lemma 3, Theorem 4,

and Lemmas 5 and 6, it follows that

lim
n→∞

sup
xn∈F∗

n

|GnV (xn)−GV (xn)| = 0

18



for all V ∈ C∞c which depend only on the first coordinate. Therefore, as discussed at the

beginning of this section, using Corollary 8.7 of Chapter 4 of Ethier and Kurtz (1986), the

weak convergence in Theorem 2 follows.

Finally, to prove the statement about maximizing h(`), we note that this problem

amounts to finding the value ˆ̀ of ` which maximizes the function 2`2Φ(−K`3/2), and

then evaluating â = a(ˆ̀) = 2Φ(−K ˆ̀3/2). Making the substitution u = K`3/2 shows this

is the same as finding the value û of u which maximizes 25/3K−2/3u2/3Φ(−u), and then

evaluating â = 2Φ(−û). It follows that the value of û, and hence also the value of â, does

not depend on the value of K (provided K > 0), so it suffices to take K = 2. For K = 2

we find (again using Mathematica) that ˆ̀ .= 0.82515, so that â
.= 0.57424. This completes

the proof of Theorem 2.
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