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This paper considers how to obtain MCMC quantitative convergence
bounds which can be translated into tight complexity bounds in high-
dimensional settings. We propose a modified drift-and-minorization ap-
proach, which establishes generalized drift conditions defined in subsets of
the state space. The subsets are called the “large sets”, and are chosen to rule
out some “bad” states which have poor drift property when the dimension of
the state space gets large. Using the “large sets” together with a “fitted family
of drift functions”, a quantitative bound can be obtained which can be trans-
lated into a tight complexity bound. As a demonstration, we analyze several
Gibbs samplers and obtain complexity upper bounds for the mixing time. In
particular, for one example of Gibbs sampler which is related to the James—
Stein estimator, we show that the number of iterations required for the Gibbs
sampler to converge is constant under certain conditions on the observed data
and the initial state. It is our hope that this modified drift-and-minorization
approach can be employed in many other specific examples to obtain com-
plexity bounds for high-dimensional Markov chains.

1. Introduction. Markov chain Monte Carlo (MCMC) algorithms are extremely widely
used and studied in statistics, for example, [5, 19], and their running times are an extremely
important practical issue. They have been studied from a variety of perspectives, including
convergence “diagnostics” via the Markov chain output (e.g., [18]), proving weak conver-
gence limits of speed-up versions of the algorithms to diffusion limits [39, 40], and directly
bounding the convergence in total variation distance [3, 16, 24, 25, 35, 42, 44, 46, 47]. Fur-
thermore, there is a recent trend focusing on quantitative mixing time bounds in terms of
either total variation distance or Wasserstein distance for certain types of MCMC methods
(such as Langevin Monte Carlo) and targets (such as strongly log-concave targets), see, for
example, [9, 11]. Among the work of directly bounding the total variation distance, most of
the quantitative convergence bounds proceed by establishing a drift condition and an associ-
ated minorization condition for the Markov chain in question (see, e.g., [34]). One approach
for finding quantitative bounds has been the drift and minorization method set forth by [44].

Computer scientists take a slightly different perspective, in terms of running time complex-
ity order as the “size” of the problem goes to infinity. Complexity results in computer science
go back at least to [7], and took on greater focus with the pioneering NP-complete work of
[8]. In the Markov chain context, computer scientists have been bounding convergence times
of Markov chain algorithms since at least [52], focusing largely on spectral gap bounds for
Markov chains on finite state spaces. More recently, attention has turned to bounding spectral
gaps of modern Markov chain algorithms on general state spaces, again primarily via spec-
tral gaps, such as [29, 30, 53-55] and the references therein. These bounds often focus on the
order of the convergence time in terms of some particular parameter, such as the dimension
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of the corresponding state space. In recent years, there is much interest in the “large p, large
n” or “large p, small n” high-dimensional settings, where p is the number of parameters
and n is the sample size. [38] use the term convergence complexity to denote the ability of a
high-dimensional MCMC scheme to draw samples from the posterior, and how the ability to
do so changes as the dimension of the parameter set grows.

Direct total variation bounds for MCMC are sometimes presented in terms of the conver-
gence order, for example, the work by [45] for a Gibbs sampler for a variance components
model. However, current methods for obtaining total variation bounds of such MCMCs typ-
ically proceed as if the dimension of the parameter, p, and sample size, n, are fixed. It is
thus important to bridge the gap between statistics-style convergence bounds, and computer-
science-style complexity results.

In one direction, [41] connect known results about diffusion limits of MCMC to the com-
puter science notion of algorithm complexity. They show that any weak limit of a Markov
process implies a corresponding complexity bound in an appropriate metric. For example, un-
der appropriate assumptions, in p dimensions, the Random-Walk Metropolis algorithm takes
O(p) iterations (see also [56]) and the Metropolis-adjusted Langevin algorithm (MALA)
takes O(p'/3) iterations to converge to stationarity.

This paper considers how to obtain MCMC quantitative convergence bounds that can be
translated into tight complexity bounds in high-dimensional settings. At the first glance, it
may seem that an approach to answering the question of convergence complexity may be pro-
vided by the drift-and-minorization method of [44]. However, [38] demonstrate that, some-
what problematically, a few specific upper bounds in the literature obtained by the drift-and-
minorization method tend to 1 as n or p tends to infinity. For example, by directly translating
the existing work by [6, 26], which are both based on the general approach of [38, 44] show
that the “small set” gets large fast as the dimension p increases. And this seems to happen
generally when the drift-and-minorization approach is applied to statistical problems. [38]
also discuss special cases when the method of [44] can still be used to obtain tight bounds on
the convergence rate. However, the conditions proposed in [38] are very restrictive. First, it
requires the MCMC algorithm to be analyzed is a Gibbs sampler. Second, the Gibbs sampler
must have only one high-dimensional parameter which must be drawn in the last step of the
Gibbs sampling cycle. Unfortunately, other than some tailored examples [38], most realistic
MCMC algorithms do not satisfy these conditions. It is unclear whether some particular drift
functions lead to bad complexity bounds or the drift-and-minorization approach itself has
some limitations. It is therefore the hope by [38] that proposals and developments of new
ideas analogous to those of [44], which are suitable for high-dimensional settings, can be
motivated.

In this paper, we attempt to address concerns about obtaining quantitative bounds that
can be translated into tight complexity bounds. We note that although [38] provide evidence
for the claim that many published bounds have poor dependence on n and p, the statistics
literature has not focused on controlling the complexity order on n and p. We give some
intuition why most directly translated complexity bounds are quite loose and provide advice
on how to obtain tight complexity bounds for high-dimensional Markov chains. The key ideas
are (1) the drift function should be small near the region of concentration of the posterior in
high dimensions; (2) “bad” states which have poor drift property when n and/or p gets large
should be ruled out when establishing the drift condition. In order to get tight complexity
bounds, we propose a modified drift-and-minorization approach by establishing generalized
drift conditions in subsets of the state space, which are called the “large sets”, instead of
the whole state space; see Section 2. The “large sets” are chosen to rule out some “bad”
states which have poor drift property when the dimension of the state space gets large. By
establishing the generalized drift condition, a new quantitative bound is obtained, which is
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composed of two parts. The first part is an upper bound on the probability the Markov chain
will visit the states outside of the “large set”; the second part is an upper bound on the total
variation distance of a constructed restricted Markov chain defined only on the “large set”.
In order to obtain good complexity bounds for high-dimensional settings, as the dimension
increases, the family of drift functions should be chosen such that the function values are
small near the region of concentration of the posterior, which we will define formally as a
“fitted family of drift functions”, and the “large sets” should be adjusted depending on n and
p to balance the complexity order of the two parts.

As a demonstration, we prove three Gibbs samplers to get complexity bounds. In the first
two examples, we demonstrate how to choose the “fitted family of drift functions”. In the
third example, we demonstrate the use of “fitted family of drift functions” together with
“large sets”. More specifically, we show in Section 3.3 that a certain realistic Gibbs sampler
related to the James—Stein estimator converges in O(1) iterations; see Theorem 3.7. As far as
we know, this is the first successful example for analyzing the convergence complexity of a
nontrivial realistic MCMC algorithm using the (modified) drift-and-minorization approach.
Several months after we uploaded this manuscript to arXiv, [37] successfully analyzed an-
other realistic MCMC algorithm using the drift-and-minorization approach. Although the
analysis by [37] does not make use of the “large set” technique proposed in this paper, they
do make use of a “fitted family of drift functions”, which they use an informal concept called
“a centered drift function”. We explain in this paper that when there exists some “bad” states,
using a “fitted family of drift functions” might not be enough to establish a tight complex-
ity bound. For example, for the Gibbs sampler we successfully analyze in Section 3.3, it is
unknown how to obtain tight complexity bound by the traditional drift-and-minorization ap-
proach or other approaches. This is confirmed in a later study by [10]. To the best of our
knowledge, our approach using the “large set” is the only successful approach so far to get
the tight complexity bound of this example. For another successful example using the “large
set”, we refer to recent work in [57] for high-dimensional Bayesian variable selection. An
important message from the successful analysis of several MCMC examples using the “large
set” together with a “fitted family of drift functions” is that complexity bounds can be ob-
tained even without any particular form of nondeteriorating convergence bounds. Previous
attempts in the literature on studying how the geometric convergence rate behaves as a func-
tion of p and n are incomplete. It is our hope that our approach can be employed to many
other specific examples for obtaining quantitative bounds that can be translated to complexity
bounds in high-dimensional settings.

Notation: We use 4 for weak convergence and 7 (-) to denote the stationary distribution of
the Markov chain. The total variation distance is denoted by || - |lvar and the law of a random
variable X denoted by £(X). We adopt the Big-O, Little-O, Theta, and Omega notations.
Formally, T'(n) = O(f(n)) if and only if for some constants ¢ and ng, 7 (n) < cf(n) for
all n > ng; T(n) = Q(f(n)) if and only if for some constants ¢ and ng, T'(n) > cf (n) for
all n > ng; T(n) is O(f(n)) if and only if both T'(n) = O(f(n)) and T (n) = Q(f(n));
T (n) =o(f(n)) if and only if T'(n) = O(f (n)) and T (n) # Q2(f (n)).

2. Generalized geometric drift conditions and large sets. Scaling classical MCMCs
to very high dimensions can be problematic. Even if a chain is geometrically ergodic for fixed
n and p, the convergence of Markov chains may still be quite slow as p — oo and n — o0.
Throughout the paper, we assume the Markov chain is positive Harris recurrent, aperiodic,
and m-irreducible, where 7 denotes the unique stationary distribution. For a Markov chain
{(X® i=0,1,...} on a state space (X, B) with transition kernel P(x, -), defined by

(1) Px,B)=P(x""DeB| XD =x) VxeX,BeB
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the general method of [44] proceeds by establishing a drift condition
) E(f(XD) 1 XO =x)<rfx)+b Vxed,

where f : X — R™T is the “drift function”, some 0 < A < 1 and b < c0; and an associated
minorization condition

(3) P(x,)>€Q() VxeR,

where R :={x € X' : f(x) <d} is called the “small set”, and d > 2b/(1 — A), for some € > 0
and some probability measure Q(-) on X'. Then [44], Theorem 12, states that under both drift
and minorization conditions, if the Markov chain starts from an initial distribution v, then for
any 0 <r < 1, we have

4) I£(x®) - x| <(1_E)rk+a—k(aA)rk|:l+Ev(f(x))+L:|’

var — 1 —A

where ¢~ ! = Hfiiyd’ A =1+2(0d+ b) and E,[ f(x)] denotes the expectation of f(x)
over x ~ v(-). However, it is observed, for example, in [37, 38], that for many specific bounds
obtained by the drift-and-minorization method, when the dimension gets larger, the typical
scenario for the drift condition of equation (2) seems to be A going to one, and/or b get-
ting much larger. This makes the “size” of the small set R grow too fast, which leads to
the minorization volume € go to 0 exponentially fast. In the following, we give an intuitive
explanation of what makes a “good” drift condition in high-dimensional settings.

2.1. Intuition. 1t is useful to think of the drift function f(x) as an energy function [24].
Then the drift condition in equation (2) implies the chain tends to “drift” toward states which
have “lower energy” in expectation. It is well-known that a “good” drift condition is estab-
lished when both A and b are small. Intuitively, A being small implies that when the chain
is in a “high-energy” state, then it tends to “drift” back to “low-energy” states fast; and b
being small implies that when the chain is in a “low-energy” state, then it tends to remain in
a “low-energy” state in the next iteration too. In a high-dimensional setting as the dimension
grows to infinity, for a collection of drift conditions to be “good”, we would like it to satisfy
the following two properties:

P1. X is small, in the sense that it converges to 1 slowly or is bounded away from 1;
P2. b is small, in the sense that it grows at a slower rate than do typical values of the drift
function.

We explain the intuition behind the properties and define a new notion of “fitted family of
drift functions” in this subsection and later demonstrate how to establish the properties using
examples in Section 3. One way to understand this intuition is to think of it as controlling
the complexity order of the size of the “small set”, R = {x € X : f(x) < d}. Since d >
2b/(1 — A), if A converges to 1 slowly or is bounded away from 1, and if b is growing at
a slower rate than typical values of f(x) (we will illustrate the meaning of “typical values”
later in examples), then the size of the small set parameter d can be chosen to have a small
complexity order on n and/or p. This in turn makes the minorization volume € converge to 0
sufficiently slowly (or even remain bounded away from 0).

Next, we define the notion of “fitted family of drift functions”, which is somewhat related
to the informal concept of “centered drift function” in [37].

DEFINITION 2.1. Let m? be the target distributions when the dimension of the state
space is p. We call a collection of nonnegative functions, { f,(:)}5_,, a fitted family if

p=1
5) pli)rréo Exr[fp(x)] =0.
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Then a fitted family of drift functions is just a fitted family of functions which also satisfy
a family of (generalized) drift conditions. Note that the fitted family of functions can also
depend on n if n is a function of p. In the rest of the paper, we may simply write w7 as
m and fp(x) as f(x) for simplicity. However, we should keep in mind that the notation
and f(x) are actually a family of target distributions and a fitted family of drift functions in
high-dimensional settings when we study the behavior of the Markov chains for p — oo.

Now we explain the intuition on why we should use a fitted family of drift functions in
high-dimensional settings. For clarity, we first assume that A is bounded away from 1, and
focus on conditions required for b to grow at a slower rate than typical values of f(x).
Assume for definiteness that p is fixed and n — o0, and the drift function is scaled in such
a way that f(x) = O(1) and there is a fixed typical state X with f(X) = ©(1) regardless of
dimension. Then, to satisfy property P2 above, we require that » = o(1). On the other hand,
taking expectation over x ~ 7 (-) on both sides of equation (2) yields b > E [ f(x)]/(1 — 1),
so b= Q(E;[f(x)]). To make b = o(1) implies that the drift function should be chosen such
that E, [ f(x)] — 0, which is exactly the definition of the fitted family of drift functions.
Therefore, to get a small b in a high-dimensional setting, we require a (properly scaled) drift
function f(-) whose values f(x), where x ~ m(-), concentrate around 0, which is guaranteed
by the fitted family of drift functions.

Note that the fitted family of drift functions for high-dimensional settings can be very dif-
ferent than traditional “good” drift functions. For example, to study a Markov chain {X®}
sampling a fixed-dimensional target v, one might think f(x) =7 (x)™% for some fixed num-
ber a > 0 is a good candidate for the drift function. However, this is not a good intuition for
choosing the fitted family of drift functions for the high-dimensional settings. The following
is a toy example.

EXAMPLE 2.2. Consider 7 is the standard multivariate Gaussian A/ (0, I »). One choice
for the drift function could be f(x) = exp(||x||*) — 1 or f(x) = ||x||>/p (which is similar to
the one used in [44], Example 1). However, a better fitted family of drift functions in high
dimensional settings could be

©6) £ =(IlxI>/p— 1)

This is because that under X ~ A(0, I),), we know ||X I>/p concentrates around 1. The
family of drift functions {(||x||?/p — 1)2};0: | exactly fits this concentration phenomenon.
The traditional popular choices of drift functions do not have this property.

Note that in the existing literature, the drift functions used to establish the drift condition
usually don’t satisfy the definition of fitted family of drift functions. This is because in the
traditional setting where n and p are fixed, a “good” drift condition is established whenever A
and b are small enough for specific fixed values of n and p. The complexity orders of A and b
as functions of n and/or p are not essential, so fitting the concentration region of the posterior
as dimension increases is not necessary. As a result, many existing quantitative bounds cannot
be directly translated into tight complexity bounds, since the size of the small set does not
have a small complexity order on n and/or p. At the very least, one has to re-analyze such
MCMC algorithms using a fitted family of drift functions.

Next, we focus on establishing A that is either bounded away from 1 or converges to 1
slowly, assuming a fitted family of drift functions is already chosen. Intuitively, A describes
the behavior of the Markov chain when its current state has a “high energy”. If A goes to
1 very fast when n and/or p goes to infinity, this may suggest the existence of some “bad”
states, that is, states which have “high energy”, but the drift property becomes poor as n
and/or p gets large. Therefore, in high dimensions, once the Markov chain visits one of
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these “bad” states, it only slowly drifts back toward to the corresponding small set. Since the
drift condition in equation (2) must hold for all x € X, the existence of “bad” states forces
A go to 1 very fast. And since the small set is defined as R = {x € X : f(x) < d} where
d > 2b/(1 — X), the scenario A — 1 very fast forces R to become very large, and hence the
minorization volume € goes to zero very fast. One perspective on this problem is that the
definition of drift condition in equation (2) is too restrictive, since it must hold for all states
x, even the bad ones.

In summary, we are able to establish a small b as in P2 above by using a fitted family
of drift functions. However, the other difficulty in establishing a small A as in P1 above is
the existence of some “bad” states when n and/or p gets large. Since the traditional drift
condition defined in equation (2) is restrictive, the traditional drift-and-minorization method
is not flexible enough to deal with these “bad” states. In the following, we instead propose
a modified drift-and-minorization approach using a generalized drift condition, where the
drift function is defined only in a “large set”. This allows us to rule out those “bad” states in
high-dimensional cases.

2.2. New quantitative bound. We first relax the traditional drift condition and define a
generalized drift condition which is established only on a subset of the state space. Recall that
{X ()} denotes the Markov chain on a state space (X, B) with a transition kernel P (x, -),Vx €
X. Let Pk(x, -) be the k-step transition kernel. Denote Ry as the “large set”, that is, Ry € B
is a subset of X.

DEFINITION 2.3 (Generalized drift condition on a large set). There exists a drift function
f : X — R™T such that for some A < 1 and b < o0,

(7) E(f(XD) | X© =x)<irf(x)+b Vx e Ry,
and (C1) or (C1’) holds.

(C1). The “large set” Rg is defined by Ry = {x € X' : f(x) < dp} for some dy > 0.
(C1"). The transition kernel P (x, -) is a composition of reversible (with respect to ) steps

.....

dy), where I > 1 is a fixed integer, and
(8) E(f(XD) ] XO =x) <E(f(XD) | X© =x) VxeRy,

where {X®} denotes a restricted Markov chain with a transition kernel ]_[iI:1 P; where
P;(x,dy) := P;(x,dy) for x, y € Ry, x # y, and P;(x,x) := 1 — P;i(x, Ro\{x}), Vx € Ry.

REMARK 2.4. Note that only one of (C1) and (C1’) is required. For (C1’), the Markov
chain needs to be either reversible or can be written as a composition of reversible steps.
This condition is very mild since it is satisfied by most realistic MCMC algorithms. For
example, full-dimensional and random-scan Metropolis—Hastings algorithms and random-
scan Gibbs samplers are reversible, and their deterministic-scan versions can be written as
a composition of reversible steps. For (C1), it is required that the “large set” is constructed
using the drift function in a certain way but there is no restriction for the transition kernel P.
If Rp is constructed as in (C1) then equation (8) automatically holds. Therefore, one should
verify (C1’) if one hopes to have more flexibility for constructing Ry than the particular way
in (C1). Particularly, if the drift function f(x) depends on all coordinates, it might be hard to
control all the states in {x € X' : f(x) <dp} as the dimension increases. Then (C1’) might be
preferable.



COMPLEXITY RESULTS FOR MCMC DERIVED FROM QUANTITATIVE BOUNDS 1465

REMARK 2.5. To verify (C1’) in Definition 2.3, one has to check a new inequality
E(f(XD) | XO =x) <E(f(XD) | X©@ = x). This inequality in (C1") implies the “large
set” Rg should be chosen such that the states in Ry have “lower energy” on expectation. This
is intuitive since we assume the “bad” states all have “high energy” and poor drift property
when n and/or p gets large. One trick is to choose Ry by ruling out some (but not too many)
states with “high energy” even if the states are not “bad”. In Section 3.3, we demonstrate
the use of this trick to select the “large set” Ry so that E(f(ff(l)) | X0 = x) < E(f(X(l)) |
X© = x) can be easily verified. The constructed Ry in Section 3.3 satisfies (C1”) but not
(C1).

Next, we propose a new quantitative bound, which is based on the generalized drift condi-
tion on a “large set”.

THEOREM 2.6. Suppose the Markov chain satisfies the generalized drift condition in
Definition 2.3 on a “large set” Ry. Furthermore, for a “small set” R :={x e X : f(x) <d}
where d > 2b/(1 — )\), the Markov chain also satisfies a minorization condition:

(©)) P(x,)=€Q() VxeR,

for some € > 0, some probability measure Q(-) on X. Finally, suppose the Markov chain
begins with an initial distribution v such that v(Ry) = 1. Then for any 0 <r < 1, we have

@A) [+ E,J[f)] + 1251 — o'
O[k _ ark

|L(X®) =7y < (1 — €Q(RO)™ +

var —

(10) .

+km(RS)+ Y vP(R§),
i=1

where o' = IEPA2 A = 1 4-2(0d + b), and vP () := [y P! (x, )v(dx).

PROOF. See Appendix A. [

REMARK 2.7. Note that the new bound in Theorem 2.6 assumes the Markov chain be-
gins with an initial distribution v such that v(Rp) = 1. This assumption is not very restrictive
since the “large set” ideally should include all “good” states. In high-dimensional settings, the
Markov chain is not expected to converge fast beginning with any state (see Section 3.3.2 for
discussions on initial states). Furthermore, the use of “warm start” becomes popular recently,
see, for example, [12]. However, it doesn’t directly relate to the large set. We only require that
the initial distribution p is supported in the large set. For example, n can be a point mass.
For the term Q(Rp) in equation (10), it can be replaced by any lower bound of Q(Ry). Since
the “large set” is ideally chosen to include all “good” states, one can expect Q(Ry) is at least
bounded away from 0. In particular, if we have established an upper bound for P (x, Rj) with
x € R, then we can apply € Q(R) < P(x, R) to get an upper bound of Q(Rj) which can be
turned into a lower bound on Q(Ry).

REMARK 2.8. In the proof of Theorem 2.6, the generalized drift condition in Defini-
tion 2.3 essentially implies a traditional drift condition in equation (2) for a constructed “re-
stricted” Markov chain only on the “large set” Ry. The first two terms in the upper bound
equation (10) are indeed an upper bound on the total variation distance of this constructed
“restricted” Markov chain. Note that the general idea of studying the restriction of a Markov
chain to some “good” subset of the state space has appeared in the literature, such as [13,
15, 21, 31-33, 51] and the references therein, in which different ways of restrictions have
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been considered for different reasons. For example, [4] studied the rate of convergence of the
MALA algorithm by a similar argument, which is later extended in [14] to study contrac-
tion rate in Wasserstein distance w.r.t. Gaussian reference measure. However, the argument
in [4] is only for the MALA algorithm and the proof technique is by constructing a restricted
chain. Comparing with [4], our Theorem 2.6 is for general MCMC algorithms with weaker
conditions in (C1) and (C1’). In the proof, we use either a trace chain or a restricted chain
depending on which condition is satisfied. Most importantly, the motivation of this work is to
obtain tight complexity bound which is quite different from [4]. In Theorem 2.6, the goal of
considering a “good” subset of the state space is to obtain better control on the dependence
on n and p for the upper bound.

REMARK 2.9. The last two terms in the upper bound equation (10) give an upper bound
of the probability that the Markov chain will visit Rj starting from either the initial distri-
bution v or the stationary distribution . Therefore, the proposed method in Theorem 2.6
is a generalized version of the classic drift-and-minorization method [44] by allowing the
drift condition to be established on a chosen “large set”. Indeed, if we choose Ry = X, then

equation (10) is almost the same as equation (4), except slightly tighter due to the terms o"%.

REMARK 2.10. One more note about equation (10) is that the new bound does not de-
crease exponentially with k. For example, the term k (R() is linear increasing with k for
fixed n and p. We emphasize that we do not aim to prove a Markov chain is geometrically
ergodic here. An upper bound which decreases exponentially with k for fixed » and p does
not guarantee to have a tight complexity order on n and/or p, which has been discussed in
[38]. Instead, our new bound in equation (10) is designed for controlling complexity orders of
n and/or p for high-dimensional Markov chains. In Section 3.3, we obtain a tight complexity
bound for a Gibbs sampler of a simple random effect model related to the James—Stein esti-
mator. Previous unsuccessful attempts for the same Gibbs sampler (see [10]), were focusing
on how to obtain convergence bounds with geometric/polynomial rates as a function of p and
n. The successful analysis of the Gibbs sampler in the current paper implies that complexity
bounds can be obtained even without any particular form of nondeteriorating convergence
bounds.

2.3. Complexity bound. Note that mixing time is often defined uniformly over initial
states, which is difficult to extend to general state spaces. In this paper, the term “mixing
time” is defined depending on the initial state. The formal definition is given in the following.

DEFINITION 2.11.  Forany 0 < ¢ < 1, we define the mixing time K , of a Markov chain
(XY with initial state x by

(11) Key = argmkin{H/J(X(k)) — 7|, <c} subjectto X =x.

The proposed new bound in Theorem 2.6 can be used to obtain complexity bounds in high-
dimensional settings. The key is to balance the complexity orders of k on n and/or p required
for both the first two terms and the last two terms of the upper bound in equation (10) to be
small. The complexity order of k on n and/or p for the first two terms to be small can be
controlled by adjusting the “large set”. The “large set” should be kept as large as possible
provided that “bad” states have been ruled out. For the last two terms to be small, we should
determine the growth rate of k as a function of n and p so that

k
(12) km(RG)+ > vP'(RE) — 0.

i=1
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This may involve (carefully) bounding the tail probability of the transition kernel, depending
on the definition of the “large set” and the complexity order aimed to establish.

We give a direct corollary of Theorem 2.6 on mixing time in terms of p. In general, mixing
time in terms of both n and p can be obtained using Theorem 2.6.

COROLLARY 2.12. Suppose Theorem 2.6 has been established for every dimension p.
Let kj, and k,, be sequences of positive integers as functions of p such that both k, — oo and

k, — oo as p — oo. Furthermore, lim,_, oo k), — k, > 0 and

k[’

(13) kpm(RG) + > vP'(R§) — 0,
i=1

log(2 + Ey[f ()] + 125 log(eA/(1 — € O(Rp))
—log(1 — € Q(Ro)) log(@)

Then the mixing time of the MCMC starting from v has the complexity order Ok p)-

(14)

= O(kp).

Using Corollary 2.12, one can plug-in the orders of b, 1 — A, and € to get the complexity
bound. The following result is directly from Corollary 2.12.

COROLLARY 2.13. Suppose Theorem 2.6 has been established for every dimension p
and cy, ..., cs5 are nonnegative constants such that é = O(p), ﬁ = O(p?), and b =
O(p®?). Also, ¢4 > ¢ and

p
(15) pm(RG) + Y _ vP'(RG) — 0.

i=1
Furthermore, if Q(Rg) = o(1) and E,[ f (x)] = O(p), then the mixing time starting from v
has the complexity order O(pt log(ps + p2T<3)log(p<2te3)) = O(pi (log(p))?).

We will discuss several MCMC examples in Section 3 to demonstrate the use of the fitted
family of drift functions and “large sets” to get complexity bounds.

2.4. Discussions. We finish this section by giving a few more remarks and discussions
on our main results.

e Geometric ergodicity: The Markov chain to be analyzed in Theorem 2.6 does not have
to be geometrically ergodic. The proof of equation (10) only implies that, after ruling
out “bad” states, a constructed “restricted” Markov chain defined on the “large set” is
geometrically ergodic. Therefore, the new bound in equation (10) can be used to analyze
nongeometrically ergodic high-dimensional Markov chains.

e Relation to spectral gaps: Many approaches in MCMC literature bound the spectral gap of
the corresponding Markov operator [29, 30, 53-55]. However, on general state spaces, the
spectral gap is zero for Markov chains which are not geometrically ergodic, even if they do
converge to stationarity. Our results do not require the Markov chain to be geometrically
ergodic. Instead, we only require the constructed “restricted” chain on the “large set” in
our proof is geometrically ergodic. Therefore, we cannot connect our results to bounds on
spectral gaps. Furthermore, we do not require the Markov chain to be reversible. So our
results apply even in the nonreversible cases, which makes spectral gaps harder to study or
interpret. For these reasons, we do not present the main results in terms of spectral gaps.
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e Other types of drift condition: In this paper, we use the drift condition of the type in [44].
There is another popular drift condition (e.g., in [43]) and the connection between the two
is well-known (see [25], Lemma 3.1). Therefore, it is straightforward to establish our main
result using the other drift condition in [43].

o Complexity of MCMC estimators: It would be nice to obtain rate of convergence (or
nonasymptotic bounds) for general MCMC estimators. The proof techniques in the ex-
isting literature on establishing rate of convergence of MCMC estimators [1, 2, 27, 28, 36,
48-50] requires certain conditions such as geometric/polynomial drift conditions, or spec-
tral gaps. However, our result doesn’t require establishing a geometric/polynomial drift
condition or a spectral gap. Therefore, it is not clear how to connect our complexity re-
sults to complexity of other MCMC estimators. This is certainly an interesting direction
for future work.

3. Gibbs sampler convergence bound. In this section, we study several examples of
Gibbs sampling to analyze the convergence complexity using the proposed approach. In Sec-
tion 3.1 and Section 3.2, we consider a simple Gaussian example and a hierarchical Poisson
example. Simplified versions of both examples for fixed dimensions was originally studied in
[44], Example 1 and Example 2, and the original mixing times have poor complexity orders
in terms of dimensions. We study the extensions of them in the high-dimensional setting and
obtain tight complexity bounds by choosing fitted families of drift functions. In Section 3.3,
we study the MCMC model in [46] which is related to the James—Stein estimator. We demon-
strate how to use both the fitted family of drift functions and the “large sets” to obtain a tight
complexity bound.

Note that although the bound in Theorem 2.6 contains different “admissible” growth com-
binations such as of b, 1/(1 — 1), and 1/€ (see also Corollary 2.13), the minorization volume
€ relies on the small set which is determined by both b and A. Furthermore, if b is fairly
large, it is not surprising that A can be bounded away from 1. Therefore, we can summarize
our general principle in analyzing all the three examples as follows.

1. We first focus on choosing a fitted family of drift functions so that E[ f (x)] < b where
b has a small order.

2. Next, we establish the drift condition. If A from the drift condition goes to 1 too fast, we
apply the “large set” to rule out certain states. After the first two steps, we get a generalized
drift condition which leads to a small set with reasonably “size”.

3. Finally, we focus on establishing a (potentially multi-step) minorization condition to
obtain € which goes to zero slowly (or bounded away from 0).

3.1. A Gaussian toy example. A bivariate Gaussian model was studied in [44], Exam-
ple 1, as a demonstration of the drift-and-minorization approach. In this subsection, we
study an extension of this example to the high-dimensional setting. Suppose our target 7 is
N, X),a2 p—dimensi(?na% mgltivariate Gaussian, where w= (ﬁ;) anq Y= (g; g;) To
sample from the target distribution, we use a two-step Gibbs sampler as in [44], Example 1.

Writing X = (g ), the conditional distribution can be written as

(16) X1 | Xa=x2~N(u1+ 1255 (2 — 112), 11 — 1255, a1)

and similarly for X5 | X;.
For simplicity, we only consider the setting such that 1 = uo =0 and X711 = X = Iy
and $1p = ¥o; = L1, Ttis straightforward to extend our analysis to general cases of i and X.
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The corresponding Gibbs sampler is

1 3

(17) x(M ~J\/’<§X§O), le),
1 3

(18) X~ (551750

Note that X EO) is not used in the updates.
If we choose a drift function similar to the one used in [44], such as

(19) X)) = 1 X201*/ p.

Then as Xél) ~N (}LX éo), %(1 + }1)1 p), it can be easily verified that the following drift con-

dition can be established:
1
(20) E[f4(xM)] < Ef°1d(X(°>) +1.

However, as || X»||?/p concentrates to 1 under stationarity, the drift condition leads to a small
set {X : || X2]>/p = O(1)} in which the states that ||X»||?/p is much smaller than 1 are
included.

In our analysis, we choose a fitted family of drift functions which lead to a small set with
much smaller size:

X 2 2

1) FreV(X) = (M - 1> .
p
We can establish the following drift condition:
1

(22) EL/" (X D)] < 2"V (X®) +00/p).
The corresponding small set {X : 1 —C/./p < 1X2112/p <1+ C/./p} for some constant C,
fits exactly the concentration region of the target as p — oo. Using the above drift condition

and a multi-step minorization condition, we can obtain the mixing time is O(log(p)). Our
main result is in the following.

THEOREM 3.1. For the two-step Gibbs sampler for our multivariate Gaussian model,

suppose the initial state satisfies || X 50) 2 = O(p), then there exists positive constants Cy, C»
such that

X512 N\
@ o) =l = | €1+ (2= 1) o~

where y < 1 is a fixed constant and number of steps n = |kC>log(p)| + 1 where k is any
positive integer.

PROOF. See Appendix F. [J
This implies the following complexity bound directly.

COROLLARY 3.2. Under the assumptions of Theorem 3.1, the mixing time of the Gibbs
sampler is O(log(p)).
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3.2. A hierarchical Poisson model. We study a hierarchical Poisson model originally for
analyzing a realistic data set in [17]. A Gibbs sampler for this model has been studied by [17]
and a (numerical) quantitative bound was studied using the drift-and-minorization approach
in [44], Example 2. In this subsection, we study the Gibbs sampler in the high-dimensional
setting.

Suppose the data has the form {Y;, #;}7_, where Y¥; represents the number of failures over
a time interval #; of n nuclear pumps. One can model the failures as a Poisson process with
parameter A;. Thus, during a observation period of length #;, the number of failures Y; fol-
lows a Poisson distribution of parameters A;#;. We are interested in inferring the parameters
A= (A1,...,A,) from the data {Y;, t;}. We follow a hierarchical Bayesian approach where
we assume that A1, ..., A, are conditional independent on a hyperparameter 8 and follow a
gamma distribution with density

(24) (A | B) =

B o exp(— ),
NGO
where « is a constant. We assume further that the hyperparameter 8 follows itself a prior
gamma distribution Ga(p, §) where p and § are fixed constant

57!

(25) n(p) = mﬂ"‘l exp(—8p).

For simplicity, in this example we assume the time intervals are unit, thatis, #; = 1 forall i.
It is straightforward to extend our analysis to general cases of time intervals.
Overall, the model can be written as

(26) Yi | A, B ~Poisson(};), i=1,...,n,

(27) Ai | B ~indep Gala, B), i=1,...,n,

(28) B~ Ga(p, ).

In this example, we have p=n+ 1 and x = (A1, ..., A, B). The posterior satisfies
n )\’Xi

(29) w(x [ Y, ..., Yy) < (B)m (A Iﬂ)ﬂlﬁeXP(—ki)-
i=

Note that this multidimensional distribution is rather complicated and it is not obvious how
the rejection sampling or importance sampling could be efficiently used in this context. As
the conditional distributions 7 (A, ..., A, | B, {¥;}) and w (B | {A;}, {¥;}) admit standard para-
metric forms, we can write a Gibbs sampler with the following updating order:

n
k+1 k+1
30y a0 gy ) = T2 (Y 18R, 1),
i=1

(31) BV Ry~ Ga(Yi +a, 14+ %), i=1,...,n,

n
(32) BEHD | (V) iy ~ Ga(p +na, 8+ Z*E"“))-
i=1

Next, we present the main result for this Gibbs sampler. The key step is to use a fitted
family of drift functions:

(33) falr) = (Zn—: - %)2.

Our main result for this Gibbs sampler is as follows.
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) THEOREM 3.3. Suppose there exists a constant N that for all n > N the data satisfies
=1 Zl i € I, u] where | and u are two fixed constant such that 0 <[ < u < co. Then
there exlsts a constant C such that for large enough n and for all k, we have
k P2t 1 A 1\ &
(34) HﬂX“%ﬂwmf[C+(LJjJ——g@)]V’

where y < 1 is a constant.

PROOF. See Appendix G. [

Note that it is very reasonable to make some reasonable assumptions on the observed data
since the posterior depends on the observed data and we are actually studying a sequence of
posteriors for the convergence complexity. In Theorem 3.3, we assume there exists a constant
N that for all n > N the data satisfies Y := %Zi Y; € [l,u] where [ and u are two fixed
constant such that 0 </ < u < oo. This assumption is quite weak. For example, it holds if the
data is indeed generated from the model with some “true” parameters.

Theorem 3.3 implies the following complexity bound directly.

COROLLARY 3.4. Under the assumptions of Theorem 3.3, if the initial state satisfies
% Y )»1(0) =0O(1) and 1/8© = O(1), the mixing time of the Gibbs sampler is O(1).

3.3. A random effect model related to the James—Stein estimator. In this subsection, we
concentrate on a particular MCMC model, which is related to the James—Stein estimator [46]:

Yi |6 ~N(6.oy), 1<i<n,

6 | 1,05 ~N(n,03), 1<i<n,

(35)
n ~ flat prior on R,
o2 ~1G(a, b),
where 0‘2, is assumed to be known, (Y7, ..., Y},) is the observed data, and x = (o/%, w01, ...,

6,) are parameters. Note that we have the number of parameters p = n + 2 in this exam-
ple. For simplicity, we will not mention p but only refer to n for this model. The posterior
distribution satisfies

L(0F, 1,01,....0,|Y1,..., )

_G-w? =62

(36) ba (0 —a—1 _b/o, 1

ﬁ 20% e 2(7‘2/
F(a) i=1 ,/27ro*A ,/2710‘2,

A Gibbs sampler for the posterior distribution of this model has been originally analyzed in
[46]. A quantitative bound has been derived by [46] usmg the drift-and-minorization method

with a drift function f(x) =""_,(0; — Y)? where Y = Z _1 Yi. We first observe that this
drift function doesn’t lead to a fitted family of drift fun~ct10ns in high-dimensional setting.
For example, select a “typical” state X = (6%, ,01,...,0,) such that 6; = Y;, we get f(x) =

Y- Y)2. Under reasonable assumptions on the observed data {Y;}, we can get the
properly scaled drift function %f()?) = % = Y)?=0©(1). Then b/n = % Y=
Y)? + #G% = ©O(1) in [46]. Therefore, the definition of fitted family of drift functions

is not satisfied. Furthermore, the established A in [46] converges to 1 very fast, satisfying
1/(1 — X)) = Q(n). Therefore, if we translate the quantitative bound in [46] into complexity
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orders, it requires the size of the “small set” to be € (n?), which makes the minorization
volume € be exponentially small. This leads to upper bounds on the distance to stationarity
which require exponentially large number of iterations to become small. This result also
coincides with the observations by [38] when translating the work of [6, 26].

REMARK 3.5. When the dimension of the state space is fixed, [23], Appendix C, states a
way to use rejection sampler to obtain samples from the posterior of this model. However, it
is easy to show that the acceptance probability of the rejection sampler in [23], Appendix C,
decreases very fast as the dimension increases. See Appendix H for more details. As we will
show the mixing time of our Gibbs sampler for this model is O(1), the rejection sampler in
[23], Appendix C, is not as efficient in high dimensions as our Gibbs sampler.

We demonstrate the use of the modified drift-and-minorization approach by analyzing a
Gibbs sampler for this MCMC model. Defining x® = ((62)®, u® 6% 6% t0 be
the state of the Markov chain at the kth iteration, we consider the following order of Gibbs
sampling for computing the posterior distribution:

2\ (k)
- o
llw+4>A,A/<9w>,£_él__>,
n

Ql ~ N )

9 b ’n7
©7 2+ ©@HP o+ (@®
n
N R e n=1 LSkt _ garny2
R ~16{a S 530 2).

Note that, in the language of [22], this is an “out-of-order” block Gibbs sampler, so
inferences for the posterior distribution should be based on a “shifted” output sample
((oﬁ)(k), u(k“), {Gi(k+l)}). In any case, it still has the same rate of convergence [22], Propo-
sition 3, so our convergence analysis applies to both our version and the original block Gibbs
version of [46].

We prove that convergence of the Gibbs sampler is actually very fast: the number of it-
erations required is O(1). More precisely, we first make the following assumptions on the
observed data {Y;}: there exists § > 0, 6‘2, < 00, and a positive integer Ny, such that, almost
surely with respect to the randomness of {Y;}:

"L (Y —Y)?

38 25 <
(38) ovtos n—1

<&} Vn>Np.

The assumption in equation (38) is quite natural. For example, if the data is indeed gener-
ated from the model with a “true” variance oﬁ > 0 then equation (38) obviously holds. More
generally, the upper bound is just to ensure >, (¥; — Y)? = O(n). For the lower bound,
note that our MCMC model implies that the variance of Y; is larger than 0‘2} because of the
uncertainty of ;. Actually, under the MCMC model, conditional on the parameter oi, the
variance of the data {Y;} equals 0‘2, + of\. Therefore, the assumption in equation (38) is just
to assume the observed data is not abnormal under the MCMC model when # is large enough.
Note that only the existence of § is required for establishing our main results. More precisely,
the existence of § is needed to obtain an upper bound for 7 (Ry). If such § does not exist, the
MCMC model is (seriously) misspecified so the posterior distribution of the parameter af\,
which corresponds to the variance of a Normal distribution, may concentrate on 0. In that
case, our upper bound on 7 (R{) does not hold.
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Then we show that, under the assumption equation (38), with initial state

L=, Y=Y,

_ _ Gv lf _— > Uv,
39 9(0)=Y, 0.2 (0)= n—1 _ n—1
( ) ( A) Z?:](Yl‘ _ Y)2 )
—1 otherw1se,
n [e—

and @ arbitrary (since 1© will be updated in the first step of the Gibbs sampler), the
mixing time of the Gibbs sampler to guarantee small total variation distance to stationarity is
bounded by some constant when 7 is large enough.

3.3.1. Main results. First, we obtain a quantitative bound for large enough n, which is
given in the following theorem.

THEOREM 3.6. Under the assumption equation (38), with initial state equation (39),
there exists a positive integer N which does not depend on k, some constants C1 > 0, C, > 0,
C3>0and 0 <y < 1, such that for alln > N and for all k, we have

k(1+k k
(40) |£(x®) —n||m5c1yk+cz(7) +C3—.

Jn
PROOF. Let A=Y"_,(¥; —Y)?andx = (03, 11,61, ..., 06,). Define the fitted family of
drift functions { f,(x)} by
- - A 2
(41) fax):=n@ —Y)> + n[<—1 — 0‘2,> — o§:| .
n [—

Let x® = ((aﬁ)(k), /L(k), Gl(k), e G,Ek)) be the state of the Markov chain at the kth iteration,
then we show in Lemma C.1 (see Appendix C) that

(69)* + 207 (0)®
(02)2 4202 (0P + ((03)®)2

2
@) B[40 150 < ) By b e,

where b = O(1).

. . (02)2+20% (cH®
Note that in equation (42), the term ((05)2+203(a§)<k>+((a§)(k>)2
A® of the state x®) and is not bounded away from 1, since (af\)(k) can be arbitrarily close

(@) +2(0) (o)™

to 0. Therefore, (V2+2a‘2,(a§)<k>+((a/§)(k>)2
and we cannot directly establish the traditional drift condition equation (2) by equation (42).
In the following, we establish the generalized drift condition Definition 2.3 using a “large

set”.
According to equation (38), for large enough n, we have % > 0‘2,. Then, we choose

)2 depends on the coordinate

)? cannot be bounded by some A such that 0 < A < 1

a threshold T such that, for large enough n, we have 0 < T < % — 0‘2,. Defining A7 :=
(022 4202T o

(—(05)2+203T+T2) <1, we get

(43) E[ £ (x D) 1 xP) < ar fuc®P) + b ¥x € Ry,

where the “large set”, R, is defined by

o e [(2) o] <[ -) )

In order to satisfy the new drift condition in Definition 2.3, we verify (C1’). Note that in
our example the transition kernel of the Gibbs sampler can be written as a composition of




1474 J. YANG AND J. S. ROSENTHAL

reversible steps and only the last step of the Gibbs sampler updates the parameter o*ﬁ which
is used for defining the “large set” Rr. Therefore, in order to verify equation (8), it suffices
to check the last step if the value of the drift function increases by updating x® € R to
x*+D ¢ RS.. By the definition of R7, we have

A 2 2 (k)T [( A 2> T k)
— — < - Tl Vv R
[(n—l Uv) (04) =1\ oy X7 € KT,

A 2 Nk A 2 2 (k+1)
] OV — (o) >\ —ov —T| Vx ¢ Rr.

This implies the value of f,(x) increases if the Markov chain is outside of the “large set”
after updating o%. Therefore, the generalized drift condition in Definition 2.3 is satisfied.

Now we can use Theorem 2.6 to derive a quantitative bound for the Gibbs sampler. We first
show in Lemma D.1 (see Appendix D) that if 7 = ®(1), by choosing the size of the “small
set’ R={x e X: f,(x) <d} tosatisfy d = O(1) and d > #, there exists a probability
measure Q(-) such that the Markov chain satisfies a minorization condition in equation (9)
with the minorization volumne € = ®(1).

Next, we show in Lemma E.1 (see Appendix E) that with the initial state given by equation
(39), there exists a positive integer N, which does not depend on &, such that for all n > N,
we have

(45)

(46)
_k ﬁ(zav/a+1) +k(1+k) b

TN |GE —o02)— T 2 [(A—od) TP

Now we derive a quantitative bound for the Gibbs sampler for large enough n by
comblng results together. First, from equation (42), we have b = O(1). Recall that AT =

(%)2. We obtain _— = O(1) by choosing T = ©(1). Since d > 15— A ,

can choose the size of small set to be d = O(1). Then we have shown that the minorization
volume € = @(1). For Q(Rr), we know that P(x©, RS) = O(1/n), where x@ e R. This
implies that e Q(R}) = O(1/n). Since € = ©(1), we have e Q(Rr) =€ — eQ(R ) =0().
Furthermore, by definition a~! = H21b+4+d“d < 1, it can be verified that « ! is bounded away
from 0 when T = ©(1) and d = O(1). Next, since A = 1+ 2(Ard + b) = ©(1), ignoring
the term o'* in equation (10), we choose r = log(x)/log(aA/(1 — € Q(RT))) to balance
the order of (1 — e Q(R7))" and o~ !(«A)" and define y := (1 — e Q(R7)) = a ' (xA)".
Then we have y = ®(1) and 0 < y < 1. Furthermore, since f,(x®)) = 0 for large enough n
and ﬁ = O(1), we can pick a constant C; such that C1 > 2 + ﬁ for large enough n.

Finally, we have k7 (R7) + Zle Pi(x©, R7) < Czw + C3% by equation (46), then
Theorem 3.6 follows from Theorem 2.6. [

we

Next, we translate the quantitative bound in Theorem 3.6 into the convergence complexity
in terms of mixing time using similar arguments as Corollary 2.12 and Corollary 2.13. We
show the convergence complexity is O(1). Intuitively, to make the term C;y¥ in equation
(40) arbitrarily small, k needs to have a complexity order of O(1) since y does not depend
on n. The residual terms C» k(l:k) +C3 % — 0 when k = o(y/n). Therefore, the complexity
bound on the mixing time of the Gibbs sampler equals the smaller complexity order between
O(1) and o(+4/n), which is O(1). The formal result is given in the following.
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THEOREM 3.7. Forany 0 < c < 1, recall the definition of the mixing time K. , in Defi-
nition 2.11. We write K. y as K. x(n) to emphasize its dependence on n. Under the assump-
tions of Theorem 3.6, with initial state x© given by equation (39), there exists N, = ©(1)
and K. = ©(1) such that

47 K. o) <K. Yn=N,.
PROOF. See Appendix B. [

3.3.2. Initial state. 'The main results in Theorem 3.6 and Theorem 3.7 hold for a partic-
ular initial state given in equation (39). We discuss other initial states than the one given in
equation (39). Note that the new bound in Lemma C.1 holds for any initial state that is in
the “large set”. Therefore, we can extend the results in Theorem 3.6 to get bounds when the
Markov chain starts from some other initial states in the “large set”. Recall the assumption
on the observed data {Y;} in equation (38), we have assumed there exists § > O such that

" (Yi—Y)? . . .
Z’:ln(fl) > 0‘2, + & for large enough n. Note that the existence of such § is sufficient to

obtain the results in Theorem 3.6 and Theorem 3.7. In order to get bounds when the MCMC
algorithm starts from other initial states, we assume § is known and establish upper bounds
using § explicitly. We define the “large set” equation (44) using T = § and the extension of
Theorem 3.6 is given in the following.

THEOREM 3.8. Let A=Y" ,(Y; — Y)2. Under the assumption equation (38), if the
Markov chain starts with any initial state x©@ ¢ R; (defined in equation (44) with T = §),
there exists a positive integer N, which does not depend on k, some constants C; > 0, Co > 0,
C3>0,Cs>0and0 <y <1, such that for all n > N and for all k, we have

k(1+k k
C (I+k)

k
C3—= 4 Ca fu(x @)=,
+ 3ﬁ+ 4 fulx )n

where f,,(-) is the fitted family of drift functions defined in equation (41).

@8) [L(X®) = 7]y <[C14 fuxO)y* +

var —

PROOF. Following the same proof of Theorem 3.6 by keeping the term f,, (x(?), the first
two terms of the upper bound given in equation (10) can be replaced by [C + fn(x (0))])/]‘
and the last term of the upper bound in equation (10) can be replaced by Zle Pi(x©, R§) <

CHR 4 ey £, Ok O

From Theorem 3.8, using similar arguments as Corollary 2.12, we can immediately obtain
a complexity bound when the Markov chain starts within a subset of the “large set”, which
is given in the following. This result suggests that if the Markov chain starts from an initial
state which is not “too far” from the state given in equation (39), the Markov chain still mixes
fast. The mixing time becomes O(logn) instead of O(1).

COROLLARY 3.9. Under the assumption equation (38), if the initial state of the Markov
chain satisfies x© € {x € Ry : f,(x) = o(n/logn)}, the mixing time of the Gibbs sampler
satisfies K. o) = O(logn) for any given 0 < ¢ < 1.

Note that {x € Rs : f,(x) = o(n/logn)} defines a subset of the “large set” Rs, and the
above result shows that the mixing time is O(logn) if the initial state is in this subset. The
order o(n/logn) comes from a balance between f,(x@)y* and f, (x(o))f. We conjecture
the same complexity order of O(logn) on the mixing time may hold even if the initial state
is in a larger subset, for example {x@ € Rs : f,(x©) = ®(n)}. However, in order to prove
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this, we need to derive tighter upper bound of Zle Pi(x©, R§) which is a nontrivial task.
We therefore leave it as an open problem.

Finally, we do not have upper bounds for the Markov chain when the initial state is outside
of the “large set” since the new bound in Theorem 2.6 requires the Markov chain starts within
the “large set”. For this particular Gibbs sampler example, numerical experiments suggest
that, if the Markov chain starts from a “bad” state, the number of iterations required for the
Markov chain to mix can be much larger than O(logn). In high-dimensional settings, when
the dimension of the state space goes to infinity, the Markov chain may not mix fast starting
from any state. This observation is loosely consistent with various observations in [20].

3.3.3. Discussions. We end this section by giving some further remarks and comments
on the analysis of the Gibbs sampler.

e Drift function: In the proof of Theorem 3.6, we actually used a fitted family of drift func-
tions if we scale the drift functions in equation (41) by 1/n. To check this, we select a

~ ~ ~ n . _Y)2
“typical” state X = (&i, in,01,...,0,) such that §; = Y; and 61% = 21:1’!(# then the

scaled drift function f,(x)/n = n(cr‘z,)2 /n = 0O(1). We then hope to establish b such that
b/n = o(1), or equivalently, b = o(n). Indeed, the established generalized drift condition
has b = O(1) = o(n), which implies the definition of fitted family of drift functions is
satisfied for { f,,(x)/n}.

e “Large set”: The result in equation (42) implies that those states whose value of ai are
close to zero are “bad” states. Therefore, the goal of choosing the “large set” in equation
(44) is to ruling out those states. Note that we have applied the trick that ruling more
states with “high energy” could make equation (8) easier to establish. In the “large set”
R7 defined by equation (44), we have also ruled out the states x whose value of ai are
larger than |(,f%1 — a‘%) —T|+ (n%l — a‘%). Note that these states are not “bad” states.
However, by ruling them out, it is easy to establish equation (8) as shown in the proof of
Theorem 3.6.

o The upper bound in equation (46): Although the upper bound of k 7 (R7) + Zle Pi(x©,
R%) shown in equation (46) is loose, it is already enough for showing the mixing time of
the Gibbs sampler is O(1). The proof of Lemma E.1 only makes use of the form of drift
function and the definition of “large set”, and does not depend on the particular form of the
transition kernel of the Gibbs sampler. We expect that, in general, tighter upper bounds on
km(RT) + Zﬁ-‘zl Pi(x©, R%) could be obtained, depending on the choice of “large set”
and the MCMC algorithm to be analyzed. This may involve carefully bounding the tail
probability of the transition kernel.

e The constants in Theorem 3.6: In Theorem 3.6, we do not compute the constants N, Cy, Co,
and C3 explicitly. Actually, C; is given explicitly in Lemma E.1. C3 is given in Lemma E.1
but it depends on the unknown constant § > 0 from the assumption equation (38). Further-
more, Cy can be explicitly computed under much more tedious computations. Finally, N
depends on the unknown constant Ng in equation (38) and the resulting concentration
property of the posterior distribution for parameter af\ by equation (38). Therefore, if we
make stronger assumptions on the observed data {Y;}, it is then possible to compute all the
constants in Theorem 3.6 explicitly under tedious computations, though we do not pursue
that here.

APPENDIX A: PROOF OF THEOREM 2.6

Recall that R denotes the “small set” and Ro denotes the “large set”. We first construct
a transition kernel for a “restricted” chain define on Ry, P(x,-),Vx € Ro. One goal of this
construction is that the stationary distribution of the kernel P equals to the 7 (-) restricted
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on the “large set” Ry, that is, 7/ (dx) := 7 (dx) /7 (Ro), Vx € Ro. We consider two different
constructions depending on (C1) or (C1’) in Definition 2.3 holds.

e If (C1) in Definition 2.3 holds, then we define the kernel P as the transition kernel of
the “trace chain” constructed as follows. Let X ™ be a Markov chain with kernel P, we
define a sequence of random entrance time {m;};cn by mg := min{fm > 0: X m) e Ro),
mi :=min{m > m;_; : X" € Rp}. Then {X "}, is the “trace chain” and the transition
kernel f’(x, B) :=P(XD ¢ B| X0 = x), Vx € Ry. It is clear that the “trace chain” is
obtained by “stopping the clock” when the original chain is outside Ry, the constructed P
is a valid transition kernel. It can be verified that the stationary distribution of this “trace
chain” is 7',

e If (Cl’) in Definition 2.3 holds, then we construct the “restricted chain” using the ker-
nel P = ]_[l 1Pz where P(x dy) := P;(x,dy) for x,y € Rg, x # y, and P;(x,x) :=
1 — Pi(x, Ro\{x}), Vx € Ry. Note that since each P; is reversible, one can easily verify
that each P; is also reversible and the stationary distribution of P is 7’

Suppose that X and ¥ are two realizations of the Markov chain, where X starts
with the initial distribution v(-) and Y™ starts with the stationary distribution 7 (-). We
define X and Y™ to be two realizations of a constructed “restricted” Markov chain on
the “large set” with the transition kernel I3(x, 9, Vx € Rg. We assume X gtarts with the
same initial distribution v(-) as X and ¥ starts with 7/(-). Since v(Rg) = 1, we assume
X© = X©O This rest of the proof is a modification of the original proof of the drift-and-
minorization method using coupling in [44].

We define the hitting times of (5( (m) 17(’")) to R x R as follows.

) 1 :=inf{m20:(}~((m),17(m))eRXR},
ti:=inflm>t_1+1: (5((’”), ?(m)) ERXR} Vi>1.

Let Ni :=max{i : t; < k}. Then N; denotes the number of (X, ¥ ) to hit R x R in the
first k iterations. The following result gives an upper bound for || £(X®) — £(Y ®)||yar.

LEMMA A.1. When the Markov chain satisfies the minorization condition in equation
9), for any j > 0, we have

[£(x®) = £ )] < (1 = €Q(R0)) + BNk < j)
(50 koo
+km(R§)+ > vP'(RG).
i=1
PROOF. First, by triangle inequality
[£(X©) = L O) | < 1LXD) = LFO) [y + 1 £(X D) = LX)
+ ”[’(Y(k)) - [’(i}(k)) Hvar'

By the coupling inequality [|£(X®) — L(X©)||yyr < P(X® £ X®) < 3F _ P(XM ¢
Rp), we have

var

b

[£(r®) = LEO) | + 1£(X D) = £XD)]

var

k k
<Y P(r™ ¢ Ro)+ Y P(X" ¢ Ro)
(52) m=1 m=1
k .
<km(RE)+>_vP'(R).

i=1
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Finally, the Markov chain with kernel f’(x, -) satisfies both drift condition
(53) E(f(XM) | X© =x)<if(x)+b VxeRy,

and minorization condition

= Q(dy)
(54) P(x,dy) > [eQ(Ro)] 0Ro) Vx,y € Ry.
Using the result from [44], Theorem 1, we have
(55) | 2(X®) — LT D), < (1 = €Q(R)) +P(Ng < j). O

Next, we further upper bound the term P(N; < j) slightly tighter than [44]. Define the ith
gap of return times by r; :==1#; — t;_1, Vi > 1, then

LEMMA A.2. Foranya >1land j > 0,and k > j,

1 N
(56) P(Nk<j)§ak_aj [E(ga’l>_aJ:|.

PROOF. Note that {Ny < j}={tj >k} ={ri+---+r;>k}andri +---+r; > j by
definition. Then the result comes from Markov’s inequality

PNk < j)=P(ri+---+rj=k)

=P — @l > ok — al)

1 J ‘
< ]E ri ) _ ].

Next, we bound I[“E(]_[{=1 a’?) following the exact same arguments as in [44], Proof of
Lemma 4 and Theorem 12, which gives

(57)

J
(58) IE(H a’i> < (@A) T1+E, (f(0) +Ex (f ()]
i=1

By the drift condition for P(x, -) in equation (53), taking expectations on both sides of equa-
tion (53) leads to E,/(f(x)) < %. Therefore, setting j = rk + 1 and combining all results
together yields

, @A) [1+E,(f (0) + 1251 — o+
()~ x] = (1~ cQury)*H 4 CR T ED T

(59) )

+km(RS) + Y vP(Rf).
i=1
Finally, we slightly relax the upper bound by replacing o"**! with o’ in both the denomina-

tor and numerator. Then Theorem 2.6 is proved by further relaxing (1 — €)" k110 (1 — €)'k,
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APPENDIX B: PROOF OF THEOREM 3.7
Using Theorem 3.6, one sufficient condition for
(60) [£XD) = 7]y <

is that n > N and
c (1 +k)2

61) Ciyk < c € o e
TR e ) S
This requires the number of iterations, k, satisfies
log(C;) — 1 3 3 3
62) 0g(Cy) —log(c/3) “x Smin{ i[_l iﬁ}
log(1/y) C3 &

Note that any k (if exists) satisfying the above equation provides an upper bound for the
mixing time K . (n).
That is, for any n > N such that

63) 10g(C1)—10g(C/3)_ { c/3 B C/Sﬁ},

-1, ==
log(1/y) C3

which is equivalent to

3C; 13C3
(64) anaX{N [K —} [(K +1) " } }:: Ne,

we have K, := 22€1)= 0;‘2%}?};’ 1063 s an upper bound of the mixing time.

Finally, it can be seen that both K. =0(1) and N. = O(1).

APPENDIX C: PROOF OF LEMMA C.1

LEMMA C.1. Under the assumptions of Theorem 3.6, let A =37, (Y; — Y)? and x =
(O’%, W, 01, ...,6y). Define the fitted family of drift functions { f,,(x)} by

(65) fu) =@ = 1 4| (55 = oF ) - oﬁr-

Let x® = ((oﬁ)(k), M(k), Ql(k), e ,Ek)) be the state of the Markov chain at the kth iteration,
then we have

66) E[f,(x*+) | x®] < (

where b = O(1).

(02)? +20%(0H®
(022 +202 (0B + ((03)®))2

2
) fu(x®) 45 vax® ex,

PROOF. In this proof, we write f,(x) as f(x) for simplicity. Recall that the order of
Gibbs sampling for computing the first scan is:

) 24(0)
05, )

n

Dg2 4 70O (62)02
ei(l)NN(M 1% i( A) ( A) %4 )

©7) o2+ 0O ol 4 (0O

(og)“>~IG<a+— b+ Ze(“ o) )
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It suffices to show that for A = Y"7_,(¥; — Y)? and

- A 2
(68) fx)y=n@-Y)>+ n[(n— - aé) - ag} ,

we have

) EE) 1)<

where b = O(1).

Note that we can compute the expectation in E[ £ (x1) | x@] by three steps, according to
the reverse order of the Gibbs sampling. To simplify the notation, we define o -algebras that
we condition on:

(03)2 4203 (6
(02)2 4202 (05O + ((63)?)2

Gar=0((07) 16"} M),

(70) Go = ((03)” {6} ),

Gu = U((Ui)«))’ {91'(0)}’ M(O))-
Then we have
7 E[f(D) 12O =E[f (") 1G] =E[E[E[/ (=) | Ga] | Go] | Gu]-
The three steps are as follows:

1. Compute the expectation over (ai)(l) given {Hl.(l)} and u". This is to compute the
conditional expectation

(72) F (D) :=E[f(xD) | Ga],
where we write E[- | G4] to denote the the expectation is over (recall that a and b are constants
from the prior IG(a, b))

n—1 1< _
(73) (02" ~1G (a +——bt s S0 - 9(1>)2>
i=1

for given 8V and (V.
2. Compute the expectation over {Qi(l)} given u(V. This is to compute the conditional
expectation

(74) DY =E[f/ (V) | G,
where we use E[- | Gy] to denote the expectation is over
) Vo +Y0)? (0 Voy .
(75) 0. ~N 3 o) 2 o ) =1,...,n,
oy +(0}) oy +(0y)

for given wD and (oi)(o).
3. Compute the expectation over ;). This is to compute the conditional expectation

(76) E[f(xD) | xO]=E[£"(x) | G,].
where we have used E[- | G, ] to denote the expectation is over
25(0
(77) (D mgA/(éan’(GA)()>
n

for given {91-(0)} and (67)©.

In the following, we compute the three steps, respectively. We use O(1) to denote terms that
can be upper bounded by some constant that does not depend on the state.
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C.1. Compute f'(x) =E[f(x™) | Gal. The first term of f(xD) is n(@) — )2,
which is G4-measurable by construction. Thus, E[n(0") — ¥)? | G4l =n(@" — Y)?. Then

F' D) =E[f () 1Ga]

(78) (@ - 7)? +nE{[<né - 0‘2/> — (crf\)(l)}2 ‘ gA}.
Note that
(79) nE”(ni 43) - (Ug)(l)] 9 }

= ot JEled) 1)

= n( A — 0‘2/>2 + nIE[((Gi)(l))2 | QA] — Zn(

n—1

Recall that E[- | G4] denotes that the expectation is over

-1 1 _
80 Z(I)NIG n bt 9.(1)—0(1)2 ’
(80) (03) a+t— +2§ (@ )

i=1

where a and b are constants from the prior IG(a, b). The mean and variance of (aﬁ)(l) can be
written in closed forms since (O’%)(l) follows from an inverse Gamma distribution. Denoting

(oW _g(y2 . .
S:= 2’(0’79), we can write the mean of (6%)(1) using S as follows:

n—1
D _ 412
Elied 16 = B
> (6D — 612 2b
(81) n—1 n—142@—1)
- (Zi(ei(l) _ 9‘(1))2>< 2(a—1) >
n—1 n—142a@—-1)
=S4+00/n)+0O(/n)S.

Similarly, the variance of (Ui)(l) can be written in terms of S as well:
2\ (1) . (20 —61)2/2 4 b)?
varllod) Al = [ T 2 @ = DRl = D2 + @ = 2)]
1
®2) = =Dt @y LR 16a)”
=01/n)(S + O(1/n) + O(1/n)S)*

=O1/n)S* +O(1/n*)S +O(1/n%).

Substituting the mean and variance of (aﬁ)(l) in terms of S, we have
F'a®) =E[f(xP)16a]

(1) \2 A 2\ 2 A P
(83) =n(@" —Y) +n l—av +nS°—2n l—av S
n

n—

+O() +00)S +0(1)S>%.
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C.2. Compute f”(xM)=E[f (xV) | Gyp]l. Note that the terms in f’(x(V) involving
- _ oD _g(y2
0D} are @D — ¥)2 and § = =% 21

P Then

D) =B (xV) 1G]

=nE[(6" — V)* | Go] +n( A _ 0‘2,)2

(84) n—1

A
+nE[S? | Go] — 2n( i aé)E[s | Gol
+O(1) + O(DELS | Go] + O(DE[S? | Gy].
Therefore, it suffices to compute the following terms:

(85) E[6D —Y)*|Gs].  EIS|Gsl.  E[S?|Gs]

Note that {91-(1)} are independent (but not identically distributed) conditional on Gy. For the
first term E[(8) — Y)? | Gg], we have

E[(0" —T)* | Go]

0 1D+ T HO Dol £ DO 2
=E| (00 - —F =& A —Y) \gg
op + (o)) oy +(0})

0y wPoy +Y (0 @\? pVo2 +7@H®  _\?2
=E{07 - 2 2 ‘g9 + 2 2 -y
oy + (0O oy + (07O

(86) uVol +¥(6HO 0 wVoZ + PO
+o( A -V E[ (60 - ) g,
UV+(UA)() Uv+(UA)()

2

2
i 1G]+ (2 Y - 7
[ | 9] 0‘2/+(0i)(0) (H’ )

25(0) 2 2
n 0‘2} + (Gi)(o) 0‘2, + (03‘)(0)

For the other two terms involving S, we have the following lemma.

g i 60y
- n—1

LEMMA C.2. For , we have

87  E[S|Gsl=

25(0) .2 24(0) 2
) Vo ( (04) ) A var[$S | Gol = O(1/n).

07+ @HO \o2+©@HO/) n-1

(52)O _ 7 (62)©
PROOF. Define ; := 6" — % then 7j = 6D — % Note that {n;} are i.i.d.
conditional on Gy with
UVARTLE S R SVARTL: SWE 5
l 07+ (@H O 62 +(0H O ) 07+ (@) nod +(©@HO /)
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Next, we decompose >}, (Qi(l) —0M)2 by

n

> (6 -8y

i=1
. YieHO 7(eHO 2
i=1 (’v+((7A)( ) oy +(0%)
_ f((n. P (ﬂ)z(y gy 20 =0 Y)(ai)(o))
i=1 l o+ (0O ! o2 +(02)©
Then we can obtain E[S | Gy] by

RS |Gy = F ”z,. (91.:>__1é<1))2} ’ gg}

(90) =E{[Z"(n"—_’7)2]\ge}+< @7 )22?:1(Yi—17)2

n—1 0‘2, + (ai)(o) n—1
@) Vo ( (@) )2 A
v+ (0O 2+ (@O
For var[S | Gg], using the Cauchy—Schwarz inequality
var[§ | Go1 =E[(S — ELS | Go1)* | Go]
n L =\2 A — )2
_ E[(Zl:l("’ - E{m}[zxm 1n) }

n—1 n—

n—1"

@HO Y i —DF = Y)\? ]
1) T (0O n_1 ) |G
SM[Z (i —1)? }g]
n—1

8( (o) )2E{[Zi(m — (¥ =T | Go)
2 2 2 :
of + @O (n—1)
Note that {n;} are i.i.d conditional on Gy, we know
. =\292 . 72 2
©2) E{[ZW_’?)} | gg} _ {E[M | ge}} +O(1/n).
n—1 n—1
That is, Var[z’f?+_1'_’)2 | Go]l = O(1/n). Finally, the term
E([Xi (i — (Y = V)I* | Go)
(n—1)2
B = )2 (Y = V)11 Go) +El* | Gol Xoie; (Y — Y)(Y; —Y)
B (n—1)2

93)

2iYi —
ﬁ E[(n — m? | Go] +0O/n)

0oy
o+

A (=D

T (1)
Therefore, we have var[S | Gy] = O(1/n). O

+0(/n) =0O(1/n).
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Next, using the following results:
( A)(O) ( (Gi)(O) >2 A
E[S | Gol = i A)(O) + 2+ H0) w1
(94) > @Y\ A
<oy + (U‘% n (Ui)(0)>
E[S? | Go] = (ELS | Gol)* + O(1/n) = O(1),

=0Q),

n—1

we can first write f”(x1) by

£ () =nE[(6 —7)* | Go] +”(n . 2>2

(95) A
+ 0[S 1 Go] — 20( =2 o} JELS 1611+ O(1),
Then, using
(02)(0)0,2 02 2 _
k(6D — A v < |4 ) M _y
o6 @0 -116]= e " g epo) “ T

5 n(@d)p? —1)?

2

)

<oy +
" 0y + 0Oy
we further bound the terms
97)
_ 5 A 5\?
B[00~ 7)1 Gal +n( 2 o7
n—
2 A 2
+nE[S? | Gp] — 2n( — E[S | Ge]
2820, (1) _ vy\2 -
n(oy) (u’ =Y) A
<Ml (5 o) - [Slge]}
(oy +(@)™) L\n—1
@@ 12 @)%} ( (03)© )2 A _< A
(02 + (05)©)2 Lo + (0@ o7+ @)/ n—1 n—1
B n(o‘%)z(u(l) —7)? +n— A (Uﬁ)(O) 2 e (Oi)(O)G‘Z/ L2 2
=2 23012 1|\ 2 2(0) 2 230 "V
(UV + (UA) ) L7 oy + (UA) oy + (UA)

SR VLIS N Ly PR R

C (0F + (0D ?)? o +(o)©® i [” —1\oj +(6})© !

_ I’l(O"z/)z(,bL(l) _ Y)Z }’l(O"z/)Z(O"Z/ + 2(0-%)(0))2[ A B (( )(0) to ):|2
(02 + (02)0)2 (02 + @D Ln—1 '

Finally, combing all the results yields

Vv

f”(x(l)) _ n(cr‘z/)Z(M(l) — Y)Z n(a‘%)z(a‘z/ +2(0§)(0))2[ A
(98) (0§ + (67)©)? (02 + (02) Oy
+ O0).

n—1

|

(D) o)
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C.3. Compute E[f(x™) [ x @] =E[f”(x®™) | G,]. Recall that the expectation E[- |
G.l1is over

21(0)
(99) 2~ N(g((»’ (4) )
n
In the obtained expression of f”(x") from previous step, the only term involves u(! is
o 7?
(07 +(0®)?
(100) E[(nV —7)* 1G] =0 —7)* +(03)/n,

we have
E[f(xV) [xOT=E[f"(xD) | G,]
n(U‘%)z ( F(0) )2 (0,421)(0))
=erepop T
n(o3)?(0f +2(03) )2
(101) (0% + (03)O)4
. n(o‘z,)z(é(o) — 17)2
(0 +(03)?)2
n(o3)*(od + 2(a§)<0>)2[ A
(0F + (054

Finally, we complete the proof by

Since

[ e +ap)]| +om

n—1

2
~ (0RO +ad)] +owm,

n—1

(102)
n©)?@® - 72 n©@))*of +20)) A 2,0) 2
(02 + (03)0)2 (09 + () ) [n —p ()7 UV)] How

B |
(02 + (05)@)* (0% +2(c3) )2
+ O()
_ 09 +200p" )
(oy + (6) @)
_ [( 02)* +20% (03O
T L\(©02)2 4202 (03O + ((65)®)2

(03 +od)] |

n—1

{n(é(0>—17)2+n[ A —((o )(°)+ov)ﬁ+(9(1)

n—1

)Z}f(x@)) +0().

APPENDIX D: PROOF OF LEMMA D.1

LEMMA D.1. Under the assumptions of Theorem 3.6, recall the “large set” defined in
the proof of Theorem 3.6. If T = ©(1), by choosing the size of the “small set” R={x € X :
fa(x) <dj} to satisfy d = O(1) and d > ﬁ, there exists a probability measure Q(-) such
that the Markov chain satisfies a minorization condition in equation (9) with the minorization
volumne € = ©(1).

PROOF. Throughout the proof, we write f,(x) as f(x) for simplicity. Recall that
the small set is defined by R = {x € X' : f(x) <d} where d > 2b/(1 — A7) and x =
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(ai, w,01,...,6,). When b = O(1) and A7 = ®(1), we can choose d = O(1). Our goal
is to show the minorization volume € satisfying

(103) P(x,)>€Q(-) Vx€R,
is asymptotically bounded away from 0. Denoting &i = ,ﬁ%] — 0‘2,, we have
o 2
R= {x eX:n@ —Y)2+n[(— —03) —GA} §d}
n—
(104)

Denoting

. a ld
(105) R/::{xeX:|0—Y|§ ~. |03 —63 < —}
n n

since R C R/, it suffices to show the minorization volume ¢ satisfying

(106) Px©,)>e0() vxPer,

is asymptotically bounded away from 0. One common technique to obtain € is by integrating
the infimum of densities of P(x(?,-) where in our case the infimum is over all 8© and

(0 such that [0 — 7| < /€ and |(03)©@ — 63| < /<.
Note that the intuition behind the proof is: since R’ is determined by |6 — Y| < \/g

and |(a§)(0) —o5l < \/g . The size of uncertainties of the initial §(» and (cri)(o) is of order

O(1/4/n). Therefore, for any fixed initial state x© e R, if the transition kernel P(x©, )
concentrates at a rate of 2 (1/4/n) then € is bounded away from 0.

For the density function of the Markov transition kernel P (x 0 -), recall the order of Gibbs
sampler

) 2:(0)
M(l)NN<9<0)’("A) )

n
Mg2 L ¥Y:(c2)O 24(0) ;2
(107) e ) NS
oy + (UA)( ) oy + (UA)( )

-1 1 -
(3) " ~ IG(a + b3 07 - 9(”)2)

i=1
Then € can be computed using the three steps of integration according to the reverse order of
the Gibbs sampler:

1. For given uM and {Oi(l)}, integrating the infimum of the density of (ai)(l). Note that
the infimum is over a subset of 6© and (03‘)(0). However,
(108) )V ~1G a+ "L by 12”:(9.(” — )2
2 2D

does not depend on 6 and (03)(0). Therefore, the integration of the infimum of the density
in this step always equals one;
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2. For given 1, integrating the infimum of the densities of {91.(1)}. We first note that {95(1)}

Zi (9[(1)_0_(1))2

appear in the densities only in the forms of #) and S = T

. Therefore, instead
of integrating over (0(1), e 9,/(11)) we can integrate over 61 and S. Furthermore, we have
shown (1 is conditional independent with S given (oﬁ)(o) in the proof of Lemma C.2, we
can integrate them separately. Finally, we note that the infimum is over {(aﬁ)(o) : |(O’§)(0) —

6i| < \/g}. Overall, we need to show g,(u") is lower bounded away from 0, which is
defined by

(109)
2n(n)
(1) 2 Y 25(0) 27(0) 2 _
_/dee inf { S((oﬁ)(‘”,n;s)f\/(“ ZVJF Z(UA) , (fA) v ;9)}
x@er oy + (O'A)(O) n(oy + (O'A)(O))
|:/dS inf fs((02)?, nS)]
xOepr!

1) 2 v (~21(0) 25 (0)
.[/dé inf N(“ oy +Y(04) (@) oy 9)}

NOMY op + 0O nef+0H®)

)2
where fs((62)© n; S) denotes the density function of § = M for given (62O with
A n—1 A

=1,...,n,

(110) 9i~N<“(1)05+Yi(0§)(°) (GQ‘D“’)G%)

07+ @D ol +(0HO

M(])U‘%_'_?(G%)(O) (‘72)(0)UV

and NV (

: 0) denotes the density function of

o3 +©@DO 7 ned+@) )’
_ nWol2 +Y0H®  (0H 07
(111) 0~N 5 5 , = 5
oy + (O'A)(O) n(oy + (O'A)(O))

3. Finally, we integrate the infimum of the densities of (! to get €. That is,
(02)(0)
(112) ezfdu{gn(u) inf /\/(9“” A7 u)}
xOepr n

In the following, we show € is lower bounded away from O in three steps.
First, it is easy to see that the density of S does not depend on (1. We show

(113) /dS inf fs((63)”,n; 8) =0(1).

x@®eRr’

Second, we show

Mg 4 ¥ (52)O 24(0) -2 ) C c’
(M oy +Y(oy) ()P oy '0>>1—erf( | + )’

I L e e et s V2

x@epr

where erf(z) := % foz ¢~*dr and C and C’ are some constants.
Finally, we complete the proof by showing

(115 /dMK (CWJ/; C/))x(o)efR/N<0(O) (GA) ’ >}:®(1)'
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D.1. Proof of equation (113). We omit the superscripts for simplicity. That is, we show

(116) /dS inf fs(o2,n: 8) = ©().
{UA |O-A_UA|<\/g}

Following the proof of Lemma C.2 from equation (89) to equation (93), defining

Yio? o2 o202
(117) 77i5=9i_%"’/\/’< 2/’“ v oA Vz)’
0V+0A GV—I—GA GV+GA

we know

(i — )2 2 \2
(118) EHS_Z,(m n) _( o4 ) A

n—1 o‘z,—i—oﬁ n—1

2} =0(/n).

Therefore, defining

Zi(m—ﬁ)2+( o3 )2 A

119 S =
(119) n—1 o‘z,—i-cri n—1

and denoting f¢, (0%, n; S’) as the density of 8, it suffices to show

(120) /dS’ inf fi(o3,n; 8") =0(1).
oy:lo

~ d
2-831</4)

Furthermore, note that under |0A —aA| < \f we have V+UA = UY;LZA +O(1/4/n) =6(1).

GAV

Then it suffices to show

(121) /dS” inf far(od,n; 8"y =0(),
oj:lo

1-631</4)

where
(122) 5"-_”3+"§S/_05+0§ Zi(ni—ﬁ)erL _oi \ A
.= 0,20,2 - 0_20,2 n— 1 02 0_2 +02 _ l
ATV A%V v \oy +oj

and f7, (ai, n; S”)is the density function of S”.

Next, note that V+ A Z,(n, — )%~ Xn |» we have

N IR
123 — N(0, 1),
(123) S 0, 1)
which does not depend on n. We define f(z, G/%; x),Vz € R as the density function of a
random variable

VIR S — )2 — (= 1)

124 X i g4 AT ,
(124) 2o} TF NCICESD)

then we know )~( o2 i Nz, 1).
The rest of the proof is first to lower bound [ dS” inf (2402 =321,/ fo (0%, n; S") using
O4-

the density function f (z,07 4> x) and then show it is asymptotlcally lower bounded away
from 0.
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Notice that 2 (

) =7 is not random, and there exists a constant Co such that

2+ 2
z z Aol C
(125) ( max 07/‘ min %4 ) Ad < 0 .
{03:02—63|</dn) 0% +03  (odiei-dd<yamog+oi)/n—1 " /n—1

Finally, we have

/dS,/ inf f //(UA, n; S,/)

(o310 —631=y5)

Z{aﬁ:laii—r:%f,ﬂf\/%}/dxmm{f( 5% ok )f( \C/_ ok )}

V2Co ~
(126) =1- sup dx £(0,03; x)
{a%:lai—&%lfﬂ/d/n} ~2Co

=1- sup IP’(—\/ECO < )N(O’Uz < \/ECO)
{02102 —623|<Jdn) A

V2Cy
1 —/ dx N0, 1; x) = ©(1).
—\/ECO

1489

D.2. Proof of equation (114). We again omit the subscripts for simplicity. The goal is

to lower bound

2, p.2 2.2
= . o, + Yo o450 -
(127) /de inf <“ v CA _CA% )
{o3:l03-621<,/4) oy oy nloy+oy)
Note that there exists some constants C1 and C, such that
o2+ Yol 02+Yo? C +C
(128) max AV TIIA i EOVTOOA il + €2
(w20l -2</T) OV IR (o2peds2</T) 00 +04 vn
and another constant C3 such that
2.2
o450 C
(129) min ATV > —3

(o3:102-831=/4) n(oy +03)

Therefore, we have

2 L pA2 2 2
_ Y _
[a e N(’w§+ e ;9)
(o3:l02-621<,/4) oy +oy  noy+0oy)
o
>2 dx NV(0, C3/n; x)
(130) (Crlul+Co)//n
(0,0]
=2 dx N (0, 1; x)
Calpu|+Cs

<C4IM|+C5>
=1—-erf{l ——|,
V2

where C4 := % and Cs := %
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D.3. Proof of equation (115). We omit the subscripts for simplicity. We show the fol-
lowing is asymptotically bounded away from O:

2
o ol ) (o)

Note that there exists (af‘); € [61% —Jd/n, 8[2‘ + /d/n] such that

2
- o

inf (9, A,,u)
(@.03:16-¥1=/L10%~631=/) "

Therefore, we have

o0 C C - o;
f d,u{(l — erf<M>> inf (9, O—A;
—o0 V2 (@.03):10-1=/L.103-531=,/4) "

2y C C
z/ du{(l — erf(M>) inf
0 V2 {(&a},)s\é%s@\afrfrﬂsf}

C4l2Y|+C 2y
> (1 - erf(w>> du inf (
0

V2 (6.0216-T|</L.102-621</)

(133 _ <1 B erf<C4|22+ C5>>
[f o 3 5] [ (s - 1 5]
= <1 — erf(%))

(a5 )« a5 )]

Finally, we show

o [

is asymptotically bounded away from 0. Note that when n — oo, we have (aﬁ);l — 63‘. So

the density functions A/ (:I:\/E i, ; ) concentrate on 0. Therefore

Jns( [ ) [ (- )
w0 fn((E ) (55

(132)

=

>}

S |:l>l\)

gl

le
S |:t>l\)
\_/
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Jd/n 2
=1 —/ de( )
—JaTn n

vd A2
=1 _/_ﬁdXN(O’ 65 x)=0(). 0

APPENDIX E: PROOF OF LEMMA E.1

LEMMA E.1. Under the assumptions of Theorem 3.6, recall the definition of drift func-
tion and “large set” in the proof of Theorem 3.6. With the initial state x© given by equation
(39), there exists a positive integer N, which does not depend on k, such that for all n > N,
we have

7 (R) +ZP O R)
(136)
_k ﬁ(zov/a+1) +k(1+k) b
T VnGA o)) — T 2n [(GBy-o0d)-TP

n

PROOF. In this proof, we write f,,(x) as f(x) for simplicity. We first consider a Markov
chain starting from initial state x© defined by equation (39). By equation (38), we have
(oﬁ)(o) = ZL%’]_Y)Z — 0\2, for large enough n, which implies f(x©) = 0. Therefore, for
large enough n, we have E( f (x1M)) < b from Lemma C.1. Furthermore, we can continue to

get upper bounds E( £ (xV)) <ib foralli =1,..., k. This implies

(137) E[((%—aé)—(oﬁ)(”)z} gig, i=1,....k

By Markov’s inequality, we have
A
>|T — - 2)
- ‘ (n —1-

sy P(|0d) - (25 - o)

n—1

) - i b
T n[T—GE -
fori =1, ..., k. Therefore, we have

i k(14k) b
Z__ 2T = GE; —o))P

k
: b
139 Pi(x© RS) <
N

Next, we consider a Markov chain starting from 7. According to Lemma C.1, we have

E[(1- (= (00)" + 2070 >2>f(x)]
(02)2 +20%03 + (03)2

2 2 2 2
(140) =IE,T[<1+ (99)" + 2079 )(1 (@9))° + 2039 )f(x)]

(02)2 420203 + (03)2 (02)2+20%03 + (0)?

Errl:<1+ (09)* + 20703 )( o 1%) f(x)}ib

(crv)2 + ZGVGA + (crA)2 —i— o
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where E [-] denotes the expectation is over x ~ 7 (-). Note that by Holder’s inequality (in the

reverse way)
232 2.2 2 2
En[(l—l- (o))" +20y04 )( 0% 2) f(x)]
(02)2+20%03 + (03)? 2403
2
> B (2 ) 7]
(141) oy + o}

Pl (%)

= [Ex (f @) /Ex (1 + 03 /03)%].

Therefore, we have

(142) B (£(0)2) < Vby 1 +202E (1/02) + (02) Ex (1/(02)).

Next, according to Lemma E.2, we know that Eﬂ(l/aﬁ) <2/é and En(l/(aﬁ)z) < 2/82 for
large enough n.
More specifically, by Lemma E.2, we have \/1 + 26‘2,157,(1/(7%) + (0‘%)2Eﬂ(1/(af‘)2) <

1+ 20‘2, /6 for large enough n. Therefore, we get
b
) f (202 /5 +1).

(143) ]En(

A 2 2
(n-—l UV) 74

Thus, by Markov’s inequality

A A
)= (25 ) == (2 ~e8) 1)
(144)
3 JEQo2 /s + 1)
TIGA o) - Tl
Finally, we have
7 (RY) +ZP O, RS)
(145)
_k VbQ20o% /8 + 1) +k(1+k) b
T V(A — o)) - T 2n [T -G -od)? O

LEMMA E.2. There exists a positive integer N, which only depends on a, b, 0‘2,, and §,
such that for all n > N, we have

(146) Er(1/03)<2/8,  Ex(1/(c3)%) <2/8%

PROOF. The posterior distribution can be written as

fa(x,Y1,...,Yy)
ffa(xsyl,...,Yn)dx’

(147) x| Y, ..., Yy =
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where we use f,(x, Y1,...,Y,) to denote the joint distribution of x and {Y;} when IG(a, b)
is used as the prior for af‘. That is,

fd(x7Y19"'7Yn)

b4 n—a—1 —b/o? 1 _M 1 _(Yi*‘;i)z
=—(o5) " e P e %3 e 0
(148) F(a)( g ,-:nl,/zmg V2
LD (p2yami=tpbic ”C&—uﬂ (¥ — 6,2
@ T Y P 2 752 552
i=1 A \%
owusing — fa(x, Yy, ..., 1y) =7 fa+1(X, r1,..., ¥y), we have
N i Ul (x,Y V) =75 x,Y Y,) h
A
o af fap1(x, Y1, ..., Y,)dx
Eﬂ(l/aA)zz fjc (x, Y1 Y, ;ldx ’
a\X, A )
(149) , |
,Y1,....7,
En(l/(ai)z)—a_ff”+2(x 1 ) dx

b2 [ fu(x, Y, ..., Y)dx

Therefore, it suffices to show the ratios L /f ‘}:é;xyflmf;’égx and L ff gfyg‘ygéi’c are (asymp-

totically) bounded. Next, we focus on the first ratio. The second ratio can be proved using a
similar argument.
Using the fact that

o] -(c0m 2 R0y,

2.2
ZGAGV

_ oyptYoi o
([l ) o)
(150) 20202 ' 2(0% +03)
o340l
_ |, 20007 P}E—mz}
0‘2, + Gi 2(0‘2, + ai) ’

and

n L 2
/exp[_w—'“)}dﬂ

2(03 +03)

- (u—Y)? ¥ Y7 —nY?
(151) = (/eXP[_m}d”) (eXp[_m])

v 2 2
:exp[_w} [ 20V T 1)
2(0"2/ +O'i) n

we can write En(l/ai) as a functionof A =), (Y; — Y)Z. Denote h,(A) := En(l/ai), then
we have

2y—a—2 _,—bjo2 2 2 =kl A 2
[(@3)™92e7P/% (0 +03) 2 eXP[—WN‘TA

(152) hn(A) i=

2\—a—1,-bjc2( 2 2 =kl A 27
fop)—ale /“A(0V+6A) 2 exp[—m]d@‘



1494 J. YANG AND J. S. ROSENTHAL

Next, we show A, ((n — 1)(c + 0‘2,)) is (asymptotically) bounded for any fixed ¢ > 0. Note
that

—n+1

n—a—l —bjod( 2 2\ [_ A } 2
o e oy +o ex do
/( ) (ov 2) P 2(0‘2/_'_0%) A
(153) R | A et
e L R ] e B s | M4
/ ,/a‘z,—i—ori 2(0‘2/4‘0,%) 4
We change variable y = \/7 and apply the Laplace approximation. Note that for any

2)] then yo =

. ‘2/ . Therefore, by the Laplace ap-

C
proximation ([58], Theorem 1, Chapter 19.2.4), we have

c ¢ 2

ho((n = D) (c+07)) = Lyl +OMm 1))
n - Vv fr _ 1
(154) emoTle by exp(— 7L DI (1 + O 2))
= 1(1 + O(n_l/z)),

c

where the term O((n~!/?) only depends on constants a, b, and 0‘2,. Finally, since for all
n > Ny we have A > (n — 1)(of + 8), this implies ,(A) < $(1 + O(m~1/%)), Vn > No.
Therefore, there exists large enough positive integer Ny, which only depends on a, b, 0‘2,,
and 8, such that for all n > No, we have E; (1/03) = h,(A) < $(1 +O0(n~1/2)) < 2.

For E,(1/(o A) ), we can follow a similar argument to show that E, (1/(o A) ) <=5 for
large enough n. Therefore, we can conclude that there exists large enough positive mteger N,
which only depends on a, b, 0‘2,, and §, such that for all n > N, we have both E (1 /ai) < %

and B, (1/(c})») < 5. O
APPENDIX F: PROOF OF THEOREM 3.1

The key step is to establish the following drift condition:
1

(155) B[/ (x )] < 3 (X @)+ 00/ p).
It suffices to show
12 2 0)2 2
X X
(156) E[(M - 1) | x;ﬂ (u - 1) +b,
p p

where A = % and b=0(/p).
Writing X" = x and XV = Ix +Z where Z ~ N(0, 31,), we have

M2 2
X
asn - E[(FLE 1) x =]

(S

(159) :(H_l) +2<M_1)_ (_ 9 x| )
4p 4 16 4p p
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2 2
(160) =1(”x” —1+§> +O(l)
4\ p P P
2 2
(161) =1(”x” —1) +O(l>,
2\ p p

where the last step is by

[lx||? 62 [lx||? 2 36
162 LinL B i 2 (21 iy
(162) (p +p>§[(p )+p2}

To complete the proof, we still need to show a multi-step minorization condition with ¢
bounded away from zero. Note that the 1-step drift condition directly implies a k-step drift
condition with A = zik and b = O(1/p). Next, note that

1 1
(k) (0)
(163) X2 | X2 = X2 NN(4—kxz, (1 — W>1p>

Therefore, according to the k-step drift condition, for all the states x in the small set, we have
c/p =< lIx2|l = C/p for some positive constant ¢ < 1 and C > 1. Then we choose k such that
llx2]l/4K = O(1/ p) so that the integral of the minimum of the two one-dimensional densities
N(GCyP. (1 = 7)) and N (=3:C/p, (1 — z27)) is 1 — O(1/p). Then by writing the
multivariate Gaussian density as product of one-dimensional densities, the total minimization
volume can be controlled so that € = (1 — O(1/p))? > 0 and bounded away from zero as
p — oo. Therefore, we can choose k = |Clog(p)] + 1 a large enough constant C. Overall,
we have proven that for a k-step drift condition and the corresponding minimization condition
gives € which is asymptotically bounded away from zero, which completes the proof.

APPENDIX G: PROOF OF THEOREM 3.3

We analyze this model by choosing a drift function
r1\?
(164) o =(%-2)
a B

where A = % > i Ai. The key step of the proof is to show the following drift condition:
(165) E[fu(X“D) 1x©] <0,

where b = O(1/n). For simplicity of notation, we omit the index k in the rest of the proof.
The computation of E[ f,(X*+D) | x®] have two steps. We first compute the conditional
expectation over B | A ~ Ga(p + na, § + na). Using the fact that 1/8 has an inverse gamma
distribution, we have

A1)? a2 VAR 8432
w0 el ]GV D) s

« P o o/ N2t/ (BE+a) (B )
Next, we compute the conditional expectation over A given §. Note that by summing (condi-

tional) independent Gamma distribution we know

(167) nk|B~Gan( +a),1+p)

which gives

Y +a) (¥ +a+l
(1+p8)?

~
+
Q

(168) ExiplA] = . Eap[X]=

1+

=
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L

Using the assumption on Y and the fact that € (0, 1], we have

T+p
N2 A\ S+ (2 472
169) E — ] =2 - L + n :|
Y Alﬁ[(“) <“)(”T_l+a> L+ +a)
oopthy? 13 43)? 1 1

Therefore, we established the drift condition E[ f,(X%+1) | x®] < b where b = O(1/n).

Now the proof can be completed by verifying the Gibbs sampler satisfies the minorization
condition: P(x,-) > €Q(-) for all x in the small set {|A — %| = O(1/4/n)}. We only need
to show that € is asymptotically bounded away from 0 as n — oo. Note that the last step
of updating B in the Gibbs sampler doesn’t depend on the previous state, it then suffices to
derive the minorization condition for the step na | B~ Ga(n(Y +a), 1+ B) for all 8 in the
small set. Let Bnax and Bnin be the maximum and minimum value of 8 in the small set. Then
from the explicit form of the density of A, on can see that € must be asymptotically bounded
away from 0 if 1/(1 + Bmin) — 1/(1 + Bmax) = O(1/4/n), which is satisfied by the small set.
This completes the proof.

APPENDIX H: PROOF OF REMARK 3.5

[23], Appendix C, states another way to obtain samples from the posterior of the MCMC
model related to James—Stein estimator. More specifically, recall that the model

Yi 16 ~N(6i,03), 1<i<n,

0; | 1,03 ~N(u,03), 1<i=<n,

(171)
w ~ flat prior on R,
o2 ~1G(a,b),
where 0‘2/ is assumed to be known, Y = (Yy,...,Y,) is the observed data, and x =
(oﬁ, W, 01, ...,6,) are parameters. Then the posterior can be written as
(172) (0, 1,031 Y)=7(0 |, 0%, Y)w (|03, Y)m(05 1Y),

where 7 (0 | i, 0/%, Y) is a product of independent univariate normal densities

2 2 2.2

. oyYi+oyu  ojoy
(173) 0 N( 2102 o+ ol
1% A A 1%

and (1 | ai, Y) is a normal distribution

2 2

(174) wlo?, Y~N<Y, m)
n

Therefore, one can use a rejection sampler with proposal from IG(a, b) to obtain independent
samples from Jr(aﬁ | Y). However, we show that the acceptance probability of this rejection
sampler decreases (typically exponentially) fast with n. To see this, note that

5 1 p( 1 Z;’:](Yi—l?)2>.

A7) @R Y) & T o7 o2y

b 2(031 + 0"2/)
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We let g(ai) be the density of IG(a, b), then using the fact

2 n 72
Y 1 1 Y=Y
176 TOAD o e~ ST ) fa(od)
g(@3) (0 (0f +o)n=D/2 b 2(03+0))
n
1-n)/2 >
(177) = (03 +02)™/ exp(— S~ 1)?/2(0% + 03))
i=1
n _y)y2\a-m/2
(178) <M := <M) e—Tl,
n—1
n V)2
where the upper bound M is achieved when a/% = Zz:ln(# — o‘%. Then the acceptance
probability of the rejection sampler is
19 By g | DO T 0= D200} + 0]
o5~1G(a,b) M
n V)2
24 2 \(-n)2 i Yi-1)” (1=n)/2
oy t+o 1
180)  =E_._ [(M) exp(—= 5~ 1) }
(180) 03~1G(a,b) Z?Zln(fil—Y)z P T
NG Yi(Yi=Y)? -
04~1G(a,b) Z?:ln(fif}])z o% + 0‘2,

Therefore, the acceptance probability of the rejection sampler equals to E[Z"~1/2] where

2, 2 -1 Y (Yi—1)?
oy +o —
Zl=1( 11 ) O'A + O'V
=

where the last inequality comes from exp(x — 1) > x.

. .. n(Yi—Y)?
We can see that under mild conditions such that Z’ﬂff’l) converges to a constant, the

acceptance probability of the rejection sampler goes to zero, E[Z®*~1/2] — 0, very fast.
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