
Exploring the generalizability of the optimal 0.234

acceptance rate in random-walk Metropolis and

parallel tempering algorithms

Aidan Li1*, Liyan Wang1, Tianye Dou1, Jeffrey S. Rosenthal1

1*Department of Statistical Sciences, University of Toronto.

*Corresponding author. E-mail: aidan.li@mail.utoronto.ca;
Contributing authors: liyan.wang@mail.utoronto.ca;
tianye.dou@mail.utoronto.ca; jeff@math.toronto.edu;

Abstract

For random-walk Metropolis (RWM) and parallel tempering (PT) algorithms,
an asymptotic acceptance rate of around 0.234 is known to be optimal in the
high-dimensional limit. Yet, the practical relevance of this value is uncertain due
to the restrictive conditions underlying its derivation. We synthesise previous
theoretical advances in extending the 0.234 acceptance rate to more general set-
tings, and demonstrate the applicability and generalizability of the 0.234 theory
for practitioners with a comprehensive empirical simulation study on a variety
of examples examining how acceptance rates affect Expected Squared Jumping
Distance (ESJD). Our experiments show the optimality of the 0.234 acceptance
rate for RWM is surprisingly robust even in lower dimensions across various pro-
posal and multimodal target distributions which may or may not have an i.i.d.
product density. Experiments on parallel tempering also show that the ideal-
ized 0.234 spacing of inverse temperatures may be approximately optimal for
low dimensions and non i.i.d. product target densities, and that constructing an
inverse temperature ladder with spacings given by a swap acceptance of 0.234
is a viable strategy. However, we observe the applicability of the 0.234 accep-
tance rate heuristic diminishes for both RWM and PT algorithms below a certain
dimension which differs based on the target density, and that inhomogeneously
scaled components in the target density further reduces its applicability in lower
dimensions.

Keywords: Markov chain Monte Carlo, Metropolis algorithm, optimal scaling,
acceptance rate, parallel tempering

1



1 Introduction

Markov chain Monte Carlo (MCMC) methods, such as the Metropolis algorithm,
are used to draw samples from complex high-dimensional target probability distribu-
tions (Brooks et al., 2011; Robert and Casella, 2004). They enjoy strong theoretical
asymptotic guarantees of accuracy, converging to the target distribution in stationarity
(Brooks et al., 2011; Robert and Casella, 2004). However, they may also be inefficient
and take an intractable amount of time to provide a good approximation of the tar-
get distribution they are sampling (Rosenthal, 1995). Therefore, the analysis of their
running time is an important practical issue to consider.

Roberts et al. (1997) proved an important result: in the state space high-
dimensional limit d → ∞, the asymptotic acceptance rate of a Metropolis algorithm
is central to its efficiency, and that for a target distribution that has density π with
respect to Lebesgue measure on Rd where π(x) =

∏d
i=1 f(xi) has an i.i.d. product

form, and where f is a sufficiently smooth single-dimensional density function such that

log f is continuously differentiable and Ef

[(
f ′(X)
f(X)

)2
]
< ∞, an asymptotic acceptance

rate of approximately 0.234 maximises the efficiency of a random-walk Metropolis
(RWM) algorithm with a Gaussian increment proposal distribution starting at sta-
tionarity. However, these assumptions are very restrictive. Many practical scenarios
often involve finite and relatively small dimensions. Additionally, many probability
distributions do not have densities of the i.i.d. product form, and for those that do,
sampling a one-dimensional target is much simpler than using RWM. A burgeoning
active research area is dedicated to showing that this figure still applies beyond these
assumptions, and much of this focuses on the i.i.d. product assumption.

Many papers have shown that the optimal average acceptance rate of 0.234 for
RWM holds greater generality than the assumptions used in Roberts et al. (1997).
These extensions include: non-Gaussian proposals (Neal and Roberts, 2011), discrete
hypercube target distributions (Roberts, 1998), Gibbs random fields (Breyer and
Roberts, 2000), independent target components with inhomogeneous scaling (Bédard,
2007; Bédard and Rosenthal, 2008; Roberts and Rosenthal, 2001), partial updates
where not all components are updated at once (Neal and Roberts, 2006), elliptical
symmetric unimodal target densities (Sherlock and Roberts, 2009), and infinite-
dimensional target distributions with non-trivial dependence structures (Mattingly
et al., 2012). The 0.234 acceptance rate in optimal scaling has also been shown to
apply to the spacing and swapping between inverse temperatures in the parallel tem-
pering MCMC method (Atchadé et al., 2011; Roberts and Rosenthal, 2014). That
being said, there are some cases in which the 0.234 case may not hold, such as in the
case of discontinuous targets (Neal et al., 2012) where the optimal acceptance rate
is approximately 0.1353. Additionally, these results of optimality are still theoretical
ideals, with similar assumptions to the product i.i.d. form and in the limit of d → ∞
where the Markov chain converges to a diffusion process.

These results are of great interest to practitioners who would like to understand
how to tune their MCMC algorithms to maximise their efficiency. Previous simulation
studies have been carried out on more general target distributions like products of
independent, non-identical components (Bédard, 2008; Roberts and Rosenthal, 2001),
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and for the Markov modulated Poisson process (Sherlock et al., 2010), but there is
still a lack of thorough experimentation and guidance for how handy the 0.234 rule is
on realistic target distributions that may have lower or higher dimensionality and/or
multimodality. Our research examines how necessary these assumptions are for the
theoretical result to remain relevant: where can we relax some assumptions in lower
dimensions and still have the optimal acceptance rate of approximately 0.234, and
where can we not do this? And in the end, how applicable is the 0.234 figure for
the practitioner, who may want to use MCMC for complicated target distributions
beyond the necessary assumptions in finite dimensions? We thoroughly dissect various
aspects of the Metropolis algorithm and experiment with them, and in doing so, we
show empirically where the theoretical ideal value can still align with more realistic
scenarios.

We begin our paper with a description of the RWM and its optimal scaling frame-
work in Section 2. In Section 3, we describe RWM experiments in low dimensions that
show where an acceptance rate of 0.234 can be optimal in the sense that it maximises
the Expected Squared Jumping Distance (ESJD) for various proposal and target den-
sities which are not necessarily all i.i.d. product forms. Next, we describe the parallel
tempering method and its own optimal scaling framework in Section 4, and show using
experiments in Section 5 that the 0.234 swap acceptance rate in parallel tempering
may also be optimal in lower dimensions for the multivariate Gaussian target density
and a Gaussian mixture target density which is not of an i.i.d. product form. Lastly,
we discuss the implications of our findings in Section 6.

2 Random-walk Metropolis Background

We first introduce the Metropolis algorithm and the Optimal Scaling framework. We
then discuss measures to evaluate the efficiency of MCMC algorithms, such as the
expected squared jumping distance, and explain how the asymptotic acceptance rate
of a MCMC algorithm is tied to the algorithm’s efficiency.

2.1 Metropolis Algorithm

A Metropolis algorithm (Metropolis et al., 1953) constructs a Markov chain
x(0),x(1), . . . that converges to the target probability distribution π in the long-term
after many runs, i.e. the Markov chain has a stationary distribution equal to the tar-
get distribution. When taking each step in the Markov chain, we generate a new state
y = x(t) + ϵ where ϵ is sampled from an increment “proposal” density Q having
Q(ϵ) = Q(−ϵ) for all ϵ in its domain and accept this new state with probability α(x,y)

given by α = min

{
1,

π(y)

π(x)

}
. If the proposed value is accepted, we set the next state

x(t+1) = y. Otherwise, we set x(t+1) = x(t).

2.2 Optimal Scaling Framework

Optimal Scaling (Roberts et al., 1997; Roberts and Rosenthal, 2001) is one of the most
successful frameworks for performing asymptotic analysis of high-dimensional MCMC

3



methods, and provides mathematically-grounded guidance on how to best optimise
MCMC performance by tuning the “scaling” parameter(s) of the proposal distribution.
Typically, a multivariate Gaussian distribution with mean 0 is used as the increment
proposal distribution, and the proposal’s scaling is its variance σ2. If the proposal’s
variance is too small, too many proposed steps are accepted by the algorithm, but
each step does not explore the state space much. Vice versa, if the proposal’s variance
is too large, too few proposed steps are accepted, leading to slow exploration of the
state space since the algorithm stays at a state for too long. Therefore, the proposed
variance is crucial to the performance of the algorithm; the optimal scaling should
balance the exploration of new areas in the state space with exploiting high-density
areas of the target distribution. Different Metropolis algorithms have shown to have
different optimal choices of the proposal distribution variance σ2.

We next discuss how to evaluate the efficiency of an MCMC algorithm for deter-
mining optimal scaling. A very popular measure of efficiency is the Expected Squared
Jumping Distance (ESJD) metric (Gelman and Pasarica, 2007; Yang et al., 2020)
which we use for our experiments. The expected squared jumping distance measures
how far, in expectation, the MCMC chain moves in a single iteration. For the standard
random-walk Metropolis algorithm, we define this as

E
[∥∥∥x(t+1) − x(t)

∥∥∥2] ≈ 1

n− 1

n−1∑
i=1

∥∥∥x(t+1) − x(t)
∥∥∥2

where n is the total number of iterations of the algorithm. Maximising the ESJD aligns
with minimizing the first-order auto-correlation of the Markov chain and subsequently
maximises efficiency if the higher-order auto-correlations are monotonically increasing
relative to the first-order auto-correlation (Gelman and Pasarica, 2007; Yang et al.,
2020).

There are other notions of efficiency of a Markov chain, but in the high-dimensional
limit d → ∞ where the chain converges to a diffusion process, all efficiency measures
are effectively equivalent (Roberts et al., 1997; Roberts and Rosenthal, 2001). A key
result of these referenced papers is that, given a Metropolis algorithm with a Gaussian

increment proposal distribution Q = N(0, ℓ2

d Id) where ℓ > 0 is a fixed scaling constant
and Id is the identity matrix, maximising the algorithm’s speed measure h(ℓ), which
is a function of the scaling constant ℓ, yields the most efficient asymptotic diffusion.
Furthermore, the speed measure has a clear relation to a much simpler quantity to
estimate: the asymptotic acceptance rate of the proposed new states (moves) of the
algorithm, defined as

a = lim
n→∞

# accepted moves

n
.

Both the speed measure h(ℓ) and asymptotic acceptance rate a(ℓ) are functions of
the scaling constant ℓ. As mentioned in Section 1, when the target distribution that
has density π with respect to Lebesgue measure on Rd has an i.i.d. product form
π(x) =

∏d
i=1 f(xi), where f is a sufficiently smooth single-dimensional density function
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such that log f is continuously differentiable and Ef

[(
f ′(X)
f(X)

)2
]
< ∞, for a random-

walk Metropolis algorithm with a Gaussian increment proposal distribution starting at
stationarity, the scaling constant ℓ that maximises the speed measure h(ℓ) corresponds
to an asymptotic acceptance rate a(ℓ) of approximately 0.234 (Roberts et al., 1997;
Roberts and Rosenthal, 2001). Hence, an asymptotic acceptance rate of approximately
0.234 should necessarily optimise a measure of efficiency such as the ESJD of the
algorithm.

3 Random Walk Metropolis Simulations

In this section, we explore the applicability of the 0.234 acceptance rate figure for
RWM algorithms using several practical RWM examples in lower dimensions. We
begin with simple examples where the target densities meet all the key assumptions
required for the 0.234 acceptance rate to be optimal, as established in the literature.
Next, we investigate examples that do not use Gaussian proposal distributions, and
then we explore other densities that may lack key assumptions, such as smoothness or
the i.i.d. product form. We estimate the Expected Squared Jumping Distance (ESJD)
of the algorithm as a metric of the algorithm’s efficiency as mentioned in Section
2.2 and aim to see under what conditions an acceptance rate of approximately 0.234
maximises the ESJD.

Our experiments show which acceptance rate value (which is implicitly determined
by the proposal variance) maximises the ESJD for these various target distributions
in lower dimensions. It is important to note that functions of acceptance rates are
somewhat flat around the optimal values and that the values and figures reported
are still prone to random error inherent in a Monte Carlo simulation. To reduce the
random error, we run each experiment over 5 different seeds and average the results.
In each experiment, we run RWM simulations with 40 different variance values using
a Gaussian proposal (unless otherwise mentioned) for 100,000 runs each and recorded
the ESJD and acceptance rate estimates for the simulations. For each example, we
conduct this experiment over multiple dimension sizes. Overall, each example has 200
simulations total over 5 seeds, and each simulation runs for 100,000 iterations.

3.1 Simpler Examples: Gamma and Beta i.i.d. Targets

We begin with simpler examples demonstrating that the 0.234 acceptance rate is
still roughly optimal for lower dimensions with any i.i.d. product target distribution
π(x) =

∏d
i=1 f(xi) and a Gaussian proposal. As mentioned in Section 2, Roberts et al.

(1997) proved the 0.234 optimal acceptance rate for i.i.d. product target distributions
with a standard Gaussian proposal distribution in the infinite-dimensional limit, and
Roberts and Rosenthal (2001) and Bédard (2008) extended this with MCMC simu-
lations showing that with a i.i.d. product target distribution and Gaussian proposal,
the 0.234 acceptance rate seems approximately optimal for dimensions as low as 10.
Our experiment provides further evidence for this being the case, and we extend this
with simulations for d = 2, 5.
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We present two examples: the first example sets the singular dimensional compo-
nent density f to be Gamma(3, 2) with shape parameter 3 and scale parameter 2, and
the second example uses Beta(3, 2) as the component density f with shape parameters
3 and 2. We use a multivariate Gaussian with a mean of 0 as the increment proposal
distribution in both cases. We run this experiment in dimensions 2, 5, 10, 30, and 50.

Fig. 1: ESJD for various RWM acceptance rates for the i.i.d. gamma target distribu-
tion in dimensions d = 2, 5, 10, 30, 50 (from top-left to bottom-right).

Table 1: Experimental optimal RWM acceptance rates for i.i.d. gamma and beta
target distributions in different dimensions. Numerical values are the observed exper-
imental acceptance rates maximising the ESJD.

Dimension d

Target Density 2 5 10 30 50

i.i.d. Gamma(3, 2) 0.3009 0.2483 0.2095 0.2239 0.2338
i.i.d. Beta(3, 2) 0.3780 0.2868 0.2384 0.2364 0.2353

As we can see in Figures 1, 2, and Table 1, a 0.234 acceptance rate is still quite
efficient in dimensions as low as 5. For an i.i.d. gamma target distribution, there is a
significant decrease in the optimal acceptance rate when the dimension d increases from
5 to 10. Subsequently, the optimal acceptance rate approaches 0.234 as the dimension
increases. In the case of an i.i.d. beta target distribution, the acceptance rate is already
close to 0.234 at d = 10, and as the dimension increases further, the optimal acceptance
rate observed in experiments gets closer to 0.234.
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Fig. 2: ESJD for various RWM acceptance rates for the i.i.d. beta target distribution
in dimensions d = 2, 5, 10, 30, 50 (from top-left to bottom-right).

Our simulation study provides further evidence that for i.i.d. product target dis-
tributions, the optimal acceptance rate for maximizing ESJD is approximately 0.234
even in low dimensions, and that the optimal acceptance rate gets closer to 0.234 as
the dimension increases. This result holds for both i.i.d. gamma and beta target dis-
tributions, as evidenced by the trace plots and histograms demonstrating the efficacy
of the Metropolis algorithm across different dimensions.

3.2 Non-Gaussian Proposal Densities

Next, we investigate the efficacy of different proposal distributions for the Metropo-
lis algorithm. One of the conditions assumed by the 0.234 theorem of Roberts
et al. (1997) is the use of a multivariate Gaussian increment proposal distribution
Q(x) = N(0, σ2Id). The additional results in Roberts and Rosenthal (2001) depend
on the assumptions of light-tailed proposals. In contrast, Jarner and Roberts (2002)
extend this analysis by examining the behaviour of the algorithms with heavy-tailed
proposals. They find that, unlike the diffusion behaviour seen with light-tailed pro-
posals, heavy-tailed proposals lead to a different dynamic characterized by abrupt
movements followed by periods of inactivity. Furthermore, Neal and Roberts (2011)
investigated optimal scaling results for non-Gaussian proposals; specifically, they
investigated heavy-tailed proposal distributions such as the Cauchy distribution, and
spherical proposal distributions of fixed radius. In their RWM simulation study with
three different continuous i.i.d. product target densities, both the Gaussian and Cauchy
proposals had an estimated asymptotically optimal acceptance rate of approximately
0.234 in d = 100. They also found that a spherical proposal with a fixed radius of 2.38
achieved an optimal acceptance rate of about 0.234 in d = 2 and d ≥ 10.
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We extend this work with two different proposal distributions in d = 2, 5, 10, 20, 50.
The first proposal distribution we consider is the multivariate Laplace distribution,
which may also be referred to as the double exponential distribution. We use location
parameter µ = 0 and covariance parameter Σ = σ2Id, with σ to be chosen. We also
consider an example with the uniform proposal distribution within the closed interval[
xi − b

2 , xi +
b
2

]
for each component i, where b > 0 is the interval length. We use the

standard multivariate Gaussian as the target density π.

Fig. 3: ESJD as a function of acceptance rate for the Laplace proposal distribution,
with dimensions d = 2, 5, 10, 20, 50 (from top-left to bottom-right).

Table 2: Experimental optimal RWM acceptance rates for Laplace and Uniform
proposal distributions in different dimensions. Numerical values are the observed
experimental acceptance rates maximising the ESJD.

Dimension d

Proposal Distribution1 2 5 10 20 50

Laplace 0.3986 0.3097 0.2701 0.2449 0.2311
Uniform 0.3204 0.2791 0.2623 0.2435 0.2392

1Parameters for each proposal distribution are given in the experiment description above.

As observed in Figures 3, 4 and Table 2, an acceptance rate of approximately
0.234 remains efficient and maximizes ESJD even in lower dimensions (d = 10) under
both Laplace and uniform proposal distributions, and that the optimal acceptance
rate tends to converge to 0.234 as the dimensionality of the problem increases. Specifi-
cally, for a multivariate i.i.d. Gaussian target distribution, an acceptance rate close to
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Fig. 4: ESJD as a function of acceptance rate for the Uniform proposal distribution,
with dimensions d = 2, 5, 10, 20, 50 (from top-left to bottom-right).

0.234 maximizes ESJD. This finding is consistent across various proposal distributions,
including the Laplace, Uniform, and Gaussian.

3.3 Non-smooth Target Densities: Continuous Hypercube

Consider a RWM using a Gaussian proposal and a target density still of the prod-
uct form π(x) =

∏d
i=1 f(xi), but where the individual component density f is

Uniform(a, b). Unlike the previous examples, the component density f and its log-
arithm are not continuously differentiable on R due to the discontinuities at the
boundaries xi = a and xi = b. Since this is one of the assumptions in the proof,
the asymptotic results where the optimal acceptance rate is 0.234 may not apply.
This discontinuous target density case has been explored by Neal et al. (2012), which
found that for product densities with a discontinuity at the boundary, such as the unit
hypercube [0, 1]d, the efficiency of the RWM is maximised with an asymptotic optimal
acceptance rate of 0.1353 as d → ∞. We provide simulation studies in various dimen-
sions to investigate the applicability of this particular 0.1353 acceptance rate figure in
lower dimensions on the hypercube [0, 1]d.

Table 3: Hypercube target experimental optimal RWM acceptance rates for dif-
ferent dimensions.

Dimension d 2 5 10 20 30 50 100

Optimal Acceptance Rate 0.4359 0.2578 0.2095 0.1561 0.1507 0.1398 0.1331
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Fig. 5: ESJD for various RWM acceptance rates for the continuous hypercube target
distribution in dimensions d = 2, 5, 10, 30, 50, 100 (from top-left to bottom-right).

We have a fairly similar ESJD vs acceptance rate curve in all dimensions as shown
by Figure 5. Still, unlike the previous examples, which seem to be fairly consistently
optimal with an acceptance rate of 0.234, we find (refer to Table 3) that the opti-
mal acceptance rate for the hypercube target changes significantly as the dimension
increases. This is because discontinuities introduce additional complexity in the target
distribution, affecting the behaviour and performance of the RWM. As the dimension
d increases, the algorithm’s performance converges to the theoretical 0.1353 value.
In this specific case, the shrinking optimal acceptance rate might be because of the
unique zero or non-zero form of the target density beyond the hypercube boundary.
As discussed by Neal et al. (2012), whether a proposed move is accepted depends com-
pletely on whether the proposed state is inside the hypercube. Subsequently, when
using a Gaussian proposal, the probability that at least one proposed component will
lie outside the boundary increases, leading to a higher probability of instant rejection.

3.4 Multimodal Target Densities

In this subsection, we investigate target distributions with multimodal densities. Many
real-world probability and data distributions are multimodal, and standard RWM
algorithms may struggle to explore all the modes of a multimodal distribution in a
reasonable amount of time particularly when the modes are far apart. Additionally,
multimodal densities may not necessarily fall under the i.i.d. product umbrella of
target densities, and even if they do, it is debatable how relevant the 0.234 rule is in
these cases. For example, a RWM algorithm may achieve a 0.234 acceptance rate in
its run over many iterations and yet completely fail to escape a mode to explore other
modes. We illustrate this with Figure 6, where we attempt to draw 10 million samples
from a multimodal distribution with three modes but fail to escape the central mode.
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Fig. 6: Histogram and traceplot of 10 million samples drawn from a multimodal single-
dimensional target density. The true density values are traced with the dotted lines.

When we have widely-separated modes, a RWM with the Gaussian proposal dis-
tribution struggles to reach the other modes in finite time regardless of the proposal
scaling and the dimension of the target distribution. Therefore, for these multimodal
target density experiments, we deliberately set the modes to be close enough to each
other so that a RWM still mixes between the modes reasonably often.

3.4.1 The “Rough Carpet” Target Density

We explore two multimodal target densities in this section: first, we examine a simpler
i.i.d. product density, and then one with inhomogeneous scaling factors. Our first mul-
timodal distribution has the form π =

∏n
i=1 f(xi), where the single component density

f is a one-dimensional density with three modes. We define our single-component
density:

f(x) = 0.5N(x|µ1, 1) + 0.3N(x|µ2, 1) + 0.2N(x|µ3, 1) (1)

where µ1, µ2, µ3 ∈ R and N(x|µi, 1) indicates the density of the univariate Gaussian
distribution at point x with mean µi and variance 1. This forms a “rough carpet”-
like appearance for the target distribution when we take the product of this single-
component density over many dimensions (see the visualization of the first component
in Figure 7). Since we have 3d modes, the density values at each mode may not be
very high. Yet, since this is a i.i.d. product form, the theoretical result of 0.234 being
the optimal acceptance rate should also apply.

We conduct various experiments in dimensions d = 20, 30, 50 where we use the
single-component density f(x) = 0.5N(x | −5, 1) + 0.3N(x | 0, 1) + 0.2N(x | 5, 1). As
mentioned (refer to Figure 6), we set the modes to be reasonably close so that the
standard RWM can jump between modes somewhat frequently.

Table 4: Rough carpet product target distribution
experimental optimal RWM acceptance rates for
different dimensions.

Dimension d 20 30 50

Optimal Acceptance Rate 0.2133 0.2202 0.2291
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Fig. 7: Single-dimensional component density for the “rough carpet” target distribu-
tion.

Fig. 8: ESJD for various RWM acceptance rates for the rough carpet product target
distribution in dimensions d = 20, 30, 50 (from left to right).

We report our results for the non-scaled target distribution (Section 3.4.1 point
1) in Figure 8 and Table 4. We find that the exact optimal acceptance rate that
maximises ESJD is slightly below 0.234 in low dimensions, but that 0.234 is still quite
applicable, and that the empirically optimal acceptance rate gets closer to 0.234 with
increasing dimensionality. This seems consistent with Roberts et al. (1997) since our
target density, despite being multimodal, is a product of a single-dimensional density
in the d components.

3.4.2 The “Rough Carpet” Target Density: Inhomogeneously
Scaled Components

Next, we examine a multimodal distribution with a density of the form π =∏n
i=1 Cif(Cixi). This density is a more general form of the previous one by including

inhomogeneous component-wise scaling factors Ci, where Ci > 0 and E(Ci) = 1 and
V ar(Ci) < ∞. This inhomogeneously-scaled i.i.d. product target density was discussed
by Roberts and Rosenthal (2001), which proved the extension of the 0.234 asymptoti-
cally optimal acceptance rate to this case. We use the same single-component density
f as the previous experiment in Section 3.4.1, independently sample the component
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scaling factors Ci ∼ Uniform[0, 2] and report our results for the inhomogeneously
scaled target distribution in Figure 9 and Table 5.

Fig. 9: ESJD for various RWM acceptance rates for the inhomogenously scaled rough
carpet target distribution in dimensions d = 20, 30, 50 (from left to right).

Table 5: Inhomogenously scaled rough carpet
product target distribution experimental optimal
RWM acceptance rates for different dimensions.

Dimension d 20 30 50

Optimal Acceptance Rate 0.2009 0.2174 0.2351

Yet again, we find that the optimal acceptance rate converges to about 0.234 with
increasing dimensionality. While the lower-dimensional cases such as d = 20, 30 have a
larger degree of deviation from the 0.234 figure than the previous homogeneously scaled
case, in d = 50 we find that the figure is very close to 0.234. A possible explanation for
this is that the dimensions d = 20, 30 might be too low for the law of large numbers to
apply for the inhomogeneous scaling factors; i.e. the scaling factors Ci sampled from
Uniform[0, 2] may not have a sample mean close enough to 1 in low dimensions, but
in d = 50 or higher the sample mean is much closer to 1.

3.4.3 A Tale of Three Mixtures

The above “rough carpet” distributions are multimodal, but notice that they still
follow the general product form π =

∏n
i=1 f(xi). Here, we examine a distribution

that does not have this product assumption at all; instead, we have a weighted sum
of densities as our target density. In this section, we examine a mixture of three
Gaussians; a multimodal distribution with just three modes regardless of the number
of dimensions. The general form of this density is

π(x) = w1N(x|µ1,Σ1) + w2N(x|µ2,Σ2) + w3N(x|µ3,Σ3) (2)

where we have non-negative scalar weights wi ≥ 0 such that w1 + w2 + w3 = 1, and
N is a multivariate Gaussian with mean µi ∈ Rd and covariance matrices Σi.
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Fig. 10: A histogram and traceplot of the first component from one of the simulations
in the three mixture target distribution experiment after 100,000 iterations.

For these experiments in d = 20, 30, 50, we set the weights w1 = w2 = w3 = 1
3 ,

the covariances Σ1 = Σ2 = Σ3 = Id, and set the means µ1 = (ϵ, 0, 0, . . . , 0), µ2 =
(0, 0, . . . , 0), µ3 = (−ϵ, 0, 0, . . . , 0) for some constant ϵ ∈ R, i.e. just varying the first
component of the means and setting the other components of the means to 0. As
mentioned (refer to Figure 6), we choose the constant ϵ in the first dimension to be
some value such that jumping between modes still happens frequently enough; for
the remainder of this section we use ϵ = 5.0. We refer the reader to Figure 10 for
an example histogram and traceplot to illustrate how the Markov chain explores the
three modes.

Fig. 11: ESJD for various RWM acceptance rates for the three mixture distribution
in dimensions d = 20, 30, 50 (from left to right).

Table 6: Three mixture target distribution exper-
imental optimal RWM acceptance rates for differ-
ent dimensions.

Dimension d 20 30 50

Optimal Acceptance Rate 0.2358 0.2497 0.2250

We find the ESJD vs acceptance rate trends look almost identical in dimensions
d = 20, 30, 50, and ESJD continues to be maximised at an acceptance rate of around
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0.234 (see Figure 11 and Table 6). Clearly, even though the i.i.d. assumption does not
hold, the 0.234 figure still seems to be quite applicable here.

3.4.4 A Tale of Three Mixtures: Inhomogenous Scaling Factors

We repeat this experiment with inhomogeneous scaling factors inside the covari-
ance matrices Σi for each mode. Concretely, each mode has covariance matrix Σi =
diag(C1, C2, . . . , Cd) where Ci are i.i.d. samples from the Uniform[0, 2] distribution
such that E[Ci] = 1 and E[C2

i ] < ∞. For this experiment, we use the same diagonal
covariance matrix for each of the three modes. We report our results in Figure 12 and
Table 7. We observe a very similar phenomenon as the inhomogeneously-scaled rough
carpet density: in lower dimensions, the optimal acceptance rate is significantly lower
than 0.234, but as d increases, we get much closer to 0.234.

Fig. 12: ESJD for various RWM acceptance rates for the three mixture distribution
with inhomogeneous scaling in each component in dimensions d = 20, 30, 50 (from
left to right).

Table 7: Inhomogenously scaled three mixture
target distribution experimental optimal RWM
acceptance rates for different dimensions.

Dimension d 20 30 50

Optimal Acceptance Rate 0.1740 0.2107 0.2290

Overall, the three-mixture examples and their results yield promising avenues for
extension of the theory, going beyond the i.i.d. product assumption to a target density
that is a weighted sum of individual Gaussian densities. Furthermore, the 0.234 figure
seems to be relevant even for inhomogeneous scaling in each Gaussian in a Gaussian
mixture.

4 Parallel Tempering Background

This section offers a brief introduction to the parallel tempering method and its own
optimal scaling framework that we conduct experiments on in Section 5. Many of the
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terms in Section 2 are re-used but have slightly different definitions for the parallel
tempering context.

4.1 Parallel Tempering Method

The parallel tempering method (Geyer, 1991), also known as the Metropolis-coupled
Markov chain Monte Carlo algorithm or the replica exchange method, is a version of
the Metropolis algorithm that specialises in sampling from multimodal distributions.
In this case, we sample from a target distribution π(·) with density fd(x) on a state

space X . We define a sequence of tempered target densities f
βj

d (x) where 0 ≤ βn <
βn−1 < · · · < β1 < β0 = 1 are the inverse temperature values. We require that
fβ0

d (x) = fd(x) (that is, that β0 = 1). Typically, the tempered target densities are
simply powers of the original density, and we assume this for all parallel tempering
experiments. Then, we run a Markov chain for each of the n+1 values of β, each with
its own tempered target density. Eventually, the β0 = 1 chain, also called the “cold”
chain, with its stationary density fβ0

d (x0) should correspond to the original target
density of interest fd(x), and the idea is that using information from other chains with
higher temperatures (lower β) will speed up the mixing in the cold chain.

In each iteration of the algorithm, we alternate between within temperature and
temperature swap moves. The former indicates that each chain takes a standard RWM

update within its respective f
βj

d . The latter indicates that for two chains with βj , βk

inverse temperature values that are adjacent in the sequence of β values, switch the
chain values of xj and xk with probability

min

{
1,

f
βj

d (xk)f
βk

d (xj)

f
βj

d (xj)f
βk

d (xk)

}
(3)

4.1.1 Optimal Scaling for Parallel Tempering

Since the hot chains can explore the state space more quickly, we would like to max-
imise how frequently we can swap values from the hottest chain to the coldest chain
so that the cold chain can mix faster and escape local modes. To do this, we maximise
the effective speed with which the chain values move along in the inverse temperature
domain. The spacings of the inverse temperatures βi’s are crucial to this efficiency. If
βj and βk are too far apart, we usually reject these swaps described by (3), but if they
are too near, the swaps will not improve mixing. We would like to swap just the right
amount to maximise mixing in the temperature domain.

The expected squared jumping distance (ESJD) for parallel tempering thus refers
to the expected squared jump in inverse temperatures. Formalising this, when we
attempt to swap the chain values between the inverse temperatures β and γ := β + ϵ
where β, ϵ > 0 and β, γ ≤ 1, the swap is either accepted, in which case the values
move a squared distance of (γ − β)2 = ϵ, or the swap is rejected, in which case the
distance moved is 0. This leads to a very natural definition for ESJD, which is

ESJD = E[(γ − β)2] = ϵ2 × E[Pr(swap accepted)]. (4)
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Maximising the asymptotic ESJD effectively maximises the efficiency of the attempted
swap moves in providing mixing in the temperature space, or in other words, maximises
the speed with which the chain values move in the inverse temperature space.

Under the restrictions of an i.i.d. product target density fd(x) =
∏d

i=1 f(xi),
where the tempered distributions are powers of the original density, and the inverse-
temperature spread ϵ = d−1/2ℓ for some positive constant ℓ, choosing ℓ such that the
inverse temperature spacing yields a swap acceptance probability of approximately
0.234 is also optimal (Atchadé et al., 2011) in the sense that it maximises the ESJD
of a parallel tempering algorithm.

5 Parallel Tempering Simulations

In this section, we provide parallel tempering experiments that investigate how well
the 0.234 optimal swap acceptance rate holds for the various multimodal target dis-
tributions in Section 3.4 in finite dimensions. The parallel tempering method is highly
effective for exploring multimodal distributions (Atchadé et al., 2011; Hastings, 1970)
and thus we aim our experiments at these distributions to learn more about their
applicability in practice.

5.1 Methodology

We conduct experiments that examine the trend of ESJD with swap acceptance rate for
each of the “rough carpet” distribution from Section 3.4.1, three-mixture distribution
from Section 3.4.3, and standard multivariate Gaussian distribution as a baseline for
comparison. For each distribution, we run many simulations where each simulation is
a parallel tempering algorithm with 40 different average swap acceptance rate values.
We explain how we set up these algorithms to match these swap rates in Section 5.1.1.
Each parallel tempering algorithm runs for 20,000 iterations, so every individual chain
in the algorithm takes 20,000 steps. We attempt a swap every 20 steps. Furthermore,
we ran each algorithm instance over 5 different seeds and average the results to reduce
the effects of randomness caused by a particular seed. Overall, each experiment on a
single distribution has 200 simulations which runs for 20,000 iterations per chain, and
the number of chains for each parallel tempering algorithm simulation is determined
by the inverse temperature spacing given by the intended average swap acceptance
rate. We refer the reader to Section 5.1.1 for details on how these inverse temperatures
were set up.

For each target distribution, we set the tempered target distribution to simply be
the original distribution raised to the power of β. We set the modes to be far away
enough such that the other modes were unreachable by the standard random-walk
Metropolis algorithm after 100,000 iterations, but still reasonably close so that the
parallel tempering method would show the cold chain values would swap between
modes somewhat frequently.

5.1.1 Constructing an Inverse Temperature Ladder Iteratively

The most common method to construct an inverse temperature ladder selects the
inverse temperatures using a geometric series spacing. However, since we are examining
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the 0.234 swap acceptance rule, we need to have a way of constructing the inverse
temperature spacings such that the probability of a swap between adjacent chains
is approximately 0.234 (or any other value). To construct an inverse temperature
ladder with a desired swap acceptance rate s, we use an iterative procedure adapted
from (Atchadé et al., 2011, Section 2.2). Starting with β0 = 1 and a minimum value
βmin = 0.01, we iteratively add β’s to the ladder. Let βcurr denote the most recent β
in the ladder. We initialize ρn = 0.5 (n = 1 initially) and set β∗ = βcurr(1+eρn)−1. To
determine if β∗ should be added to the ladder, we drawN samples (our implementation
uses N = 3000) from the target distribution tempered by β∗ and βcurr, and calculate
the average swap probability a. If a is within s± 0.005, we add β∗ to the ladder and
set βcurr = β∗. Otherwise, we update ρn+1 = ρn + n−0.25(a − s) and recalculate β∗.
This process continues until β∗ ≤ βmin, at which point we add βmin to the ladder and
terminate.

5.2 Multivariate Gaussian Target Distribution

Fig. 13: ESJD vs swap acceptance rate for parallel tempering multivariate Gaussian
target in dimension 20.

We first give an example of the standard multivariate Gaussian distribution to
verify the correctness of our implementation. Note that the standard multivariate
Gaussian as a target distribution satisfies the necessary assumptions of Theorem 1 in
Atchadé et al. (2011): our target is a product of individual component densities, and
we temper the distributions by raising them to the power of the original density, and
ϵ ↘ 0 such that ϵ = d−1/2ℓ for some positive constant ℓ. We find that the results
are consistent with the theoretical figure, and that the optimal swap acceptance rate
is around 0.234. Please refer to Figure 13 for an illustration. Although the iterative
temperature construction algorithm described in Section 5.1.1 may be costly in gen-
eral, this example illustrates that if the practitioner is willing and able to construct
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the inverse temperatures with a spacing given by a swap acceptance probability, con-
structing a ladder with a swap acceptance probability of about 0.234 may be a viable
and optimal strategy in the presence of certain restrictions on the target density.

5.3 Multimodal Distributions

5.3.1 Rough Carpet Distribution

Fig. 14: Parallel tempering histogram and traceplot of the cold chain first component
in the carpet distribution after 100,000 iterations.

In this section, we use the same target distribution as described in Section
3.4.1. Here, we examine the simpler case with homogeneous scaling factors fd(x) =∏n

i=1 f(xi). Our individual component density f(x) is the same as Equation (1), and
in the f(x) definition we set µ1 = −10, µ2 = 0, µ3 = 10. We provide an example
histogram and traceplot after 100,000 iterations with a constructed ladder to demon-
strate what mixing looks like. Unlike the standard random-walk Metropolis which
cannot escape from the central mode in this setting of the target distribution, the val-
ues in the cold chain swap between modes considerably often due to the swapping of
values between chains. Refer to Figure 14 to see the cold chain’s mixing in the first
component (all components are i.i.d.).

Fig. 15: ESJD vs swap acceptance rate for the parallel tempering rough carpet target
density in d = 20, 30.
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Table 8: Constructed swap acceptance
rates that maximise ESJD for the rough car-
pet product target density.

Dimension d 20 30

Optimal Acceptance Rate 0.07051 0.04025

We conduct this experiment in d = 20, 30 and report the results in Figure 15 and
Table 8. In both experiments, the optimal swap acceptance rate is less than 0.1, which
is a substantial discrepancy from the theoretical figure of 0.234. In fact, the observed
optimal swap acceptance rate decreases with increasing dimensionality. This might be
due to the awkward shape of the distribution. Since it has 3d modes, the density at
each mode cannot be that high, which might mean the target distribution of a hot
chain would look almost uniform and thus hot chains might not be sampling the right
values that need to be swapped to colder chains.

5.3.2 Three Mixture Distribution

In this section, we use the same target distribution as described in Section 3.4.3
Equation 2. We set weights w1 = w2 = w3 = 1

3 , means µ1 = (−15, 0, 0, . . . , 0),
µ2 = (0, 0, . . . , 0), µ3 = (15, 0, 0, . . . , 0) and covariances Σ1 = Σ2 = Σ3 = Id. We pro-
vide an example histogram and traceplot after 100,000 iterations with a constructed
ladder to demonstrate what the cold chain mixing looks like in the first component in
Figure 16.

Fig. 16: Parallel tempering histogram and traceplot of the cold chain first component
in the Three-Mixture distribution after 100,000 iterations. Note that the rightmost
mode is slightly undersampled.

We refer the reader to Figure 17 and Table 9 for the results. Unlike the previous
rough carpet density, we find that for the three-mixture density, constructing a ladder
with a spacing of 0.234 seems approximately optimal even in low dimensions. However,
the target density here is not in the i.i.d. product form. As noted in the Section 3.4.3
experiments, taking the sum of three Gaussians as a target density does seem to
allow the RWM optimal scaling results to hold despite being outside of the theoretical
assumptions, and this may extend to the parallel tempering optimal scaling framework
too.
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Fig. 17: ESJD vs swap acceptance rate for the parallel tempering three-mixture target
density in d = 20, 30.

Table 9: Constructed swap acceptance
rates that maximise ESJD for the three-
mixture target density.

Dimension d 20 30

Optimal Acceptance Rate 0.2520 0.2369

6 Discussion

We have provided an extensive list of experiments examining optimal scaling and
acceptance rates for the Random Walk Metropolis (RWM) algorithm with a variety
of target and proposal distributions. We have also examined the optimal scaling and
acceptance rates for parallel tempering. Overall, the 0.234 acceptance rate for RWM
is surprisingly robust and generalizable. Even in lower dimensions, it appears roughly
optimal for non-Gaussian proposals and various multimodal target distributions where
the target density is a product of i.i.d. single-dimensional component densities such as
the “rough carpet”, or even a weighted sum of Gaussian densities (a mixture of three
Gaussians) which is not included in the theorem assumptions. This result for the Gaus-
sian mixture distribution even appears to extend to a inhomogeneous scaling of each
component in each Gaussian, highlighting the robustness of the 0.234 acceptance rate
figure and offering a suggestion for further relaxation of the necessary assumptions.

That being said, there are cases where 0.234 does not seem as relevant. The main
case is in very low dimensions; in all our experiments with varying target densities, the
optimal acceptance rate strays from 0.234 below a certain threshold which varies for
each target density. Furthermore, although it is known that the 0.234 acceptance rate
is not optimal for the continuous hypercube, this is somewhat surprising at first glance
since this target density is continuously differentiable everywhere except on its bound-
ary, which has zero measure. Lastly, the inhomogeneous scaling of each component in
multimodal distributions is a crucial consideration affecting this optimal acceptance
rate in practice; although in the infinite-dimensional limit and for large enough dimen-
sions at about d = 50, the heterogeneous scaling factors should not and do not appear
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to affect the optimal acceptance rate, we find that in smaller dimensions, including
inhomogeneous scaling causes the observed optimal acceptance rate to be strictly less
than 0.234. Open questions remain about to what extent or why the inhomogeneous
scaling factors may reduce the optimal acceptance rate in smaller dimensions. A pos-
sible argument to answer the latter question is that the law of large numbers for the
expected value of the sampled scaling factors may not be applicable in smaller dimen-
sions. To avoid this issue altogether, we suggest to practitioners that variables should
have transformations applied to ensure they have similar scaling, i.e. we emphasize
normalizing variables to have the 0.234 acceptance rate be approximately optimal.

Next, we discuss the optimal swap acceptance rate figure for parallel tempering
and compare it with the optimal acceptance rate for random-walk Metropolis. On one
hand, the results for the multivariate Gaussian and three-mixture density examples
show that the 0.234 swap acceptance rate figure may be optimal even in lower dimen-
sions. Although costly, if the practitioner is willing and able to construct the inverse
temperature ladder iteratively with a spacing given by a swap acceptance probability,
the spacing dictated by a 0.234 swap acceptance probability may be optimal for the
practitioner. However, the theoretical 0.234 figure may not always be applicable: the
“rough carpet” product density which satisfies the restrictive i.i.d. product form for
the target density shows that the practical optimal swap acceptance rate might be on
a case-by-case basis. It is difficult to be sure why this is the case: we hypothesize that
perhaps the reason why a swap acceptance rate of 0.234 is more optimal in this case
is due to the greater concentration of density in the state space for the multivariate
Normal and the three-mixture example compared to the rough carpet density, where
density is spread out in 3d modes.

Not only that, constructing a temperature ladder iteratively with the “optimal
spacing” is challenging and time-consuming. It requires the ability to draw samples
from the target distribution, which is itself the main goal of the parallel tempering
algorithm. Without a direct way to sample from the target, a practitioner could run
an MCMC algorithm with the β value being proposed for the new addition to the lad-
der, but this may be time-consuming with many attempts required until a suitable β
is found for each step of the ladder. Since this optimal spacing may not yield the opti-
mal ESJD in practice for finite, lower-dimensional targets and with a finite number of
runs, an alternative approach is to adaptively adjust the spacings of the temperature
ladder during the algorithm’s runs based on its recent ESJD performance over a recent
window as guidance to practitioners. This is known as adaptive parallel tempering
(Miasojedow et al., 2013). Previous literature shows that adaptive parallel tempering
algorithms can achieve substantial efficiency gains over a standard geometric temper-
ature spacing (Vousden et al., 2015) while still converging to the target distribution
(Miasojedow et al., 2013) under the assumptions that the target distribution is suf-
ficiently regular and has tails decaying faster than exponentially. Adaptive parallel
tempering may suffice to be “good enough” for most practitioners whilst avoiding the
costly temperature construction algorithm.

Lastly, while we have established that the 0.234 acceptance rate for RWM is still
fairly good even in lower dimensions and on some target distributions that may not
have the i.i.d. product form, we provide some precautions to the practitioner. The
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0.234 acceptance rate is a good heuristic to tune the algorithm to, yet there are still
many cases where it is not optimal in terms of efficiency, such as the continuous hyper-
cube example in Section 3.3. Even if the 0.234 acceptance rate is in fact optimal, the
acceptance rate alone does not necessarily guarantee good samples, as illustrated by
Figure 6. What literature (Roberts and Rosenthal, 2001; Sherlock et al., 2010) indi-
cates is that another very important thing in practice beyond just the acceptance rate
is defining a good proposal covariance matrix Σn that is approximately proportional
to the target covariance matrix Σπ; doing so can significantly increase the asymptotic
relative efficiency. Realistically, it may be impossible to know Σπ in advance or even
provide a good estimate for it. In fact, understanding how we can extend this result to
correlated targets is an ongoing challenge (Yang et al., 2020) and immediately relevant
to the practitioner since real-world data tends to have correlations between variables.
Practitioners may consider using the adaptive Metropolis algorithm (Haario et al.,
2001) to dynamically update the algorithm’s proposal covariance matrix. This adaptive
algorithm is very useful and yields significant speed benefits in low and high dimen-
sions (Craiu et al., 2009; Roberts and Rosenthal, 2009), but an important potential
pitfall to note is that adaptive methods are not guaranteed to converge to the cor-
rect target density; in many cases, they may fail to converge or converge to something
completely different (Roberts and Rosenthal, 2007, 2009).
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