Errata for FIRST edition of "A First Look at Rigorous Probability"

NOTE: the corrections below (plus many more improvements) were all encorporated into the second edition:

J.S. Rosenthal, A First Look at Rigorous Probability Theory. World Scientific Publishing Company, Singapore, 2006. 221 pages. ISBN 981-270-370-5 / 981-270-371-3(pbk).

Errata for Third Printing, 2005:

- In Exercise 2.7.8, condition (ii) refers to *finite* intersections only.
- Exercise 14.4.8 requires an additional assumption, and is not correct as stated.

Errata to Second Printing, 2003 (already corrected in Third Printing):

[With thanks to Samuel Hikspoors, Bin Li, Mahdi Lotfinezhad, Ben Reason, Jay Sheldon, and Zemei Yang.]

- p. 18, Exercise 2.7.1: The phrase "together with the singleton set $\{0\}$ " should be at the end of the first sentence, not the second. That is, \mathcal{J}' also includes the singleton set $\{0\}$.
- p. 30, Exercise 3.6.8, condition (i) should read: "(i) $A_{i_1}, A_{i_2}, \ldots, A_{i_k}$ are independent provided that $i_{j+1} \geq i_j + 2$ for $1 \leq j \leq k-1$ ".
- p. 41, Exercise 4.5.7: It should be assumed that X and Y are independent.
- p. 41, Exercise 4.5.9(c): append the words "with finite means".
- p. 123, Exercise 12.1.7: For definiteness, we should assume that $\Omega = \mathbf{R}$ (together with the Borel subsets).
- p. 127, lines 3 and 5: These calculations implicitly assume that $S \subseteq [0,2]$. So, to make them valid, we should either explicitly assume that $S \subseteq [0,2]$, or replace S by $S \cap [0,2]$ where required.
- p. 138, Exercise 14.4.2: Assume $\mathbf{E}[Y_n] < \infty$ for all n.
- p. 138, Exercise 14.4.3: Assume $\mathbf{E}(|\phi(X_n)|) < \infty$ for all n. Also, you may assume the conditional form of Jensen's inequality, i.e. that $\mathbf{E}[\phi(X) | \mathcal{G}] \ge \phi(\mathbf{E}[X | \mathcal{G}])$.
- p. 138, Exercise 14.4.5 is awkwardly written; a better version is: "Let $\{X_n\}$ be simple symmetric random walk on the integers, with $X_0 = 0$. Let $\tau = \inf\{n \geq 5 : X_{n+1} = X_n + 1\}$ be the first time after 4 which is just before the

chain increases. Let $\rho = \tau + 1$.

- (a) Is τ a stopping time? Is ρ a stopping time?
- (b) Use Theorem 14.1.3 to compute $\mathbf{E}[X_{\rho}]$.
- (c) Use the result of part (b) to compute $\mathbf{E}[X_{\tau}]$."
- Index: Add entry "Fatou's Lemma, 86".

Errata to First Printing, 2000 (already corrected in Second Printing):

[With thanks to Tom Baird, Meng Du, Avery Fullerton, Longhai Li, Hadas Moshonov, Nataliya Portman, and Idan Regev.]

- p. 4, replace Exercise 1.3.2 by: "Suppose $\Omega = \{1, 2, 3\}$ and \mathcal{F} is the collection of all subsets of Ω . Find (with proof) necessary and sufficient conditions on the real numbers x, y, and z, such that there exists a countably additive probability measure \mathbf{P} on \mathcal{F} , with $x = \mathbf{P}\{1, 2\}$, $y = \mathbf{P}\{2, 3\}$, and $z = \mathbf{P}\{1, 3\}$."
- pp. 9–10, in Exercise 2.3.2 parts (d) and (e), "≤" should be "≥". Also, in parts (c), (d), and (e), the word "disjoint" should be omitted.
- p. 11, line 5: " $B_n \subseteq C_{nk}$ " should be " $B_n \subseteq \bigcup_k C_{nk}$ ".
- p. 13, line 10 from bottom: "since $\mathbf{P} \leq \mathbf{P}^*$ on \mathcal{F}_0 " should be "since $\mathbf{P}^* \leq \mathbf{P}$ on \mathcal{F}_0 "
- p. 17, line 4, expand "then by additivity ..." to "then \mathcal{B}_0 is an algebra, and by additivity ...".
- p. 17 middle, "since $B_n \in \mathcal{J}$ " should be "since $B_n \in \mathcal{B}_0$ ". Also, " A_n " should be " A_i " (four times).
- p. 18, Exercise 2.7.1, expand "all finite disjoint unions of elements of \mathcal{J}' ." to "all finite disjoint unions of elements of \mathcal{J}' , together with the single set $\{0\}$."
- p. 19, Exercise 2.7.4: "P(A)" should be "P(A)" (twice).
- p. 19, Exercise 2.7.7: " $\mathbf{P}\{1\} = \frac{1}{3}, \mathbf{P}\{2\} = \frac{2}{3}$ " should be " $\mathbf{P}_2\{1\} = \frac{1}{3}, \mathbf{P}_2\{2\} = \frac{2}{3}$ ".
- p. 24, the end of the proof of Proposition 3.3.1, replace "... = $\lim_{n\to\infty} \mathbf{P}(A)$, where ... nested sequence." by "... = $\lim_{n\to\infty} \mathbf{P}(A_n)$, where the last equality is the only time we use that the $\{A_m\}$ are a nested sequence."
- p. 26, final displayed equation: Final sum should be $\sum_{k=m}^{\infty} \mathbf{P}(A_k)$.
- p. 27 bottom, " $B_n = \{r_{n+1} = r_{n+2} = \ldots = r_{n+\lceil \log_2 \log_2 n \rceil}\} = 1$ " should be " $B_n = \{r_{n+1} = r_{n+2} = \ldots = r_{n+\lceil \log_2 \log_2 n \rceil} = 1\}$ ".
- p. 32 bottom, in definition of Y: "irrational" should be "rational".

- p. 41, Exercise 4.5.9(a): " $Z^+ Z^-$ " should be " Z^+ and Z^- ".
- p. 49 eqn. (5.3.9), "k + 1" should be " $\ell + 1$ ".
- p. 49 eqn. (5.3.11), " u_k " should be "k".
- p. 49, lines 4–6 from bottom, replace "Hence, for all sufficiently large n we have ... for all sufficiently large k." by "Hence, for any $\alpha > 1$ and $\delta > 0$, with probability 1 we have $m/(1+\delta)\alpha \leq \frac{S_k}{k} \leq (1+\delta)\alpha m$ for all sufficiently large k."
- p. 50, Exercise 5.4.1: "variables" should be "variable".
- p. 65, Exercise 7.4.3, Hint: Omit the word "two".
- pp. 65, 66, 68, and 72: "Subsection 7.2.0" should be "Subsection 7.2".
- p. 69, line 8 from bottom: "Thus" should be "This".
- p. 72, line 4: " $X_n = j$ " should be " $X_n = i$ ".
- p. 74 towards bottom, " $\binom{n}{i} \frac{1}{2^d}$ " should be " $\binom{d}{i} \frac{1}{2^d}$ ".
- p. 75, Definition 8.3.3: "Give" should be "Given".
- p. 76, line 12: "divisor of $\{n \in \mathbb{N}; p_{jj}^{(n)}\}$ " should be "divisor of $\{n \in \mathbb{N}; p_{jj}^{(n)} > 0\}$ ".
- p. 78, line 5: "indeed, we have $p_{(ij),(k\ell)} > 0$ " should be "indeed, we have $p_{(ij),(k\ell)}^{(n)} > 0$ ".
- p. 83, line 10, Exercise 8.5.2: "for all states i and j" should be "for some states i and j".
- p. 83, Exercise 8.5.3: replace "with distinct states i and j" by "and some distinct states i and j".
- p. 86, line 8 from bottom, "bounded convergence theorem" should be "monotone convergence theorem".
- p. 90 middle: after "repeatedly apply Proposition 9.2.1", add in parentheses "(or use Proposition 9.3.2 below)".
- p. 100, Exercise 10.1.2: Replace " $\mu(A) = \int f \mathbf{1}_A d\lambda$ " by " $\mu(A) = \int_0^1 f \mathbf{1}_A d\lambda$ ".
- p. 100, Exercise 10.1.4: Replace the last sentence by "Construct a sequence $\{\mu_n\}$ of probability measures, each absolutely continuous with respect to Lebesgue measure, such that $\mu_n \Rightarrow \mu$."
- p. 100: Omit Exercise 10.1.7.
- p. 102 middle, "Like for characteristic functions, ..." should be "Like for moment generating functions, ...".

- p. 103, line 4 from bottom, the two consecutive factors of " $\left| \frac{e^{-ita} e^{-itb}}{it} \phi(t) \right|$ " should both be omitted.
- p. 104 middle, " $\int_0^\infty e^{ux} du$ " should be " $\int_0^\infty e^{-ux} du$ ".
- p. 110, line 9 from bottom: " $\sqrt{2}$ " should be " \sqrt{n} ", and the entire expansion should be raised to the power n.
- p. 112, lines 8 and 11: " $x \to \infty$ " should be " $x \to -\infty$ " (twice).
- p. 112, line 6 from bottom: add extra closing parenthesis just before "\Rightarrow" symbol.
- p. 114, line 4: " $(-\infty, R)$ " should be " $(-\infty, -R)$ ".
- p. 123, Exercise 12.1.2 (a), "Subsection 9.4.0" should be "Subsection 9.4".
- p. 127, line 6 from bottom: " $\mathbf{E}(Y \mid \mathcal{G}) = \mathbf{E}(X)$ " should be " $\mathbf{E}(Y \mid \mathcal{G}) = \mathbf{E}(Y)$ ".
- p. 128, line 8: for clarity, "out of the conditioning" should be "out of the conditional expectation".
- p. 129, Exercise 13.1.1: Expand "where $f: \mathbf{R}^2 \to \mathbf{R}$ is" to "where $dx \, dy$ is two-dimensional Lebesgue measure, and where $f: \mathbf{R}^2 \to \mathbf{R}$ is".
- p. 133, line 10: "... extremely high that $\tau \leq 10^{12}$ " should be "... extremely high that $\tau < 10^{12}$ ". In the following line, "the rare case that $\tau > 10^{12}$ " should be "the rare case that $\tau = 10^{12}$ ".
- p. 133, end of Subsection 14.1: Add Addendum (at end).
- p. 135, end of proof of Lemma 14.2.3: Add "Finally, note that replacing $\{X_n\}$ by $\{\max(X_n, \alpha)\}$ can only decrease $|X_M X_0|$, so the inequality still holds as written."
- p. 137, line 4 from bottom: " $\mathbf{E}(X^2) = \dots$ " should be " $\mathrm{Var}(X) = \dots$ "
- p. 144, Exercise 15.2.6(b), "Related this" should be "Relate this".
- p. 149, Exercise 15.4.3: Replace " $|f(x) f(y)| \le |x y|$ " by " $|f(x) f(y)| \le \alpha |x y|$ ".
- p. 151, Exercise 15.6.4: " $\pi(x) \ge 0$ " should be " $\pi(x) > 0$ ".
- p. 156, line 2: "assume" should be "assumed".
- On p. 157 bottom, after "Recall that here r is the risk-free interest rate", add "and σ is the volatility".
- p. 161, lines 4 and 5: "it's" should be "its" (twice).
- p. 161, middle, in definition of **Q**: " $m \neq 0$ " should be " $n \neq 0$ ".
- p. 171, Index, add reference to page 22 for "Borel-measurable".

ADDENDUM: Extra material for end of Section 14.1, on page 133:

(Already included in Second and Third Printings.)

Theorem 14.1.3. Let $\{X_n\}_{n=0}^{\infty}$ be a martingale with stopping time τ . Suppose $\mathbf{P}(\tau < \infty) = 1$, and $\mathbf{E}|X_{\tau}| < \infty$, and $\lim_{n\to\infty} \mathbf{E}[X_n \mathbf{1}_{\tau>n}] = 0$. Then $\mathbf{E}[X_{\tau}] = \mathbf{E}[X_0]$.

Proof. Let $Z_n = X_{\min(\tau,n)}$ for n = 0, 1, 2, ... Then $Z_n = X_{\tau} \mathbf{1}_{\tau \leq n} + X_n \mathbf{1}_{\tau > n} = X_{\tau} - X_{\tau} \mathbf{1}_{\tau > n} + X_n \mathbf{1}_{\tau > n}$, so $X_{\tau} = Z_n - X_n \mathbf{1}_{\tau > n} + X_{\tau} \mathbf{1}_{\tau > n}$. Hence,

$$\mathbf{E}[X_{\tau}] = \mathbf{E}[Z_n] - \mathbf{E}[X_n \mathbf{1}_{\tau > n}] + \mathbf{E}[X_{\tau} \mathbf{1}_{\tau > n}].$$

Since $\min(\tau, n)$ is a bounded stopping time, $\mathbf{E}[Z_n] = \mathbf{E}[X_0]$ for all n by Corollary 14.1.2. As $n \to \infty$, the second term goes to 0 by assumption. Also, the third term goes to 0 by the Dominated Convergence Theorem, since $E[X_\tau] < \infty$, and $\mathbf{1}_{\tau > n} \to 0$ w.p. 1 since $\mathbf{P}[\tau < \infty] = 1$. Hence, letting $n \to \infty$, we obtain that $\mathbf{E}[X_\tau] = \mathbf{E}[X_0]$.

Corollary 14.1.4. Let $\{X_n\}_{n=0}^{\infty}$ be a martingale with stopping time τ , such that $\mathbf{P}[\tau < \infty] = 1$. Assume $|X_n| \leq M$ whenever $n \leq \tau$, for all n and some fixed $M < \infty$. Then $\mathbf{E}[X_{\tau}] = \mathbf{E}[X_0]$.

Proof. Clearly $|X_{\tau}| \leq M$, so that $\mathbf{E}|X_{\tau}| \leq M < \infty$. Also $|\mathbf{E}(X_n \mathbf{1}_{\tau > n})| \leq \mathbf{E}(|X_n|\mathbf{1}_{\tau > n}) \leq M \mathbf{P}(\tau > n)$, which converges to 0 as $n \to \infty$ since $\mathbf{P}[\tau < \infty] = 1$. Hence, the result follows from Theorem 14.1.3.

Exercise 14.1.5. Let 0 < a < c be integers. Let $\{X_n\}$ be simple symmetric random walk (i.e., with parameter p = 1/2), started at $X_0 = a$. Let $\tau = \inf\{n \ge 1; \ X_n = 0 \text{ or } c\}$.

- (a) Prove that $\{X_n\}$ is a martingale.
- (b) Prove that $\mathbf{E}[X_{\tau}] = a$. [Hint: Use Corollary 14.1.4.]
- (c) Use this fact to derive an alternative proof of the gambler's ruin formula given in Section 7.2, for the case p = 1/2.

Exercise 14.1.6. Let $0 with <math>p \neq 1/2$, and let 0 < a < c be integers. Let $\{X_n\}$ be simple random walk with parameter p, started at $X_0 = a$. Let $\tau = \inf\{n \geq 1; X_n = 0 \text{ or } c\}$. Let $Z_n = ((1-p)/p)^{X_n}$ for $n = 0, 1, 2, \ldots$

- (a) Prove that $\{Z_n\}$ is a martingale.
- (b) Prove that $\mathbf{E}[Z_{\tau}] = ((1-p)/p)^a$. [Hint: Use Corollary 14.1.4.]
- (c) Use this fact to derive an alternative proof of the gambler's ruin formula given in Section 7.2, for the case $p \neq 1/2$.