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Abstract. We review criteria for comparing the efficiency of Markov chain

Monte Carlo (MCMC) methods with respect to the asymptotic variance of esti-

mates of expectations of functions of state, and show how such criteria can justify

ways of combining improvements to MCMC methods. We say that a chain on

a finite state space with transition matrix P efficiency-dominates one with tran-

sition matrix Q if for every function of state it has lower (or equal) asymptotic

variance. We give elementary proofs of some previous results regarding efficiency

dominance, leading to a self-contained demonstration that a reversible chain with

transition matrix P efficiency-dominates a reversible chain with transition matrix

Q if and only if none of the eigenvalues of Q − P are negative. This allows us

to conclude that modifying a reversible MCMC method to improve its efficiency

will also improve the efficiency of a method that randomly chooses either this or

some other reversible method, and to conclude that improving the efficiency of

a reversible update for one component of state (as in Gibbs sampling) will im-

prove the overall efficiency of a reversible method that combines this and other

updates. It also explains how antithetic MCMC can be more efficient than i.i.d.

sampling. We also establish conditions that can guarantee that a method is not

efficiency-dominated by any other method.

1 Introduction

Markov chain Monte Carlo (MCMC) algorithms (e.g. [6]) estimate the expected value of

a function f : S → R with respect to a probability distribution π on a state space S, which

in this paper we assume to be finite, using an estimator such as

f̂N =
1

N

N∑
k=1

f(Xk) ,
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where X1, X2, X3, . . . is a time-homogeneous Markov chain with stationary distribution π,

having transition probabilities P (x, y) from state x to state y (often viewed as a matrix P ).

An important measure of the efficiency of this estimator is its asymptotic variance:

v(f, P ) := lim
N→∞

N Var
[
f̂N
]

= lim
N→∞

N Var
[ 1

N

N∑
i=1

f(Xi)
]

= lim
N→∞

1

N
Var

[ N∑
i=1

f(Xi)
]
. (1)

For the irreducible Markov chains used for MCMC, the initial state of the chain does not

affect the asymptotic variance, and the bias of the estimator converges to zero at rate 1/N

regardless of initial state. (In practice, an initial portion of the chain is usually simulated

but not used for estimation, in order to reduce the bias in a finite-length run.)

If we run the chain for a large number of iterations, N , we therefore expect that v(f, P )/N

will be an indication of the likely squared error of the estimate obtained. Indeed, when v(f, P )

is finite, one can show (e.g., [25, Theorem 5]) that a Central Limit Theorem applies, with

the distribution of (f̂ − Eπ(f)) /
√
v(f, P )/N converging to N(0, 1).

We are therefore motivated to try to modify the chain to reduce v(f, P ), ideally for all

functions f . We say that one transition matrix, P , efficiency-dominates another one, Q, if

v(f, P ) ≤ v(f,Q) for all f : S → R .

Various conditions are known [25, 10, 20] which ensure that P efficiency-dominates Q. One

of these, for reversible chains, is the Peskun-dominance condition [22, 26] which on a finite

state space is that P (x, y) ≥ Q(x, y) for all x 6= y. This condition is widely cited and has

gotten significant recent attention [16, 9, 27], and even extended to non-reversible chains [1].

But it is a very strong condition, and P might well efficiency-dominate Q even if it does not

Peskun-dominate it.

In this paper, we focus on reversible chains with a finite state space. We present several

known equivalences of efficiency dominance, whose proofs were previously scattered in the

literature, sometimes only hinted at, and sometimes based on very technical mathematical

arguments. We provide complete elementary proofs of them in Sections 3, 4, and 8, using

little more than simple linear algebra techniques.

In Section 5, we use these equivalences to derive new results, which can show efficiency

dominance for some chains constructed by composing multiple component transition matri-

ces, as is done for the Gibbs Sampler. These results are applied to methods for improving

Gibbs sampling in a companion paper [21]. In Section 6, we consider eigenvalue connections,

and show how one can sometimes prove that a reversible chain cannot be efficiency-dominated

by any other reversible chain, and also explain (Corollary 15) how antithetic MCMC can be

more efficient than i.i.d. sampling, These results also allow an easy re-derivation, in Section 7,

of the fact that Peskun dominance implies efficiency dominance.
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2 Background Preliminaries

We assume that the state space S is finite, with |S| = n, and let π be a probability distri-

bution on S, with π(x) > 0 for all x ∈ S, and
∑
x∈Sπ(x) = 1. For functionals f, g : S → R,

define the L2(π) inner product by

〈f, g〉 =
∑
x∈S

f(x) g(x) π(x) .

That is, 〈f, g〉 = Eπ[f(X) g(X)]. Equivalently, if we let S = {1, 2, . . . , n}, represent a func-

tion f by the column vector f = [f(1), . . . , f(n)]T , and let D = diag(π) be the n×n diagonal

matrix with π(1), . . . , π(n) on the diagonal, then 〈f, g〉 equals the matrix product fTDg.

We aim to estimate expectations with respect to π by using a time-homogeneous Markov

chain X1, X2, X3, . . . on S, with transition probabilities P (x, y) = P(Xt+1 =y |Xt=x), often

written as a matrix P , for which π is a stationary distribution (or invariant distribution):

π(y) =
∑
x∈S

π(x)P (x, y)

Usually, π is the only stationary distribution, though we sometimes consider transition ma-

trices that are not irreducible (see below), for which this is not true, as building-blocks for

other chains.

For f : S → R, let (Pf) : S → R be the function defined by

(Pf)(x) =
∑
y∈S

P (x, y) f(y) .

Equivalently, if we represent f as a vector of its values for elements of S, then Pf is the

product of the matrix P with the vector f . Another interpretation is that (Pf)(x) =

EP [f(Xt+1)|Xt = x], where EP is expectation with respect to the transitions defined by P .

We can see that

〈f, Pg〉 =
∑
x∈S

∑
y∈S

f(x)P (x, y) g(y) π(x) .

Equivalently, 〈f, Pg〉 is the matrix product fTDPg. Also, 〈f, Pg〉 = Eπ,P [f(Xt) g(Xt+1)],

where Eπ,P means expectation with respect to the Markov chain with initial state drawn

from the stationary distribution π and proceeding according to P .

A transition matrix P is called reversible with respect to π if π(x)P (x, y) = π(y)P (y, x)

for all x, y ∈ S. This implies that π is a stationary distribution for P , since
∑
x π(x)P (x, y) =∑

x π(y)P (y, x) = π(y)
∑
x P (y, x) = π(y).

If P is reversible, 〈f, Pg〉 = 〈Pf, g〉 for all f and g — i.e., P is self-adjoint (or, Hermitian)

with respect to 〈·, ·〉. Equivalently, P is reversible with respect to π if and only if DP is a

symmetric matrix — i.e., DP is self-adjoint with respect to the classical dot-product. This

allows us to easily verify some well-known facts about reversible Markov chains:
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Lemma 1 If P is reversible with respect to π then: (a) the eigenvalues of P are real; (b)

these eigenvalues can be associated with real eigenvectors; (c) if λi and λj are eigenvalues

of P with λi 6= λj, and vi and vj are real eigenvectors associated with λi and λj, then

vTi Dvj = 0, where D is the diagonal matrix with π on the diagonal (i.e., 〈vi, vj〉 = 0); (d)

all the eigenvalues of P are in [−1, 1].

Proof. Since DP is symmetric and D is diagonal, DP = (DP )T = P TD. (a) If Pv = λv

with v non-zero, then λ vT = vTP T , hence λ (vTDv) = vTP TDv = vTDPv = λ (vTDv).

Since vTDv is non-zero (because D has positive diagonal elements), it follows that λ = λ,

and hence λ is real. (b) If Pv = λv, with P and λ real and v non-zero, then at least one

of Re(v) and Im(v) is non-zero and is a real eigenvector associated with λ. (c) λi(v
T
i Dvj) =

vTi P
TDvj = vTi DPvj = λj(v

T
i Dvj), which when λi 6= λj implies that vTi Dvj = 0. (d) Since

rows of P are non-negative and sum to one, the absolute value of an element of the vector

Pv can be no larger than the largest absolute value of an element of v. If Pv = λv, this

implies that |λ| ≤ 1, hence λ ∈ [−1, 1].

The self-adjoint property implies that P is a “normal operator”, which guarantees (e.g.,

[13, Theorem 2.5.3]) the existence of an orthonormal basis, v1, v2, . . . , vn, of eigenvectors for

P , with Pvi = λivi for each i, and 〈vi, vj〉 = δij. (In particular, this property implies that P

is diagonalisable or non-defective, but it is stronger than that.) Without loss of generality,

we can take λ1 = 1, and v1 = 1 := [1, 1, . . . , 1]T , so that v1(x) = 1(x) = 1 for all x ∈ S,

since P1 = 1 due to the transition probabilities in P summing to one. We can assume for

convenience that all of P ’s eigenvalues (counting multiplicity) satisfy λ1 ≥ λ2 ≥ . . . ≥ λn.

In terms of orthonormal eigenvectors of P , any functions f, g : S → R can be written as

linear combinations f =
∑n
i=1 aivi and g =

∑n
j=1 bjvj. It then follows from orthonormality of

these eigenvectors that

〈f, g〉 =
∑
i

aibi, 〈f, f〉 =
∑
i

(ai)
2, 〈f, Pg〉 =

∑
i

aibiλi, 〈f, Pf〉 =
∑
i

(ai)
2λi.

In particular, 〈f, vi〉 = ai, so the ai are the projections of f on each of the vi. This shows

that
∑n
i=1 viv

T
i D is equal to the identity matrix, since for all f ,

( n∑
i=1

viv
T
i D

)
f =

n∑
i=1

vi(v
T
i Df) =

n∑
i=1

vi 〈vi, f〉 =
n∑
i=1

aivi = f .

Furthermore, any self-adjoint A whose eigenvalues are all zero must be the zero operator,

since we can write any f as f =
∑n
i=1 aivi, from which it follows that Af =

∑n
i=1 λiaivi = 0.

A matrix A that is self-adjoint with respect to 〈·, ·〉 has a spectral representation in

terms of its eigenvalues and eigenvectors as A =
∑n
i=1 λiviv

T
i D. If h : R → R we can

define h(A) :=
∑n
i=1 h(λi)viv

T
i D, which is easily seen to be self-adjoint. Using h(λ) = 1

gives the identity matrix. One can also easily show that h1(A) + h2(A) = (h1 + h2)(A) and
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h1(A)h2(A) = (h1h2)(A), and hence (when all λi 6= 0) that A−1 =
∑n
i=1 λ

−1
i viv

T
i D and (when

all λi ≥ 0) that A1/2 =
∑n
i=1 λ

1/2
i viv

T
i D, so both of these are self-adjoint. Finally, note that

if A and B are self-adjoint, so is ABA.

We say that P is irreducible if movement from any x to any y in S is possible via some

number of transitions that have positive probability under P . An irreducible chain will have

only one stationary distribution. A reversible irreducible P will have λi < 1 for i ≥ 2. (As an

aside, this implies that P is variance bounding, which in turn implies that v(f, P ) from (1)

must be finite for each f [23, Theorem 14].) For MCMC estimation, we want our chain to

be irreducible, but irreducible chains are sometimes built using transition matrices that are

not irreducible — for example, by letting P = (1/2)P1 + (1/2)P2, where P1 and/or P2 are

not irreducible, but P is irreducible.

An irreducible P is periodic with period p if S can be partitioned into p > 1 subsets

S0, . . . , Sp−1 such that P (x, y) = 0 if x ∈ Sa and y /∈ Sb, where b = a+1 mod p (and this is

not true for any smaller p). Otherwise, P is aperiodic. An irreducible periodic chain that is

reversible must have period 2, and will have λn = −1 and λi > −1 for i 6= n. A reversible

aperiodic chain will have all λi > −1.

Since v(f, P ) as defined in (1) only involves variance, we can subtract off the mean of

f without affecting the asymptotic variance. Hence, we can always assume without loss of

generality that π(f) = 0, where π(f) := Eπ(f) =
∑
x∈S f(x) π(x) = 〈f, 1〉. In other words,

we can assume that f ∈ L2
0(π) := {f : π(f) = 0, π(f 2) < ∞}, where the condition that

π(f 2) = Eπ(f 2) be finite is automatically satisfied when S is finite, and hence can be ignored.

Also, if π(f) = 0, then 〈f, 1〉 = 〈f, v1〉 = 0, so f is orthogonal to v1, and hence its coefficient

a1 is zero.

Next, note that

〈f, P kg〉 =
∑
x∈S

f(x) (P kg)(x) π(x) =
∑
x∈S

∑
y∈S

f(x)P k(x, y)g(y)π(x) = Eπ,P [f(Xt) g(Xt+k)] .

where P k(x, y) is the k-step transition probability from x to y. If f ∈ L2
0(π) (i.e., the

mean of f is zero), this is the covariance of f(Xt) and g(Xt+k), when the chain is started in

stationarity (and hence is the same for all t). We define the lag-k autocovariance, γk, as:

γk := Covπ,P [f(Xt), f(Xt+k)] := Eπ,P [f(Xt)f(Xt+k)] = 〈f, P kf〉, for f ∈ L2
0(π).

If f =
∑n
i=1 aivi as above (with a1 = 0 since the mean of f is zero), then using orthonormality

of the eigenvectors vi,

γk = 〈f, P kf〉 =
n∑
i=2

n∑
j=2

〈aivi, P k(ajvj)〉 =
n∑
i=2

n∑
j=2

〈aivi, (λj)
kajvj)〉 =

n∑
i=2

(ai)
2(λi)

k .

In particular, γ0 = 〈f, f〉 := ‖f‖L2(π) =
∑
i(ai)

2. (If the state space S were not finite, we

would need to require f ∈ L2(π), but finite variance is guaranteed with a finite state space.)
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One particular example of a transition matrix P , useful for comparative purposes, is Π,

the operator corresponding to i.i.d. sampling from π. It is defined by Π(x, y) = π(y) for

all x ∈ S. This operator satisfies Π1 = 1, and Πf = 0 whenever π(f) = 0. Hence, its

eigenvalues are λ1 = 1 and λi = 0 for i 6= 1.

3 Relating Asymptotic Variance to Eigenvalues

In this section, we consider some expressions for the asymptotic variance, v(f, P ), of (1),

beginning with a result relating the asymptotic variance to the eigenvalues of P . This result

(as observed by [10]) can be obtained (at least in the aperiodic case) as a special case of the

more technical results of Kipnis and Varadhan [15, eqn (1.1)].

Proposition 2 If P is an irreducible (but possibly periodic) Markov chain on a finite state

space S, which is reversible with respect to π, with orthonormal basis v1, v2, . . . , vn of eigen-

vectors, and corresponding eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn, and f ∈ L2
0(π) with f =

∑
i aivi,

then the limit v(f, P ) in (1) exists, and

v(f, P ) =
n∑
i=2

(ai)
2 + 2

n∑
i=2

(ai)
2 λi

1− λi
=

n∑
i=2

(ai)
2 1 + λi

1− λi
.

Proof. First, by expanding the square, using stationarity, and collecting like terms, we

obtain the well-known result that for f ∈ L2
0(π),

1

N
Var

( N∑
i=1

f(Xi)
)

=
1

N
Eπ,P

[( N∑
i=1

f(Xi)
)2 ]

=
1

N

(
N Eπ,P [f(Xj)

2] + 2
N−1∑
k=1

(N−k) Eπ,P [f(Xj) f(Xj+k)]
)

= γ0 + 2
N−1∑
k=1

N − k
N

γk ,

where γk = Covπ,P [f(Xj), f(Xj+k)] = 〈f, P kf〉 is the lag-k autocovariance in stationarity.

Now, f =
∑n
i=1 aivi, with a1 = 0 since π(f) = 0, so γk = 〈f, P kf〉 =

∑n
i=2(ai)

2(λi)
k

and γ0 =
∑n
i=2(ai)

2. The above then gives that

1

N
Var

(
N∑
i=1

f(Xi)

)
=

n∑
i=2

(ai)
2 + 2

N−1∑
k=1

N − k
N

n∑
i=2

(ai)
2(λi)

k , (2)

i.e.
1

N
Var

(
N∑
i=1

f(Xi)

)
=

n∑
i=2

(ai)
2 + 2

∞∑
k=1

n∑
i=2

Ik≤N−1
N − k
N

(ai)
2(λi)

k .

If P is aperiodic, then Λ := maxi≥2 |λi| < 1, hence
∑∞
k=1

∣∣∣∑n
i=2 Ik≤N−1

N−k
N

(ai)
2(λi)

k
∣∣∣ ≤∑∞

k=1

∑n
i=2

∣∣∣Ik≤N−1 N−k
N

(ai)
2(λi)

k
∣∣∣ ≤ ∑∞

k=1

∑n
i=2(ai)

2(Λ)k = γ0 Λ/(1−Λ) <∞, so the above
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sum is absolutely summable. This lets us exchange the limit and summations to obtain

v(f, P ) := lim
N→∞

1

N
Var

(
N∑
i=1

f(Xi)

)
=

n∑
i=2

(ai)
2 + 2

n∑
i=2

∞∑
k=1

lim
N→∞

[
Ik≤N−1

N − k
N

(ai)
2(λi)

k

]

=
n∑
i=2

(ai)
2 + 2

n∑
i=2

∞∑
k=1

(ai)
2(λi)

k =
n∑
i=2

(ai)
2 + 2

n∑
i=2

(ai)
2 λi
1− λi

=
n∑
i=2

(ai)
2 1 + λi

1− λi
.

If P is periodic, with λn = −1, then the above Λ = 1, and
∑∞
k=1(λn)k is not even defined,

so the above argument does not apply. Instead, separate out the i = n term in (2) to get

1

N
Var

(
N∑
i=1

f(Xi)

)
=

n∑
i=2

(ai)
2 + 2

N−1∑
k=1

N − k
N

n−1∑
i=2

(ai)
2(λi)

k + 2
N−1∑
k=1

N − k
N

(an)2(−1)k .

Since Γ := max{|λ2|, |λ3|, . . . , |λn−1|} < 1, the previous argument applies to the middle

double-sum term to show that

lim
N→∞

2
N−1∑
k=1

N − k
N

n−1∑
i=2

(ai)
2(λi)

k = 2
n−1∑
i=2

(ai)
2 λi

1− λi
.

As for the final term, writing values for k as 2m−1 or 2m, we have

N−1∑
k=1

N − k
N

(−1)k =
1

N

b(N−1)/2c∑
m=1

[
− (N − 2m+ 1) + (N − 2m)

]
− 1

N
IN−1 is odd

=
1

N

b(N−1)/2c∑
m=1

[
− 1

]
− 1

N
IN−1 is odd = −b(N − 1)/2c

N
− 1

N
IN−1 is odd ,

which converges as N →∞ to −1
2

= −1
1−(−1) = λn

1−λn . So, we again obtain that

v(f, P ) = lim
N→∞

1

N
Var

(
N∑
i=1

f(Xi)

)
=

n∑
i=2

(ai)
2 + 2

n−1∑
i=2

(ai)
2 λi
1− λi

+ 2 (an)2
λn

1− λn

=
n∑
i=2

(ai)
2 + 2

n∑
i=2

(ai)
2 λi
1− λi

=
n∑
i=2

(ai)
2 1 + λi

1− λi
.

Note that when P is periodic, λn will be −1, and the final term in the expression for

v(f, P ) will be zero. Such a periodic P will have zero asymptotic variance when estimating

the expectation of a function f for which an is the only non-zero coefficient.

When P is aperiodic, we can obtain from Proposition 2 the more familiar [2, 5, 7, 12, 14,

25] expression for v(f, P ) in terms of sums of autocovariances, though it is not needed for

this paper (and actually still holds without the reversibility condition [5, Theorem 20.1]):

Proposition 3 If P is a reversible, irreducible, aperiodic Markov chain on a finite state

space S with stationary distribution π, and f ∈ L2
0(π), then

v(f, P ) = lim
N→∞

1

N
Varπ

(
N∑
i=1

f(Xi)

)
= γ0 + 2

∞∑
k=1

γk , (3)

where γk = Covπ,P [f(Xt), f(Xt+k)] is the lag-k autocovariance of f in stationarity.
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Proof. Since γk = 〈f, P kf〉, and as above in the aperiodic case Λ := supi≥2 |λi| < 1, the

double-sum is again absolutely summable, and we compute directly that if f =
∑
i aivi then

γ0 + 2
∞∑
k=1

γk = 〈f, f〉+ 2
∞∑
k=1

〈f, P kf〉 =
∑
i

(ai)
2 + 2

∞∑
k=1

∑
i

(ai)
2(λi)

k

=
∑
i

(ai)
2 + 2

∑
i

(ai)
2
∞∑
k=1

(λi)
k =

∑
i

(ai)
2 + 2

∑
i

(ai)
2 λi

1− λi
,

so the result follows from Proposition 2.

Proposition 2 gives the following formula for v(f, P ) (see also [19, Lemma 3.2]):

Proposition 4 The asymptotic variance, v(f, P ), for the functional f ∈ L2
0(π) using an

irreducible Markov chain P which is reversible with respect to π satisfies the equation

v(f, P ) = 〈f, f〉 + 2 〈f, P (I−P )−1f〉 ,

which we can also write as v(f, P ) = 〈f, f〉 + 2 〈f, P
I−P f〉, or as v(f, P ) = 〈f, I+P

I−P f〉.

Proof. Let P have an orthonormal basis v1, v2, . . . , vn, with eigenvalues λ1, λ2, . . . , λn, and

using this basis let f =
∑
i aivi. Note that a1 = 0, since f has mean zero, so we can ignore v1

and λ1. Define h(λ) := λ(1− λ)−1. As discussed in Section 2, applying h to the eigenvalues

of P will produce another self-adjoint matrix, with the same eigenvectors, which will equal

P (I − P )−1. Using this, we can write

〈f, f〉 + 2 〈f, P (I−P )−1f〉 =
∑
i

(ai)
2 + 2

∑
i

∑
j

〈aivi, P (I−P )−1(ajvj)〉

=
∑
i

(ai)
2 + 2

∑
i

∑
j

〈aivi, λj(1− λj)−1(ajvj)〉

=
∑
i

(ai)
2 + 2

∑
i

(ai)
2 λi (1− λi)−1 ,

so the result follows from Proposition 2.

Remark. If we write P =
∑n
i=1 λiviv

T
i D, so I−P =

∑n
i=1(1 − λi)vivTi D, then on L2

0(π)

this becomes I−P =
∑n
i=2(1− λi)vivTi D, so (I−P )−1 =

∑n
i=2(1− λi)−1vivTi D.

Remark. The inverse (I−P )−1 in Proposition 4 is on the restricted space L2
0(π) of functions

f with π(f) = 0. That is, (I−P )−1 (I−P ) f = (I−P ) (I−P )−1 f = f for any f in L2
0(π).

By contrast, I−P will not be invertible on the full space L2(π) of all functions on S, since,

for example, (I−P )1 = 1−1 = 0, so if (I−P )−1 existed on all of L2(π) then we would have

the contradiction that 1 = (I−P )−1(I−P ) 1 = (I−P )−1 0 = 0.

8



4 Efficiency Dominance Equivalences

Combining Proposition 4 with the definition of efficiency dominance proves:

Proposition 5 For reversible irreducible Markov chain transition matrices P and Q, P

efficiency-dominates Q if and only if 〈f, P (I−P )−1f〉 ≤ 〈f, Q(I−Q)−1f〉 for all f ∈ L2
0(π),

or informally that 〈f, P
I−P f〉 ≤ 〈f,

Q
I−Qf〉 for all f ∈ L2

0(π).

Next, we need the following fact:

Lemma 6 If P and Q are reversible and irreducible Markov chain transition matrices,

〈f, P (I−P )−1f〉 ≤ 〈f, Q(I−Q)−1f〉 for all f ∈ L2
0(π) if and only if 〈f, Pf〉 ≤ 〈f, Qf〉

for all f ∈ L2
0(π).

Lemma 6 follows from the very technical results of Bendat and Sherman [3]. It is some-

what subtle since the equivalence is only for all f at once, not for individual f ; see the

discussion after Lemma 23 below. In Section 8 below, we present an elementary proof. (For

alternative direct proofs of Lemma 6 and related facts, see also [4, Chapter V].)

Combining Lemma 6 and Proposition 5 immediately shows the following, which is also

shown by Mira and Geyer [19, Theorem 4.2]:

Theorem 7 For Markov chain transition matrices P and Q that are reversible and irre-

ducible, P efficiency-dominates Q if and only if 〈f, Pf〉 ≤ 〈f, Qf〉 for all f ∈ L2
0(π), i.e.

if and only if 〈f, (Q−P )f〉 ≥ 0 for all f ∈ L2
0(π).

Remark. Here the restriction that f ∈ L2
0(π), i.e. that π(f) = 0, can be omitted, since

if c := π(f) 6= 0 then f = f0 + c where π(f0) = 0, and 〈f, Pf〉 = 〈f0 + c, P (f0 + c)〉 =

〈f0, Pf0〉+ c2, and similarly for Q. But we do not need this fact here.

Remark. Some authors (e.g. [19]) say that P covariance-dominates Q if 〈f, Pf〉 ≤
〈f, Qf〉 for all f ∈ L2

0(π), or equivalently if Covπ,P [f(Xt), f(Xt+1)] is always smaller under

P than under Q. The surprising conclusion of Theorem 7 is that for reversible chains this is

equivalent to efficiency dominance — i.e., to v(f, P ) ≤ v(f,Q) for all f ∈ L2
0(π). So, there

is no need to consider the two concepts separately.

To make the condition 〈f, (Q−P )f〉 ≥ 0 for all f more concrete, we have the following:

Lemma 8 Any self-adjoint matrix J satisfies 〈f, Jf〉 ≥ 0 for all f if and only if the eigen-

values of J are all non-negative, which is if and only if the eigenvalues of DJ are all non-

negative where D = diag(π).
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Proof. Let J have orthonormal basis of eigenvectors v1, v2, . . . , vn as in Section 2, so any

f can be written as f =
∑n
i=1 aivi. Then

〈f, Jf〉 = 〈
∑
i

aivi,
∑
j

ajJvj〉 = 〈
∑
i

aivi,
∑
j

ajλjvj〉 =
∑
i

(ai)
2λi .

If each λi ≥ 0, then this expression must be ≥ 0. Conversely, if some λi < 0, then choosing

f = vi gives 〈f, Jf〉 = λi < 0. This proves the first statement.

For the second statement, recall that DJ is self-adjoint with respect to the classical dot-

product. Hence, by the above, the matrix product fTDJf ≥ 0 for all f if and only if the

eigenvalues of DJ are all non-negative. So, since fTDJf = 〈f, Jf〉, the two statements are

equivalent.

Combining Lemma 8 (with J replaced by Q−P ) with Theorem 7 shows:

Theorem 9 If P and Q are reversible irreducible Markov chain transitions, P efficiency-

dominates Q if and only if the operator Q − P (equivalently, the matrix Q − P ) has all

eigenvalues non-negative, which is if and only if the matrix D (Q − P ) has all eigenvalues

non-negative.

Remark. By Theorem 9, if Q− P has even a single negative eigenvalue, say (Q− P ) z =

−cz where c > 0, then there must be some f ∈ L2
0(π) such that v(f,Q) < v(f, P ). By

following through our proof of Lemma 6 in Section 8 below, it might be possible to construct

such an f explicitly in terms of z and c. We leave this as an open problem.

Remark. It might be possible to give another alternative proof of Theorem 9 using the

step-wise approach of [20], by writing Q−P = R1 + R2 + . . .+ R` where each Ri is of rank

one (e.g., Ri = λiviv
T
i D with λi and vi an eigenvalue and eigenvector of Q−P ). We leave

this as another open problem.

Theorem 9 allows us to prove the following, which helps justify the phrase “efficiency-

dominates” (see also [19, Section 4]):

Theorem 10 Efficiency dominance is a partial order on reversible chains, i.e.:

(a) It is reflexive: P always efficiency-dominates P ;

(b) It is antisymmetric: if P efficiency-dominates Q, and Q efficiency-dominates P , then

P = Q;

(c) It is transitive: if P efficiency-dominates Q, and Q efficiency-dominates R, then P

efficiency-dominates R.
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Proof. Statement (a) is trivial. Statement (c) is true because v(f, P ) ≤ v(f,Q) and

v(f,Q) ≤ v(f,R) imply v(f, P ) ≤ v(f,R). For statement (b), Theorem 9 implies that both

Q−P and P−Q have all eigenvalues non-negative, hence their eigenvalues must all be zero,

which implies (since Q−P is self-adjoint) that Q−P = 0, and hence P = Q.

Remark. Statement (b) of Theorem 10 does not hold if we do not assume reversibility.

For example, if S = {1, 2, 3}, and π = Uniform(S), and P (1, 2) = P (2, 3) = P (3, 1) = 1, and

Q(1, 3) = Q(3, 2) = Q(2, 1) = 1, then v(f, P ) = v(f,Q) = 0 for all f : S → R, so they each

(weakly) efficiency-dominate the other, but P 6= Q.

5 Efficiency Dominance of Combined Chains

Using Theorems 7 and 9, we can now prove some new results about efficiency dominance

that are useful when Markov chains are constructed by combining two or more chains.

We first consider the situation where we randomly choose to apply transitions defined

either by P or by Q. For example, P might move about one region of the state space well,

while Q moves about a different region well. Randomly choosing either P or Q may produce

a chain that moves well over the entire state space. The following theorem says that if in

this situation we can improve P to P ′, then the random combination will also be improved:

Theorem 11 Let P , P ′, and Q be reversible with respect to π, with P and P ′ irreducible,

and let 0 < a < 1. Then P ′ efficiency-dominates P if and only if aP ′ + (1−a)Q efficiency-

dominates aP + (1−a)Q.

Proof. Since P and P ′ are irreducible, so are aP ′ + (1−a)Q and aP + (1−a)Q. So by

Theorem 9, P ′ efficiency-dominates P if and only if P −P ′ has all non-negative eigenvalues,

which is clearly if and only if a(P−P ′) = [aP + (1−a)Q] − [aP ′ + (1−a)Q] has all non-

negative eigenvalues, which is if and only if aP ′+(1−a)Q efficiency-dominates aP+(1−a)Q.

The next result applies to Markov chains built using component transition matrices

that are not necessarily irreducible, such as single-variable updates in a random-scan Gibbs

sampler, again showing that improving one of the components will improve the combination,

assuming the combination is irreducible:

Theorem 12 Let P1, . . . , P` and P ′1, . . . , P
′
` be reversible with respect to π (though not nec-

essarily irreducible). Let a1, . . . , a` be mixing probabilities, with ak > 0 and
∑
k ak = 1, and

let P = a1P1 + ...+a`P` and P ′ = a1P
′
1 + ...+a`P

′
`. Then if P and P ′ are irreducible, and for

each k the eigenvalues of Pk−P ′k (or of D(Pk−P ′k) where D = diag(π)) are all non-negative,

then P ′ efficiency-dominates P .
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Proof. Choose any f ∈ L2
0(π). Since Pk and P ′k are self-adjoint, we have from Lemma 8

that 〈f, (Pk − P ′k)f〉 ≥ 0 for each k. Then, by linearity,

〈f, (P − P ′)f〉 = 〈f,
∑
k

ak (Pk − P ′k)f〉 =
∑
k

ak 〈f, (Pk − P ′k)f〉 ≥ 0 ,

too. Hence, by Theorem 7, P ′ efficiency-dominates P .

In the Gibbs sampling application, the state is composed of ` components, so that S =

S1×S2×· · ·×S`, and Pk is the transition that samples a value for component k, independent of

its current value, from its conditional distribution given the values of other components, while

leaving the values of these other components unchanged. Since it leaves other components

unchanged, such a Pk will not be irreducible. Pk will be a block-diagonal matrix, in a suitable

ordering of states (different for each k), with B = |S|/|Sk| blocks, each of size K = |Sk|.
For example, suppose ` = 2, S1 = {1, 2}, S2 = {1, 2, 3}, and π(x) = 1/9 except that

π((1, 2)) = 4/9. With lexicographic ordering, the Gibbs sampling transition matrix for the

second component, P2, will be

P2 =



1/6 4/6 1/6 0 0 0

1/6 4/6 1/6 0 0 0

1/6 4/6 1/6 0 0 0

0 0 0 1/3 1/3 1/3

0 0 0 1/3 1/3 1/3

0 0 0 1/3 1/3 1/3


Each block of Pk can be regarded as the K × K transition matrix for a Markov chain

having Sk as its state space, which is reversible with respect to the conditional distribution

on Sk given the values for other components associated with this block. For each block, the

eigenvalues and eigenvectors of this transition matrix give rise to corresponding eigenvalues

and eigenvectors of Pk, after prepending and appending zeros to the eigenvector according

to how many blocks precede and follow this block. If the transition matrix for each block

is irreducible, there will be B eigenvalues of Pk equal to one, with eigenvectors of the form

[0, . . . , 0, 1, . . . , 1, 0 . . . , 0]T , which are zero except for a series of K ones corresponding to one

of the blocks.

The overall transition matrix when using Gibbs sampling to update a component ran-

domly chosen with equal probabilities will be P = (1/`)(P1 + · · · + P`). We can try to

improve the efficiency of P by modifying one or more of the Pk. An improvement to Pk can

take the form of an improvement to one of its blocks, each of which corresponds to particular

values of components of the state other than component k. With each Pk changed to P ′k,

the modified overall transition matrix is P ′ = (1/`)(P ′1 + · · ·+ P ′`).

For the example above, we could try to improve P by improving P2, with the improvement

to P2 taking the form of an improvement to how the second component is changed when the
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first component has the value 1, as follows:

P ′2 =



0 1 0 0 0 0

1/4 2/4 1/4 0 0 0

0 1 0 0 0 0

0 0 0 1/3 1/3 1/3

0 0 0 1/3 1/3 1/3

0 0 0 1/3 1/3 1/3


The change to the 3×3 upper-left block still leaves it reversible with respect to the conditional

distribution for the second component given the value 1 for the first component (which has

probabilities of 1/6, 4/6, 1/6), but introduces an antithetic aspect to the sampling.

If we leave P1 unchanged, so P ′1 = P1, Theorem 12 can be used to show that the P ′ built

with this modified P ′2 efficiency-dominates P built with the original P1 and P2. The difference

P2−P ′2 will also be block diagonal, and its eigenvalues will be those of the differences in the

individual blocks (which are zero for blocks that have not been changed). In the example

above, the one block in the upper-left that changed has difference:
1/6 4/6 1/6

1/6 4/6 1/6

1/6 4/6 1/6

 −


0 1 0

1/4 2/4 1/4

0 1 0

 =


+2/12 −4/12 +2/12

−1/12 +2/12 −1/12

+2/12 −4/12 +2/12


The eigenvalues of this difference matrix are 1/2, 0, and 0. The eigenvalues of P2 − P ′2 will

be these plus three more zeros. If P ′1 = P1, Theorem 12 then guarantees that P ′ efficiency-

dominates P , the original Gibbs sampling chain, since these eigenvalues are all non-negative.

Note that here one cannot show efficiency-dominance using Peskun-dominance, since the

change reduces some off-diagonal transition probabilities.

More generally, suppose a Gibbs sampling chain is changed by modifying one or more

of the blocks of one or more of the Pk, with the new blocks efficiency-dominating the old

Gibbs sampling blocks (seen as transition matrices reversible with respect to the conditional

distribution for that block). Then by Theorem 9, the eigenvalues of the differences between

the old and new blocks are all non-negative, which implies that the eigenvalues of Pk − P ′k
all non-negative for each k, which by Theorem 12 implies that the modified chain efficiency-

dominates the original Gibbs sampling chain. The practical applications of this are developed

further in the companion paper [21].

6 Efficiency Dominance and Eigenvalues

We will now present some results relating eigenvalues of transition matrices to efficiency

dominance, which can sometimes be used to show that a reversible transition matrix cannot

be efficiency-dominated by any other reversible transition matrix.
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Say that P eigen-dominates Q if both P and Q are reversible and the eigenvalues of

P are no greater than the corresponding eigenvalues of Q — that is, when the eigenvalues

of P (counting multiplicities) are written non-increasing as λ1 ≥ λ2 ≥ . . . ≥ λn, and the

eigenvalues of Q are written non-increasing as β1 ≥ β2 ≥ . . . ≥ βn, then λi ≤ βi for each i.

Then we have (see also [19, Theorem 3.3]):

Proposition 13 If P and Q are irreducible and reversible with respect to π, and P efficiency-

dominates Q, then P eigen-dominates Q.

Proof. By Theorem 7, 〈f, Pf〉 ≤ 〈f, Qf〉 for all f ∈ L2
0(π). Hence, the result follows from

the “min-max” characterisation of eigenvalues (e.g. [13, Theorem 4.2.6]) that

λi = inf
g1,...,gi−1

sup
f∈L2

0
(π)

〈f, f〉=1
〈f, gj〉=0 ∀ j

〈f, Pf〉 .

Intuitively, g1, . . . , gi−1 represent the first i− 1 eigenvectors (excluding the eigenvector 1

associated with the eigenvalue 1, since 1 /∈ L2
0(π)), so that the new eigenvector f will be

orthogonal to them. However, since the formula is stated in terms of any vectors g1, . . . , gi−1,

the same formula applies for both P and Q, thus giving the result.

The converse of Proposition 13 does not hold, contrary to a claim in [18, Theorem 2].

For example, suppose the state space is S = {1, 2, 3}. Let e = 0.05, and let

P =


1
2

1
2

0
1
2

1
2
− e e

0 e 1−e

 , Q =


1−e e 0

e 1
2
− e 1

2

0 1
2

1
2

 , R =


1−e e 0

e 1
2

1
2
− e

0 1
2
− e 1

2
+ e


These all are reversible with respect to π = Uniform(S), and are irreducible and aperiodic.

One can see that P eigen-dominates Q (and vice versa), since P and Q are equivalent upon

swapping states 1 and 3, and so have the same eigenvalues, which are equal (to four decimal

places) to 1, 0.9270, −0.0270. However, P does not efficiency-dominate Q, since Q−P
has eigenvalues 0.7794, 0, −0.7794 which are not all non-negative. (Nor does Q efficiency

dominate P , analogously.)

Intuitively, in this example, Q moves easily between states 2 and 3, but only infrequently

to or from state 1, while P moves easily between states 1 and 2 but not to or from state 3.

Hence, if, for example, f(1) = 2 and f(2) = 1 and f(3) = 3 so that f(1) = 1
2
[f(2) + f(3)],

then v(f,Q) < v(f, P ), since Q moving slowly between {1} and {2, 3} doesn’t matter, but

P moving slowly between {1, 2} and {3} does matter.

R is a slight modification to Q that has two smaller off-diagonal elements, and hence is

Peskun-dominated (and efficiency-dominated) by Q. It’s eigenvalues are 1, 0.9272, 0.0728,

the later two of which are strictly larger than those of P , so P eigen-dominates R. But the
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eigenvalues of R − P are 0.7865, 0, −0.6865, which are not all non-negative, so P does not

efficiency-dominate R, despite strictly eigen-dominating it.

However, the next result is in a sense a converse of Proposition 13 for the special case

where all of the non-trivial eigenvalues for P are smaller than all of those for Q:

Theorem 14 Let P and Q be irreducible and reversible with respect to π, with eigenvalues

1 = λ1 ≥ λ2 ≥ λ3 ≥ . . . ≥ λn for P and 1 = β1 ≥ β2 ≥ β3 ≥ . . . ≥ βn for Q (counting

multiplicities). Suppose maxi≥2 λi ≤ mini≥2 βi, i.e. λ2 ≤ βn, i.e. λi ≤ βj for any i, j ≥ 2.

Then P efficiency-dominates Q.

Proof. Let a be the maximum eigenvalue of P restricted to L2
0(π), and let b be the

minimum eigenvalue of Q restricted to L2
0(π), which for both P and Q will exclude the

eigenvalue of 1 associated with 1. The assumptions imply that a ≤ b. But the “min-max”

characterisation of eigenvalues (described in the proof of Proposition 13 above), applied to

the largest eigenvalue on L2
0(π) (i.e., excluding the eigenvalue 1), implies that

a = sup
f∈L2

0
(π)

〈f, f〉=1

〈f, Pf〉 .

Also, since −b is the largest eigenvalue of −Q,

b = − sup
f∈L2

0
(π)

〈f, f〉=1

〈f, −Qf〉 = inf
f∈L2

0
(π)

〈f, f〉=1

〈f, Qf〉 .

Since a ≤ b, this implies that 〈f, Pf〉 ≤ 〈f, Qf〉 for any f ∈ L2
0(π) with 〈f, f〉 = 1, and

hence (by linearity) for any f ∈ L2
0(π). It then follows from Theorem 7 that P efficiency-

dominates Q.

A chain is called “antithetic” (cf. [11]) if all its eigenvalues (except λ1 = 1) are non-

positive, with at least one negative. Our next result shows that such antithetic samplers

always efficiency-dominate i.i.d. sampling:

Corollary 15 If P is irreducible and reversible with respect to π, and has eigenvalues λ1 = 1

and λ2, λ3, . . . , λn ≤ 0, then P efficiency-dominates Π (the operator corresponding to i.i.d.

sampling from π).

Proof. By assumption, maxi≥2 λi ≤ 0. Also, if 1 = β1 ≥ β2 ≥ β3 ≥ . . . ≥ βn are the

eigenvalues for Π, then βi = 0 for all i ≥ 2, so mini≥2 βi = 0. Hence, maxi≥2 λi ≤ mini≥2 βi.

The result then follows from Theorem 14.
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Remark. Theorem 1 of [8] shows that if πmin = minx π(x), the maximum eigenvalue (other

than λ1) of a transition matrix reversible with respect to π must be greater than or equal to

−πmin / (1−πmin), which must be greater than or equal to−1/(n−1) since πmin ≤ 1/n. Now, if

f = vi where λi ≥ −1/(n−1), then Proposition 2 gives v(f, P ) = (1+λi)/(1−λi) ≥ (n−2)/n,

which for large n is only slightly smaller than v(f,Π) = (1 + 0)/(1 − 0) = 1. On the other

hand, we can still have e.g. λ1 = 1, λn = −1, and all the other λi = 0, and then if f = vn

then v(f, P ) = (1 + (−1))/(1− (−1)) = 0/2 = 0, which is significantly less than v(f,Π) = 1.

Hence, the improvement in Corollary 15 could be large for some functions f , but small for

some others.

Since practical interest focuses on whether or not some chain, P , efficiency-dominates

another chain, Q, Proposition 13 is perhaps most useful in its contrapositive form — if

P and Q are reversible, and P does not eigen-dominate Q, then P does not efficiency-

dominate Q. That is, if Q has at least one eigenvalue less than the corresponding eigenvalue

of P , then P does not efficiency-dominate Q. If both chains have an eigenvalue less than the

corresponding eigenvalue of the other chain, then neither efficiency-dominates the other.

But what if two different chains have exactly the same ordered set of eigenvalues — that

is, they both eigen-dominate the other? In that case, neither efficiency-dominates the other.

To show that, we first prove a result about strict trace comparisons:

Theorem 16 If P and Q are both irreducible transitions matrices, reversible with respect to

π, and P efficiency-dominates Q, and P 6= Q, then trace(P ) < trace(Q), i.e. the trace (or

equivalently the sum of eigenvalues) of P is strictly smaller than that of Q.

Proof. By Theorem 9, if P efficiency-dominates Q, then Q−P has no negative eigenvalues.

And it cannot have all zero eigenvalues, since then Q−P = 0 (since Q−P is self-adjoint),

contradicting the premise that P 6= Q. So, Q−P has at least one positive eigenvalue, and

no negative eigenvalues, and hence the sum of eigenvalues of Q−P is strictly positive. But

the sum of the eigenvalues of a matrix is equal to its trace [13, p. 51], so this is equivalent to

trace(Q−P ) > 0. Since trace is linear, this implies that trace(Q)−trace(P ) > 0, and hence

trace(P ) < trace(Q).

Corollary 17 If P and Q are both irreducible transitions matrices, reversible with respect

to π, and the eigenvalues (counting multiplicity) for both are identical, and P 6= Q, then P

does not efficiency-dominate Q, and Q does not efficiency-dominate P .

Proof. If P and Q have identical eigenvalues, then trace(P ) = trace(Q), so this follows

immediately from Theorem 16.

We next present a lemma about minimal values of trace(P ).
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Lemma 18 For any transition matrix P on a finite state space S, for which π is a stationary

distribution, the sum of the diagonal elements of P — that is, trace(P ) — must be at least

max (0, (2πmax − 1) / πmax), where πmax = maxx π(x). Furthermore, any P attaining this

minimum value will have at most one non-zero value on its diagonal, and any such non-zero

diagonal value will be for a state x∗ for which π(x∗) = πmax > 1/2.

Proof. The statement is trivial when πmax ≤ 1/2, since the lower limit on trace(P ) is

then zero, and any such P has all zeroes on the diagonal. Otherwise, if x∗ is such that

π(x∗) = πmax > 1/2, then stationarity implies that

πmax = π(x∗) =
∑
x∈S

π(x)P (x, x∗) = π(x∗)P (x∗, x∗) +
∑

x∈S, x 6=x∗
π(x)P (x, x∗)

≤ π(x∗)P (x∗, x∗) +
∑

x∈S, x 6=x∗
π(x) = π(x∗)P (x∗, x∗) + (1− π(x∗))

= πmax P (x∗, x∗) + (1− πmax) .

It follows that P (x∗, x∗) ≥ (2πmax− 1) / πmax, hence trace(P ) ≥ max (0, (2πmax− 1) / πmax).

Furthermore, if trace(P ) = max (0, (2πmax−1) / πmax), then trace(P ) = P (x∗, x∗), and hence

all other values on the diagonal of P must be zero.

Remark. For any π, the minimum value of trace(P ) in Lemma 18 is attainable, and can

indeed be attained by a P that is reversible. Several methods for constructing such a P are

discussed in the companion paper [21], including, for example, the “shifted tower” method

of [24], which produces a reversible P when the shift is by 1/2.

We can now state a criterion for a reversible chain to not be efficiency-dominated by any

other reversible chain:

Theorem 19 If P is the transition matrix for an irreducible Markov chain on a finite state

space that is reversible with respect to π, and the sum of the eigenvalues of P (equivalently,

the trace of P ) equals max (0, (2πmax − 1) / πmax), where πmax = maxx π(x), then no other

reversible chain can efficiency-dominate P .

Proof. A reversible chain, Q, not equal to P , that efficiency-dominates P , must by The-

orem 16 have trace(Q) < trace(P ). But by Lemma 18, trace(P ) is as small as possible. So

there can be no reversible Q that efficiency-dominates P .

As an example of how this theorem can be applied, if the state space is S = {1, 2, 3},
with π(1) = π(2) = 1/5 and π(3) = 3/5, for which πmax = 3/5, then the transition matrix

P1 =


0 0 1

0 0 1

1/3 1/3 1/3
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is reversible with respect to π, and has eigenvalues of 1, 0,−2/3, which sum to 1/3 (the

trace). By Theorem 19, P1 cannot be efficiency-dominated by any other reversible transition

matrix, since its sum of eigenvalues is equal to (2πmax − 1) / πmax.

On the other hand, consider the following transition matrix, reversible with respect to

the same π:

P2 =


0 1/4 3/4

1/4 0 3/4

1/4 1/4 1/2


P2 has eigenvalues of 1,−1/4,−1/4, which sum to 1/2, greater than (2πmax − 1) / πmax, so

Theorem 19 does not apply. However, P2 is an instance of a transition matrix constructed

according to a procedure of Frigessi, Hwang, and Younes [8, Theorem 1], which they prove

has the property that the transition matrix produced has the smallest possible value for λ2,

and subject to having that value for λ2, the smallest possible value for λ3, etc. We can

therefore again conclude from Proposition 13 and Corollary 17 that no other reversible chain

can efficiency-dominate P2.

It’s easy to see that any reversible P with at least two non-zero diagonal elements, say

P (x, x) and P (y, y), can be efficiency-dominated by a chain, Q, that is the same as P except

that these diagonal elements are reduced, allowing Q(x, y) and Q(y, x) to be greater than

P (x, y) and P (y, x), so that Q Peskun-dominates P . Theorem 19 shows that some reversible

P in which only a single diagonal element is non-zero cannot be efficiency-dominated by any

other reversible chain. We know of no examples of a reversible P with only one non-zero

diagonal element that is dominated by another reversible chain, but we do not have a proof

that this is impossible. This leads to:

Open Problem. Does there exists a reversible P with only one non-zero diagonal element,

which is efficiency-dominated by some other reversible chain?

7 Re-deriving Peskun’s Theorem

Recall that P Peskun-dominates Q if P (x, y) ≥ Q(x, y) for all x 6= y — i.e., that Q−P
has all non-positive entries off the diagonal (and hence also that Q−P has all non-negative

entries on the diagonal). It is known through several complicated proofs [22, 26, 20] that if P

Peskun-dominates Q, then P efficiency-dominates Q. We will see here that once Theorem 9

has been established, this fact can be shown easily.

Proposition 20 If P and Q are irreducible, and both are reversible with respect to some π,

and P Peskun-dominates Q, then P efficiency-dominates Q.

To prove Proposition 20, we begin with a simple eigenvalue lemma.
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Lemma 21 If Z is an n × n matrix with zii ≥ 0 and zij ≤ 0 for all i 6= j, and row-sums∑
j zij = 0 for all i, then all eigenvalues of Z must be non-negative.

Proof. Suppose Zv = λv. Find the index j which maximizes |vj|, i.e. such that |vj| ≥ |vk|
for all k. We can assume vj > 0 (if not, replace v by −v), so vj ≥ |vk| for all k. Then

λ vj = (Zv)j =
∑
i

zjivi = zjjvj +
∑
i 6=j

zjivi ≥ zjjvj −
∑
i 6=j
|zji| |vi|

≥ zjjvj −
∑
i 6=j
|zji| vj = vj

(
zjj +

∑
i 6=j

zji
)

= vj(0) = 0 .

So, λ vj ≥ 0. Hence, since vj > 0, we must have λ ≥ 0.

Proof of Proposition 20. Let Z = Q−P . Since P Peskun-dominates Q, zii = Q(i, i)−
P (i, i) ≥ 0 and zij = Q(i, j)−P (i, j) ≤ 0 for all i 6= j. Also

∑
j zij =

∑
j P (i, j)−∑j Q(i, j) =

1 − 1 = 0. Hence, by Lemma 21, Z = Q−P has all eigenvalues non-negative. Hence, by

Theorem 9, P efficiency-dominates Q.

Remark. Proposition 20 can also be proven by transforming Q into P one step at a time,

in the sequence Q,Q′, Q′′, . . . , P , with each matrix in the sequence efficiency-dominating the

previous matrix. At each step, say from Q′ to Q′′, two of the off-diagonal transition prob-

abilities that differ between Q and P , say those involving states x and y, will be increased

from Q(x, y) to P (x, y) and from Q(y, x) to P (y, x), while Q′′(x, x) and Q′′(y, y) will decrease

compared to Q′(x, x) and Q′(y, y). The difference Q′−Q′′ will be zero except for a 2×2 sub-

matrix involving states x and y, which will have the form
( a −a
−b b

)
for some a, b > 0, which

has non-negative eigenvalues of 0 and a+ b. Hence, by Theorem 9, Q′′ efficiency-dominates

Q′. Since this will be true for all the steps from Q to P , transitivity (see Theorem 10(c))

implies that P efficiency-dominates Q.

Note that the converse to Proposition 20 is false. For example, let S = {1, 2, 3}, and

P =


0 1/2 1/2

1 0 0

1 0 0

 , Q =


1/2 1/4 1/4

1/2 1/4 1/4

1/2 1/4 1/4

 , Q−P =


+1/2 −1/4 −1/4

−1/2 +1/4 +1/4

−1/2 +1/4 +1/4

 .

Here, P does not Peskun-dominate Q, since, for example, Q(2, 3) = 1/4 > 0 = P (2, 3).

However, the eigenvalues of Q−P are 1, 0, 0, all of which are non-negative, so P does

efficiency-dominate Q. Furthermore, Theorem 10(b) implies that P is strictly better than Q

— there is some f for which v(f, P ) < v(f,Q). (For example, the indicator function for the

first state, which has asymptotic variance zero using P , and asymptotic variance 1/4 using
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Q.) Peskun dominance therefore does not capture all instances of efficiency dominance that

we are interested in, which motivates our investigation here.

One should note, however, that all our results concern only reversible chains. Non-

reversible chains are often used, either in a deliberate attempt to improve performance (see

[20]), or somewhat accidentally, as a result of combining methods sequentially rather than

by random selection. Extensions of Peskun ordering to non-reversible chains are considered

in [1].

8 Elementary Proof of Lemma 6

We conclude by presenting the promised elementary proof of Lemma 6 above, which

states the surprising fact that, for any reversible irreducible transition matrices P and Q,

〈f, Pf〉 ≤ 〈f, Qf〉 for all f if and only if 〈f, P (I−P )−1f〉 ≤ 〈f, Q(I−Q)−1f〉 for all f .

As observed in [19, pp. 16–17], this proposition follows from the more general result

of Bendat and Sherman [3, p. 60], using results of Löwner [17], which states that that if

h(x) = ax+b
cx+d

where ad − bc > 0, and J and K are any two self-adjoint operators with

spectrum contained in (−∞,−d/c) or in (−d/c,∞), then if 〈f, Jf〉 ≤ 〈f, Kf〉 for all f ,

then also 〈f, h(J)f〉 ≤ 〈f, h(K)f〉 for all f . In particular, choosing a = d = 1, b = 0, and

c = −1 gives that h(J) = J
I−J , so if 〈f, Jf〉 ≤ 〈f, Kf〉 for all f then 〈f, J

I−J f〉 ≤ 〈f,
K
I−K f〉

for all f . Conversely, choosing a = c = d = 1 and b = 0 gives that h( J
I−J ) = J , so if

〈f, J
I−J f〉 ≤ 〈f,

K
I−K f〉 for all f then 〈f, Jf〉 ≤ 〈f, Kf〉 for all f , finishing the proof.

However, the proof in [3] is very technical, requiring analytic continuations of transition

functions into the complex plane. Instead, we now present an elementary proof of Lemma 6.

(See also [4, Chapter V].) We begin with some lemmas about operators on a finite vector

space V , e.g. V = L2
0(π).

Lemma 22 If X, Y, Z are operators on a finite vector space V, with Z self-adjoint, and

〈f, Xf〉 ≤ 〈f, Y f〉 for all f ∈ V, then 〈f, ZXZf〉 ≤ 〈f, ZY Zf〉 for all f ∈ V.

Proof. Since Z is self-adjoint, making the substitution g = Zf gives

〈f, ZXZf〉 = 〈Zf, XZf〉 = 〈g, Xg〉 ≤ 〈g, Y g〉 = 〈Zf, Y Zf〉 = 〈f, ZY Zf〉 .

Next, say a self-adjoint matrix J is strictly positive if 〈f, Jf〉 > 0 for all non-zero f ∈ V .

Since 〈f, Jf〉 =
∑
i(ai)

2λi (see Section 2), this is equivalent to J having all eigenvalues

positive.

Lemma 23 If J and K are strictly positive self-adjoint operators on a finite vector space

V, and 〈f, Jf〉 ≤ 〈f, Kf〉 for all f ∈ V, then 〈f, J−1f〉 ≥ 〈f, K−1f〉 for all f ∈ V.
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Proof. Note (see Section 2) that K−1/2 and K−1/2JK−1/2 are self-adjoint, and have

eigenvalues that are positive, since J and K are strictly positive. Applying Lemma 22 with

X = J , Y = K, and Z = K−1/2 then gives that for all f ∈ V ,

〈f, K−1/2JK−1/2f〉 ≤ 〈f, K−1/2KK−1/2f〉 = 〈f, If〉 = 〈f, f〉 .

It follows that all the eigenvalues of K−1/2JK−1/2 are in (0, 1] (since 〈v, Av〉 ≤ 〈v, v〉 and

Av = λv with v 6= 0 imply λ ≤ 1). Hence, its inverse (K−1/2JK−1/2)−1 has eigenvalues all

≥ 1, so 〈f, (K−1/2JK−1/2)−1f〉 ≥ 〈f, If〉 , and therefore

〈f, If〉 ≤ 〈f, (K−1/2JK−1/2)−1f〉 = 〈f, K1/2J−1K1/2f〉 .

Then, applying Lemma 22 again with X = I, Y = K1/2J−1K1/2, and Z = K−1/2 gives

〈f, K−1/2IK−1/2f〉 ≤ 〈f, K−1/2 (K1/2J−1K1/2)K−1/2f〉 .

That is, 〈f, K−1f〉 ≤ 〈f, J−1f〉 for all f ∈ V , giving the result.

We emphasise that the equivalence in Lemma 23 is only for all f at once, not for individual

f . For example, if J = I and K = diag(5, 1
4
) and f = (1, 1), then 〈f, Jf〉 = 2 ≤ 5 + 1

4
=

〈f, Kf〉, but 〈f, J−1f〉 = 2 6≥ 1
5

+ 4 = 〈f, K−1f〉. This illustrates why the proofs of

Lemma 23 and Lemma 6 are not as straightforward as one might think.

Remark. Lemma 23 can be partially proven more directly. If f =
∑
i aivi, Jensen’s Inequality

gives
(∑

i(ai)
2λi
)−1

≤ ∑
i(ai)

2 (λi)
−1, so we always have 1

〈f, Jf〉 ≤ 〈f, J
−1f〉 . Hence, if

〈f, Jf〉 ≤ 〈f, Kf〉, then 〈f, J−1f〉 ≥ 1
〈f,Kf〉 . If f is an eigenvector of K, then 〈f, K−1f〉 =

1
〈f,Kf〉 , so this shows directly that 〈f, J−1f〉 ≥ 〈f, K−1f〉. However, it is unclear how to

extend this argument to other f .

Applying Lemma 23 twice gives a (stronger) two-way equivalence:

Lemma 24 If J and K are strictly positive self-adjoint operators on a finite vector space

V, then 〈f, Jf〉 ≤ 〈f, Kf〉 for all f ∈ V if and only if 〈f, J−1f〉 ≥ 〈f, K−1f〉 for all f ∈ V.

Proof. The forward implication is Lemma 23. And, the reverse implication follows from

Lemma 23 by replacing J with K−1 and replacing K with J−1.

Using Lemma 24, we easily obtain:

Proof of Lemma 6. Recall that we can restrict to f ∈ L2
0(π), so π(f) = 0, and f is

orthogonal to the eigenvector corresponding to eigenvalue 1. On that restricted subspace,

the eigenvalues of P and Q are contained in [−1, 1). Hence, the eigenvalues of I−P and
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I−Q are contained in (0, 2], and in particular are all strictly positive. So, I−P and I−Q
are strictly positive self-adjoint operators.

Now, 〈f, Pf〉 ≤ 〈f, Qf〉 for all f ∈ L2
0(π) is equivalent to

〈f, (I−P )f〉 = 〈f, f〉 − 〈f, Pf〉 ≥ 〈f, f〉 − 〈f, Qf〉 = 〈f, (I−Q)f〉 for all f ∈ L2
0(π).

Then, by Lemma 24 with J = I−Q and K = I−P , this is equivalent to

〈f, (I−P )−1f〉 ≤ 〈f, (I−Q)−1f〉 for all f ∈ L2
0(π).

Since (I−P )−1 = P (I−P )−1 + (I −P )(I −P )−1 = P (I−P )−1 + I and similarly (I−Q)−1 =

Q(I−Q)−1 + I, this latter is equivalent to

〈f, P (I−P )−1f〉 ≤ 〈f, Q(I−Q)−1f〉 for all f ∈ L2
0(π),

which completes the proof.
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[12] O. Häggström and J. S. Rosenthal (2007), On variance conditions for Markov chain

CLTs. Elec. Comm. Prob. 12, 454–464.

[13] R. A. Horn and C. R. Johnson (2013), Matrix Analysis, 2nd edition, Cambridge Uni-

versity Press.

[14] L.-J. Huang and Y.-H. Mao (2023), Variational formulas for asymptotic variance of

general discrete-time Markov chains. Bernoulli 29(1), 300–322.

[15] C. Kipnis and S. R. S. Varadhan (1986), Central limit theorem for additive functionals of

reversible Markov processes and applications to simple exclusions. Comm. Math. Phys.

104, 1–19.

[16] G. Li, A. Smith, and Q. Zhou (2023), Importance is Important: A Guide to Informed

Importance Tempering Methods. arXiv preprint arXiv:2304.06251.
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