
Stat Comput (2012) 22:397–413
DOI 10.1007/s11222-011-9232-5

Decrypting classical cipher text using Markov chain Monte Carlo

Jian Chen · Jeffrey S. Rosenthal

Received: 20 May 2010 / Accepted: 12 January 2011 / Published online: 1 April 2011
© Springer Science+Business Media, LLC 2011

Abstract We investigate the use of Markov Chain Monte
Carlo (MCMC) methods to attack classical ciphers. MCMC
has previously been used to break simple substitution
ciphers. Here, we extend this approach to transposition
ciphers and to substitution-plus-transposition ciphers. Our
algorithms run quickly and perform fairly well even for key
lengths as high as 40.

Keywords Cryptography · Code breaking · Substitution
cipher · Transposition cipher · Substitution-transposition
cipher · Markov chain Monte Carlo algorithm

1 Introduction

Cryptography (e.g. Schneier 1996) is the study of algorithms
to encrypt and decrypt messages between senders and re-
ceivers. And, Markov chain Monte Carlo (MCMC) algo-
rithms (e.g. Tierney 1994; Gilks et al. 1996; Roberts and
Rosenthal 2004) are popular methods of approximately sam-
pling from complicated probability distributions. Tradition-
ally these two subjects have been quite distinct.

However, recently MCMC algorithms have been used to
iteratively converge to solutions which allow us to break
simple substitution codes. This approach was first intro-
duced by Marc Coram and Phil Beineke in the Stanford
statistical consulting service (see Diaconis 2008), and later
studied more systematically by Connor (2003). Table 1
shows output from a typical run of this algorithm (in this
case, decrypting the first line of the Project Gutenberg

Supported in part by NSERC of Canada.

J. Chen · J.S. Rosenthal (�)
Department of Statistics, University of Toronto, Toronto, Canada
e-mail: jeff@math.toronto.edu

(2011) copy of Oliver Twist). We see that the algorithm be-
gins with encrypted text that looks like gibberish, and then
gradually (in this case, after 2,200 iterations) breaks the code
and recovers the correct original text.

In this paper, we significantly extend the use of MCMC
in decryption, from simple substitution ciphers to transpo-
sition ciphers and to substitution-plus-transposition product
ciphers. While these new cases still correspond to “classi-
cal” ciphers, they are generally regarded as being signif-
icantly more complicated than simple substitution ciphers
(see Sect. 1.1). To successfully attack these ciphers, we de-
velop various innovations including combining multiple in-
dependent runs, cycling between different cipher attacks,
and (for substitution-plus-transposition ciphers) using a uni-
gram attack as an initialization point for a sequence of bi-
gram attacks.

Extensive computer simulations indicate that our algo-
rithms run quickly, and work quite well even for key lengths
as large as 40. These results appear to improve upon exist-
ing decryption methods (Dimovski and Gligoroski 2003),
and suggest that MCMC algorithms can be of genuine use
for decrypting encoded text.

This paper is organized as follows. We present back-
ground on cryptography and on MCMC below. The use of
MCMC for decryption is outlined in Sect. 2. We then present
detailed algorithms and simulation results for attacking sub-
stitution ciphers (Sect. 3), transposition ciphers (Sect. 4),
and substitution-plus-transposition ciphers (Sect. 5). All of
the software used for our simulations is freely available at:
probability.ca/decipher.

1.1 Background on cryptography

In cryptography, the original text is called the plain text, and
the encrypted text is called the cipher text. The algorithms to
perform encryption and decryption are referred to as ciphers.

mailto:jeff@math.toronto.edu


398 Stat Comput (2012) 22:397–413

Table 1 A sample run of a simple MCMC decryption algorithm

Iteration # First line of decrypted text

0 LIW PSKMWCL YNLWRDWSY WDKKJ KH KGUXWS LAUEL DQ CIVSGWE FUCJWRE

200 RAS KINJSBR MDRSEHSIM SHNNV NW NGUZSI RPUOR HY BATIGSO LUBVSEO

400 ARS HUNJSPA GDASEBSUG SBNNV NW NMIKSU AFIOA BY PRTUMSO LIPVSEO

600 ARE HLNJEPA KOAESBELK EBNNW NG NMIVEL AFIDA BY PRULMED TIPWESD

800 IME KNSJEPI HUIETBENH EBSSG SW SLOVEN ICODI BY PMANLED ROPGETD

1000 IME GNOJEPI HUIETBENH EBOOK OF OLSVEN ICSDI BY PMANLED RSPKETD

1200 SME GNOJECS HUSETBENH EBOOK OF OLIVEN SPIDS BY CMANLED RICKETD

1400 SME PNOJECS HUSETBENH EBOOK OF OLIVEN SWIDS BY CMANLED RICKETD

1600 SHE MROJECS GUSETBERG EBOOK OF OLIVER SWIDS BY CHARLED NICKETD

1800 SHE PROJECS GUSETBERG EBOOK OF OLIVER SWINS BY CHARLEN DICKETN

2000 SHE PROJECS GUSELBERG EBOOK OF ONIVER SWITS BY CHARNET DICKELT

2200 THE PROJECT GUTENBERG EBOOK OF OLIVER TWIST BY CHARLES DICKENS

Table 2 A simple example of a
substitution cipher encryption
and decryption

Plain text THE PROJECT GUTENBERG EBOOK OF OLIVER TWIST

Encryption key XEBPROHYAUFTIDSJLKZMWVNGQC

Cipher text MYR JKSURBM HWMRDERKH RESSF SO STAVRK MNAZM

Decryption key ICZNBKXGMPRQTWFDYEOLJVUAHS

Decrypted text THE PROJECT GUTENBERG EBOOK OF OLIVER TWIST

Usually a cipher contains one or two keys. In a symmetric
key algorithm (e.g. DES), the decryption key is the same as
the encryption key (or just the inverse function of it). In an
asymmetric key algorithm (e.g. RSA), two different keys are
used. The public key is used for encryption and a private key
is for the decryption.

Ciphers can also be categorized in a different way, as
classical ciphers and modern ciphers. Classical ciphers,
such as the substitution and transposition ciphers considered
herein, perform encryption and decryption text manipula-
tions at the byte level. Modern ciphers, such as DES (sym-
metric key) and RSA (asymmetric key), perform encryp-
tion and decryption at the bit level, and are correspondingly
more complicated and secure than the classical ciphers, and
we do not consider them here. (Note, however, that a sim-
plified version of DES, called SDES (Ooi and Vito 2002;
Garg 2009), can be regarded as a special case of substitution
cipher and is thus included in our results below.)

A simple substitution cipher works by replacing each let-
ter with another one. In this paper, we only substitute al-
phabetic letters; spaces are left untouched and all other non-
alphabetic characters are removed. So, the number of the
possible keys is equal to 26! .= 4 × 1026. Table 2 illustrates
an encryption and decryption example of a simple substitu-
tion cipher. For the encryption, all ‘A’s in the plain text are
replaced by letter ‘X’, ‘B’s replaced by ‘E’, etc. For the de-
cryption, all ‘A’s in the cipher text are replaced by ‘I’, ‘B’s

Table 3 A simple example of a transposition cipher encryption and
decryption

Plain text T H E P R O J E C

Encryption key 1 9 3 7 0 4 5 8 6 2

Cipher text H C J T P R E O E

Decryption key 4 0 9 2 5 6 8 3 7 1

Decrypted text T H E P R O J E C

replaced by ‘C’ etc. Note that the encryption key is the in-
verse function of the decryption key.

Another classical cipher is the transposition cipher (also
called the permutation cipher). The letters in the plain text
stay the same but their positions are rearranged in a differ-
ent order. A simple transposition cipher works by splitting
the plain text into fixed sized blocks. The length of the key
(also called the period) is the same as the size of the block.
Letters in each block are permuted according to a same pat-
tern (the key). Table 3 illustrates an example of encryption
and decryption by a transposition cipher with key length 10.
Note the encryption key is the inverse function of the de-
cryption key.

Transposition ciphers are generally regarded as much
more difficult to decrypt than simple substitution ciphers.
For example, Matthews (1993, p. 190) notes that:

the automatic breaking of [transposition] ciphers is
notoriously difficult. In contrast to substitution ci-
phers, for which a number of statistical tools aiding



Stat Comput (2012) 22:397–413 399

Table 4 Attempted decryption
of Oliver Twist with a uni-gram
attack

Plain text THE PROJECT GUTENBERG EBOOK OF OLIVER TWIST

Decrypted text THE PSOJEWT FUTEIBESF EBOOK OG OLNVES TCNRT

automated breaking have been developed . . . crypt-
analysis of transpositions is usually highly interven-
tionist and demands some knowledge of the likely
contents of the ciphertext to give an insight into the
order of rearrangement used.

A product cipher combines a sequence of simple transfor-
mations such as substitution, transposition and other arith-
metic. SP-network (Substitution-permutation network) is an
example of a product cipher, involving repeated applications
of substitutions (S-box) and permutations (P-box), which is
very common in the design of modern ciphers such as DES.
Herein, we consider the special case of a simple substitution-
plus-transposition (or, substitution-transposition) cipher, in
which the plain text is encrypted by a substitution cipher
followed by a transposition cipher, causing additional chal-
lenges.

Such product ciphers have long been commonly used
to make decryption more difficult. Shannon (1949, p. 671)
noted:

Product encipherment is often used; for example, one
follows a substitution by a transposition.

Stinson (2005, Sect. 2.7) agreed, writing:

[C]ombining cryptosystems by forming their “prod-
uct” . . . has been of fundamental importance in the
design of present-day cryptosystems . . . Taking the
product of substitution-type ciphers with permutation-
type ciphers is a commonly used technique.

Menezes et al. (1996) further emphasise how the combi-
nation of substitution and transposition ciphers can lead to
“strong ciphers”, writing (p. 20):

Simple substitution and transposition ciphers individ-
ually do not provide a very high level of security.
However, by combining these transformations it is
possible to obtain strong ciphers. As will be seen
in Chap. 7 some of the most practical and effective
symmetric-key systems are product ciphers. One ex-
ample of a product cipher is a composition of t ≥ 2
transformations Ek1,Ek2, . . . ,Ekt , where each Eki

,
1 < i < t , is either a substitution or a transposition
cipher.

All of these quotations indicate that transposition ciphers,
and especially product ciphers, are generally regarded as be-
ing significantly more difficult to decrypt than simple sub-
stitution ciphers.

Frequency analysis (e.g. Shannon 1949) is the study of
the frequencies of letters or combination of letters in the

cipher text. In a particular language (e.g. English) certain
letters and there combinations occurs more frequently than
others. The frequencies of letters are also called n-gram, i.e.
uni-gram stand for single letter frequencies, bigram for com-
bination of 2 letters, trigram for 3 letters, etc. For example,
in English ‘E’ is the most used single letter while ‘Z’ is the
least used single letter. ‘TH’ and ‘ER’ are pairs which arise
frequently. Simple classical ciphers like substitution ciphers
are often broken by comparing the letter frequencies of the
cipher text to a reference text (usually a large text such as
War and Peace).

When faced with a simple substitution cipher, the sim-
plest form of frequency analysis is a uni-gram attack, which
involves simply replacing the most frequent letter in the ci-
pher text by the most frequent occurred letter in the refer-
ence text, and the second-most-frequent letter in the cipher
text by the second-most-frequent letter in the reference text,
and the third-most by the third-most, and so on. As a first ex-
periment, we tried this simple uni-gram attack on the novel
Oliver Twist after a random simple substitution cipher was
applied to it. This attack does not succeed very well, reveal-
ing just 16 out of 26 letters in the cipher text (Table 4).
This is because some letters (e.g. ‘R’ and ‘S’, or ‘C’ and
‘W’) have similar frequencies and are thus likely to be inter-
changed in such an attack.

Because of results like this, more complicated attacks
involving pair frequencies have to be employed—even for
simple substitution ciphers, but especially for more com-
plicated ciphers such as transposition and product ciphers.
Since pairs cannot be simply “substituted in” as is done with
uni-gram attacks, this leads to more complicated algorithms,
as we discuss herein.

1.2 Background on MCMC

MCMC algorithms have long been used by physicists and
statisticians to sample from complicated high-dimensional
probability distributions. Let π(·) be an important possibly-
unnormalised density (for example, the posterior distribu-
tion from a Bayesian inference problem) on a state space X .
(In statistical inference problems, usually X is an open sub-
set of Rd , but in this paper X will be a finite set.) MCMC
proceeds by defining an iterative sequence X0,X1,X2, . . .

of X -valued random variables which converge in distribu-
tion to π(·). For example, the following result is well-known
(see e.g. Rosenthal 2006, Theorem 8.3.10; or Tierney 1994,
Theorem 1).

Proposition 1 If a Markov chain {Xn} on a finite or count-
able state space X is irreducible and aperiodic, with sta-



400 Stat Comput (2012) 22:397–413

tionary distribution π(·), then for every subset A ⊆ X ,

lim
n→∞ P(Xn ∈ A) =

∫
A

π(x)dx. (1)

It follows from this proposition that for large n, the value
Xn is approximately a “sample” from π(·). Repeating or
continuing this process leads to multiple samples, which can
then be used to estimate probabilities and expected values
with respect to π(·).

The simplest version of MCMC is the full-dimensional
Metropolis algorithm (Metropolis et al. 1953), which pro-
ceeds as follows:

• Choose an initial state X0 ∈ X .
• For n = 1,2,3, . . . ,

– Propose a new state Yn ∈ X from some symmetric pro-
posal density q(Xn−1, . . .).

– Let Un ∼ Uniform[0,1], independently of X0, . . . ,

Xn−1, Yn.
– If Un < (π(Yn)/π(Xn−1)), then “accept” the proposal

by setting Xn = Yn, otherwise “reject” the proposal by
setting Xn = Xn−1.

Thus, the acceptance probability of each proposal is equal to
min(1,π(Yn)/π(Xn−1). This probability is chosen precisely
so that the resulting Markov chain X0,X1,X2, . . . will be re-
versible with respect to π(·), so that π(·) is a stationary dis-
tribution, and under the mild assumptions of irreducibility
and aperiodicity, the probabilities will converge to those of
π(·) as in (1). (It is not essential the proposal density q(x, ·)
be symmetric, but if it is not then the acceptance probability
must be appropriately modified, so for simplicity we do not
consider that case here.)

It is also possible to replace π(x) by a power, (π(x))p ,
so that the acceptance condition above is replaced by Un <

((π(Yn)/π(Xn−1))
p . This is a tempering modification in

which p plays the role of inverse temperature, and we
shall refer to p as a scaling parameter. Such a modification
changes and flattens (for 0 < p < 1) the density π(·), poten-
tially changing the corresponding probabilities and expected
values, but leaving the mode (argmax) of π(·) unchanged.
Thus, such tempering modifications can help the chain es-
cape from local modes, while preserving the same mode;
we shall make use of them herein.

2 Using MCMC to break classical ciphers

We now discuss the use of MCMC for breaking classical
ciphers.

For this application, the relevant Markov chain has state
space X consisting of all possible decryption keys (a large
but finite state space). That is, each possible decryption key

is a possible state of the Markov Chain. Following (Diaco-
nis 2008; Connor 2003), we make use of a long reference
text such as War and Peace. For each pair of characters β1

and β2 (e.g. β1 = T and β2 = H), we let r(β1, β2) record
the number of times that specific pair (e.g. “TH”) appears
consecutively in the reference text. Similarly, for a putative
decryption key x ∈ X , we let fx(β1, β2) record the number
of times that pair appears when the cipher text is decrypted
using the decryption key x. To avoid problems from zeroes,
we also add one to each of r(β1, β2) and fx(β1, β2).

For a particular decryption key x, we then define its score
function as follows:

π(x) =
∏

β1,β2

r(β1, β2)
fx(β1,β2). (2)

This function can be thought of as multiplying, for each con-
secutive pair of letters in the decrypted text, the number of
times that pair occurred in the reference text. Intuitively, the
score function is higher when the pair frequencies in the de-
crypted text most closely match those of the reference text,
and the decryption key is thus most likely to be correct. (In
our computer programs, we compute (2) on a log scale for
easy calculation and to avoid numerical errors.)

In terms of this score function, we use the following gen-
eral MCMC algorithm to break the classical ciphers:

• Choose an initial state (initial decryption key), and a fixed
scaling parameter p > 0.

• Repeat the following steps for many iterations (e.g.
10,000 iterations).
– Given the current state x, propose a new state y from

some symmetric density q(x, y).
– Sample u ∼ Uniform[0,1] independently of all other

variables.
– If u < (

π(y)
π(x)

)p then accept the proposal y by replacing
x with y, otherwise reject y by leaving x unchanged.

By the usual Markov chain convergence theorem, this
Markov chain will converge in probability to its stationary
distribution, which in this case means it will converge to the
distribution with density proportional to (π(x))p with π(·)
as in (2). So, intuitively, after many iterations, the algorithm
is likely to be at a decryption key which gives decryption
text pair frequencies close to those of the reference text, and
is thus more likely to be correct.

2.1 Previous related work

The use of MCMC algorithms to break simple substitution
codes was introduced by Marc Coram and Phil Beineke in
unpublished work (summarised in the Introduction to Diaco-
nis 2008) that they undertook for the Stanford Statistics De-
partment’s drop-in statistical consulting service. A psychol-
ogist from the California state prison system had presented



Stat Comput (2012) 22:397–413 401

them with a collection of coded messages. They correctly
guessed that the messages were encrypted using a simple
substitution cipher. They then ran an algorithm very similar
to that introduced above. It quickly decoded the messages
and discovered that they were written mostly in English, but
with some Spanish words and other “jargon” also included.
This early success indicated the possibility of using MCMC
algorithms for decryption purposes.

These algorithms were then studied more systematically
by Connor (2003). He provided precise definitions and
framework and background for studying substitution ciphers
using MCMC, putting the proposal choices in the more gen-
eral context of random walks on the symmetric group. He
then ran careful simulations to do the decoding, while vary-
ing a number of parameters such as the text being decoded
(a variety of English-language novels), the length of text
used for the decryption, the number of MCMC iterations
used, and the starting state used by the algorithm.

Connor (2003) generally achieved quite high decryption
success rates, sometimes as high as 99%, especially when
using an “intelligent” starting state (defined as the one which
matches up the character frequencies in the cipher and refer-
ence texts). He also tried decoding more unusual texts such
as Welsh writing and a Biochemistry textbook, though with
less success (which was not surprising since the character
pair frequencies of War and Peace are less relevant for these
texts). In any case, his results were all restricted to simple
substitution ciphers, not to the more challenging transposi-
tion and product ciphers considered herein.

In a different direction, Connor (2003) also considered
the issue of the running time (i.e., rate of convergence) for
the MCMC algorithms he was using. However, as that was
a very difficult problem, he instead considered the algo-
rithm consisting of just the proposed moves, ignoring the
accept/reject step, thus corresponding to a pure random walk
for the uniform distribution on the symmetric group without
regard to the actual text data being decrypted. For this sim-
plified algorithm, he applied stopping time and group repre-
sentation arguments of Diaconis (1988) to provide concrete
quantitative bounds on distance to stationarity after k iter-
ations. These results are quite interesting mathematically.
However, they are not of direct relevance for the original
decryption algorithms which we study herein.

Another approach was taken by Matthews (1993). He de-
signed an algorithm GENALYST for decrypting transposi-
tion ciphers using genetic algorithms which postulate mul-
tiple possible solutions and then deletes and permutes them
using a “survival of the fittest” procedure. He achieved some
promising results. However, his success was limited by a
number of factors. For example, he measured the “fitness”
success of his solutions by computing the resulting frequen-
cies of just 10 fixed letter patterns (TH, HE, IN, ER, AN,
ED, THE, ING, AND, EEE; see Table 1 on his p. 192), ren-
dering the assessment of his results unclear and incomplete.

Table 5 Cipher texts and reference texts used in our attacks

Text Author Publication date

War and Peace Leo Tolstoy 1869

Oliver Twist Charles Dickens 1838

Pride and Prejudice Jane Austen 1813

Ice Hockey (Wikipedia Page) Wikipedia 2010
(Hockey 2011)

Also, his algorithm does not in general produce a final so-
lution but merely narrows down the plausible solutions to
a smaller set (of size 24, in the case of key length 11; see
the top of his p. 200), and still requires “the final break-
ing of the cipher into English being achieved by . . . the
human brain”, i.e. it requires additional human intervention
to completely decrypt the text. By contrast, the algorithms
considered herein are designed to produce a single final an-
swer with no further human intervention, and are assessed
in terms of actual comparison of the decrypted text with the
original text.

2.2 Testing methodology

To test our algorithms, we shall primarily use the four texts
listed in Table 5. During the programming and initial test-
ing we used War and Peace as the reference text and Oliver
Twist as the plain text. All four texts were then used to test
our final attack algorithms. (A systematic investigation of
MCMC decryption results with many different choices of
texts was undertaken by Connor (2003), so we do not repeat
that here.)

For simplicity, we first convert all letters to upper case,
and remove or convert to spaces all non-alphabetic charac-
ters. So in total we have 27 characters (26 upper case English
alphabet letters plus one space character), which we number
from 0 to 26.

For each attack algorithm we consider, we run the en-
cryption and the decryption process 100 separate times. In
each such run, a random key is generated to encrypt the plain
text, and the attack is then performed on the cipher text. At
the end of the attack, we compare the decrypted text with
the plain text. If the decrypted text is the same as the cipher
text, it is a successful run. Obviously, the more successful
runs out of 100, the better has our algorithm performed.

Even if a run is not completely successful, it is still true
that if we successfully guessed “most” of the letters, i.e. our
decryption was “mostly” successful, then this may still be
helpful because the remaining cipher text can probably then
be determined by human intervention. For this reason, we
also want a definition of “accuracy” to measure how close
the decrypted text is to the plain text.

For a substitution ciphers, the accuracy is defined as ms

ns
,

where ms is the number of letters correctly revealed, and ns



402 Stat Comput (2012) 22:397–413

Table 6 System configuration of the machine running the attacks

CPU 2.26 GHz Intel Core 2 Duo

Memory 4 GB 1067 MHz DDR3 Memory

OS version Mac OS X Version 10.6.3

Compiler g++ i386-apple-darwin10-g++-4.2.1

is the number of available letters in the plain text (usually
ns is 26, but it may be less than 26 for short cipher text).
A letter is said to be correctly revealed if the position of its
first appearance in the plain text is the same as that of the
decrypted text.

(Of course, it would be possible to modify this definition
to weight the value of the letters according to their frequency
within the text. For example, perhaps it is more important to
correctly decode ‘E’ than to correctly decode ‘Z’. In fact,
such a modification would probably make our algorithms
appear even more successful, since more frequent letters are
easier to decode correctly. On the other hand, different texts
have different letter frequencies, so such a modified defini-
tion would vary from text to text making between-text com-
parisons less meaningful. Overall we have decided for sim-
plicity to stick with the simple ms

ns
definition above, while

recognising that other definitions are possible though they
will probably not affect our results very much.)

For a transposition ciphers, we define accuracy as mt

nt
,

where nt is equal to the key length minus 2, and mt is the
number of letters correctly placed in one period (the key
length). A letter is said to be correct positioned if it has the
same neighbors in the decrypted text as in the plain text. We
do not count the letters in the start and end positions as they
only have one neighbor.

We also measure how long it takes for our attacks to run,
since a good attack should finish within a reasonable time.
Our program is written in C++ and was run on a MacBook
Pro with the system configuration as in Table 6.

3 Attacks on substitution ciphers

We now consider attacks on substitution ciphers, in which
an unknown permutation is applied to the 26 letters of the
English alphabet. Following (Diaconis 2008; Connor 2003),
we use MCMC algorithms as in the previous section, and
find good results.

Our Markov chain state space now consists of all the
26! .= 4 × 1026 possible permutations of 26 letters. We let
the initial state be the identity permutation ‘ABCD. . . XYZ’
(so the decrypted text using this key is identical to the cipher
text itself).

A key part of the MCMC algorithm is to define a pro-
posal so the chain is detailed balanced and guaranteed to
converge to its stationary distribution. Similar to Diaconis

(2008), Connor (2003), we propose a new key by swapping
2 randomly selected letters in the current key. So, each such
swap has proposal probability 1/n2. Note that these propos-
als are symmetric. (For simplicity, and to guarantee aperi-
odicity, we allow our program to propose swapping a letter
with itself, e.g. swapping ‘A’ and ‘A’, even though such pro-
posals will not change the chain’s state.)

It follows easily that this algorithm will converge to solu-
tions with “approximately” maximal score functions, in the
following sense (which will be improved in Theorem 3 be-
low):

Theorem 1 Let {Xn} be the sequence of decryption keys
produced by the above algorithm, using the score function
π(x) from (2). Let M = maxx∈X π(x). Then the Markov
chain {Xn} is irreducible and aperiodic, and for any ε > 0,

lim
n→∞ P(π(Xn) > M − ε)

=
∑

{π(y) : y ∈ X ,π(y) > M − ε}. (3)

In particular, if
∑{π(y) : y ∈ X , π(y) > M − ε} is close

to 1, then after many iterations the score functions produced
by the algorithm will probably be within ε of being maximal.

Proof Since we added one to each r(β1, β2), it follows
from (2) that π(x) > 0 for all decryption keys x. This im-
plies that we always have (π(y)/π(x))p > 0, so that every
proposed swap has positive probability of being accepted.
Hence, since every permutation can be obtained from every
other by a sequence of pairwise transpositions, this implies
that the Markov chain {Xn} is irreducible. In addition, since
we allow the algorithm to propose swapping a letter with it-
self (or, since some proposed swaps have positive probabil-
ity of being rejected), the Markov chain has positive hold-
ing probability, and hence is aperiodic. The conclusion (3)
then follows from Proposition 1, with A = {y ∈ X : π(y) >

M − ε}. �

For the above decryption algorithm, we next try adjusting
various parameters to see which tuning allows the algorithm
to perform optimally.

3.1 Number of iterations

Table 7 shows that by increasing number of iterations, we
improve the accuracy and the number of successful runs. But
the accuracy doesn’t change much after 10,000 iterations. At
this point, although the accuracy is quite high (greater than
90%) which mean most of the runs were very close to the
correct result, the number of completely successful runs is
fairly low (around 50–60 out of 100). Next we try to improve
the algorithm by tuning different parameters.



Stat Comput (2012) 22:397–413 403

Table 7 Results from initial attempt to decrypt substitution ciphers
using bi-grams, with different numbers of MCMC iterations

Iterations Accuracy No. of
successful runs

1,000 0.5196 0

2,000 0.7732 19

5,000 0.9060 47

10,000 0.9064 51

20,000 0.9348 59

50,000 0.8932 54

Table 8 Results of bi-gram attacks for substitution ciphers after
10,000 iterations, for different choices of the scaling parameter

Scaling parameter Acceptance rate Accuracy No. of
successful runs

0.05 0.27 0.2664 0

0.1 0.12 0.6184 0

1 0.04 0.9064 51

10 0.04 0.8520 80

20 0.04 0.8920 85

50 0.04 0.9156 87

100 0.04 0.8288 74

3.2 Tuning the scaling parameter

The scaling parameter can be very important in the MCMC
algorithm. Larger scaling parameters give lower acceptance
rates. But if the acceptance rate is too low, the chain is mov-
ing too slowly, and it will take too long to converge. Smaller
scaling parameters gives higher acceptance rates. But if ac-
ceptance rate is too high, the chain will move too often and
may not always stay in the stationary distribution.

To investigate this question, we ran simulations with var-
ious choices of the scaling parameter p. The results are in
Table 8.

We see from Table 8 that in this case, certainly the scal-
ing parameter should be at least 1. If we increase the accep-
tance rate by lowering the scaling parameter, the chain will
not converge well (e.g. with p = 0.05, on average it only
revealed 26.6% of the cipher text after 10,000 iterations).
Larger values of p do lead to a larger number of success-
ful runs, but not to significantly greater accuracy. (This is
because large p forces the algorithm to remain right at a lo-
cal mode, while smaller p allows for greater flexibility of
the algorithm to remain “near” a mode.) We shall see later
that for transposition ciphers the choice p = 1 is preferable.
Thus, to avoid confusion and incompatibility when we try to
combine substitution and transposition ciphers in Sect. 5, for
simplicity we leave the scaling parameter set to 1, leading to
an acceptance rate of 0.04.

3.3 Remembering the best score function

The above runs had our algorithm return the final decryption
key from the run, i.e. whatever key the Markov chain ends
up at after a full run of (say) 10,000 iterations.

However, we found that many of our runs revealed the
plain text (e.g. “THE PROJECT”) in the middle of the run,
but then later jumped away from it (e.g. “THE PROZECT”).
We know that larger score functions usually indicate better
solutions. So, instead of having our algorithm return the final
decryption key from the run, we have it return whichever de-
cryption key from whichever iteration which gave the largest
log score function.

For this modified algorithm, a stronger optimality theo-
rem follows:

Theorem 2 Let {Xn} be the sequence of decryption keys
produced by the above algorithm, using the score function
π(x) from (2), with the modification of remembering the
best score function. Let M = maxx∈X π(x). Then if Bn :=
max(π(X1),π(X2), . . . , π(Xn)) is the best score function
from the first n iterations, then

lim
n→∞Bn = M with probability 1.

That is, the algorithm produces score functions which con-
verge in the limit to the maximal possible value.

Proof Since the Markov chain {Xn} is irreducible and ape-
riodic (by Theorem 2), it follows from the Markov chain law
of large numbers (see e.g. Theorem 3 of Tierney 1994) that
for any subset A ⊆ X ,

lim
n→∞

1

n
#{i : 1 ≤ i ≤ n,Xi ∈ A} = π(A) with probability 1.

In particular, if π(A) > 0, then with probability 1, #{i : 1 ≤
i ≤ n,Xi ∈ A} > 0 for sufficiently large n, i.e. the chain will
eventually enter the subset A.

To continue, let ε > 0, and let A = {y ∈ X : π(y) > M −
ε} as before. Then π(A) > 0 by definition of M . Hence,
with probability 1, the chain will eventually enter A, at some
random iteration n. At this iteration, we will have Bn > M −
ε by the definition of A. Furthermore, since {Bn} is a non-
decreasing sequence by construction, it then follows that we
will have Bn > M −ε for all subsequent iterations n as well.
Since this is true for all ε > 0, this implies that Bn → M . (In
fact, since the state space X is finite, it is possible to instead
let A be the set on which the score function actually attains
its maximum. But we prefer the above argument since it is
still valid on continuous state spaces as well.) �

Remark Of course, even Theorem 3 gives no indication of
how large the iteration number n has to be before Bn is close



404 Stat Comput (2012) 22:397–413

to M . Such “non-asymptotic convergence rate” issues are in
general quite challenging (see e.g. Rosenthal 2002 and ref-
erences therein). As noted above, Connor (2003) did attempt
some convergence rate analysis related to this algorithm, but
only for the very special case of no data, i.e. assuming that
all proposed moves always get accepted. The general case is
a much harder problem, which we leave to possible future
work.

We tried re-running our algorithm with this new modifi-
cation (of remembering the best score function). The results
are presented in Table 9. Comparison with Table 7 shows
that the new modification leads to significantly better results.

3.4 How much cipher text is needed

Usually we use the entire cipher text when computing the
score function (2) at each iteration. We can ask whether it is
more efficient, and of comparable accuracy, to compute the
score function at each iteration using just a (random) subset
of the cipher text. Table 10 indicates that in this case, the
time spend on the decryption is essentially independent of
the length of the cipher text used. On the other hand, the
accuracy is already quite high (over 93%) when using just
2,000 characters of cipher text.

These results suggest that for simple substitution ci-
phers, it does not much matter (for either speed or accu-
racy) whether we use just 2,000 characters of cipher text, or
the entire cipher text. However, since our main interest is in
transposition-related ciphers for which speed is much more

Table 9 Results of bi-gram attacks on substitution ciphers, when we
return whichever key maximizes the score function

Iterations Accuracy No. of
successful runs

1,000 0.5300 1

2,000 0.7716 20

5,000 0.9172 87

10,000 0.9312 90

20,000 0.9148 87

50,000 0.9488 93

Table 10 Results from attacks on substitution ciphers using bi-gram,
when using different amounts of cipher text. Each run uses 10,000 it-
erations, and returns whichever key maximize the log score

Cipher text Accuracy No. of
successful runs

Duration
(in seconds)

1,000 0.7143 0 0.4441

2,000 0.9312 90 0.4442

Full cipher text 0.9831 97 0.4381

effected (see below), for our final attack we use just 2,000
characters of cipher text for simple substitution ciphers as
well.

3.5 Independent repetitions

Experimentation indicates mixed result when using just
2,000 randomly-chosen consecutive characters from the ci-
pher text for the attack (Table 11). That is, some selections
from the cipher text are better for decryption than others.

This suggests that our final attack should, instead of us-
ing just one run, use several independent repeated runs, and
return whichever final result has the largest score function
(from (2) computed using the entire cipher text). We use this
approach in our final attack below.

3.6 Tri-gram attack

As a final check, we tried modifying the previous MCMC
algorithm to use tri-grams (triple letters frequencies) instead
of bi-grams. That is, we replace the score function (2) by:

π(x) =
∏

β1,β2,β3

r(β1, β2, β3)
fx(β1,β2,β3),

where β1, β1, β3 are all possible three-characters combina-
tions, and where r(β1, β2, β3) and fx(β1, β2, β3) are now
the corresponding triple letter frequencies of the reference
text and the decrypted text respectively.

This new tri-gram attack also works (Table 12), but the
result is not as good as the attack using the bi-grams. There-
fore, we stick with bi-grams for the final version of our at-
tack.

3.7 Attack for substitution ciphers—preliminary version

Based on the above experimentation, we take the prelimi-
nary version of our attack to involve 10,000 iterations, with
scaling parameter 1, and with cipher text length 2,000.

To investigate how our program works, we apply this
attack to different combinations of cipher text and refer-
ence text. The results are presented in Table 13. We see

Table 11 Results of attacks on substitution ciphers using bi-gram, de-
pending on the position of cipher text used in the attack. Each run
uses 10,000 iterations, and 2,000 characters of cipher text, and returns
whichever key maximize the log score

Cipher text
starting position

Accuracy No. of
successful runs

Duration
(in seconds)

574,798 0.9492 0 0.3906

416,031 0.9488 90 0.3933

243,158 0.9840 97 0.3932

551,774 0.9452 0 0.3940

223,511 0.9596 94 0.3939



Stat Comput (2012) 22:397–413 405

from the table that our final attack algorithm performed
very well, often achieving perfect or near-perfect scores. The
only sub-par performances arose when using the Ice Hockey
Wikipedia page, which is much shorter than the three novels
(less than 8,000 words) and thus provides insufficient text
for our algorithm to perform well. (Furthermore it was writ-
ten in the modern era so it may have somewhat different
language usage as well.)

To further investigate the sub-par performance when us-
ing the Ice Hockey Wikipedia page, we consider some addi-
tional improvements. Firstly, we try increasing the number
of repetitions from 5 to 10. Secondly, we consider the pos-
sibility of first using a uni-gram attack, as a “starting point”
for the later bi-gram attacks, since such a uni-gram attack
is not sufficient on its own but is still a quick and easy way
to get closer to a true solution before beginning. (This in-
novation was also employed by Connor (2003), to find an
“intelligent” starting state before running the more compli-
cated algorithms; it is of only minor importance here but
will be much more important when attacked substitution-
transposition product ciphers in Sect. 5 below.) The results
are presented in Table 14.

We see from Table 14 that for this challenging case (with
Ice Hockey (Wikipedia Page) as reference text), it does in-

Table 12 Results of attacks on substitution ciphers by tri-gram, for
different numbers of iterations. Each run returns whichever key maxi-
mize the log score

Iterations Accuracy No. of
successful runs

Duration
(in seconds)

1,000 0.5336 1 0.9089

2,000 0.7652 46 1.6892

5,000 0.7896 75 4.0435

10,000 0.8920 87 7.9283

deed help to increase the number of repetitions from 5 to 10.
It also helps slightly to begin with a uni-gram attack. Thus,
to maximise the power and flexibility of our algorithm, we
use both of these improvements in our final version of the
algorithm.

3.8 Attack for substitution ciphers—final version

Based on the above investigations, our final algorithm to at-
tack substitution ciphers is:

• Run the uni-gram attack for substitution cipher on the
original cipher text.

• Randomly select 2,000 cipher text from available cipher
text.

• Run a bi-gram attack (with scaling parameter 1) for
10,000 iterations.

• Apply the decode function to the full cipher text, to cal-
culate the score function for the full text, remembering
which decode function gives the highest score function.

Table 14 Results of attacks on substitution ciphers with key length
20, using Oliver Twist as cipher text, and Ice Hockey (Wikipedia Page)
as reference text. Each run uses a certain number of bi-gram attack
repetitions of 10,000 iterations each, either with or without an initial
uni-gram attack. Each run uses 2,000 characters of cipher text, and
scaling parameter 1, and returns whichever key gives the highest score
function

Repetitions Uni-gram? Accuracy No. of
successful runs

1 N 0.8608 26

5 N 0.9750 74

10 N 0.9962 96

1 Y 0.9081 33

5 Y 0.9838 84

10 Y 0.9981 98

Table 13 Results of our
preliminary attack on
substitution ciphers with key
length 20, for different choices
of cipher text and reference text.
Each run uses 5 repetitions of
10,000 iterations each, with
2,000 characters of cipher text,
and scaling parameter 1, and
returns whichever key gives the
highest score function

Cipher text Reference text Accuracy No. of
successful runs

Oliver Twist War and Peace 1.0000 100

Pride and Prejudice War and Peace 1.0000 100

Ice Hockey (Wikipedia Page) War and Peace 1.0000 100

Pride and Prejudice Oliver Twist 1.0000 100

War and Peace Oliver Twist 0.9977 97

Ice Hockey (Wikipedia Page) Oliver Twist 0.9869 83

War and Peace Pride and Prejudice 0.9977 97

Ice Hockey Pride and Prejudice 0.9977 97

Oliver Twist Pride and Prejudice 0.9985 98

Pride and Prejudice Ice Hockey (Wikipedia Page) 1.0000 100

War and Peace Ice Hockey (Wikipedia Page) 0.9938 92

Oliver Twist Ice Hockey (Wikipedia Page) 0.9750 74



406 Stat Comput (2012) 22:397–413

Table 15 Results of our final
attack on substitution ciphers
with key length 20, for different
choices of cipher text and
reference text. Each run uses a
uni-gram attack followed by 10
repetitions of a bi-gram attack
of 10,000 iterations each and
scaling parameter 1, using 2,000
characters of cipher text, and
returns whichever key gives the
highest score function

Cipher text Reference text Accuracy No. of
successful runs

Oliver Twist War and Peace 1.0000 100

Pride and Prejudice War and Peace 1.0000 100

Ice Hockey (Wikipedia Page) War and Peace 1.0000 100

Pride and Prejudice Oliver Twist 1.0000 100

War and Peace Oliver Twist 1.0000 100

Ice Hockey (Wikipedia Page) Oliver Twist 0.9977 97

War and Peace Pride and Prejudice 1.0000 100

Ice Hockey Pride and Prejudice 1.0000 100

Oliver Twist Pride and Prejudice 1.0000 100

Pride and Prejudice Ice Hockey (Wikipedia Page) 1.0000 100

War and Peace Ice Hockey (Wikipedia Page) 0.9992 99

Oliver Twist Ice Hockey (Wikipedia Page) 0.9981 98

• Repeat the above procedure 10 times.
• The final key is the key which gives the highest score

function.

We ran this final algorithm on all the same cipher/reference
pairs as in the previous section. Our results were very suc-
cessful, and are presented in Table 15.

4 Attacks on transposition ciphers

We now turn our attention to Transposition Ciphers. Since
Transposition Ciphers only move letters around, there is no
change to the frequencies of single letters, so we certainly
can’t use a uni-gram attack to break it. Instead, we concen-
trate on bi-gram attacks (i.e., again using the frequencies of
pairs of letters).

The state space depends on the key length of the trans-
position cipher. For key length k, there are k! possible de-
cryption keys, corresponding to all possible permutations of
0,1,2, . . . , k−1. We again choose the initial decryption key
to be the identity permutation, so the decrypted text using
this key is identical to the cipher text.

The score function is thus again the same as in (2), and
the algorithm and acceptance rate are still the same as in
Sect. 2. The only potential difference from the bi-gram at-
tack for the substitution cipher concerns the proposal distri-
bution, as we now discuss.

4.1 Swap moves versus slide moves

For the proposal, first we tried the same swap moves as
in our substitution cipher attacks. But we found the swap
moves are not very efficient in some cases. For exam-
ple, suppose k = 7 and a typical block of plain text is

“PROJECT”, and the current decryption key gives a de-
crypted text “ROJECTP”. Then this is very close to the cor-
rect answer, but we need at least 6 swap moves find the cor-
rect decryption key from here.

Instead of proposing individual swaps, we can instead
propose a “slide move” of randomly taking out one de-
cryption position and inserting it back to a random loca-
tion among the remaining decryption positions. For exam-
ple, suppose the key length k = 8, and decryption position
3 is taken out and inserted back in position 6. Then the de-
cryption key “01234567” will become “01245637” by this
slide move.

Sliding moves of a single decryption position work
pretty well for small key lengths. But as the key length
gets larger, these moves become less efficient. For exam-
ple, suppose k = 12 and a typical block of plain text is
“THE PROJECT ” (where “ ” indicates a space), but the
current decryption key generates corresponding decrypted
text “ PROJECT THE”. To get the correct key using sin-
gle letter slide moves, we need at least 3 moves (move each
character in “THE ” to the left of “ PROJECT”). But each
such move may lower the score function since we are break-
ing the word “THE”, so it will more likely be rejected by the
algorithm, making this a difficult feat for our algorithm to
perform. This can be solved by using slide move involving
entire blocks of decryption positions. That is, we select a
random contiguous sequence of decryption positions, which
we remove and insert back somewhere within the remain-
ing decryption positions. Thus, for the “ PROJECT THE”
example, the word “THE” can be moved to the left of
“ PROJECT” by just one move.

Formally speaking, for a key length k, the new proposal
is to slide move a block of n decryption positions from
position k1 to k2, where n ∼ Uniform{0, . . . , k − 2}, k1 ∼
Uniform{0, . . . , k − n + 1}, and k2 ∼ Uniform{0, . . . , k −
n + 1}. For example, with key length k = 8, we might



Stat Comput (2012) 22:397–413 407

Table 16 Comparison of results for attacks on transposition ciphers of
key length 10 when the proposals are swap moves, single-letter slide
moves, and block-letter slide moves. Each run uses 1,000 iterations and
1,000 characters of cipher text, with scaling parameter 1

Move Accuracy No. of
successful runs

Swap move 0.6550 17

Single letter slide move 0.9525 83

Block letter slide move 0.9587 90

Table 17 Comparison of results for attacks on transposition ciphers of
key length 20 when the proposals are swap moves, single-letter slide
moves, and block-letter slide moves. Each run uses 5,000 iterations and
1,000 characters of cipher text, with scaling parameter 1

Move Accuracy No. of
successful runs

Swap move 0.4383 0

Single letter slide move 0.6333 0

Block letter slide move 0.8961 59

choose n = 2, k1 = 3, k2 = 6, corresponding to a proposal
to move 2 letters from position 3 to position 6, i.e. to change
“01234567” to “01256347” (since “34” is moved to after
“6”).

Tables 16 and 17 each compare algorithms using swap
moves, single letter slide moves, and block slide moves.
With key length k = 10 and 1,000 iterations as in Table 16,
we see some improvement of the accuracy and success rate
by switching from swap move to slide move algorithm: the
addition of block letter slide move increases the accuracy
of from 66% to 96%, and the complete successes from 17
to 90 out of 100 runs. With key length k = 20 and 5,000
iterations as in Table 17, the benefit of using slide moves
is also apparent: swap moves and single letter slide moves
can’t achieve a single successful run, but block letter slide
moves still perform fairly well with an accuracy of 90% and
complete success in 59 out of 100 runs.

4.2 The scaling parameter and the best score function

We again experimented with different choices of the scal-
ing (inverse temperature) parameter. We found that small
choices of this parameter lead to poor performance, while
values equal to or greater than 1 lead to approximately
equally good performance (and acceptance rates around
0.44), see Table 18. We again choose our final scaling pa-
rameter to be 1 since that gives the highest accuracy and
produces the highest percentage of successful runs.

Recall that with substitution ciphers, we improved our
attack algorithm by remembering whichever key gave the
highest score function. For transposition ciphers, this turns

Table 18 Results of attacks on transposition ciphers with key length
20, for different choices of the scaling parameter. Each run uses 10,000
iterations, and 1,000 characters of cipher text

Power Acceptance rate Accuracy No. of
successful runs

0.01 0.975 0.013 0

0.1 0.690 0.084 0

1 0.439 0.9694 87

10 0.436 0.9650 85

20 0.436 0.9644 85

50 0.432 0.9572 83

100 0.425 0.9583 83

1,000 0.431 0.9489 81

100,000 0.440 0.9489 81

out to be less important, since (with scaling parameter 1) it
is very rare for the chain to ever jump from higher to lower
score functions. Indeed, in each of our runs above, the last
key was also the key which gives the highest score. How-
ever, we still choose to remember the highest score, since
this doesn’t cost much overhead and it guarantees that we
will always return the key which gave the best result.

With this modification, since the original chain is still ir-
reducible and aperiodic, we have a precise analog of Theo-
rem 3:

Theorem 3 If Bn := max(π(X1),π(X2), . . . , π(Xn)) is the
best score function from the first n iterations of the above
algorithm, and M = maxx∈X π(x), then

lim
n→∞Bn = M with probability 1.

4.3 Amount of cipher text needed

We next investigated the extent to which the accuracy and
success rate of the algorithm are affected by the length of the
cipher text used to compute the score function. This ques-
tion is more relevant here than for substitution ciphers, since
now the speedup from using less cipher text is much more
significant.

We found (Table 19) that we certainly need at least 500
characters of cipher text to break a transposition cipher with
key length 20 in 10,000 iterations. More precisely, it appears
that the 2,000 characters of cipher text is the best choice,
since that leads to very high accuracy (over 99%) and suc-
cessful runs (95%), and using more cipher text requires sig-
nificantly more time to process but leads to very marginal
benefits.

We also found that using a different section of cipher text
of the same length leads to very similar results (Table 20),
showing a certain stability of this approach.



408 Stat Comput (2012) 22:397–413

Table 19 Results of attacks on transposition ciphers with key length
20, when using different numbers of characters of cipher text. Each run
uses 10,000 iterations, with scaling parameter 1

Cipher text length Accuracy No. of
successful runs

Duration
(in seconds)

100 0.0789 0 0.4640

200 0.2844 0 0.5093

500 0.9250 72 0.6526

1,000 0.9694 87 0.8856

2,000 0.9933 95 1.3500

5,000 0.9917 96 2.7557

10,000 0.9861 92 5.079

Table 20 Results of attacks on transposition ciphers with key length
20, when using 2,000 characters of cipher text starting from different
positions in the text. Each run uses 10,000 iterations, with scaling pa-
rameter 1

Cipher text
starting position

Accuracy No. of
successful runs

830,080 0.9917 97

254,640 0.9933 96

568,780 0.9906 96

634,220 0.9972 98

366,660 0.9928 96

Table 21 Amount of cipher text required to achieve at least 95% ac-
curacy with 10,000 iterations, for various key lengths

Key length Cipher text
length

Accuracy No. of
successful runs

Duration
(in seconds)

5 20 1.0000 100 0.4076

10 500 0.9700 96 0.6332

20 1,000 0.9694 87 0.8856

30 5,000 0.8971 27 2.7245

30 10,000 0.9025 30 5.0573

For a different perspective, we also considered the
amount of cipher text required to achieve at least 95% ac-
curacy for a fixed number (10,000) of iterations, but with
different key lengths (Table 21).

We see from this table that if the key length is only 5, then
we only need 20 characters of cipher text to break it! On the
other hand, for key length as large as 30, simply including
more cipher text does not help, and in fact more iterations
would be required to achieve success.

4.4 Number of iterations

With the above optimal block slide move proposal, and scal-
ing parameter 1, and cipher text size 2,000 for transposition

Table 22 Results of attacks on transposition ciphers with key length
20, when using 2,000 characters of cipher text and scaling parameter
1, for different numbers of iterations

No. of iterations Accuracy No. of
successful runs

1,000 0.6878 3

2,000 0.7944 17

5,000 0.9544 73

10,000 0.9911 95

20,000 1.0000 100

50,000 1.0000 100

Table 23 Results of attacks on transposition ciphers with different key
lengths, when using 2,000 characters of cipher text and scaling param-
eter 1, when using different numbers of iterations

Key length No. of
iterations

Accuracy No. of
successful runs

Duration
(in seconds)

10 2,000 0.9962 97 0.3424

20 10,000 0.9911 95 1.3736

30 50,000 0.9957 98 6.4034

40 50,000 0.9613 70 6.3969

50 100,000 0.9648 68 12.8497

key length 20, we next investigate the extent to which we can
increase the accuracy by running more iterations. Table 22
shows that the accuracy and success rate increase steadily as
we use longer runs up to about 20,000 iterations, after which
there is little further gain. So, we choose 20,000 iterations as
our optimal run length.

More generally, for different transposition key lengths,
we tried increasing the number of iterations to get a reason-
able accuracy rate. Our results are presented in Table 23.

On the other hand, increasing the number of iterations
alone is not sufficient to overcome all difficulties. We illus-
trate this more precisely using just 1,000 characters of cipher
text. In this case, we already know that the accuracy will not
be great. However, it is also true that this accuracy will not
increase very quickly as we run more iterations (Table 24).

For a different perspective, we next consider how many
iterations are needed to achieve at least 95% accuracy for
different cipher text lengths (Table 25).

4.5 Independent repetitions

As with substitution ciphers, we may wish to use several
independent repeated runs of our attack, and return as our
final answer whichever of the results has the largest score
function (from (2) computed using the entire cipher text).

To consider the extent to which multiple independent rep-
etitions might help with this problem, we compare a sin-
gle long run of 50,000 iterations, with 5 repetitions of a run



Stat Comput (2012) 22:397–413 409

Table 24 Results of attacks on transposition ciphers with key length
20, when using just 1,000 characters of cipher text for different num-
bers of iterations (still with scaling parameter 1), indicating poor per-
formance even after many iterations

No. of iterations Accuracy No. of
successful runs

1,000 0.6333 1

2,000 0.7583 12

5,000 0.8961 59

10,000 0.9694 87

20,000 0.9872 95

50,000 0.9856 93

Table 25 Number of iterations required to achieve at least 95% accu-
racy, for various cipher text lengths

Cipher text
length

Iterations Accuracy No. of
successful runs

100 200,000 0.2722 0

200 100,000 0.9450 83

500 17,000 0.9559 88

1,000 10,000 0.9694 87

2,000 6,000 0.9411 71

5,000 7,000 0.9567 78

10,000 7,000 0.9533 76

Table 26 Results of attacks on transposition ciphers with key length
20, when using just 1,000 characters of cipher text (still with scaling
parameter 1), when dividing up the 50,000 total iterations into multiple
independent repetitions

No. of repetitions ×
no. of iterations

Accuracy No. of
successful runs

20 × 2,500 0.9972 98

10 × 5,000 1.0000 100

5 × 10,000 1.0000 100

2 × 25,000 1.0000 100

1 × 50,000 0.9856 93

of 10,000 which returns the decryption key which gives the
highest score. Our results are presented in Table 26. We see
that multiple shorter runs are consistently better than one
very long run, increasing the percentage of successful runs
from 93% to 100%. This makes sense since we have already
seen that the success rate with 1,000 characters of cipher
text for 1 run of 10,000 iterations is about 87%. So, if we
use 5 independent such runs, then the probability not getting
a correct answer is only (1 − 0.87)5 = 0.0037% which is
very low.

4.6 Attack for transposition ciphers—final version

Based on the above investigations, we propose the follow-
ing as our final algorithm for the attack of the transposition
cipher (when the key length equals 20).

• Randomly select 2,000 cipher text from the available ci-
pher text.

• Attack the selected cipher text with the bi-gram score
function, using block slide proposal moves and parame-
ter value 1, for 10,000 iterations.

• Apply the decryption key to the full cipher text and cal-
culate the log score for full decrypted text.

• Repeat the above procedure 5 times; the final result
is whichever iteration from whichever repetition which
gives the highest score.

To investigate how our program works, we apply the
method to different cipher text and reference text. The re-
sults are presented in Table 27, which shows that the results
are very good, leading to perfect runs in every case.

4.7 Unknown transposition key lengths

The above transposition cipher attacks all assumed that the
key length k was known in advance. In a real decryption
situation this might not be the case. So, we now consider
using MCMC for decryption of transposition ciphers when
the key length itself is unknown.

To attack such ciphers, we use the obvious extension of
our previous algorithm. That is, for each possible key length
k, we run the entire above algorithm to obtain the best score
function for that k, say Sk . We then regard as the “true” key
length k∗ whichever value of k leads to the best score func-
tion, i.e. k∗ = argmaxkSk , and declare the “true” decryption
solution to be the optimal solution for that key length k∗.

More formally, if the keylength k is known to be between
kmin and kmax, then our algorithm is as follows:

• For k = kmin, kmin + 1, kmin + 2, . . . , kmax:
– Randomly select 2,000 cipher text from the available

cipher text.
– Repeat the following procedure 5 times, and let the pre-

liminary result Sk be the highest score function out of
all iterations in all 5 repetitions:
∗ Attack the selected cipher text with the bi-gram

score function, using block slide proposal moves and
parameter value 1, for the appropriate number of it-
erations (2,000 if k ≤ 10; 10,000 if 11 ≤ k ≤ 20;
50,000 if k > 20).

∗ Apply the decryption key to the full cipher text and
calculate the log score for full decrypted text.

• Let k∗ = argmaxk Sk .
• The final result is the solution which gives the score Sk∗ .



410 Stat Comput (2012) 22:397–413

Table 27 Results of our final
attack on transposition ciphers,
with key length 20, when using
2,000 characters of cipher text
and scaling parameter 1, with 5
repetitions of 10,000 iterations
each. A perfect result is
obtained in every case

Cipher text Reference text Accuracy No. of
successful runs

Oliver Twist War and Peace 1.0000 100

Pride and Prejudice War and Peace 1.0000 100

Ice Hockey (Wikipedia Page) War and Peace 1.0000 100

Pride and Prejudice Oliver Twist 1.0000 100

War and Peace Oliver Twist 1.0000 100

Ice Hockey (Wikipedia Page) Oliver Twist 1.0000 100

War and Peace Pride and Prejudice 1.0000 100

Ice Hockey (Wikipedia Page) Pride and Prejudice 1.0000 100

Oliver Twist Pride and Prejudice 1.0000 100

Pride and Prejudice Ice Hockey (Wikipedia Page) 1.0000 100

War and Peace Ice Hockey (Wikipedia Page) 1.0000 100

Oliver Twist Ice Hockey (Wikipedia Page) 1.0000 100

We tested this algorithm on text which was encrypted us-
ing an unknown key length k which was generated (inde-
pendently for each test run) from the uniform distribution
on (kmin, kmin + 1, kmin + 2, . . . , kmax), for appropriate fixed
choices of kmin and kmax.

We first ran this 100 times with kmin = 5 and kmax = 20,
corresponding to key lengths randomly selected between 5
and 20. We found that the algorithm successfully broke the
cipher every single time, i.e. in all 100 runs.

We then ran this 100 times with kmin = 20 and kmax = 30,
corresponding to key lengths randomly selected between 20
and 30. Once again, we found that the algorithm success-
fully broke the cipher every single time, i.e. in all 100 runs.

We conclude from this that an unknown key length k

requires additional computation, to consider separately all
possible key lengths, it does not make the decryption fun-
damentally more difficult, and our algorithm is able to cor-
rectly identify k in every case. Thus, in the next section we
return to considering fixed key lengths only.

5 Attacks on substitution-transposition ciphers

Substitution-Transposition ciphers have 2 different keys.
First the letters are switched using a substitution cipher.
Then, the characters are moved around using a transposi-
tion cipher. The length of the substitution key is 26 as usual.
We consider different lengths of the transposition key, k, as
in the previous section. To break Substitution-Transposition
ciphers, we shall reuse and combine the MCMC attack algo-
rithms previously developed for the substitution cipher and
the transposition cipher. In particular, we shall again attempt
to maximize the same score function (2).

Table 28 Results of our first attack on substitution-transposition ci-
phers with transposition key length 10, using 2,000 characters of cipher
text, with a bi-gram substitution cipher attack followed by a bi-gram
transposition cipher attack

No. of iterations (substitu-
tion/transposition)

Accuracy No. of
successful runs

10,000/2,000 0.0600 3

10,000/5,000 0.0587 3

10,000/10,000 0.0338 2

5.1 First attempt

For illustrative purposes, we first try to break a substitution-
transposition cipher with transposition key length 10.

As our initial algorithm, we simply combine our two pre-
vious algorithms directly, by first running a bi-gram attack
as for a substitution cipher, and then running a bi-gram at-
tack as for a transposition cipher. We use the optimal values
of parameters from our previous attacks: specifically, we use
2,000 cipher text characters, with scaling parameter 1, and
run 10,000 iterations of the bi-gram attack on a substitution
cipher, followed by 2,000 iterations of the bi-gram attack on
a transposition cipher.

The results are presented in Table 28. We see that we are
not able to get good results, even by increasing the number
of iterations. And, switching the sequence of the two attacks
also does not help.

Of course, it is not surprising that these results are poor.
The basic problem is that our first attack is attempting to
break a substitution cipher, but it is working with text which
also had an unknown transposition applied. Thus, there is no
particular reason that the pair frequencies of the transposed
text should in any way match those of the reference text.
So, the first attack is doomed from the start. And, of course,



Stat Comput (2012) 22:397–413 411

Table 29 Results of attacks on substitution-transposition ciphers with
transposition key length 10, for various numbers of cycles. Each cycle
uses 2,000 characters of cipher text, and consists of a 10,000-iteration
bi-gram substitution cipher attack followed by a 2,000-iteration
bi-gram transposition cipher attack

Cycles Accuracy No. of
successful runs

Duration
(in seconds)

1 0.0600 3 0.7446

2 0.3713 35 1.4919

3 0.5462 52 2.5222

5 0.5250 52 3.6850

10 0.6300 62 7.4400

if the first attack fails completely, then the second attack is
similarly handicapped.

5.2 Multiple cycles

We have previously seen that with MCMC cipher attacks,
sometimes several shorter runs are better than one longer
run. Inspired by this, we let our algorithm run for several
cycles (Table 29). Each cycle consists of a bi-gram attack on
substitution cipher, followed by a bi-gram attack on transpo-
sition cipher. We use the result of one cycle as the starting
point for next one. Table 29 shows that our results do im-
prove upon increasing the number of cycles. However, the
improvement does not continue much beyond 3 cycles: we
get just 63% accuracy on average and 62 success out of 100
runs even after 10 cycles.

It seems that, even with multiple cycles, the problem re-
mains that if the substitution attack fails massively, then the
transposition attack has little chance of success, and vice-
versa. This is a sort of “chicken and the egg” problem: if
one of the attacks were successful, or even nearly success-
ful, then the other attack would perform well and the prob-
lem would quickly be solved. The question remains, how
can we get initial near-success? We consider that next.

5.3 Using a uni-gram attack for initialization

Recall that the standard uni-gram attack on substitution ci-
phers is quick and simple, but it is not terribly accurate, i.e.
it tends to only partially reveal the original text. We can
make use of this in the attack for breaking the substitution-
transposition cipher. Even though the uni-gram attack does
not reveal all the letters, it can quickly provide a very good
starting point.

We saw earlier that for simple substitution ciphers, be-
ginning with a uni-gram attack was helpful, but only a little
bit so. However, since substitution-transposition ciphers are
so much more challenging, the additional benefit of starting
with a uni-gram attack could be much more significant.

Table 30 Results of attacks on substitution-transposition ciphers with
transposition key length 10, after initializing with a uni-gram attack,
for various numbers of cycles. Each cycle uses 2,000 characters of ci-
pher text, and consists of a 10,000-iteration bi-gram substitution cipher
attack followed by a 2,000-iteration bi-gram transposition cipher attack

Cycles Accuracy No. of
successful runs

Duration
(in seconds)

1 0.7937 68 0.8369

2 1.0000 100 1.5800

Table 31 Results of attacks on substitution-transposition ciphers with
transposition key length 20, after initializing with a uni-gram attack,
for various numbers of cycles. Each cycle uses 2,000 characters of ci-
pher text, and consists of a 10,000-iteration bi-gram substitution cipher
attack followed by a 10,000-iteration bi-gram transposition cipher at-
tack

Cycles Accuracy No. of
successful runs

Duration
(in seconds)

1 0.2394 0 1.8440

2 0.9133 82 3.6105

3 0.9906 98 5.3200

Inspired by this, we modify our algorithm to first run the
uni-gram attack for substitution ciphers, and then run mul-
tiple cycles of bi-gram attacks. The results are presented in
Table 30 (for transposition key length 10, up to 2 cycles) and
Table 31 (for transposition key length 20, up to 3 cycles),
and indicate very high success rates in both cases.

5.4 Remembering the best score function

In each of the above cases, we again used the modification
of always remembering the best score function so far. With
this modification, since these chains are again irreducible
and aperiodic, we again have the exact analog of Theorems 3
and 4:

Theorem 4 If Bn := max(π(X1),π(X2), . . . , π(Xn)) is the
best score function from the first n iterations of the above
algorithm, and M = maxx∈X π(x), then

lim
n→∞Bn = M with probability 1.

5.5 Attack for substitution-transposition ciphers—final
version

Putting the above together, we propose the following MCMC
algorithm to attack the substitution-transposition cipher.

• Randomly select 2,000 cipher text from the available ci-
pher text.

• Run the uni-gram attack for substitution cipher on the
original cipher text.



412 Stat Comput (2012) 22:397–413

Table 32 Results of our final
attacks on
substitution-transposition
ciphers with transposition key
length 20, after initializing with
a uni-gram attack, for various
texts. Each cycle uses 2,000
characters of cipher text, and
consists of a 10,000-iteration
bi-gram substitution cipher
attack followed by a
10,000-iteration bi-gram
transposition cipher attack

Cipher text Reference text Accuracy No. of
successful runs

Oliver Twist War and Peace 0.8894 86

Pride and Prejudice War and Peace 0.8433 80

Ice Hockey (Wikipedia Page) War and Peace 0.6811 58

Pride and Prejudice Oliver Twist 0.9100 89

War and Peace Oliver Twist 0.8367 78

Ice Hockey (Wikipedia Page) Oliver Twist 0.7211 62

War and Peace Pride and Prejudice 0.8189 74

Ice Hockey (Wikipedia Page) Pride and Prejudice 0.6811 56

Oliver Twist Pride and Prejudice 0.8244 81

Pride and Prejudice Ice Hockey (Wikipedia Page) 0.7961 74

War and Peace Ice Hockey (Wikipedia Page) 0.6761 64

Oliver Twist Ice Hockey (Wikipedia Page) 0.7778 71

Table 33 Results of our final attacks on substitution-transposition
ciphers with various transposition key lengths, for Oliver Twist, using
War and Peace as the reference text. Each attack first initializes with a
uni-gram attack, and then repeats the specified number of cycles. Each

cycle uses 2,000 characters of cipher text, and consists of a bi-gram
substitution cipher attack followed by a bi-gram transposition cipher
attack, each of the number of iterations specified

Transposition key
length

No. of iterations
(subst./trans.)

Cycles Accuracy No. of
successful runs

Duration

10 10,000/2,000 3 1.0000 100 3.93

20 10,000/10,000 3 0.8894 86 5.32

30 10,000/50,000 5 0.8618 85 34.08

40 10,000/100,000 5 0.7645 73 65.51

• Then, for several cycles (3, for key length 20):
– Run the bi-gram attack for transposition cipher on the

resulting text, for an appropriate number of iterations
(10,000, for key length 20).

– Run the bi-gram attack for substitution cipher on the
resulting text, for an appropriate number of iterations
(10,000, for key length 20).

• The final result is whichever iteration from whichever rep-
etition which gives the highest score.

We ran this final algorithm on randomly-generated sub-
stitution-transposition ciphers with transposition key length
20, with different combinations of cipher text and reference.
The overall results are presented in Table 32. Once again,
we find that runs using the short and modern text Ice Hockey
(Wikipedia Page) are worse than using other text. However,
for experiments using the classic novels, the accuracy is al-
ways above 80% and the number of successful runs is al-
ways above 70, indicating quite good performance for this
challenging problem.

Further experimentation using the classic novels indi-
cates that with enough iterations and cycles, the accuracy
and success rates remain quite high even with transposition
keys up to size 40 (Table 33).

Overall this indicates quite good performance, even
for the difficult substitution-transposition cipher, achiev-
ing accuracies and success rates above 70% even with key
length 40.

6 Summary

In this paper, we successfully applied MCMC algorithms to
break substitution ciphers, transposition ciphers, and even
substitution-transposition ciphers. The attacks are based on
the frequency analysis of the cipher text together with a ref-
erence text, and primarily consist of bi-gram attacks.

We have experimented significantly with such issues as
number of MCMC iterations, scaling (inverse temperature)
parameter, amount of cipher text to use, number of inde-
pendent repetitions, swap moves versus slide moves ver-
sus block-slide moves, etc., in an attempt to optimize our
choices. For substitution-transposition ciphers, we required
additional innovations such as repeatedly cycling between
substitution-type and transposition-type attacks, and using a
simple uni-gram substitution attack as an initialization point.

Overall, our simulations indicate good success of our
algorithms. In particular, we are able to break the simple



Stat Comput (2012) 22:397–413 413

substitution-transposition cipher with accuracy and success
rates above 70%, even with transposition key length up
to 40. This indicates the potential for MCMC algorithms to
provide significant help in deciphering challenging encryp-
tions.

Acknowledgements We are very grateful to the editors and referees
for insightful comments which significantly improved the manuscript.

References

Connor, S.: Simulation and solving substitution codes. Master’s thesis,
Department of Statistics, University of Warwick (2003)

Diaconis, P.: Group Representations in Probability and Statistics. IMS
Lecture Series, vol. 11. Institute of Mathematical Statistics, Hay-
ward (1988)

Diaconis, P.: The Markov chain Monte Carlo revolution. Bull. Am.
Math. Soc., Nov. (2008)

Dimovski, A., Gligoroski, D.: Attacks on the transposition ciphers us-
ing optimization heuristics. In: Proceedings of the XXXVIII In-
ternational Scientific Conference on Information, Communication
& Energy Systems & Technologies. Heron Press, Birmingham
(2003)

Garg, P.: Cryptanalysis of SDES via. evolutionary computation tech-
niques. IJCSIS 1(1) (2009)

Gilks, W.R., Richardson, S., Spiegelhalter, D.J. (eds.): Markov Chain
Monte Carlo in Practice. Chapman and Hall, London (1996)

Ice Hockey (Wikipedia Page): http://en.wikipedia.org/wiki/Ice_hockey
Matthews, R.A.J.: The use of genetic algorithms in cryptanalysis.

Cryptologia 17(2), 187–201 (1993)
Menezes, A., van Oorschot, P., Vanstone, S. (eds.): Handbook of Ap-

plied Cryptography. CRC Press, Boca Raton (1996)
Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller,

E.: Equations of state calculations by fast computing machines.
J. Chem. Phys. 21, 1087–1091 (1953)

Ooi, K.S., Vito, B.C.: Cryptanalysis of S-DES. Available. at
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.79.6617
(2002)

Project Gutenberg: http://www.gutenberg.org/
Roberts, G.O., Rosenthal, J.S.: General state space Markov chains and

MCMC algorithms. Probab. Surv. 1, 20–71 (2004)
Rosenthal, J.S.: Quantitative convergence rates of Markov chains:

a simple account. Electron. Commun. Probab. 7(13), 123–128
(2002)

Rosenthal, J.S.: A First Look at Rigorous Probability Theory, 2nd edn.
World Scientific, Singapore (2006)

Schneier, B.: Applied Cryptography, 2nd edn. Wiley, New York (1996)
Shannon, C.E.: Communication theory of secrecy systems. Bell Syst.

Tech. J. 28(4), 656–715 (1949)
Stinson, D.R.: Cryptography: Theory and Practice, 3rd edn. Chapman

& Hall/CRC Press, Boca Raton (2005)
Tierney, L.: Markov chains for exploring posterior distributions (with

discussion). Ann. Stat. 22, 1701–1762 (1994)

http://en.wikipedia.org/wiki/Ice_hockey
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.79.6617
http://www.gutenberg.org/

	Decrypting classical cipher text using Markov chain Monte Carlo
	Abstract
	Introduction
	Background on cryptography
	Background on MCMC

	Using MCMC to break classical ciphers
	Previous related work
	Testing methodology

	Attacks on substitution ciphers
	Number of iterations
	Tuning the scaling parameter
	Remembering the best score function
	How much cipher text is needed
	Independent repetitions
	Tri-gram attack
	Attack for substitution ciphers-preliminary version
	Attack for substitution ciphers-final version

	Attacks on transposition ciphers
	Swap moves versus slide moves
	The scaling parameter and the best score function
	Amount of cipher text needed
	Number of iterations
	Independent repetitions
	Attack for transposition ciphers-final version
	Unknown transposition key lengths

	Attacks on substitution-transposition ciphers
	First attempt
	Multiple cycles
	Using a uni-gram attack for initialization
	Remembering the best score function
	Attack for substitution-transposition ciphers-final version

	Summary
	Acknowledgements
	References


