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Abstract

Let (Xn) be a Markov chain on measurable space (E, E) with unique stationary distribution
π. Let h : E → R be a measurable function with finite stationary mean π(h) :=

∫
E
h(x)π(dx).

Ibragimov and Linnik (1971) proved that if (Xn) is geometrically ergodic, then a central limit
theorem (CLT) holds for h whenever π(|h|2+δ) < ∞, δ > 0. Cogburn (1972) proved that if a
Markov chain is uniformly ergodic, with π(h2) < ∞ then a CLT holds for h. The first result
was re-proved in Roberts and Rosenthal (2004) using a regeneration approach; thus removing
many of the technicalities of the original proof. This raised an open problem: to provide a proof
of the second result using a regeneration approach. In this paper we provide a solution to this
problem.
Keywords : Markov chains; Central limit theorems

1 Introduction

Let (Xn) be a Markov chain with transition kernel P : E × E → [0, 1] and a unique stationary
distribution π. Let h : E → R be a real-valued measurable function. We say that h satisfies
a Central Limit Theorem (or

√
n−CLT) if there is some σ2 < ∞ such that the normalized sum

n−
1
2
∑n
i=1[h(Xi)− π(h)] converges weakly to a N(0, σ

2) distribution, where N(0, σ2) is a Gaussian
distribution with zero mean and variance σ2 (we allow that σ2 = 0), and (e.g. Chan and Geyer
(1994), see also Bradley (1985) and Chen (1999))

σ2 = π(h2) + 2

∫

E

∞∑

n=1

h(x)Pn(h)(x)π(dx)

with Pn(h)(x) =
∫
E h(y)P

n(x, dy) and Pn(x, dy) the n−step transition law for the Markov chain.
To further our discussion we provide the following definitions. Denote the class of probability

measures on (E, E) as P(E). The total variation distance between μ, ν ∈ P(E) is:

‖μ− ν‖ := sup
A∈E
|μ(A)− ν(A)|.

We will be concerned with geometrically and uniformly ergodic Markov chains:
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Definition 1.1. A Markov chain with stationary distribution π ∈ P(E) is geometrically ergodic if
∀n ∈ N:

‖Pn(x, ∙)− π(∙)‖ 6 M(x)ρn

where ρ < 1 and M(x) <∞ π−almost everywhere. If M = supx∈E |M(x)| is finite then the chain
is uniformly ergodic.

Theorem 1.2 (Cogburn, 1972). If a Markov chain with stationary distribution π ∈ P(E) is
uniformly ergodic, then a

√
n−CLT holds for h whenever π(h2) <∞.

Ibragimov and Linnik (1971) proved a CLT for h when the chain is geometrically ergodic and,
for some δ > 0, π(|h|2+δ) < ∞. Roberts and Rosenthal (2004) provided a simpler proof using
regeneration arguments. In addition, Roberts and Rosenthal (2004) left an open problem: To
provide a proof of Theorem 1.2 (originally proved by Cogburn (1972)) using regeneration.

Many of the recent developments of CLTs for Markov chains are related to the evolution of
stochastic simulation algorithms such as Markov chain Monte Carlo (MCMC) (e.g. Robert and
Rosenthal (2004)). For example, Roberts and Rosenthal (2004) posed many open problems, includ-
ing that considered here, for CLTs; see Häggström (2005) for a solution to another open problem.
Additionally, Jones (2004) discusses the link between mixing processes and CLTs, with MCMC
algorithms a particular consideration. For an up-to-date review of CLTs for Markov chains see:
Bradley (1985), Chen (1999) and Jones (2004).

The proof of Theorem 1.2, using regeneration theory, provides an elegant framework for the
proof of CLTs for Markov chains. The approach may also be useful for alternative proofs of CLTs
for chains with different ergodicity properties; e.g. polynomial ergodicity (see Jarner and Roberts
(2002)).

The structure of this paper is as follows. In Section 2 we provide some background knowledge
about the small sets and the regeneration construction, we also detail some technical results. In
Section 3 we use the results of the previous Section to provide a proof of Theorem 1.2 using
regenerations.

2 Small Sets and Regeneration Construction

2.1 Small Sets

We recall the notion of a small set:

Definition 2.1. A set C ∈ E is small (or (n0, ε, ν)-small) if there exists an n0 ∈ N, ε > 0 and a
non-trivial ν ∈ P(E) such that the following minorization condition holds ∀x ∈ C:

Pn0(x, ∙) > εν(∙). (1)

It is known (e.g. Meyn and Tweedie (1993)) that if P is uniformly ergodic, the whole state
space E is small. That is we have the following lemma:

Lemma 2.1. If (Xn) on (E, E) with stationary distribution π ∈ P(E) is uniformly ergodic, then
E is small.
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2.2 Regeneration Construction and Some related Technical Results

Now we consider the regeneration construction for the proof. Since E is small we use the split
chain construction (Nummelin, 1984), for any x ∈ E, A ∈ E

Pn0(x,A) = (1− ε)R(x,A) + εν(A)

where R(x,A) = (1− ε)−1[Pn0(x,A)− εν(A)]. That is, for a single chain (Xn), with probability ε
we choose Xn+n0 ∼ ν, while with probability 1 − ε we choose Xn+n0 ∼ R(Xn, ∙), if n0 > 1, we fill
in the missing values as Xn+1 using the appropriate Markov kernel and conditionals.

We let T1, T2, . . . be the regeneration times, i.e. the times such that XTi ∼ ν, clearly Ti = in0.
Let T0 = 0 and r(n) = sup{i > 0 : Ti 6 n}, using the regeneration time, we can break up the sum∑n
i=0[h(Xi)− π(h)] into sums over tours as follows:

n∑

i=0

[h(Xi)− π(h)] =
r(n)∑

j=1

Tj+1−1∑

i=Tj

[h(Xi)− π(h)] +Q(n)

where

Q(n) =

T1−1∑

j=0

[h(Xj)− π(h)] +
n∑

Tr(n)+1

[h(Xj)− π(h)].

We begin our construction, by noting the following result.

Lemma 2.1. Under the formulation above, we have that:

Q(n)

n1/2
−→p 0. (2)

Proof. Let

Q+1 (n) =

T1−1∑

j=0

[h(Xj)− π(h)]
+

Q−1 (n) =

T1−1∑

j=0

[h(Xj)− π(h)]
−

and

Q+2 (n) =
n∑

Tr(n)+1

[h(Xj)− π(h)]
+

Q−2 (n) =
n∑

Tr(n)+1

[h(Xj)− π(h)]
−

where [h(Xj)− π(h)]+ = max{h(Xj)− π(h), 0} and [h(Xj)− π(h)]− = max{−[h(Xj)− π(h)], 0}.
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The strategy of the proof is to show that Q±i (n)/n
1/2 →p 0 as n→∞. Consider Q

+
1 (n),

Q+1 (n) =

sn0−1∑

j=0

[h(Xj)− π(h)]
+ w.p ε(1− ε)(s−1) (3)

where s ∈ N. If Q+1 (n)/n
1/2 →p 0, i.e. P(∃ε,Q

+
1 (n) > εn

1/2, i.o.) = 1 for all n, which means that
P(Q+1 (n) = ∞, i.o.) = 1, which is impossible from (3). So Q

+
i (n)/n

1/2 →p 0 as n → ∞. Similarly
Q−i (n)/n

1/2 →p 0 as n→∞.
For Q2 we have Q

+
2 (n) 6

∑ln
j=rn+1

[h(Xj)− π(h)]+ = Q̃
+
2 (n), where l(n) = inf {i > 0 : Ti > n}.

We know that Q̃+2 (n) has the same distribution with Q
+
2 (n), so Q̃

+
i (n)/n

1/2 →p 0 as n → ∞ and
therefore, Q+2 (n)/n

1/2 →p 0 as n → ∞. Similarly Q
−
2 (n)/n

1/2 →p 0 as n → ∞. From the above
discussion, we conclude that Q(n)/n1/2 →p 0.

The above lemma indicates that our objective is to find the asymptotic distribution of
∑r(n)
j=1∑Tj+1−1

i=Tj
[h(Xi)−π(h)]. Given the definition of Ti, each random variable sj =

∑Tj+1−1
i=Tj

[h(Xi)−π(h)]
has same distribution. However, we know that Tj depends on XTj−1+1, ∙ ∙ ∙, XTj−1−1, but does not
depend on the value of XTj−1 . That is, we have the following lemma:

Lemma 2.2. For any 0 6 i < ∞, si and si+1 are not independent, but the two collections of
random variables: {si : 0 6 i 6 m− 2} and {si : i > m} are independent for any m > 2.Therefore
the random variable sequence {si}∞i=0 is a one-dependent stationary stochastic processes.

Proof. Clearly si+1 depends on the distribution Ti+1, thus:

P

(

XTi+1 ∈ dx1, ∙ ∙ ∙, XTi+m ∈ dy)|XTi = x, Ti+1 − Ti > m

)

=
(1− ε)R(x, dy)
Pm(x, dy)

P (x, dx1) ∙ ∙ ∙ P (xm−1, dy)

and

P

(

XTi+1 ∈ dx1, ∙ ∙ ∙, XTi+m ∈ dy)|XTi = x, Ti+1 − Ti = m

)

=
εν(dy)

Pm(x, dy)
P (x, dx1) ∙ ∙ ∙ P (xm−1, dy).

Note si depends on Ti+1. Therefore si and si+1 are not independent. However, for any 0 6 i 6
m− 2 < m 6 j <∞, since XTi ∼ ν(∙) and XTj depends XTj−1+1, ∙ ∙ ∙, XTj−1, but is independent of
all the {Xk : k 6 Tj}. Thus, we have the result.

To prove Theorem 1.2 we follow the strategy:

Step 1: Prove that I = Eν

(
∑T1−1
i=0 [h(Xi)− π(h)]

)

= 0

Step 2: Prove that J =
∫
E ν(dx)E

[(
∑T1−1
i=0 [h(Xi)− π(h)]

)2∣∣
∣
∣X0 = x

]

<∞.

Step 3: Prove that a
√
n−CLT holds for a stationary, one-step dependent stochastic process.

3 Proof of Theorem 1.2

Lemma 3.1. I = Eν

(
∑T1−1
i=0 [h(Xi)− π(h)]

)

= 0
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Proof. Denote T1 = τm and Hk =
∑(k+1)m−1)
i=km [h(Xi)− π(h)], then we have:

I = Eν [
∞∑

k=0

HkI{k < τ}]

Consider the splitting m−skeleton chain {X̌nm} as in section 5.1.1 of Meyn and Tweedie (1993), we
know that α̌ = X1 is an accessible atom. Then we can apply Theorem 10.0.1 of Meyn and Tweedie
(1993) to this splitting chain. That is:

π(B) = π̌(B0 ∪B1) =
∫

α̌

π̌(dw)Ew[
τ̌α̌∑

k=1

I{X̌km ∈ B̌}]

= ε

∫

X1
π(dw)Ew[

τ̌α̌∑

k=1

I{X̌km ∈ B̌}]

Let τ̌α̌ = min{n > 1 : X̌nm ∈ α̌}. Since for any w ∈ α̌, P̌m(w, ∙) ∼ ν(∙), we have τ̌α̌ = τ . Following
Theorem 5.1.3 in Meyn and Tweedie (1993), we also have P kn0(x,B) = P̌ kn0(x, B̌) for any B ∈ E .
Therefore we have:

π(B) = εEν [
τ1∑

k=1

I{Xkm ∈ B}] = εEν [
∞∑

k=1

I{Xkm ∈ B}I{τ > k}]

So we have:

I = Eν

[

E

( ∞∑

k=0

HkI{k < τ}|Xkm

)]

=
∞∑

k=0

Eν

[

E

(

HkI{k < τ}|Xkm

)]

=
∞∑

k=0

Eν

[

E

(

Hk|Xkm

)

I{k < τ}

]

The last equation follows since random variables I{τ > k} and Xkm are independent. In addition,
given τ1 > k and Xkm, the distribution of Hk is equal to H0 given X0; therefore

I =
∞∑

k=0

Eν

[

E

(

H0|X0

)

I{k < τ}

]

= Eπ

[

E

(

H0|X0

)]

= Eπ(H0)

= 0.

Lemma 3.2. We have:

J = Eν

[( T1−1∑

i=0

[h(Xi)− π(h)]

)2]

<∞. (4)
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Proof.

J = Eν

[( τ−1∑

k=0

(k+1)m−1)∑

i=km

[h(Xi)− π(h)]

)2]

6 Eν

[( ∞∑

k=0

I{k < τ}|Hk|

)2]

= Eν

[ ∞∑

k=0

|Hk|
2I{k < τ}+ 2

∞∑

k=0

(

|Hk|
∞∑

j=k+1

|Hj |I{j < τ}

)

{k < τ}

]

= Eν

[ ∞∑

k=0

(

|Hk|
2 + 2Hk

∞∑

j=i+1

|Hj |I{j < τ}

)

I{k < τ}

]

= Eν

[ ∞∑

k=0

E

(

|Hk|
2 + 2|Hk|

∞∑

j=k+1

|Hj |I{j < τ}]I{k < τ}|Xkm, I{k < τ}

)]

= Eν

[ ∞∑

k=0

E

(

|Hk|
2 + 2|Hk|

∞∑

j=k+1

|Hj |I{j < τ}|Xkm

)

I{k < τ}

]

.

In the last equation, we have used the fact that random variables I{τ > k} and Xkm are indepen-
dent. Since

E

(

|Hi|
2 + 2|Hi|

∞∑

j=1

|Hj |{j < τ}|Xim = x

)

= E

(

|H0|
2 + 2|H0|

∞∑

j=1

|Hj |{j < τ}|X0 = x

)

define f(x) = E

(

|H0|2 + 2|H0|
∑∞
j=1 |Hj |{j < τ}|X0 = x

)

then we have:

J 6 Eν

[ ∞∑

k=0

f(X0)I{k < τ}

]

= Eν

[

f(X0)I{0 < τ}

]

+ Eν

[ ∞∑

k=1

f(X0)I{k < τ}

]

6 Eν

[

f(X0)

]

+ Eν

[

f(X0)

] ∞∑

k=1

Eν

[

I{k < τ}

]

The last inequality is follows since:
1. f(X0)I{k < τ} 6 f(X0);
2. When k > 1, I{τ > k} is independent with X0

Note

Eν

[

I{k < τ

]

= Pν(k < τ) 6 (1− ε)
k
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and

π(dy) =

∫

E

Pn0(x, dy)π(dx)

> εν(dy)

therefore we have J 6 1
εEν [f(X0)] 6

1
ε2
Eπ[f(X0) and

Eπ[f(X0)] 6 Eπ[
m−1∑

i=0

|h(Xi)− π(h)|
2]

6 m(π(h2)− π(h)2) <∞

From the above arguments we conclude that J <∞.

Finally, we prove Theorem 1.2:

Proof of Theorem 1.2. Following Lemma 2.1, we can obtain:

lim
n→∞

∑n
i=0[h(Xi)− π(h)]

n1/2
= lim
n→∞

∑r(n)
j=1

∑Tj+1−1
i=Tj

[h(Xi)− π(h)]

n1/2
. (5)

Define hi = h(Xi)−π(h), sj =
∑Tj+1
i=Tj+1

hi and ηj = sjm+1+∙∙∙+s(j+1)m−1 for an integer m > 2.
Following Lemma 2.2 we know that two collections of random variables: {si : 0 6 j 6 m− 2} and
{si : i > m} are independent for any m > 2; thus

1
√
n

n∑

j=1

sj =
1
√
n

[n/m]−1∑

j=0

ηj +
1
√
n

[n/m]−1∑

j=0

smj +
1
√
n

n∑

m[n/m]

sj

It should be noted that if j− i > n0, then Xi and Xj are independent, ηj are i.i.d random variables
and smj are i.i.d. so we have:

1
√
n

[n/m]−1∑

j=0

ηj →d N(0,
σ2m
m
)

1
√
n

[n/m]∑

j=0

smj →d N(0,
σ2s
m
)

where σ2m = (m − 1)E(s
2
1) + 2(m − 2)E(s1s2) and σ

2
s = E[s21], letting m → ∞, we have

σ2m
m →

E(s21) + 2E(s1s2) and m
−1σ2s → 0, so the CLT holds.

Let

σ2 = lim
n→∞

1

n
E

[( n∑

i=1

[h(Xi)− π(h)]

)2]
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then

σ2 = lim
n→∞

1

n
E

[( n∑

i=1

[h(Xi)− π(h)]

)2]

= lim
n→∞

1

n
E

[

(

r(n)∑

j=1

sj)
2

]

= lim
n→∞

1

n
E

[

r(n)s21 + 2(r(n)− 2)s1s2

]

By the elementary renewal theorem (e.g. Feller (1968)), limn→∞
rn
n = E(T2−T1). Since P[T2−T1 =

n0s] = ε(1 − ε)(s−1), E(T2 − T1) =
∑∞
s=1 [n0sε(1− ε)

(s−1)] = n0
ε < ∞. Therefore if we denote

σ̃2 = E[s21 + 2s1s2], then

σ2 =
n0

ε
E[s21 + 2s1s2] =

n0

ε
σ̃2 (6)

As a result, we conclude that

lim
n→∞

∑r(n)
j=1

∑Tj+1−1
i=Tj

[h(Xi)− π(h)]

n1/2
= lim

n→∞

∑r(n)
j=1

∑Tj+1−1
i=Tj

[h(Xi)− π(h)]

r
1/2
n

∙
r
1/2
n

n1/2

−→d

(
n0

ε

)1/2
N(0, σ̃2)

= N(0, σ2)

as n→∞.

Acknowledgement

Both authors would like to thank Jeffrey Rosenthal for his assistance in writing this paper. The
first author was supported by an Engineering and Physical Sciences Research Council Studentship
and would like to thank Dave Stephens and Chris Holmes for their advice relating to this paper.

REFERENCES

Bradley, R. C. 1985. On the central limit question under absolute regularity. Ann. Prob.,
13, 1314–1325.

Chan, K. S. and Geyer, C. J. 1994. Discussion of Markov chains for exploring posterior
distributions. Ann. Statist., 22, 1747–1758.

Chen, X. 1999. Limit theorems for functionals of ergodic Markov chains with general state
space. Mem. Amer. Math. Soc., 139.

Cogburn, R. 1972. The central limit theorem for Markov processes. In Le Cam, L. E.,
Neyman, J. and Scott, E. L. (Eds.) Proc. Sixth Ann. Berkley Symp. Math. Statist. and
Prob., 2, 485–512.

8



Feller, W. 1968. An Introduction to Probability Theory and its Applications. 3rd ed,
Wiley, Chichester.
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