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Background / Motivation

Often have complicated, high-dimensional density functions
π : X → [0,∞), for some X ⊆ Rd with d large.

(e.g. Bayesian posterior distribution)

Want to compute probabilities like:

Π(A) :=

∫
A
π(x) dx ,

and/or expected values of functionals like:

Eπ(h) :=

∫
X
h(x)π(x) dx .

Calculus? Numerical integration?

Impossible, if π is something like . . .
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Typical π: Variance Components Model

State space X = (0,∞)2 × RK+1, so d = K + 3, with

π(V ,W , µ, θ1, . . . , θK )

= C e−b1/VV−a1−1e−b2/WW−a2−1

× e−(µ−a3)2/2b3V−K/2W− 1
2

∑K
i=1 Ji

× exp

[
−

K∑
i=1

(θi − µ)2/2V −
K∑
i=1

Ji∑
j=1

(Yij − θi )2/2W

]
,

where ai and bi are fixed constants (prior), and {Yij} are the data.
e.g. K = 19, so d = 22.

High-dimensional! Complicated! How to compute?
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Estimation from sampling: Monte Carlo

Can try to sample from π, i.e. generate on a computer

X1,X2, . . . ,XM ∼ π (i .i .d .)

(meaning that P(Xi ∈ A) =
∫
A

π(x) dx).

Then can estimate by e.g.

Eπ(h) ≈ 1

M

M∑
i=1

h(Xi ) .

Good. But how to sample? Often infeasible!

Instead . . .
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Markov Chain Monte Carlo (MCMC)

Given a complicated, high-dimensional target distribution π(·),

define an ergodic Markov chain (random process) X0,X1,X2, . . .,
which converges in distribution to π(·).

Then for “large enough” n, L(Xn) ≈ π(·), so Xn, Xn+1, . . . are
approximate samples from π(·), and e.g.

Eπ(h) ≈ 1

m

n+m∑
i=n+1

h(Xi ) , etc.

Extremely popular: Bayesian inference, computer science,
statistical physics, finance, insurance, . . .

How to find the good chains among the bad ones?
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Ex.: Random-Walk Metropolis Algorithm (1953)

Define the chain X0,X1,X2, . . . as follows.

Given Xn−1:

• Propose a new state Yn ∼ Q(Xn−1, ·), e.g. Yn ∼ N(Xn−1, Σp).

• Let α = min
[
1, π(Yn)

π(Xn−1)

]
.

• With probability α, accept the proposal (set Xn = Yn).

• Else, with prob. 1− α, reject the proposal (set Xn = Xn−1).

FACT: α is chosen just right so this Markov chain is reversible with
respect to π(·). Hence, π(·) is a stationary distribution.

Also aperiodic and (usually) irreducible.

So, Xn → π(·). [APPLET]

(6/26)



Optimising MCMC?

What choices are optimal for MCMC?

e.g. Metropolis: what is optimal choice of proposal Q(Xn−1, ·)?

Even if Q(Xn−1, ·) = N(Xn−1, Σp), what is smart choice of Σp?

Even if Σp = σ I , how large should σ be?

Important – can vary from efficient to infeasible! [APPLET]

Idea: Can we use acceptance rate for guidance?

Intuition: For Metropolis algorithms, want acceptance rate to be
far from zero (so it doesn’t get stuck), and also far from one (so it
tries to take big steps).

More precisely?
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Optimising MCMC (cont’d)

What is known about optimising MCMC?

Dim=1: Numerical studies: want acceptance rate ≈ 0.44.

Large dim (d →∞): Use diffusion limits! (Roberts-Gelman-Gilks
1997, Roberts-R. 2001, Bédard 2006, . . . )

Under various strong assumptions, as d →∞ the algorithm will
converge (after rescaling) to an explicit diffusion process. So,
choose proposal to maximise the speed of the limiting diffusion.

Conclusions:

1. Want acceptance rate around 0.234.

2. Optimal Gaussian RWM proposal is N
(
x , (2.38)2 d−1 Σt

)
,

where Σt is the covariance matrix of the target π(·).
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Can We USE This Optimality Information?

So, we have guidance about optimising MCMC in terms of
acceptance rate, target covariance matrix Σt , etc.
Great, except . . . we don’t know what proposal will lead to a
desired acceptance rate. And, we don’t know how to compute Σt .

So, what to do? Trial and error? (difficult, especially in high
dimension) Or . . . let the computer decide, on the fly!

Specifically, suppose we have a family {Pγ}γ∈Y of possible Markov
chains, each with stationary distribution π(·). Let the computer
choose among them! At iteration n, use Markov chain PΓn , where
Γn ∈ Y chosen according to some adaptive rules (depending on
chain’s history, etc.). [APPLET]

Can this help us to find better Markov chains? (Yes!)

On the other hand, the Markov property, stationarity, etc. are all
destroyed by using an adaptive scheme. Is the resulting algorithm
still ergodic? (Sometimes!)
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Example: High-Dimensional Adaptive Metropolis

Dim d = 100, with target π(·) having target covariance Σt .
Here Σt is 100× 100 (i.e., 5,050 distinct entries).

Here optimal Gaussian RWM proposal is N
(
x , (2.38)2 d−1 Σt

)
.

But usually Σt unknown. Instead use empirical estimate, Σn,
based on the observations so far (X1,X2, . . . ,Xn). Then let

Qn(x , ·) = (1−β)N
(
x , (2.38)2 d−1 Σn

)
+ β N

(
x , (0.1)2 d−1 Id

)
,

where e.g. β = 0.05.

(Slight variant of the algorithm of Haario et al., Bernoulli 2001.)

Let’s try it . . .
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High-Dimensional Adaptive Metropolis (cont’d)

Plot of first coord. Takes about 300,000 iterations, then “finds”
good proposal covariance and starts mixing well.
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High-Dimensional Adaptive Metropolis (cont’d)

Plot of sub-optimality factor bn ≡ d
(∑d

i=1 λ
−2
in / (

∑d
i=1 λ

−1
in )2

)
,

where {λin} eigenvals of Σ
1/2
n Σ−1/2. Starts large, converges to 1.
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Even Higher-Dimensional Adaptative Metropolis

In dimension 200, takes about 2,000,000 iterations, then finds
good proposal covariance and starts mixing well.
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Another Example: Componentwise Adaptive Metropolis

Propose new value yi ∼ N(xi , e
2 lsi ) for the i th coordinate, leaving

the other coordinates fixed; then repeat for different i .

Choice of scaling factor lsi?? (i.e., “log(σi )”)

Recall: optimal one-dim acceptance rate is ≈ 0.44. So:

Start with lsi ≡ 0 (say).

Adapt each lsi , in batches, to seek 0.44 acceptance rate:

After the j th batch of 100 (say) iterations, decrease each lsi by 1/j
if the acceptance rate of the i th coordinate proposals is < 0.44,
otherwise increase it by 1/j .

Let’s try it . . .
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Adaptive Componentwise Metropolis (cont’d)

Test on Variance Components Model, with K = 500 (dim=503),
Ji chosen with 5 ≤ Ji ≤ 500, and simulated data {Yij}.

Adaption seems to find “good” values for the lsi values.
(15/26)

Componentwise Metropolis: Comparisons

Variable Ji Algorithm lsi ACT Avr Sq Dist

θ1 5 Adaptive 2.4 2.59 14.932
θ1 5 Fixed 0 31.69 0.863

θ2 50 Adaptive 1.2 2.72 1.508
θ2 50 Fixed 0 7.33 0.581

θ3 500 Adaptive 0.1 2.72 0.150
θ3 500 Fixed 0 2.67 0.147

The Adaptive algorithm mixes much more efficiently than the
Fixed algorithm, with smaller integrated autocorrelation time
(good) and larger average squared jumping distance (good).
And coordinates (e.g. θ3) that started good, stay good.
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Great . . . but is it Ergodic?

So, adaptive MCMC seems to work well in practice.

But will it be ergodic, i.e. converge to π(·)?

Ordinary MCMC algorithms, i.e. with fixed choice of γ, are
automatically ergodic by standard Markov chain theory (since
they’re irreducible and aperiodic and leave π(·) stationary).

But adaptive algorithms are more subtle, since the Markov property
and stationarity are destroyed by using an adaptive scheme.

e.g. if the adaption of γ is such that Pγ moves slower when x is in
a certain subset X0 ⊆ X , then the algorithm will tend to spend
much more than π(X0) of the time inside X0. [APPLET]

WANT: Simple conditions guaranteeing ‖L(Xn)− π(·)‖ → 0,
where ‖L(Xn)− π(·)‖ ≡ sup

A⊆X
|P(Xn ∈ A)− π(A)|.
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One Simple Convergence Theorem

THEOREM [Roberts and R., J.A.P. 2007]: An adaptive scheme
using {Pγ}γ∈Y will converge, i.e. limn→∞ ‖L(Xn)− π(·)‖ = 0, if:

(a) [Diminishing Adaptation] Adapt less and less as the algorithm
proceeds. Formally, supx∈X ‖PΓn+1(x , ·)− PΓn(x , ·)‖ → 0 in prob.

[Can always be made to hold, since adaption is user controlled.]

(b) [Containment] Times to stationary from Xn, if fix γ = Γn,
remain bounded in probability as n→∞. [Technical condition, to
avoid “escape to infinity”. Holds if e.g. X and Y finite, or
compact, or sub-exponential tails, or . . . (Bai, Roberts, and R.,
Adv. Appl. Stat. 2011). And always seems to hold in practice.]

(Also guarantees WLLN for bounded functionals. Various other
results about LLN / CLT under stronger assumptions.)

Other results by: Haario, Saksman, Tamminen, Vihola; Andrieu,
Moulines, Robert, Fort, Atchadé; Kohn, Giordani, Nott; . . .
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Outline of Proof (one page only!)

Define a second chain {X ′n}, which begins like {Xn}, but which
stops adapting after time N. (“coupling”)

Containment says that the (ordinary MCMC) convergence times
are bounded, so that for large enough M, we “probably” have
L(X ′N+M) ≈ π(·), i.e. P(X ′N+M ∈ A) ≈ π(A) for all A, uniformly.

And, Diminishing Adaptation says that we adapt less and less, so
that for large enough N,

(XN ,XN+1, . . . ,XN+M) ≈ (X ′N ,X
′
N+1, . . . ,X

′
N+M) .

Combining these, for large enough N and M, we “probably” have

L(XN+M) ≈ L(X ′N+M) ≈ π(·) , Q.E.D.
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Implications of Theorem

Adaptive Metropolis algorithm:

• Empirical estimates satisfy Diminishing Adaptation.

• And, Containment easily guaranteed if we assume π(·) has
bounded support (Haario et al., 2001), or sub-exponential tails
(Bai, Roberts, and R., 2011).

• COR: Adaptive Metropolis is ergodic under these conditions.

Adaptive Componentwise Metropolis:

• Satisfies Diminishing Adaption, since adjustments ±1/j → 0.

• Satisfies Containment under boundedness or tail conditions.

• COR: Ad. Comp. Metr. also ergodic under these conditions.

So, previous adaptive algorithms work (at least asymptotically).

Good!
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Choosing Which Coordinates to Update When

S. Richardson (statistical geneticist): Successfully ran adaptive
Componentwise Metropolis algorithm on genetic data with
thousands of coordinates. Good!

But many of the coordinates are binary, and usually do not change.

She asked: Do we need to visit every coordinate equally often, or
can we gradually “learn” which ones usually don’t change and
downweight them? Good question – how to proceed?

Suppose at each iteration n, we choose to update coordinate i
with probability αn,i , and then we update the random-scan
coordinate weights {αn,i} on the fly.

What conditions ensure ergodicity?

Seemed hard! Then we found: Claim [J. Mult. Anal. 97 (2006),
p. 2075]: suffices that limn→∞ αn,i = α∗i , where the Gibbs sampler
with fixed weights {α∗i } is ergodic. Really??
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Counter-example! (K. Latuszyński and R., 2009)
X = {(i , j) ∈ N×N : i = j or i = j + 1} (“Stairway to Heaven”).

Target π(i , j) = C/j2, with adaptive coordinate weights given by:

αn,1 =

{
(1/2) + εn , Xn,1 = Xn,2

(1/2)− εn , Xn,1 = Xn,2 + 1

and αn,2 = 1− αn,1, where εn ↘ 0 sufficiently slowly.

Then αn,i → 1/2 =: α∗i , which is indeed ergodic. However, the
extra εn makes P(Xn →∞) > 0, i.e. chain is transient. (22/26)



Ergodicity with Adaptive Coordinate Weights

So, we had to be smarter than that!

We proved (Latuszynski, Roberts, and R., Ann. Appl. Prob. 2013)
that adaptively weighted samplers are ergodic if either:

(i) some choice of weights {α∗i } make it uniformly ergodic, or

(ii) there is simultaneous inward drift for all the kernels Pγ , i.e.
there is V : X → [1,∞) with

lim sup
|x |→∞

sup
γ∈Y

(PγV )(x)

V (x)
< 1 .

For our counter-example, (i) fails because of infinite tails, and (ii)
fails because of a slight outward kick.

But if careful about continuity, boundedness, etc., then can
guarantee ergodicity in many cases, including for high-dimensional
genetics data (Richardson, Bottolo, R., Valencia 2010). Good!
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What about that “Containment” Condition?

Recall: adaptive MCMC is ergodic if it satisfied Diminishing
Adaptation (easy: user-controlled) and Containment (technical).

Is Containment just an annoying artifact of the proof? No!

THEOREM (Latuszynski and R., J.A.P. 2014): If an adaptive
algorithm does not satisfy Containment, then it is “infinitely
inefficient”: that is, for all ε > 0,

lim
K→∞

lim sup
n→∞

P(Mε(Xn, γn) > K ) > 0 ,

where Mε(x , γ) = inf{n ≥ 1 : ‖Pn
γ (x , ·)− π(·)‖ < ε} is the time to

converge to within ε of stationarity. Bad!

Conclusion: Yay Containment!?!

But how to verify it??
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Verifying Containment: “For Everyone”

• We proved general theorems about stability of “adversarial”
Markov chains under various conditions (Craiu, Gray, Latuszynski,
Madras, Roberts, and R., A.A.P. 2015).

• Then we applied them to adaptive MCMC, to get a list of
directly-verifiable conditions which guarantee Containment:
⇒ Never move more than some (big) distance D.
⇒ Outside (big) rectangle K , use fixed kernel (no adapting).
⇒ The transition or proposal kernels have continuous densities

wrt Lebesgue measure. (or piecewise continuous: Yang & R. 2015)
⇒ The fixed kernel is bounded, above and below (on compact

regions, for jumps ≤ δ), by constants times Lebesgue measure.
(Easily verified under continuity assumptions.)

• Can directly verify these conditions in practice. So, this can be
used by applied MCMC users. “Adaptive MCMC for everyone!”
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Summary

• MCMC is extremely popular for estimating expectations.

• Adaptive MCMC tries to “learn” how to sample better. Good.

• Works well in examples like Adaptive Metropolis (200× 200
covariance) and Componentwise Metropolis (503 dimensions).

• But must be done carefully, or it will destroy stationarity. Bad.

• To converge to π(·), suffices to have stationarity of each Pγ ,
plus (a) Diminishing Adaptation (important), and (b) Containment
(technical condition, usually satisfied, necessary). Good.

• This demonstrates convergence of adaptive Metropolis,
coordinatewise adaptation, adaptive coordinate weights, etc.

• New “adversarial” conditions can easily verify Containment.

• Hopefully can use adaption on many other examples – try it!

All my papers, applets, software: probability.ca/jeff
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