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This thesis focuses on sources of error in modern Bayesian analysis and machine learning in the “big

data” era. We develop new theoretical tools for analyzing and controlling different sources of error. Our

work leads to new theory and methodology for providing performance guarantees for modern Bayesian

methods and machine learning algorithms.

The first two contributions of this thesis are new tools for studying the complexity/hardness of

achieving approximation guarantees for Markov chain Monte Carlo (MCMC) in high-dimensional settings.

The third contribution of this thesis is a theoretical framework for Bayesian analysis in the face of

model misspecification that makes the analysis of different practical Bayesian methods possible. The

fourth contribution of this thesis is a bridge between PAC-Bayes theory and Rademacher complexity, two

important theoretical tools for developing the so-called generalization bounds in machine learning theory.

Through the analysis of various sources of error, this thesis makes contributions to the study of:

convergence of high-dimensional MCMC; optimization of high-dimensional MCMC; Bayesian model

misspecification; and statistical learning theory.
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Chapter 1

Introduction

This thesis focuses on sources of error in modern Bayesian analysis and machine learning in the “big

data” era. We develop new theoretical tools for analyzing and controlling different sources of error. Our

work leads to new theory and methodology for providing performance guarantees for modern Bayesian

methods and machine learning algorithms.

In modern Bayesian analysis, errors arise when we approximate Bayes rule in complex models using

approximate inference algorithms such as Markov chain Monte Carlo (MCMC). Approximation is essential,

but most algorithms cannot provide any strong guarantees on the accuracy of their answers without

overly restrictive assumptions. The first two contributions of this thesis are new tools for studying the

complexity/hardness of achieving approximation guarantees for MCMC in high-dimensional settings.

In Bayesian analysis, another source of error is model misspecification. Bayesian analysis implicitly

assumes the model precisely captures all relevant aspects of the data. In practice, approximations in

the model that lead to model misspecification can have a serious impact on Bayesian inference. The

third contribution of this thesis is a theoretical framework for Bayesian analysis in the face of model

misspecification that makes the analysis of different practical Bayesian methods possible.

In machine learning, overfitting is a source of error. In recent years, our understanding of overfitting

has changed. Many modern machine learning algorithms are designed to perfectly fit the training data

and so the challenge is to understand why overfitting in those models is “benign”. We are interested in

building new theoretical tools to study benign overfitting in modern machine learning algorithms. One

challenge is that the performance of modern machine learning algorithms, such as deep neural networks,

seems to hinge on favorable properties of the data and/or the training process. In this thesis, we study

the generalization of machine learning algorithms, which is a measure of how accurately an algorithm

is able to predict outcome values for previously unseen data. The fourth contribution of this thesis is

a bridge between PAC-Bayes theory and Rademacher complexity, two important theoretical tools for

developing the so-called generalization bounds.

Through the analysis of various sources of error, this thesis makes contributions to the study of:

convergence of high-dimensional MCMC; optimization of high-dimensional MCMC; Bayesian model

misspecification; and statistical learning theory. In the remainder of this chapter, we provide a brief

introduction to each research area, describe our contribution, and convey its significance to statistics and

machine learning.

1



Chapter 1. Introduction 2

1.1 Analyzing the convergence of high-dimensional MCMC

Bayesian analysis relies on computations involving the so-called posterior distribution. However, for

complex models, the analytical form of posterior distribution is usually not tractable. The development

of Markov chain Monte Carlo (MCMC) methods made it possible to calculate numerical approximations

of posterior distribution for complex models. Therefore, MCMC is now a key part of the foundation of

modern Bayesian analysis and is widely used in practice.

The key idea of MCMC is to numerically simulate a Markov chain whose stationary distribution was

designed to be the desired posterior distribution. The popularity of MCMC comes from the fact that, as

the number of iterations grows, the distribution of the sample from MCMC asymptotically converges to

the posterior distribution. In practice, there are two stages of running a MCMC algorithm. The first

stage is called burn-in. In this stage, one runs MCMC for a finite number of steps and hopes the samples

of the Markov chain afterwards can be viewed as approximate samples from the posterior distribution.

After the burn-in stage, in the second stage, one collects multiple samples to compute approximations of

quantities of interests.

Approximation errors in the burn-in stage arise since the samples after a finite number of iterations

are only approximate. This type of errors is related to convergence properties of MCMC algorithms.

The basic question is how many iterations the MCMC algorithms must be run in order to approximate

posterior distribution to a desired precision. With the advent of big data in recent years, there is growing

interest in the high-dimensional setting where the number of parameters of the statistical model is of the

same (or even higher) order as the number of observations. The modern high-dimensional regime presents

new challenges to our understanding of the convergence properties of MCMC algorithms. There is a lack

of theoretical tools for convergence analysis of high-dimensional MCMC. Among practitioners, there is a

general understanding that scaling classical MCMC algorithms to high dimension can be problematic

and initialization can play a role in convergence.

In high-dimensional settings, one can understand the relationship between convergence and number

of dimensions by studying “convergence complexity”, which defines how the convergence time of MCMC

algorithms scales with the dimension of the parameter set. In this thesis, we develop a new theoretical

tool for obtaining tight complexity bounds for MCMC in high-dimensional settings. As a demonstration,

we analyze a realistic Gibbs sampler and obtain a complexity bound for its convergence, which shows

the MCMC algorithm scales well to high dimension, under certain conditions on the observed data and

the initial state. This work presents evidence against the widely held belief that scaling MCMC to

modern high-dimensional settings is not feasible. We expect the proposed tool can be applied to analyze

convergence complexity of many other high-dimensional MCMC algorithms.

1.2 Optimizing high-dimensional Metropolis–Hastings algorithms

Approximation errors after the burn-in stage are Monte Carlo errors, which arise by using a finite number

of samples to approximate the quantity of interests. Monte Carlo error exists even if the Markov chain

has already converged to its stationary distribution. This type of errors is related to the efficiency of

MCMC algorithms. To understand how to reduce this type of approximation errors, the basic question

is how efficient the Markov chain can explore the state space provided that it has converged to the

stationary distribution.
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The optimal scaling framework is one of the most successful and practically useful frameworks for

analyzing the efficiency of MCMC in high-dimensions. It facilitates optimization of the efficiency of

one of the most popular class of MCMC algorithms, the Metropolis–Hastings algorithms. The optimal

scaling framework provides clear and mathematically based guidance on how to tune the parameters of

the Metropolis–Hastings algorithms to asymptotically optimize the performance, and yields guidance for

self-tuning or adaptive MCMC methodologies.

To this day, optimal scaling results have mainly been established for target distributions with a

product i.i.d. structure, which severely limits their applicability. From a practitioner’s perspective, i.i.d.

target distributions are too limited to be useful, since they can be tackled by one-dimensional target

due to the product structure. On the other hand, practitioners use these tuning criteria far outside the

class of i.i.d. target distributions. Extensive simulations show that these optimality results also hold for

more complex target distributions. Therefore, there appears to be a gap between theory and practice

for tuning Metropolis–Hastings algorithms on general target distributions arising from realistic MCMC

models.

In this thesis, we significant narrow the gap between theory and practice of the optimal scaling

framework by removing a key limitation. We consider the optimal scaling of random-walk Metropolis

algorithms on general target distributions in high dimensions that encompass many realistic MCMC

models. We show that asymptotically optimal efficiency can be obtained under general sufficient conditions

on the target distribution. The new sufficient conditions are easy to check in practice and hold for some

general classes of realistic MCMC models. Our results substantially generalize the product i.i.d. condition.

We expect the techniques developed can be applied to other Metropolis–Hastings algorithms as well. Our

work also opens up opportunities for developing self-tuning and adaptive methodologies for speeding up

the convergence of Metropolis–Hastings algorithms in high dimensions.

1.3 Understanding Bayesian model misspecification

Bayesian analysis implicitly assumes that the statistician has faithfully represented their uncertainty in

terms of a statistical model. However, as George Box is often quoted, “all models are wrong”. Indeed,

in every nontrivial setting, the statistical model is, by necessity, only an approximate representation of

uncertainty. In this case, we say that the model is misspecified. In practice, the errors introduced by the

approximate statistical model can have a serious effect on Bayesian inference and prediction. We need

theoretical foundations for Bayesian analysis that do not start by assuming the model is well specified.

One of the hallmarks of Bayesian analysis is the use of “prior” distributions. If we adopt the classical

notion of a statistical model, where the data are assumed to be distributed according to one in a

parametric family of probability distributions, the prior distribution is a probability measure on the

space of parameters that can be used to capture the statistician’s prior knowledge and/or subjective

beliefs about which parameters are most likely. The combination of the prior and model yields a joint

distribution on the data and parameters. If a model is misspecified, it is often the case that no prior

distribution yields a joint distribution that accurately represents the statistician’s uncertainty. In the

misspecified setting, the usual notion of a “subjective” prior may make no sense. Indeed, the statistician

may believe that every available parameter setting should be assigned zero prior probability. We focus

on this setting of a misspecified model and the question of what the prior distribution should be. Our

solution is to view inference in pragmatic terms. Relative to one’s beliefs, there is a surrogate prior that
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is most likely to produce the best answers.

In this thesis, we formalize this notion of pragmatic inference. One of the key ideas is that we frame

the problem of choosing a surrogate prior as a Bayesian decision theory task. Our goal is to develop

the theoretical and algorithmic foundations for choosing optimal surrogate priors in the misspecified

setting. Such a theory would give us a better understanding of the role of prior distributions, and

would represent a significant contribution to Bayesian analysis. In addition to providing a way to choose

optimal surrogate priors, our framework allows us to evaluate the optimality of existing ad-hoc choices of

commonly used priors, and to understand the limitations of Bayesian inference. Furthermore, algorithmic

result on efficiently computing (sub-)optimal surrogate priors for complex models would benefit machine

learning and other applied fields that use Bayesian analysis. The new foundation of Bayesian model

misspecification can be used to seek simple and efficient modifications to traditional Bayesian procedures

that are provably robust to misspecification and lead to improved performance.

1.4 Bridging PAC-Bayes theory and Rademacher complexity

Understanding the principles behind the strong empirical performance of modern machine learning

algorithms is a problem of great scientific importance. The foundations of machine learning theory are

rooted in statistical learning theory, and in particular the decomposition of the risk of learning algorithms

into, e.g., approximation and estimation error, and the use of tools from modern probability theory to

produce tight estimates of these quantities. Of particular interest are upper bounds on generalization

error, which is a measure of how accurately an algorithm is able to predict outcome values for previously

unseen data.

The PAC-Bayesian theory is one of the most popular tools for developing generalization bounds of

learning algorithms. The PAC-Bayes bound is particularly exciting because it provides quantitatively

useful results for classifiers with real-valued parameters, which include modern classifiers such as deep

neural networks. Recently, there has been a surge of interest and work in PAC-Bayes theory and its

application to large-scale neural networks, especially towards studying generalization in overparametrized

neural networks trained by variants of gradient descent. PAC-Bayes bounds are one of several tools

available for the study of the generalization and risk properties of learning algorithms. Other than

PAC-Bayesian bounds, another popular tool for studying generalization is Rademacher complexity, a

distribution-dependent complexity measure for classes of real-valued functions.

However, the literature on PAC-Bayes bounds and bounds based on Rademacher complexity are

essentially disjoint. PAC-Bayesian theory and Rademacher complexity are widely considered as two

different approaches for deriving generalization bounds. The connection between the two is far from clear.

In this thesis, we build a bridge between Rademacher complexity and state-of-the-art PAC-Bayesian

theory. This is by extending an existing “Rademacher viewpoint” of slow-rate PAC-Bayes bounds to

the state-of-art fast-rate PAC-Bayes bounds. We first demonstrate that one can match the fast rate of

state-of-art PAC-Bayes bounds using an “extended Rademacher viewpoint” based on shifted Rademacher

processes, which is closely related to Rademacher complexity and shifted empirical processes. We then

derive a new fast-rate PAC-Bayes bound in terms of the “flatness” of the empirical risk surface, which

potentially can be useful for analyzing the generalization of deep neural networks. Our analysis establishes

a new framework for deriving fast-rate PAC-Bayes bounds and yields new insights on PAC-Bayesian

theory.
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1.5 Overview of each chapter

1.5.1 Chapter 2

Markov chain Monte Carlo (MCMC) algorithms [Bro+11; GRS95; Liu08; MT12; RC04] are now routinely

used in many fields to obtain approximations of integrals that could not be tackled by common numerical

methods, because of the simplicity and the scalability to high-dimensional settings. The running times of

MCMC algorithms are an extremely important issue of practice. They have been studied from a variety

of perspectives, including convergence “diagnostics” via the Markov chain output [GR92], proving weak

convergence limits of sped-up versions of the algorithms to diffusion limits [RGG97; RR98], directly

bounding the convergence in total variation distance [MT94; Ros95a; Ros96; RT99; JH01; Ros02; JH04;

Bax05; FHJ08], and non-asymptotic guarantees when the target distribution has a smooth and log-concave

density, e.g. [BREZ18; Dal17; Dwi+18; DK19] and the references therein.

Among the work of directly bounding the total variation distance, most of the quantitative convergence

bounds proceed by establishing a drift condition and an associated minorization condition for the Markov

chain in question (see e.g. [MT12]). One approach for finding quantitative bounds has been the drift and

minorization method set forth by Rosenthal [Ros95a].

Computer scientists take a slightly different perspective, in terms of running time complexity order

as the “size” of the problem goes to infinity. Complexity results in computer science go back at least

to Cobham [Cob65], and took on greater focus with the pioneering NP-complete work of Cook [Coo71].

In the Markov chain context, computer scientists have been bounding convergence times of Markov

chain algorithms since at least Sinclair and Jerrum [SJ89], focusing largely on spectral gap bounds for

Markov chains on finite state spaces. More recently, attention has turned to bounding spectral gaps

of modern Markov chain algorithms on general state spaces, again primarily via spectral gaps, such

as [LV03; Vem05; LV06; WSH09a; WSH09b] and the references therein. These bounds often focus

on the order of the convergence time in terms of some particular parameter, such as the dimension

of the corresponding state space. In recent years, there is much interest in the “large p, large n” or

“large p, small n” high-dimensional settings, where p is the number of parameters and n is the sample

size. Rajaratnam and Sparks [RS15] use the term convergence complexity to denote the ability of a

high-dimensional MCMC scheme to draw samples from the posterior, and how the ability to do so changes

as the dimension of the parameter set grows.

Direct total variation bounds for MCMC are sometimes presented in terms of the convergence order,

for example, the work by Rosenthal [Ros95b] for a Gibbs sampler for a variance components model.

However, current methods for obtaining total variation bounds of such MCMCs typically proceed as if

the dimension of the parameter, p, and sample size, n, are fixed. It is thus important to bridge the gap

between statistics-style convergence bounds, and computer-science-style complexity results.

In one direction, Roberts and Rosenthal [RR16] connect known results about diffusion limits of

MCMC to the computer science notion of algorithm complexity. They show that any weak limit of a

Markov process implies a corresponding complexity bound in an appropriate metric. For example, under

appropriate assumptions, in p dimensions, the Random-Walk Metropolis algorithm takes O(p) iterations

and the Metropolis-Adjusted Langevin Algorithm takes O(p1/3) iterations to converge to stationarity.

This chapter considers how to obtain MCMC quantitative convergence bounds that can be translated

into tight complexity bounds in high-dimensional settings [YR17]. At the first glance, it may seem that

an approach to answering the question of convergence complexity may be provided by the drift-and-
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minorization method of [Ros95a]. However, Rajaratnam and Sparks [RS15] demonstrate that, somewhat

problematically, a few specific upper bounds in the literature obtained by the drift-and-minorization

method tend to 1 as n or p tends to infinity. For example, by directly translating the existing work by

Choi and Hobert [CH13] and Khare and Hobert [KH13], which are both based on the general approach

of [Ros95a], Rajaratnam and Sparks [RS15] show that the “small set” gets large fast as the dimension

p increases. And this seems to happen generally when the drift-and-minorization approach is applied

to statistical problems. Rajaratnam and Sparks [RS15] also discuss special cases when the method of

[Ros95a] can still be used to obtain tight bounds on the convergence rate. However, the conditions

proposed in [RS15] are very restrictive. First, it requires the MCMC algorithm to be analyzed is a Gibbs

sampler. Second, the Gibbs sampler must have only one high-dimensional parameter which must be

drawn in the last step of the Gibbs sampling cycle. Unfortunately, other than some tailored examples

[RS15], most realistic MCMC algorithms do not satisfy these conditions. It is unclear whether some

particular drift functions lead to bad complexity bounds or the drift-and-minorization approach itself

has some limitations. It is therefore the hope by Rajaratnam and Sparks [RS15] that proposals and

developments of new ideas analogous to those of [Ros95a], which are suitable for high-dimensional settings,

can be motivated.

In this chapter, we attempt to address concerns about obtaining quantitative bounds that can be

translated into tight complexity bounds. We note that although Rajaratnam and Sparks [RS15] provide

evidence for the claim that many published bounds have poor dependence on n and p, the statistics

literature has not focused on controlling the complexity order on n and p. We give some intuition why

most directly translated complexity bounds are quite loose and provide advice on how to obtain tight

complexity bounds for high-dimensional Markov chains. The key ideas are (1) the drift function should

“capture” the posterior modes as n and/or p goes to infinity and (2) “bad” states which have poor drift

property when n and/or p gets large should be ruled out when establishing the drift condition. In order

to get tight complexity bounds, we propose a modified drift-and-minorization approach by establishing a

generalized drift condition for a subset of the state space, which is called the “large set”, instead of the

whole state space; see Section 2.1. The “large set” is chosen to rule out some “bad” states which have

poor drift property when the dimension gets large. By establishing the generalized drift condition, a new

quantitative bound is obtained, which is composed of two parts. The first part is an upper bound on the

probability the Markov chain will visit the states outside of the “large set”; the second part is an upper

bound on the total variation distance of a constructed restricted Markov chain defined only on the “large

set”. In order to obtain good complexity bounds for high-dimensional settings, the drift function should

be chosen to “capture” the posterior modes (this is called a “centered” drift function in [QH17]), and the

“large set” should be adjusted depending on n and p to balance the complexity order of the two parts.

As a demonstration, we prove that a certain realistic Gibbs sampler algorithm converges in O(1)

iterations. To be more specific, we prove that when the dimension of the model is large, the number

of iterations which guarantees small distance of the Gibbs sampler to stationarity is upper bounded by

some constant which does not depend on the dimension of the model; see Theorem 2.2.6. As far as

we know, this is the first successful example for analyzing the convergence complexity of a non-trivial

realistic MCMC algorithm using the (modified) drift-and-minorization approach. Several months after

we uploaded this manuscript to arXiv, Qin and Hobert [QH17] successfully analyzed another realistic

MCMC algorithm using the drift-and-minorization approach. Although the analysis by Qin and Hobert

[QH17] does not make use of the “large set” technique proposed in this chapter, they do make use of
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a “centered” drift function. We explain in this chapter that when there exists some “bad” states, using

a “centered” drift function might not be enough to establish a tight complexity bound. For example,

for the Gibbs sampler we analyze in this work, we could not obtain tight complexity bound by the

traditional drift-and-minorization approach even if the drift function is “centered”. In this sense, even

the Gibbs sampler analyzed in this work is a specific example, the analysis of its convergence complexity

is technically more difficult than the example in [QH17]. Our modified drift-and-minorization method

combining the “large set” technique with “centered” drift function provides a flexible tool for analyzing

convergence complexity. It is our hope that this modified drift-and-minorization method of proof in

Section 2.1 can be employed to other specific examples for obtaining quantitative bounds that can be

translated to complexity bounds in high-dimensional settings.

1.5.2 Chapter 3

The optimal scaling framework [RGG97; RR98; RR01] is one of the most successful and practically useful

ways of performing asymptotic analysis of MCMC methods in high-dimensions. Optimal scaling results

(e.g. [CRR05; NR06; Béd08; BR08; NR08; NR11; NRY12; JLM15; JLM14; RR14; ZBK17]) facilitate

optimization of MCMC performance by providing clear and mathematically-based guidance on how to

tune the parameters defining the proposal distribution for Metropolis–Hastings algorithms [Met+53;

Has70]. For instance, classical results include tuning the acceptance probabilities to 0.234 for random-walk

Metropolis algorithm (RWM) [RGG97] and 0.574 for Metropolis-adjusted Langevin algorithm (MALA)

[RR98]. Moreover, optimal scaling results have been used to analyze and compare a wide variety of MCMC

algorithms, such as Hamiltonian Monte Carlo (HMC) [Bes+13], Pseudo-Marginal MCMC [She+15],

multiple-try MCMC [BDM12]. This yields guidance which is widely used by practitioners, especially via

self-tuning or Adaptive MCMC methodologies [AT08; Ros11].

In the original paper, Roberts, Gelman, and Gilks [RGG97] dealt with the RWM algorithm starting

in stationarity for target distributions which have i.i.d. product forms. The i.i.d. condition for the target

and the assumption for the chain to start in stationarity are two main limitations of the optimal scaling

framework. Particularly, the product i.i.d. condition is very restrictive. From a practitioner’s perspective,

target distributions of the i.i.d. forms are too limited a class of probability distributions to be useful, since

they can be tackled by sampling a single one-dimensional target due to the product structure. To this

day, optimal scaling results have mainly been proved for target distributions with a product structure,

which severely limits their applicability. On the other hand, practitioners use these tuning criteria far

outside the class of target distributions of product i.i.d. forms. For example, extensive simulations [RR01;

SFR10] show that these optimality results also hold for more complex target distributions.

There exists only a few extensions for correlated targets and most of them are derived for very specific

models. For example, Breyer and Roberts [BR00] studied target densities which are Gibbs measures and

Roberts and Rosenthal [RR01] studied inhomogeneous target densities. Breyer, Piccioni, and Scarlatti

[BPS04] studied target distributions arising in nonlinear regression and have a mean field structure. Neal

and Roberts [NR06] considered the case where updates of high-dimensional Metropolis algorithms are

lower dimensional than the target density itself. Later, Bédard and Rosenthal [BR08] studied independent

targets with different scales (see also [Béd07; Béd08]) and Bédard [Béd19] studied a special family

of hierarchical target distributions. Neal and Roberts [NR08] studied spherically constrained target

distributions and non-Gaussian proposals [NR11]. Sherlock and Roberts [SR09] considered elliptically

symmetric unimodal targets. Neal, Roberts, and Yuen [NRY12] studied densities with bounded support.
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Durmus et al. [Dur+17] considered target distributions which are differentiable in Lp mean. Recently,

Mattingly, Pillai, and Stuart [MPS12] studied diffusion limits for a class of high-dimensional measures

found from the approximation of measures on a Hilbert space which are absolutely continuous with respect

to a Gaussian reference measure (See also [PST12; BRS09; Bes+08; Cot+13]). Important examples of

this scenario required by [MPS12] in uncertainty quantification problems are given in [HMS11; Stu10;

Che+18]. However, in this chapter we shall concentrate on the situation where absolute continuity

with respect to a Gaussian is not a reasonable assumption, as is the case in many Bayesian statistics

applications.

Furthermore, we do not consider the transient phase of the Metropolis–Hasting algorithms in this

work. The transient phase of high-dimensional Metropolis–Hasting algorithms are studied for example

in [CRR05; JLM14; JLM15; KOS18; KOS19]. Kuntz, Ottobre, and Stuart [KOS19] studied the RWM

algorithm starting out of stationarity in the settings of [MPS12; JLM15] when non-product target

distributions are defined in a Hilbert space being absolute continuous with respect to some Gaussian

measures. Such target distributions in [KOS19] can arise for example in Bayesian nonparametric settings,

but not in many other Bayesian statistics applications which we focus on in this work.

In this chapter, we consider optimal scaling of RWM algorithms on general target distributions in

high dimensions arising from realistic MCMC models [YRR19]. First, for optimal scaling by maximizing

expected squared jumping distance (ESJD), we show the asymptotically optimal acceptance rate 0.234

can be obtained under general sufficient conditions on the target distribution. Very briefly speaking,

0.234 is asymptotically optimal if (i) each coordinate of the Markov chain is only strongly dependent

with a subset of other coordinates (see assumptions A1 and A3); (ii) the target distribution satisfies some

smoothness conditions (see assumptions A2 and A4); (iii) as the dimension goes to infinity, a key quantity

of “roughness” of the target concentrates to a nonzero value (see assumption A5). The new sufficient

conditions are easy to check in practice and may hold for some general classes of realistic MCMC models.

Our results substantially generalize the commonly used product i.i.d. condition. Furthermore, we show

one-dimensional diffusion limits can also be obtained under relaxed conditions which still allow dependent

coordinates of the target distribution. Finally, we also connect the new results of diffusion limits to

complexity bounds of RMW algorithms in high dimensions.

The chapter is organized as follows. In Section 3.1, we give a brief background review of optimal

scaling for Metropolis–Hastings algorithms and complexity bounds via diffusion limits. In Section 3.2, we

present our main results, which include three parts: optimal scaling by maximizing ESJD, optimal scaling

via diffusion limits, and complexity bounds via diffusion limits. In Section 3.3, we demonstrate the new

optimal scaling result holds for some realistic MCMC models. In Section 3.4.1, we prove Theorem 3.2.10,

which is one of our main results. The proofs of lemmas used for proving Theorem 3.2.10 and other main

results, such as Theorems 3.2.19 and 3.2.21, are delayed to Sections 3.4.2, 3.4.3 and 3.4.5.

1.5.3 Chapter 4

Faced with a decision under uncertainty, where each course of action α ∈ A incurs an unknown loss L̄(α),

the Bayesian decision-theoretic approach treats the unknown losses L̄(α), α ∈ A, as random variables,

whose joint distribution represents the statistician’s subjective uncertainty in mathematical form. In

light of additional evidence, modeled by additional random variables defined on the same probability

space, the Bayesian chooses an action α that minimizes the conditional expectation of L̄(α).

In practice, the Bayesian’s task of representing their uncertainty in terms of random variables modeling
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losses and evidence is formidable. (We will refer to a probability distribution over losses and evidence

as a belief distribution.) Even given a belief distribution, one often faces an intractable computation

trying to identify the action that minimizes the conditional expected loss. Approximations at each stage

can have serious real-world consequences. Closing this gap between the theory and practice of Bayesian

decision theory is the single greatest problem facing its development.

In this work, we focus on the problem of Bayesian misspecification, where one cannot produce a belief

distribution that matches one’s subjective uncertainty. There is a large literature on this problem with a

host of prescriptions [Ber66; Che85; BM98; GPW01; Wal02; RT03; Mül13; MD15; PV17].

To address the challenge of Bayesian misspecification, we take the stance that the Bayesian’s belief

distribution is, in practice, chosen among alternatives, rather than determined. We then cast this

decision back into the framework of Bayesian decision theory. The resulting framework—which we call

meta-Bayesianism—is the study of pairs of belief distributions, one presumed to describe our actual

subjective beliefs, and the other misspecified or thrust upon us, yet ultimately constraining the decisions

we will make in light of evidence. This perspective on belief distributions can be seen as a formalization

of pragmatism: the optimal belief distribution is that which leads to decisions that minimize our expected

loss, relative to our actual subjective beliefs. Put simply, an optimal belief distribution leads us to make

the best possible decisions, even if it does not represent our subjective beliefs accurately. Crucially, this

perspective allows for nonoptimality: the choice to cut short or approximate the process of forming a

belief distribution can be justified on the grounds that one believes the gap is unlikely to have a large

impact on our loss.

Performing a meta-Bayesian analysis is, in general, no easier than performing a Bayesian analysis with

respect to one’s actual subjective beliefs. Therefore, the central goal of meta-Bayesian decision theory is

to identify broadly applicable theorems that guide the practical development of belief distributions. Such

results would give us a better understanding of the role of belief distributions in statistical practice, and

would represent a significant contribution to the theoretical foundations of Bayesian decision theory.

Ultimately, we may not only be concerned with expected loss, but also with the computational

resources consumed in the process of decision making. These and other criteria can be incorporated into

the meta-Bayesian framework. In addition to providing a way to choose optimal belief distributions, our

framework allows us to evaluate the optimality of existing ad-hoc choices of commonly used priors, and

to understand the limitations of Bayesian inference under misspecification.

In this chapter, we present early results in meta-Bayesian analysis for the problem of choosing an

optimal prior for a misspecified model. In Section 4.2, we first introduce some preliminary results,

including Bayesian decision theory in a more general setting. In Section 4.3.1, we give a formal definition

of meta-Bayesian decision principle and in Section 4.3.2, we introduce a particular setting for meta-

Bayesian analysis for prediction tasks. In Section 4.3.3, we consider meta-Bayesian decision problem

for choosing prior in the prediction setting. We demonstrate how the loss function under consideration

affects the definition of the optimal surrogate prior. For example, under the classic self-information loss

(i.e., log loss), the optimal surrogate prior minimizes the conditional relative entropy [Gra90], while, under

the quadratic loss, the optimal surrogate prior minimizes the expected quadratic distance between the

true and model posterior means. We also discuss sufficient conditions for a surrogate prior to be optimal.

In Section 4.3.4, we consider general cases when the belief is a mixture of i.i.d. distributions. We show

that, under certain conditions, the belief on the asymptotic “locations” of the posterior distributions

is indeed an asymptotically optimal prior, which supports the heuristics from the existing results by
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[Ber66] on asymptotic behavior of posterior distributions. Finally, in Section 4.3.5 and Section 4.3.6,

we study a specific example in the setting of the i.i.d. Bernoulli model versus more general beliefs on

binary sequence. For example, for the case of i.i.d. Bernoulli sequences, under the log loss, the optimal

surrogate prior only depends on the first n+ k moments of the prior belief, where n denotes the number

of data points you plan to observe and k denotes the number of predictions you expect to make. We also

prove that, for the i.i.d Bernoulli model versus any belief on binary sequence, under some conditions, the

marginal prior belief on the limiting frequency of ones is asymptotically optimal when the number of

predictions you expect to make goes to infinity.

1.5.4 Chapter 5

PAC-Bayes theory [McA99; STW97] was developed to provide probably approximately correct (PAC)

guarantees for supervised learning algorithms whose outputs can be expressed as a weighted majority

vote. Its uses have expanded considerably since [LLST13; AB07; Bég+16; Ger+16; Thi+16; GM19;

SL17; Gue19]. See [Lan05; Erv14; McA13] for gentle introductions. Indeed, there has been a surge of

interest and work in PAC-Bayes theory and its application to large-scale neural networks, especially

towards studying generalization in overparametrized neural networks trained by variants of gradient

descent [DR17; DR18a; DR18b; NBS17; Ney+17; Lon17].

PAC-Bayes bounds are one of several tools available for the study of the generalization and risk

properties of learning algorithms. One advantage of the PAC-Bayes framework is its ease of use: one

can obtain high-probability risk bounds for arbitrary (“posterior”) Gibbs classifiers provided one can

compute or bound relative entropies with respect to some fixed (“prior”) Gibbs classifier. Another tool

for studying generalization is Rademacher complexity, a distribution-dependent complexity measure for

classes of real-valued functions [BM02; KP02; BBM05; LRS15; Men14; ZH18].

The literature on PAC-Bayes bounds and bounds based on Rademacher complexity are essentially

disjoint. One point of contact is the work of Kakade, Sridharan, and Tewari [KST08], which builds

the first bridge between PAC-Bayes theory and Rademacher complexity. By viewing Gibbs classifiers

as linear operators and relative entropy as a strictly convex regularizer, they were able to use their

general Rademacher complexity bounds on strictly convex linear classes to develop a slightly sharper

version of McAllester’s PAC-Bayes bound [McA99]. This result offers new insight on PAC-Bayes theory,

including potential roles for data-dependent complexity estimates and stability. However, even within

the PAC-Bayes community, this result is relatively unknown.

While the PAC-Bayes bound established by Kakade, Sridharan, and Tewari improves on McAllester’s

bound, it still converges at a slow 1/
√
m rate, where m denotes the number of data used to form the

empirical risk estimate. This observation raises the question of whether one can match state-of-the-art

PAC-Bayes bounds via a Rademacher-process argument. In particular, can one match Catoni’s bound

[Cat07, Thm. 1.2.6], which can obtain a fast 1/m rate of convergence?

There is an extensive literature on the problem of obtaining fast 1/m rates of convergence for the

generalization error of (approximate) empirical risk minimization (ERM). Available approaches include

the use of local Rademacher complexity [BBM05; Kol06], shifted empirical processes [LM12], offset

Rademacher complexities [LRS15], and local empirical entropy [ZH18]. See also [MN06; GK06; HY15;

Han16; LM13; Men17] and [van+15] for an extensive survey. To date, these techniques have not been

connected to PAC-Bayesian theory, which presents the opportunity to obtain new PAC-Bayes theory for

ERM.
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In this chapter, we extend the bridge between Rademacher process theory and PAC-Bayes theory by

constructing new bounds using Rademacher process techniques [YSR19]. Among our contributions:

1. We show how to recover Catoni’s fast-rate PAC-Bayes bound [Cat07], up to constants, using tail

bounds on shifted Rademacher processes, which are special cases of shifted empirical processes

[Weg03; LM12; ZH18]; See Section 5.2.

2. We derive a new fast-rate PAC-Bayes bound, building on our shifted-Rademacher-process approach.

This bound is determined by the “flatness” of the empirical risk surface on which the posterior

Gibbs classifier concentrates. The notion of “flatness” is inspired by the proposal by Dziugaite and

Roy [DR17] to formalize the empirical connection between “flat minima” and generalization using

PAC-Bayes bounds; See Section 5.3.

3. More generally, we introduce a new approach to derive fast-rate PAC-Bayes bounds and, in turn,

offer new insight on PAC-Bayesian theory.



Chapter 2

Complexity results for MCMC

derived from quantitative bounds

This chapter considers how to obtain MCMC quantitative convergence bounds which can be translated

into tight complexity bounds in high-dimensional settings. We propose a modified drift-and-minorization

approach, which establishes a generalized drift condition defined in a subset of the state space. The subset

is called the “large set”, and is chosen to rule out some “bad” states which have poor drift property when

the dimension gets large. Using the “large set” together with a “centered” drift function, a quantitative

bound can be obtained which can be translated into a tight complexity bound. As a demonstration, we

analyze a certain realistic Gibbs sampler algorithm and obtain a complexity upper bound for the mixing

time, which shows that the number of iterations required for the Gibbs sampler to converge is constant

under certain conditions on the observed data and the initial state. It is our hope that this modified

drift-and-minorization approach can be employed in many other specific examples to obtain complexity

bounds for high-dimensional Markov chains.

2.1 Generalized geometric drift conditions and large sets

We use
d−→ for weak convergence and π(·) to denote the stationary distribution of the Markov chain. The

total variation distance is denoted by ‖ · ‖var and the law of a random variable X denoted by L(X).

We adopt the Big-O, Little-O, Theta, and Omega notations. Formally, T (n) = O(f(n)) if and only

if for some constants c and n0, T (n) ≤ cf(n) for all n ≥ n0; T (n) = Ω(f(n)) if and only if for some

constants c and n0, T (n) ≥ cf(n) for all n ≥ n0; T (n) is Θ(f(n)) if and only if both T (n) = O(f(n))

and T (n) = Ω(f(n)); T (n) = o(f(n)) if and only if T (n) = O(f(n)) and T (n) 6= Ω(f(n)).

Scaling classical MCMCs to very high dimensions can be problematic. Even if a chain is geometrically

ergodic for fixed n and p, the convergence of Markov chains may still be quite slow as p→∞ and n→∞.

For a Markov chain {X(i), i = 0, 1, . . . } on a state space (X ,B) with transition kernel P (x, ·), defined by

P (x,B) = P(X(i+1) ∈ B |X(i) = x), ∀x ∈ X , B ∈ B (2.1)

12
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the general method of [Ros95a] proceeds by establishing a drift condition

E(f(X(1)) |X(0) = x) ≤ λf(x) + b, ∀x ∈ X , (2.2)

where f : X → R+ is the “drift function”, some 0 < λ < 1 and b <∞; and an associated minorization

condition

P (x, ·) ≥ εQ(·), ∀x ∈ R, (2.3)

where R := {x ∈ X : f(x) ≤ d} is called the “small set”, and d > 2b/(1− λ), for some ε > 0 and some

probability measure Q(·) on X . Then [Ros95a, Theorem 12] states that under both drift and minorization

conditions, if the Markov chain starts from an initial distribution ν, then for any 0 < r < 1, we have

‖L(X(k))− π‖var ≤ (1− ε)rk + α−k(αΛ)rk
[
1 + Eν(f(x)) +

b

1− λ

]
, (2.4)

where α−1 = 1+2b+λd
1+d , Λ = 1 + 2(λd + b) and Eν [f(x)] denotes the expectation of f(x) over x ∼ ν(·).

However, it is observed, for example, in [RS15; QH17], that for many specific bounds obtained by the

drift-and-minorization method, when the dimension gets larger, the typical scenario for the drift condition

of Eq. (2.2) seems to be λ going to one, and/or b getting much larger. This makes the “size” of the small

set R grow too fast, which leads to the minorization volume ε go to 0 exponentially fast. In the following,

we give an intuitive explanation of what makes a “good” drift condition in high-dimensional settings.

2.1.1 Intuition

It is useful to think of the drift function f(x) as an energy function [JH01]. Then the drift condition

in Eq. (2.2) implies the chain tends to “drift” toward states which have “lower energy” in expectation.

It is well-known that a “good” drift condition is established when both λ and b are small. Intuitively,

λ being small implies that when the chain is in a “high-energy” state, then it tends to “drift” back to

“low-energy” states fast; and b being small implies that when the chain is in a “low-energy” state, then it

tends to remain in a “low-energy” state in the next iteration too. In a high-dimensional setting as the

dimension grows to infinity, for a collection of drift conditions to be “good”, we would like it to satisfy

the following two properties:

P1. λ is small, in the sense that it converges to 1 slowly or is bounded away from 1;

P2. b is small, in the sense that it grows at a slower rate than do typical values of the drift function.

One way to understand this intuition is to think of it as controlling the complexity order of the size of

the “small set”, R = {x ∈ X : f(x) ≤ d}. Since d > 2b/(1− λ), if λ converges to 1 slowly or is bounded

away from 1, and if b is growing at a slower rate than typical values of f(x), then the size of the small

set parameter d can be chosen to have a small complexity order on n and/or p. This in turn makes the

minorization volume ε converge to 0 sufficiently slowly (or even remain bounded away from 0).

Next, we provide some advice on how to establish such a “good” drift condition in high-dimensional

settings.

For clarity, we first assume that λ is bounded away from 1, and focus on conditions required for b to

grow at a slower rate than typical values of f(x). Assume for definiteness that p is fixed and n →∞,
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and the drift function is scaled in such a way that f(x) = O(1) and there is a fixed typical state x̃ with

f(x̃) = Θ(1) regardless of dimension. Then, to satisfy property P2 above, we require that b = o(1). On

the other hand, taking expectation over x ∼ π(·) on both sides of Eq. (2.2) yields b ≥ Eπ[f(x)]/(1− λ),

so b = Ω(Eπ[f(x)]). To make b = o(1) implies that the drift function should be chosen such that

Eπ[f(x)]→ 0.

Therefore, to get a small b in a high-dimensional setting, we require a (properly scaled) drift function f(·)
whose values f(x), where x ∼ π(·), concentrate around 0. In particular, if the stationary distribution π(·)
concentrates near multiple modes as n → ∞, then to make Eπ[f(x)] → 0, we require a drift function

which “captures” the modes in the sense of nearly vanishing near them. In this work, we use the name

“centered” drift functions [QH17] to denote drift functions that “capture” the modes of the stationary

distribution π(·) in this sense.

Note that in the literature, the drift functions used to establish the drift condition are usually not

“centered”. This is because in the traditional setting where n and p are fixed, a “good” drift condition

is established whenever λ and b are small enough for specific fixed values of n and p. The complexity

orders of λ and b as functions of n and/or p are not essential, so the property of “capturing” the posterior

modes is not necessary for establishing a good drift condition. As a result, many existing quantitative

bounds cannot be directly translated into tight complexity bounds, since the size of the small set does

not have a small complexity order on n and/or p. At the very least, one has to re-analyze such MCMC

algorithms using “centered” drift functions.

Next, we focus on establishing λ that is either bounded away from 1 or converges to 1 slowly, assuming

the drift function is already chosen to be “centered”. Intuitively, λ describes the behavior of the Markov

chain when its current state has a “high energy”. If λ goes to 1 very fast when n and/or p goes to infinity,

this may suggest the existence of some “bad” states, i.e. states which have “high energy”, but the drift

property becomes poor as n and/or p gets large. Therefore, in high dimensions, once the Markov chain

visits in one of these “bad” states, it only slowly drifts back toward to the corresponding small set. Since

the drift condition in Eq. (2.2) must hold for all x ∈ X , the existence of “bad” states forces λ go to

1 very fast. And since the small set is defined as R = {x ∈ X : f(x) ≤ d} where d > 2b/(1 − λ), the

scenario λ→ 1 very fast forces R to become very large, and hence the minorization volume ε goes to zero

very fast. One perspective on this problem is that the definition of drift condition in Eq. (2.2) is too

restrictive, since it must hold for all states x, even the bad ones.

In summary, we are able to establish a small b as in P2 above by simply using a “centered” drift

function. However, the main difficulty in establishing a small λ as in P1 above is the existence of

some “bad” states when n and/or p gets large. Since the traditional drift condition defined in Eq. (2.2)

is restrictive, the traditional drift-and-minorization method is not flexible enough to deal with these

“bad” states. In this following, we instead propose a modified drift-and-minorization approach using a

generalized drift condition, where the drift function is defined only in a “large set”. This allows us to

rule out those “bad” states in high-dimensional cases.

2.1.2 New quantitative bound

We first relax the traditional drift condition and define a generalized drift condition which is established

only on a subset of the state space. Let {X(k)} be a irreducible Markov chain on a state space (X ,B)
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with a transition kernel P (x, ·),∀x ∈ X , P k(x, ·) be the k-step transition kernel and π be the stationary

distribution of the Markov chain. Denote R0 as the “large set”, i.e., R0 ∈ B is a subset of X .

Definition 2.1.1. (Generalized drift condition on a large set) There exists a drift function f : X → R+

such that for some λ < 1 and b <∞,

E(f(X(1)) |X(0) = x) ≤ λf(x) + b, ∀x ∈ R0, (2.5)

and (C1) or (C1’) holds.

(C1). The “large set” R0 is defined by R0 = {x ∈ X : f(x) ≤ d0} for some d0 > 0.

(C1’). The transition kernel P (x, ·) can be written as a composition of reversible steps P =
∏I
i=1 Pi, i.e.

, P (x,dy) =
∫

(x1,...,xI−1)∈X×···×X P1(x,dx1)P2(x1,dx2) · · ·PI(xI−1,dy), where I ≥ 1 is a fixed integer,

and

E(f(X̃(1)) | X̃(0) = x) ≤ E(f(X(1)) |X(0) = x), ∀x ∈ R0, (2.6)

where {X̃(k)} denotes a restricted Markov chain with a transition kernel
∏I
i=1 P̃i where P̃i(x,dy) :=

Pi(x, dy) for x, y ∈ R0, x 6= y, and P̃i(x, x) := 1− Pi(x,R0\{x}),∀x ∈ R0.

Remark 2.1.2. Note that only one of (C1) and (C1’) is required. For (C1’), the Markov chain needs to

be either reversible or can be written as a composition of reversible steps. This condition is very mild

since it is satisfied by most realistic MCMC algorithms. For example, full-dimensional and random-scan

Metropolis-Hastings algorithms and random-scan Gibbs samplers are reversible, and their deterministic-

scan versions can be written as a composition of reversible steps. For (C1), it is required that the “large

set” is constructed using the drift function in a certain way but there is no restriction for the transition

kernel P . If R0 is constructed as in (C1) then Eq. (2.6) automatically holds. Therefore, one should

verify (C1’) if one hopes to have more flexibility for constructing R0 than the particular way in (C1).

Particularly, if the drift function f(x) depends on all coordinates, it might be hard to control all the

states in {x ∈ X : f(x) ≤ d0} as the dimension increases. Then (C1’) might be preferable.

Remark 2.1.3. To verify (C1’) in Definition 2.1.1, one has to check a new inequality E(f(X̃(1)) | X̃(0) =

x) ≤ E(f(X(1)) |X(0) = x). This inequality in (C1’) implies the “large set” R0 should be chosen such

that the states in R0 have “lower energy” on expectation. This is intuitive since we assume the “bad”

states all have “high energy” and poor drift property when n and/or p gets large. One trick is to

choose R0 by ruling out some (but not too many) states with “high energy” even if the states are

not “bad”. In Section 2.2, we demonstrate the use of this trick to select the “large set” R0 so that

E(f(X̃(1)) | X̃(0) = x) ≤ E(f(X(1)) |X(0) = x) can be easily verified. The constructed R0 in Section 2.2

satisfies (C1’) but not (C1).

Next, we propose a new quantitative bound, which is based on the generalized drift condition on a

“large set”.

Theorem 2.1.4. Suppose the Markov chain satisfies the generalized drift condition in Definition 2.1.1

on a “large set” R0. Furthermore, for a “small set” R := {x ∈ X : f(x) ≤ d} where d > 2b/(1− λ), the

Markov chain also satisfies a minorization condition:

P (x, ·) ≥ εQ(·), ∀x ∈ R, (2.7)
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for some ε > 0, some probability measure Q(·) on X . Finally, suppose the Markov chain begins with an

initial distribution ν such that ν(R0) = 1. Then for any 0 < r < 1, we have

‖L(X(k))− π‖var ≤ (1− εQ(R0))rk +
(αΛ)rk

[
1 + Eν [f(x)] + b

1−λ

]
− αrk

αk − αrk

+ k π(Rc0) +

k∑
i=1

P i(ν,Rc0),

(2.8)

where α−1 = 1+2b+λd
1+d , Λ = 1 + 2(λd+ b).

Proof. See Section 2.3.1.

Remark 2.1.5. Note that the new bound in Theorem 2.1.4 assumes the Markov chain begins with an

initial distribution ν such that ν(R0) = 1. This assumption is not very restrictive since the “large set”

ideally should include all “good” states. In high-dimensional settings, the Markov chain is not expected

to converge fast beginning with any state (see Section 2.2.2 for discussions on initial states). For the

term Q(R0) in Eq. (2.8), it can be replaced by any lower bound of Q(R0). Since the “large set” is ideally

chosen to include all “good” states, one can expect Q(R0) is at least bounded away from 0. In particular,

if we have established an upper bound for P (x,Rc0) with x ∈ R, then we can apply εQ(Rc0) ≤ P (x,Rc0)

to get an upper bound of Q(Rc0) which can be turned into a lower bound on Q(R0).

Remark 2.1.6. In the proof of Theorem 2.1.4, the generalized drift condition in Definition 2.1.1 essentially

implies a traditional drift condition in Eq. (2.2) for a constructed “restricted” Markov chain only on the

“large set” R0. The first two terms in the upper bound Eq. (2.8) are indeed an upper bound on the total

variation distance of this constructed “restricted” Markov chain. Note that the general idea of studying

the restriction of a Markov chain to some “good” subset of the state space has appeared in the literature,

such as [MR00; DF03; Jer+04; Eft+16; MS17; RS18; MARS19] and the references therein, in which

different ways of restrictions have been considered for different reasons. For example, Bou-Rabee and

Hairer [BRH13] studied the rate of convergence of the MALA algorithm by a similar argument, which

is later extended in [Ebe14] to study contraction rate in Wasserstein distance w.r.t. Gaussian reference

measure. However, the argument in [BRH13] is only for the MALA algorithm and the proof technique is

by constructing a restricted chain. Comparing with [BRH13], our Theorem 2.1.4 is for general MCMC

algorithms with weaker conditions in (C1) and (C1’). In the proof, we use either a trace chain or a

restricted chain depending on which condition is satisfied. Most importantly, the motivation of this work

is to obtain tight complexity bound which is quite different from [BRH13]. In Theorem 2.1.4, the goal of

considering a “good” subset of the state space is to obtain better control on the dependence on n and p

for the upper bound.

Remark 2.1.7. The last two terms in the upper bound Eq. (2.8) give an upper bound of the probability

that the Markov chain will visit Rc0 starting from either the initial distribution ν or the stationary

distribution π. Therefore, the proposed method in Theorem 2.1.4 is a generalized version of the classic

drift-and-minorization method [Ros95a] by allowing the drift condition is established on a chosen “large

set”. Indeed, if we choose R0 = X , then Eq. (2.8) is almost the same as Eq. (2.4), except slightly tighter

due to the terms αrk.

Remark 2.1.8. One more note about Eq. (2.8) is that the new bound does not decrease exponentially

with k. For example, the term k π(Rc0) is linear increasing with k for fixed n and p. We emphasize that
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we do not aim to prove a Markov chain is geometrically ergodic here. An upper bound which decreases

exponentially with k for fixed n and p does not guarantee to have a tight complexity order on n and/or

p, which has been discussed in [RS15]. Instead, our new bound in Eq. (2.8) is designed for controlling

complexity orders of n and/or p for high-dimensional Markov chains.

Remark 2.1.9. The Markov chain to be analyzed in Theorem 2.1.4 does not have to be geometrically

ergodic. The proof of Eq. (2.8) only implies that, after ruling out “bad” states, a constructed “restricted”

Markov chain defined on the “large set” is geometrically ergodic. Therefore, technically speaking, the new

bound in Eq. (2.8) can be used to analyze non-geometrically ergodic high-dimensional Markov chains.

2.1.3 Complexity bound

The proposed new bound in Theorem 2.1.4 can be used to obtain complexity bounds in high-dimensional

settings. The key is to balance the complexity orders of k on n and/or p required for both the first two

terms and the last two terms of the upper bound in Eq. (2.8) to be small. The complexity order of k on

n and/or p for the first two terms to be small can be controlled by adjusting the “large set”. The “large

set” should be kept as large as possible provided that “bad” states have been ruled out. For the last two

terms to be small, we should determine the growth rate of k as a function of n and p so that

k π(Rc0) +

k∑
i=1

P i(ν,Rc0)→ 0. (2.9)

This may involve (carefully) bounding the tail probability of the transition kernel, depending on the

definition of the “large set” and the complexity order aimed to establish.

In the next section, we employ the modified drift-and-minorization method to prove a certain realistic

Gibbs sampler algorithm converges in O(1). We first choose a particular “centered” drift function f(x)

and identify the “bad” states. In our Gibbs sampler example, one coordinate of the state x corresponds

to one particular parameter of the MCMC model, and the “bad” states correspond to those whose value

of this particular parameter is close to zero. Then we define the “large set” by ruling out the “bad” states.

This allow us to obtain a quantitative bound using Theorem 2.1.4. Finally, under high-dimensional

settings, the obtained quantitative bound can be translated into a complexity bound, which shows that

the mixing time of the Gibbs sampler is O(1). Note that mixing time is often defined uniformly over

initial states, which is difficult to extend to general state spaces. In this work, the term “mixing time” is

defined depending on the initial state. The formal definition is given in the following.

Definition 2.1.10. For any 0 < c < 1, we define the mixing time Kc of a Markov chain {X(k)} with

initial state x by

Kc := arg min
k

{
‖L(X(k))− π‖var ≤ c

}
such that X(0) = x. (2.10)
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2.2 Gibbs sampler convergence bound

We concentrate on a particular MCMC model, which is related to the James-Stein estimators [Ros96]:

Yi | θi ∼ N (θi, V ), 1 ≤ i ≤ n,

θi | µ,A ∼ N (µ,A), 1 ≤ i ≤ n,

µ ∼ flat prior on R,

A ∼ IG(a, b),

(2.11)

where V is assumed to be known, (Y1, . . . , Yn) is the observed data, and x = (A,µ, θ1, . . . , θn) are

parameters. Note that we have the number of parameters p = n+ 2 in this example. For simplicity, we

will not mention p but only refer to n for this model. The posterior distribution satisfies

π(·) = L(A,µ, θ1, . . . , θn | Y1, . . . , Yn)

∝ ba

Γ(a)
A−a−1e−b/A

n∏
i=1

1√
2πA

e−
(θi−µ)

2

2A
1√

2πV
e−

(Yi−θi)
2

2V .
(2.12)

A Gibbs sampler for the posterior distribution of this model has been originally analyzed in [Ros96]. A

quantitative bound has been derived by Rosenthal [Ros96] using the drift-and-minorization method with

a drift function f(x) =
∑n
i=1(θi − Ȳ )2 where Ȳ = 1

n

∑n
i=1 Yi. We first observe that this drift function

is not “centered”. For example, select a “typical” state x̃ = (Ã, µ̃, θ̃1, . . . , θ̃n) such that θ̃i = Yi, we

get f(x̃) =
∑n
i=1(Yi − Ȳ )2. Under reasonable assumptions on the observed data {Yi}, we can get the

properly scaled drift function 1
nf(x̃) = 1

n

∑n
i=1(Yi − Ȳ )2 = Θ(1). Then if the drift function is “centered”,

we hope the established b satisfies b/n = o(1). However, b/n = 1
n

∑n
i=1(Yi − Ȳ )2 + n+1/4

n V = Θ(1) in

[Ros96]. Furthermore, the established λ in [Ros96] converges to 1 very fast, satisfying 1/(1− λ) = Ω(n).

Therefore, if we translate the quantitative bound in [Ros96] into complexity orders, it requires the size of

the “small set” R be Ω(n2), which makes the minorization volume ε be exponentially small. This leads

to upper bounds on the distance to stationarity which require exponentially large number of iterations to

become small. This result also coincides with the observations by Rajaratnam and Sparks [RS15] when

translating the work of Khare and Hobert [KH13] and Choi and Hobert [CH13].

We demonstrate the use of the modified drift-and-minorization approach by analyzing a Gibbs sampler

for this MCMC model. Defining x(k) = (A(k), µ(k), θ
(k)
1 , . . . , θ

(k)
n ) to be the state of the Markov chain

at the k-th iteration, we consider the following order of Gibbs sampling for computing the posterior

distribution:

µ(k+1) ∼ N
(
θ̄(k),

A(k)

n

)
,

θ
(k+1)
i ∼ N

(
µ(k+1)V + YiA

(k)

V +A(k)
,
A(k)V

V +A(k)

)
, i = 1, . . . , n,

A(k+1) ∼ IG

(
a+

n− 1

2
, b+

1

2

n∑
i=1

(θ
(k+1)
i − θ̄(k+1))2

)
.

(2.13)

We prove that convergence of this Gibbs sampler is actually very fast: the number of iterations required

is O(1). More precisely, we first make the following assumptions on the observed data {Yi}: there exists

δ > 0, V̄ < ∞, and a positive integer N0, such that, almost surely with respect to the randomness of
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{Yi}:

V + δ ≤
∑n
i=1(Yi − Ȳ )2

n− 1
≤ V̄ , ∀n ≥ N0. (2.14)

Remark 2.2.1. The assumption in Eq. (2.14) is quite natural. The upper bound is just to ensure∑n
i=1(Yi − Ȳ )2 = O(n). For the lower bound, note that our MCMC model implies that the variance of

Yi is larger than V because of the uncertainty of θi. Actually, under the MCMC model, conditional on

the parameter A, the variance of the data {Yi} equals V +A. Therefore, the assumption in Eq. (2.14) is

just to assume the observed data is not abnormal under the MCMC model when n is large enough. Note

that only the existence of δ is required for establishing our main results. More precisely, the existence of

δ is needed to obtain an upper bound for π(Rc0). If such δ does not exist, the MCMC model is (seriously)

misspecified so the posterior distribution of the parameter A, which corresponds to the variance of a

Normal distribution, may concentrate on 0. In that case, our upper bound on π(Rc0) does not hold.

Then we show that, under the assumption Eq. (2.14), with initial state

θ̄(0) = Ȳ , A(0) =


∑n
i=1(Yi−Ȳ )2

n−1 − V, if
∑n
i=1(Yi−Ȳ )2

n−1 > V,∑n
i=1(Yi−Ȳ )2

n−1 , otherwise,
(2.15)

and µ(0) arbitrary (since µ(0) will be updated in the first step of the Gibbs sampler), the mixing time

of the Gibbs sampler to guarantee small total variation distance to stationarity is bounded by some

constant when n is large enough.

2.2.1 Main Results

First, we obtain a quantitative bound for large enough n, which is given in the following theorem.

Theorem 2.2.2. Under the assumption Eq. (2.14), with initial state Eq. (2.15), there exists a positive

integer N which does not depend on k, some constants C1 > 0, C2 > 0, C3 > 0 and 0 < γ < 1, such that

for all n ≥ N and for all k, we have

‖L(X(k))− π‖var ≤ C1γ
k + C2

k(1 + k)

n
+ C3

k√
n
. (2.16)

Proof. We first choose the drift function, which is given in the following lemma.

Lemma 2.2.3. Let ∆ =
∑n
i=1(Yi − Ȳ )2 and x = (A,µ, θ1, . . . , θn). Define the drift function fn(x) by

fn(x) := n(θ̄ − Ȳ )2 + n

[(
∆

n− 1
− V

)
−A

]2

. (2.17)

Let x(k) = (A(k), µ(k), θ
(k)
1 , . . . , θ

(k)
n ) be the state of the Markov chain at the k-th iteration, then we have

E[fn(x(k+1)) |x(k)] ≤
(

V 2 + 2V A(k)

V 2 + 2V A(k) + (A(k))2

)2

fn(x(k)) + b, ∀x(k) ∈ X (2.18)

where b = O(1).
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Proof. See Section 2.3.3.

Note that in Eq. (2.18), the term
(

V 2+2V A(k)

V 2+2V A(k)+(A(k))2

)2

depends on the coordinate A(k) of the state x(k)

and is not bounded away from 1, since A(k) can be arbitrarily close to 0. Therefore,
(

V 2+2V A(k)

V 2+2V A(k)+(A(k))2

)2

cannot be bounded by some λ such that 0 < λ < 1 and we cannot directly establish the traditional

drift condition Eq. (2.2) by Eq. (2.18). In the following, we establish the generalized drift condition

Definition 2.1.1 using a “large set”.

According to Eq. (2.14), for large enough n, we have ∆
n−1 > V . Then, we choose a threshold T such

that, for large enough n, we have 0 < T < ∆
n−1 − V . Defining λT :=

(
V 2+2V T

V 2+2V T+T 2

)2

< 1, we get

E[fn(x(k+1)) |x(k)] ≤ λT fn(x(k)) + b, ∀x ∈ RT . (2.19)

where the “large set”, RT , is defined by

RT :=

{
x ∈ X :

[(
∆

n− 1
− V

)
−A

]2

≤
[(

∆

n− 1
− V

)
− T

]2
}
. (2.20)

In order to satisfy the new drift condition in Definition 2.1.1, we verify (C1’). Note that in our example

the transition kernel of the Gibbs sampler can be written as a composition of reversible steps and only

the last step of the Gibbs sampler updates the parameter A which is used for defining the “large set” RT .

Therefore, in order to verify Eq. (2.6), it suffices to check the last step if the value of the drift function

increases by updating x(k) ∈ RT to x(k+1) ∈ RcT . By the definition of RT , we have

[(
∆

n− 1
− V

)
−A(k)

]2

≤
[(

∆

n− 1
− V

)
− T

]2

, ∀x(k) ∈ RT[(
∆

n− 1
− V

)
−A(k+1)

]2

>

[(
∆

n− 1
− V

)
− T

]2

, ∀x(k+1) /∈ RT .
(2.21)

This implies the value of fn(x) increases if the Markov chain is outside of the “large set” after updating

A. Therefore, the generalized drift condition in Definition 2.1.1 is satisfied.

Now we can use Theorem 2.1.4 to derive a quantitative bound for the Gibbs sampler. We first present

some useful lemmas.

Lemma 2.2.4. If T = Θ(1), by choosing the size of the “small set” R = {x ∈ X : fn(x) ≤ d} to satisfy

d = O(1) and d > b
1−λT , there exists a probability measure Q(·) such that the Markov chain satisfies a

minorization condition in Eq. (2.7) with the minorization volumne ε = Θ(1).

Proof. See Section 2.3.4.

Lemma 2.2.5. With the initial state given by Eq. (2.15), there exists a positive integer N , which does
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not depend on k, such that for all n ≥ N , we have

k π(RcT ) +

k∑
i=1

P i(x(0), RcT )

≤ k√
n

√
b(2V/δ + 1)∣∣∣( ∆

n−1 − V
)
− T

∣∣∣ +
k(1 + k)

2n

b[(
∆
n−1 − V

)
− T

]2 . (2.22)

Proof. See Section 2.3.5.

Now we derive a quantitative bound for the Gibbs sampler for large enough n by combing results

together. First, from Lemma 2.2.3, we have b = O(1). Recall that λT =
(

V 2+2V T
V 2+2V T+T 2

)2

. We obtain
b

1−λT = O(1) by choosing T = Θ(1). Since d > b
1−λT , we can choose the size of small set to be

d = O(1). Then by Lemma 2.2.4, we obtain the minorization volume ε = Θ(1). For Q(RT ), we know

from Lemma 2.2.5 that P (x(0), RcT ) = O(1/n), where x(0) ∈ R. This implies that εQ(RcT ) = O(1/n).

Since ε = Θ(1), we have εQ(RT ) = ε− εQ(RcT ) = Θ(1). Furthermore, by definition α−1 = 1+2b+λT d
1+d < 1,

it can be verified that α−1 is bounded away from 0 when T = Θ(1) and d = O(1). Next, since

Λ = 1+2(λT d+b) = Θ(1), ignoring the term αrk in Eq. (2.8), we choose r = log(α)/ log(αΛ/(1−εQ(RT )))

to balance the order of (1 − εQ(RT ))r and α−1(αΛ)r and define γ := (1 − εQ(RT ))r = α−1(αΛ)r.

Then we have γ = Θ(1) and 0 < γ < 1. Furthermore, since fn(x(0)) = 0 for large enough n and
b

1−λT = O(1), we can pick a constant C1 such that C1 ≥ 2 + b
1−λT for large enough n. Finally, we

have kπ(RcT ) +
∑k
i=1 P

i(x(0), RcT ) ≤ C2
k(1+k)
n +C3

k√
n

by Lemma 2.2.5, then Theorem 2.2.2 follows from

Theorem 2.1.4.

Next, we translate the quantitative bound in Theorem 2.2.2 into the convergence complexity in terms

of mixing time. We show the convergence complexity is O(1). Intuitively, to make the term C1γ
k in

Eq. (2.16) arbitrarily small, k needs to have a complexity order of O(1) since γ does not depend on n.

The residual terms C2
k(1+k)
n + C3

k√
n
→ 0 when k = o(

√
n). Therefore, the complexity bound on the

mixing time of the Gibbs sampler equals the smaller complexity order between O(1) and o(
√
n), which is

O(1). The formal result is given in the following.

Theorem 2.2.6. For any 0 < c < 1, recall the definition of the mixing time Kc in Definition 2.1.10.

We write Kc as Kc(n) to emphasize its dependence on n. Under the assumptions of Theorem 2.2.2, there

exists Nc = Θ(1) and K̄c = Θ(1) such that

Kc(n) ≤ K̄c, ∀n ≥ Nc. (2.23)

Proof. See Section 2.3.2.

2.2.2 Discussions

We give further comments and discussions on the analysis of the Gibbs sampler.

Drift function

In the proof of Theorem 2.2.2, we have used a “centered” drift function shown in Eq. (2.17). To check

this, we select a “typical” state x̃ = (Ã, µ̃, θ̃1, . . . , θ̃n) such that θ̃i = Yi and Ã =
∑n
i=1(Yi−Ȳ )2

n−1 then the
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scaled drift function fn(x̃)/n = nV 2/n = Θ(1). We then hope to establish b such that b/n = o(1), or

equivalently, b = o(n). Indeed, the established generalized drift condition has b = O(1) = o(n), which

implies the drift function is “centered”.

“Large set”

The result in Eq. (2.18) implies that those states whose value of A are close to zero are “bad” states.

Therefore, the goal of choosing the “larget set” in Eq. (2.20) is to ruling out those states. Note that we

have applied the trick that ruling more states with “high energy” could make Eq. (2.6) easier to establish.

In the “large set” RT defined by Eq. (2.20), we have also ruled out the states x whose value of A are

larger than
∣∣∣( ∆
n−1 − V

)
− T

∣∣∣+
(

∆
n−1 − V

)
. Note that these states are not “bad” states. However, by

ruling out them, it is easy to establish Eq. (2.6) as shown in the proof of Theorem 2.2.2.

The upper bound in Eq. (2.22)

Although the upper bound of k π(RcT ) +
∑k
i=1 P

i(x(0), RcT ) shown in Eq. (2.22) is loose, it is already

enough for showing the mixing time of the Gibbs sampler is O(1). The proof of Lemma 2.2.5 only makes

use of the form of drift function and the definition of “large set”, and does not depend on the particular

form of the transition kernel of the Gibbs sampler. We expect that, in general, tighter upper bound on

k π(RcT ) +
∑k
i=1 P

i(x(0), RcT ) could be obtained, depending on the choice of “large set” and the MCMC

algorithm to be analyzed. This may involve carefully bounding the tail probability of the transition

kernel.

Initial state

The main results in Theorem 2.2.2 and Theorem 2.2.6 hold for a particular initial state given in Eq. (2.15).

We discuss other initial states than the one given in Eq. (2.15). Note that the new bound in Lemma 2.2.3

holds for any initial state that is in the “large set”. Therefore, we can extend the results in Theorem 2.2.2

to get bounds when the Markov chain starts from some other initial states in the “large set”. Recall

the assumption on the observed data {Yi} in Eq. (2.14), we have assumed there exists δ > 0 such that∑n
i=1(Yi−Ȳ )2

n−1 ≥ V + δ for large enough n. Note that the existence of such δ is sufficient to obtain the

results in Theorem 2.2.2 and Theorem 2.2.6. In order to get bounds when the MCMC algorithm starts

from other initial states, we assume δ is known and establish upper bounds using δ explicitly. We define

the “large set” Eq. (2.20) using T = δ and the extension of Theorem 2.2.2 is given in the following.

Theorem 2.2.7. Let ∆ =
∑n
i=1(Yi − Ȳ )2. Under the assumption Eq. (2.14), if the Markov chain starts

with any initial state x(0) ∈ Rδ (defined in Eq. (2.20) with T = δ), there exists a positive integer N , which

does not depend on k, some constants C1 > 0, C2 > 0, C3 > 0, C4 > 0 and 0 < γ < 1, such that for all

n ≥ N and for all k, we have

‖L(X(k))− π‖var ≤ [C1 + fn(x(0))]γk + C2
k(1 + k)

n
+ C3

k√
n

+ C4fn(x(0))
k

n
, (2.24)

where fn(·) is the drift function defined in Eq. (2.17).

Proof. Following the same proof of Theorem 2.2.2 by keeping the term fn(x(0)), the first two terms of

the upper bound given in Eq. (2.8) can be replaced by [C1 + fn(x(0))]γk and the last term of the upper

bound in Eq. (2.8) can be replaced by
∑k
i=1 P

i(x(0), Rcδ) ≤ C2
k(1+k)
n + C4fn(x(0)) kn .
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From Theorem 2.2.7, we can immediately obtain a complexity bound when the Markov chain starts

within a subset of the “large set”, which is given in the following. This result suggests that if the Markov

chain starts from an initial state which is not “too far” from the state given in Eq. (2.15), the Markov

chain still mixes fast. The mixing time becomes O(log n) instead of O(1).

Corollary 2.2.8. Under the assumption Eq. (2.14), if the initial state of the Markov chain satisfies

x(0) ∈ {x ∈ Rδ : fn(x) = o(n/ log n)}, the mixing time of the Gibbs sampler is O(log n).

Note that {x ∈ Rδ : fn(x) = o(n/ log n)} defines a subset of the “large set” Rδ, and the above result

shows that the mixing time is O(log n) if the initial state is in this subset. The order o(n/ log n)

comes from a balance between fn(x(0))γk and fn(x(0)) kn . We conjecture the same complexity order

of O(log n) on the mixing time may hold even if the initial state is in a larger subset, for example{
x(0) ∈ Rδ : fn(x(0)) = Θ(n)

}
. However, in order to prove this, we need to derive tighter upper bound of∑k

i=1 P
i(x(0), Rcδ) which is a non-trivial task. We therefore leave it as an open problem.

Finally, we do not have upper bounds for the Markov chain when the initial state is outside of the

“large set” since the new bound in Theorem 2.1.4 requires the Markov chain starts within the “large set”.

For this particular Gibbs sampler example, numerical experiments suggest that, if the Markov chain

starts from a “bad” state, the number of iterations required for the Markov chain to mix can be much

larger than O(log n). In high-dimensional settings, when the dimension of the state space goes to infinity,

the Markov chain may not mix fast starting from any state. This observation is loosely consistent with

various observations made by Hairer, Mattingly, and Scheutzow [HMS11].

The constants in Theorem 2.2.2

In Theorem 2.2.2, we do not compute the constants N , C1, C2, and C3 explicitly. Actually, C2 is

given explicitly in Lemma 2.2.5. C3 is given in Lemma 2.2.5 but it depends on the unknown constant

δ > 0 from the assumption Eq. (2.14). Furthermore, C1 can be explicitly computed under much more

tedious computations. Finally, N depends on the unknown constant N0 in Eq. (2.14) and the resulting

concentration property of the posterior distribution for parameter A by Eq. (2.14). Therefore, if we

make stronger assumptions on the observed data {Yi}, it is then possible to compute all the constants in

Theorem 2.2.2 explicitly under tedious computations, though we do not pursue that here.

Relation to spectral gaps

Many approaches in MCMC literature bound the spectral gap of the corresponding Markov operator[LV03;

Vem05; LV06; WSH09a; WSH09b]. However, on general state spaces, the spectral gap is zero for Markov

chains which are not geometrically ergodic, even if they do converge to stationarity. Our results do not

require the Markov chain to be geometrically ergodic. Instead, we only require the constructed “restricted”

chain on the “large set” in our proof is geometrically ergodic. Therefore, we cannot connect our results

to bounds on spectral gaps. Furthermore, we do not require the Markov chain to be reversible. So our

results apply even in the non-reversible cases, which makes spectral gaps harder to study or interpret.

For these reasons, we do not present the main results in terms of spectral gaps.
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2.3 Appendices

2.3.1 Proof of Theorem 2.1.4

Recall that R denotes the “small set” and R0 denotes the “large set”. We first construct a transition

kernel for a “restricted” chain define on R0, P̃ (x, ·),∀x ∈ R0. One goal of this construction is that

the stationary distribution of the kernel P̃ equals to the π(·) restricted on the “large set” R0, i.e.,

π′(dx) := π(dx)/π(R0),∀x ∈ R0. We consider two different constructions depending on (C1) or (C1’) in

Definition 2.1.1 holds.

• If (C1) in Definition 2.1.1 holds, then we define the kernel P̃ as the transition kernel of the

“trace chain” constructed as follows. Let X(m) be a Markov chain with kernel P , we define

a sequence of random entrance time {mi}i∈N by m0 := min{m ≥ 0 : X(m) ∈ R0}, mi :=

min{m > mi−1 : X(m) ∈ R0}. Then {X(mi)}i∈N is the “trace chain” and the transition kernel

P̃ (x,B) := P(X(m1) ∈ B |X(m0) = x),∀x ∈ R0. It is clear that the “trace chain” is obtained by

“stopping the clock” when the original chain is outside R0, the constructed P̃ is a valid transition

kernel. It can be verified that the stationary distribution of this “trace chain” is π′.

• If (C1’) in Definition 2.1.1 holds, then we construct the “restricted chain” using the kernel P̃ =∏I
i=1 P̃i where P̃i(x,dy) := Pi(x,dy) for x, y ∈ R0, x 6= y, and P̃i(x, x) := 1− Pi(x,R0\{x}),∀x ∈

R0. Note that since each Pi is reversible, one can easily verify that each P̃i is also reversible and

the stationary distribution of P̃ is π′.

Suppose that X(m) and Y (m) are two realizations of the Markov chain, where X(m) starts with the

initial distribution ν(·) and Y (m) starts with the stationary distribution π(·). We define X̃(m) and Ỹ (m)

to be two realizations of a constructed “restricted” Markov chain on the “large set” with the transition

kernel P̃ (x, ·),∀x ∈ R0. We assume X̃(m) starts with the same initial distribution ν(·) as X(m) and Ỹ (m)

starts with π′(·). Since ν(R0) = 1, we assume X(0) = X̃(0). This rest of the proof is a modification of the

original proof of the drift-and-minorization method using coupling in [Ros95a].

We define the hitting times of (X̃(m), Ỹ (m)) to R×R as follows.

t1 : = inf{m ≥ 0 : (X̃(m), Ỹ (m)) ∈ R×R},

ti : = inf{m ≥ ti−1 + 1 : (X̃(m), Ỹ (m)) ∈ R×R}, ∀i > 1.
(2.25)

Let Nk := max{i : ti < k}. Then Nk denotes the number of (X̃(m), Ỹ (m)) to hit R × R in the first k

iterations. The following result gives an upper bound for ‖L(X(k))− L(Y (k))‖var.

Lemma 2.3.1. When the Markov chain satisfies the minorization condition in Eq. (2.7), for any j > 0,

we have

‖L(X(k))− L(Y (k))‖var ≤(1− εQ(R0))j + P(Nk < j)

+ k π(Rc0) +

k∑
i=1

P i(ν,Rc0).
(2.26)
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Proof. First, by triangle inequality

‖L(X(k))− L(Y (k))‖var ≤ ‖L(X̃(k))− L(Ỹ (k))‖var + ‖L(X(k))− L(X̃(k))‖var

+ ‖L(Y (k))− L(Ỹ (k))‖var.
(2.27)

By the coupling inequality ‖L(X(k))− L(X̃(k))‖var ≤ P(X(k) 6= X̃(k)) ≤
∑k
m=1 P(X(m) /∈ R0), we have

‖L(Y (k))− L(Ỹ (k))‖var + ‖L(X(k))− L(X̃(k))‖var

≤
k∑

m=1

P
(
Y (m) /∈ R0

)
+

k∑
m=1

P
(
X(m) /∈ R0

)
≤ k π(Rc0) +

k∑
i=1

P i(ν,Rc0).

(2.28)

Finally, the Markov chain with kernel P̃ (x, ·) satisfies both drift condition

E(f(X̃(1)) | X̃(0) = x) ≤ λf(x) + b, ∀x ∈ R0, (2.29)

and minorization condition

P̃ (x, dy) ≥ [εQ(R0)]
Q(dy)

Q(R0)
, ∀x, y ∈ R0. (2.30)

Using the result from [Ros95a, Theorem 1], we have

‖L(X̃(k))− L(Ỹ (k))‖var ≤ (1− εQ(R0))j + P(Nk < j). (2.31)

Next, we further upper bound the term P(Nk < j) slightly tighter than [Ros95a]. Define the i-th gap

of return times by ri := ti − ti−1,∀i > 1, then

Lemma 2.3.2. For any α > 1 and j > 0, and k > j,

P(Nk < j) ≤ 1

αk − αj

[
E

(
j∏
i=1

αri

)
− αj

]
. (2.32)

Proof. Note that {Nk < j} = {tj ≥ k} = {r1 + · · ·+ rj ≥ k} and r1 + · · ·+ rj ≥ j by definition. Then

the result comes from Markov’s inequality

P(Nk < j) = P(r1 + · · ·+ rj ≥ k)

= P(αr1+···+rj − αj ≥ αk − αj)

≤ 1

αk − αj

[
E

(
j∏
i=1

αri

)
− αj

]
.

(2.33)

Next, we bound E
(∏j

i=1 α
ri
)

following the exact same arguments as in [Ros95a, Proof of Lemma 4
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and Theorem 12], which gives

E

(
j∏
i=1

αri

)
≤ (αΛ)j−1 [1 + Eν(f(x)) + Eπ′(f(x))] . (2.34)

By the drift condition for P̃ (x, ·) in Eq. (2.29), taking expectations on both sides of Eq. (2.29) leads to

Eπ′(f(x)) ≤ b
1−λ . Therefore, setting j = rk + 1 and combining all results together yields

‖L(X(k))− π‖var ≤ (1− εQ(R0))rk+1 +
(αΛ)rk

[
1 + Eν(f(x)) + b

1−λ

]
− αrk+1

αk − αrk+1

+ k π(Rc0) +

k∑
i=1

P i(ν,Rc0).

(2.35)

Finally, we slightly relax the upper bound by replacing αrk+1 with αrk in both the denominator and

numerator. Then Theorem 2.1.4 is proved by further relaxing (1− ε)rk+1 to (1− ε)rk.

2.3.2 Proof of Theorem 2.2.6

Using Theorem 2.2.2, one sufficient condition for

‖L(X(k))− π‖var ≤ c (2.36)

is that n ≥ N and

C1γ
k ≤ c

3
, C2

(1 + k)2

n
≤ c

3
, C3

k√
n
≤ c

3
. (2.37)

This requires the number of iterations, k, satisfies

log(C1)− log(c/3)

log(1/γ)
≤ k ≤ min


√
c/3

C3

√
n− 1,

c/3

C3

√
n

 . (2.38)

Note that any k (if exists) satisfying the above equation provides an upper bound for the mixing time

Kc(n).

That is, for any n ≥ N such that

log(C1)− log(c/3)

log(1/γ)
≤ min


√
c/3

C3

√
n− 1,

c/3

C3

√
n

 , (2.39)

which is equivalent to

n ≥ max

N,
[
K̄c

3C3

c

]2

,

[(
K̄c + 1

)√3C3

c

]2
 =: Nc, (2.40)

we have K̄c := log(C1)−log(c)+log(3)
log(1/γ) is an upper bound of the mixing time.

Finally, it can be seen that both K̄c = Θ(1) and Nc = Θ(1).
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2.3.3 Proof of Lemma 2.2.3

In this proof, we write fn(x) as f(x) for simplicity. Recall that the order of Gibbs sampling for computing

the first scan is:

µ(1) ∼ N
(
θ̄(0),

A(0)

n

)
,

θ
(1)
i ∼ N

(
µ(1)V + YiA

(0)

V +A(0)
,
A(0)V

V +A(0)

)
,

A(1) ∼ IG

(
a+

n− 1

2
, b+

1

2

n∑
i=1

(θ
(1)
i − θ̄

(1))2

)
.

(2.41)

It suffices to show that for ∆ =
∑n
i=1(Yi − Ȳ )2 and

f(x) = n(θ̄ − Ȳ )2 + n

[(
∆

n− 1
− V

)
−A

]2

, (2.42)

we have

E[f(x(1)) |x(0)] ≤
(

V 2 + 2V A(0)

V 2 + 2V A(0) + (A(0))2

)2

f(x(0)) + b, (2.43)

where b = O(1).

Note that we can compute the expectation in E[f(x(1)) |x(0)] by three steps, according to the reverse

order of the Gibbs sampling. To simplify the notation, we define σ-algebras that we condition on:

GA : = σ(A(0), {θ(1)
i }, µ

(1)),

Gθ : = σ(A(0), {θ(0)
i }, µ

(1)),

Gµ : = σ(A(0), {θ(0)
i }, µ

(0)).

(2.44)

Then we have

E[f(x(1)) |x(0)] = E[f(x(1)) | Gµ] = E[E[E[f(x(1)) | GA] | Gθ] | Gµ]. (2.45)

The three steps are as follows:

1. Compute the expectation over A(1) given {θ(1)
i } and µ(1). This is to compute the conditional

expectation

f ′(x(1)) := E[f(x(1)) | GA], (2.46)

where we write E[· | GA] to denote the the expectation is over (recall that a and b are constants

from the prior IG(a, b))

A(1) ∼ IG

(
a+

n− 1

2
, b+

1

2

n∑
i=1

(θ
(1)
i − θ̄

(1))2

)
(2.47)

for given θ(1) and µ(1).
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2. Compute the expectation over {θ(1)
i } given µ(1). This is to compute the conditional expectation

f ′′(x(1)) := E[f ′(x(1)) | Gθ], (2.48)

where we use E[· | Gθ] to denote the expectation is over

θ
(1)
i ∼ N

(
µ(1)V + YiA

(0)

V +A(0)
,
A(0)V

V +A(0)

)
, i = 1, . . . , n, (2.49)

for given µ(1) and A(0).

3. Compute the expectation over µ(1). This is to compute the conditional expectation

E[f(x(1)) |x(0)] = E[f ′′(x(1)) | Gµ], (2.50)

where we have used E[· | Gµ] to denote the expectation is over

µ(1) ∼ N
(
θ̄(0),

A(0)

n

)
(2.51)

for given {θ(0)
i } and A(0).

In the following, we compute the three steps, respectively. We use O(1) to denote terms that can be

upper bounded by some constant that does not depend on the state.

Compute f ′(x(1)) = E[f(x(1)) | GA]

The first term of f(x(1)) is n(θ̄(1) − Ȳ )2, which is GA-measurable by construction. Thus, E[n(θ̄(1) −
Ȳ )2 | GA] = n(θ̄(1) − Ȳ )2. Then

f ′(x(1)) = E[f(x(1)) | GA]

= n(θ̄(1) − Ȳ )2 + nE

{[(
∆

n− 1
− V

)
−A(1)

]2

| GA

}
.

(2.52)

Note that

nE

{[(
∆

n− 1
− V

)
−A(1)

]2

| GA

}

= n

(
∆

n− 1
− V

)2

+ nE[(A(1))2 | GA]− 2n

(
∆

n− 1
− V

)
E[A(1) | GA].

(2.53)

Recall that E[· | GA] denotes that the expectation is over

A(1) ∼ IG

(
a+

n− 1

2
, b+

1

2

n∑
i=1

(θ
(1)
i − θ̄

(1))2

)
, (2.54)

where a and b are constants from the prior IG(a, b). The mean and variance of A(1) can be written in

closed forms since A(1) follows from an inverse Gamma distribution. Denoting S :=
∑
i(θ

(1)
i −θ̄

(1))2

n−1 , we
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can write the mean of A(1) using S as follows:

E[A(1) | GA] =

∑
i(θ

(1)
i − θ̄(1))2 + 2b

n− 1 + 2(a− 1)

=

∑
i(θ

(1)
i − θ̄(1))2

n− 1
+

2b

n− 1 + 2(a− 1)

−

(∑
i(θ

(1)
i − θ̄(1))2

n− 1

)(
2(a− 1)

n− 1 + 2(a− 1)

)
= S +O(1/n) +O(1/n)S.

(2.55)

Similarly, the variance of A(1) can be written in terms of S as well:

var[A(1) | GA] =
(
∑
i(θ

(1)
i − θ̄(1))2/2 + b)2

[(n− 1)/2 + (a− 1)]2[(n− 1)/2 + (a− 2)]

=
1

(n− 1)/2 + (a− 2)

(
E[A(1) | GA]

)2

= O(1/n) (S +O(1/n) +O(1/n)S)
2

= O(1/n)S2 +O(1/n2)S +O(1/n3).

(2.56)

Substituting the mean and variance of A(1) in terms of S, we have

f ′(x(1)) = E[f(x(1)) | GA]

= n(θ̄(1) − Ȳ )2 + n

(
∆

n− 1
− V

)2

+ nS2 − 2n

(
∆

n− 1
− V

)
S

+O(1) +O(1)S +O(1)S2.

(2.57)

Compute f ′′(x(1)) = E[f ′(x(1)) | Gθ]

Note that the terms in f ′(x(1)) involving {θ(1)
i } are (θ̄(1) − Ȳ )2 and S =

∑
i(θ

(1)
i −θ̄

(1))2

n−1 . Then

f ′′(x(1)) = E[f ′(x(1)) | Gθ]

= nE
[
(θ̄(1) − Ȳ )2 | Gθ

]
+ n

(
∆

n− 1
− V

)2

+ nE[S2 | Gθ]− 2n

(
∆

n− 1
− V

)
E[S | Gθ]

+O(1) +O(1)E[S | Gθ] +O(1)E[S2 | Gθ].

(2.58)

Therefore, it suffices to compute the following terms

E
[
(θ̄(1) − Ȳ )2 | Gθ

]
, E[S | Gθ], E[S2 | Gθ]. (2.59)

Note that {θ(1)
i } are independent (but not identically distributed) conditional on Gθ. For the first
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term E
[
(θ̄(1) − Ȳ )2 | Gθ

]
, we have

E
[
(θ̄(1) − Ȳ )2 | Gθ

]
= E

[(
θ̄(1) − µ(1)V + Ȳ A(0)

V +A(0)
+
µ(1)V + Ȳ A(0)

V +A(0)
− Ȳ

)2

| Gθ

]

= E

[(
θ̄(1) − µ(1)V + Ȳ A(0)

V +A(0)

)2

| Gθ

]
+

(
µ(1)V + Ȳ A(0)

V +A(0)
− Ȳ

)2

+ 2

(
µ(1)V + Ȳ A(0)

V +A(0)
− Ȳ

)
E
[(
θ̄(1) − µ(1)V + Ȳ A(0)

V +A(0)

)
| Gθ
]

= var[θ̄(1) | Gθ] +

(
V

V +A(0)

)2 (
µ(1) − Ȳ

)2

=
1

n

A(0)V

V +A(0)
+

(
V

V +A(0)

)2 (
µ(1) − Ȳ

)2

(2.60)

For the other two terms involving S, we have the following lemma.

Lemma 2.3.3. For S =
∑
i(θ

(1)
i −θ̄

(1))2

n−1 , we have

E[S | Gθ] =
A(0)V

V +A(0)
+

(
A(0)

V +A(0)

)2
∆

n− 1
, var[S | Gθ] = O(1/n). (2.61)

Proof. Define ηi := θ
(1)
i −

YiA
(0)

V+A(0) then η̄ = θ̄(1)− Ȳ A(0)

V+A(0) . Note that {ηi} are i.i.d. conditional on Gθ with

ηi ∼ N
(

µ(1)V

V +A(0)
,
A(0)V

V +A(0)

)
, η̄ ∼ N

(
µ(1)V

V +A(0)
,

1

n

A(0)V

V +A(0)

)
. (2.62)

Next, we decompose
∑n
i=1(θ

(1)
i − θ̄(1))2 by

n∑
i=1

(θ
(1)
i − θ̄

(1))2 =

n∑
i=1

(
ηi +

YiA
(0)

V +A(0)
− η̄ − Ȳ A(0)

V +A(0)

)2

=

n∑
i=1

(
(ηi − η̄)2 +

(
A(0)

V +A(0)

)2

(Yi − Ȳ )2 +
2(ηi − η̄)(Yi − Ȳ )A(0)

V +A(0)

)
.

(2.63)

Then we can obtain E[S | Gθ] by

E[S | Gθ] = E

{[∑
i(θ

(1)
i − θ̄(1))2

n− 1

]
| Gθ

}

= E
{[∑

i(ηi − η̄)2

n− 1

]
| Gθ
}

+

(
A(0)

V +A(0)

)2 ∑n
i=1(Yi − Ȳ )2

n− 1

=
A(0)V

V +A(0)
+

(
A(0)

V +A(0)

)2
∆

n− 1
.

(2.64)
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For var[S | Gθ], using the Cauchy-Schwartz inequality

var[S | Gθ] = E
[
(S − E[S | Gθ])2 | Gθ

]
= E

[(∑n
i=1(ηi − η̄)2

n− 1
− E{ηi}

[∑
i(ηi − η̄)2

n− 1

]
+ 2

A(0)

V +A(0)

∑n
i=1(ηi − η̄)(Yi − Ȳ )

n− 1

)2

| Gθ

]

≤ 2 var

[∑
i(ηi − η̄)2

n− 1
| Gθ
]

+ 8

(
A(0)

V +A(0)

)2 E
{[∑

i(ηi − η̄)(Yi − Ȳ )
]2 | Gθ}

(n− 1)2
.

(2.65)

Note that {ηi} are i.i.d conditional on Gθ, we know

E

{[∑
i(ηi − η̄)2

n− 1

]2

| Gθ

}
=

{
E
[∑

i(ηi − η̄)2

n− 1
| Gθ
]}2

+O(1/n). (2.66)

That is, var
[∑

i(ηi−η̄)2

n−1 | Gθ
]

= O(1/n). Finally, the term

E
{[∑

i(ηi − η̄)(Yi − Ȳ )
]2 | Gθ}

(n− 1)2

=
E
{[∑

i(ηi − η̄)2(Yi − Ȳ )2
]
| Gθ
}

+ E[η̄2 | Gθ]
∑
i 6=j(Yi − Ȳ )(Yj − Ȳ )

(n− 1)2

=

∑
i(Yi − Ȳ )2

(n− 1)2
E
[
(η1 − η̄)2 | Gθ

]
+O(1/n)

=
∆

(n− 1)2

(n− 1) A(0)V
V+A(0)

n
+O(1/n) = O(1/n).

(2.67)

Therefore, we have var[S | Gθ] = O(1/n).

Next, using the following results

E[S | Gθ] =
A(0)V

V +A(0)
+

(
A(0)

V +A(0)

)2
∆

n− 1

≤ V +

(
A(0)

V +A(0)

)2
∆

n− 1
= O(1),

E[S2 | Gθ] = (E[S | Gθ])2
+O(1/n) = O(1),

(2.68)

we can first write f ′′(x(1)) by

f ′′(x(1)) =nE
[
(θ̄(1) − Ȳ )2 | Gθ

]
+ n

(
∆

n− 1
− V

)2

+ nE[S2 | Gθ]− 2n

(
∆

n− 1
− V

)
E[S | Gθ] +O(1).

(2.69)
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Then, using

nE
[
(θ̄(1) − Ȳ )2 | Gθ

]
=

A(0)V

V +A(0)
+ n

(
V

V +A(0)

)2 (
µ(1) − Ȳ

)2

≤ V +
nV 2

(
µ(1) − Ȳ

)2
(V +A(0))2

(2.70)

we further bound the terms

nE
[
(θ̄(1) − Ȳ )2 | Gθ

]
+ n

(
∆

n− 1
− V

)2

+ nE[S2 | Gθ]− 2n

(
∆

n− 1
− V

)
E[S | Gθ]

≤
nV 2

(
µ(1) − Ȳ

)2
(V +A(0))2

+ n

[(
∆

n− 1
− V

)
− E[S | Gθ]

]2

=
nV 2

(
µ(1) − Ȳ

)2
(V +A(0))2

+ n

[
A(0)V

V +A(0)
+

(
A(0)

V +A(0)

)2
∆

n− 1
−
(

∆

n− 1
− V

)]2

=
nV 2

(
µ(1) − Ȳ

)2
(V +A(0))2

+ n

[
∆

n− 1

[(
A(0)

V +A(0)

)2

− 1

]
+

(
A(0)V

V +A(0)
+ V

)]2

=
nV 2

(
µ(1) − Ȳ

)2
(V +A(0))2

+ n

(
A(0)

V +A(0)
+ 1

)2 [
∆

n− 1

(
−V

V +A(0)

)
+ V

]2

=
nV 2

(
µ(1) − Ȳ

)2
(V +A(0))2

+
nV 2(V + 2A(0))2

(V +A(0))4

[
∆

n− 1
− (A(0) + V )

]2

.

(2.71)

Finally, combing all the results yields

f ′′(x(1)) =
nV 2

(
µ(1) − Ȳ

)2
(V +A(0))2

+
nV 2(V + 2A(0))2

(V +A(0))4

[
∆

n− 1
− (A(0) + V )

]2

+O(1). (2.72)

Compute E[f(x(1)) |x(0)] = E[f ′′(x(1)) | Gµ]

Recall that the expectation E[· | Gµ] is over

µ(1) ∼ N
(
θ̄(0),

A(0)

n

)
. (2.73)

In the obtained expression of f ′′(x(1)) from previous step, the only term involves µ(1) is
nV 2(µ(1)−Ȳ )

2

(V+A(0))2
.

Since

E
[
(µ(1) − Ȳ )2 | Gµ

]
= (θ̄(0) − Ȳ )2 +A(0)/n, (2.74)
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we have

E[f(x(1)) |x(0)] = E[f ′′(x(1)) | Gµ]

≤ nV 2

(V +A(0))2

(
(θ̄(0) − Ȳ )2 +

A(0)

n

)
+
nV 2(V + 2A(0))2

(V +A(0))4

[
∆

n− 1
− (A(0) + V )

]2

+O(1)

=
nV 2(θ̄(0) − Ȳ )2

(V +A(0))2

+
nV 2(V + 2A(0))2

(V +A(0))4

[
∆

n− 1
− (A(0) + V )

]2

+O(1).

(2.75)

Finally, we complete the proof by

nV 2(θ̄(0) − Ȳ )2

(V +A(0))2
+
nV 2(V + 2A(0))2

(V +A(0))4

[
∆

n− 1
− (A(0) + V )

]2

+O(1)

=
nV 2(V + 2A(0))2

(V +A(0))4

{
(V +A(0))2

(V + 2A(0))2
(θ̄(0) − Ȳ )2 +

[
∆

n− 1
− (A(0) + V )

]2
}

+O(1)

≤ V 2(V + 2A(0))2

(V +A(0))4

{
n(θ̄(0) − Ȳ )2 + n

[
∆

n− 1
− (A(0) + V )

]2
}

+O(1)

=

[(
V 2 + 2V A(0)

V 2 + 2V A(0) + (A(0))2

)2
]
f(x(0)) +O(1).

(2.76)

2.3.4 Proof of Lemma 2.2.4

Throughout the proof, we write fn(x) as f(x) for simplicity. Recall that the small set is defined by

R = {x ∈ X : f(x) ≤ d} where d > 2b/(1 − λT ) and x = (µ,A, θ1, . . . , θn). When b = O(1) and

λT = Θ(1), we can choose d = O(1). Our goal is to show the minorization volume ε satisfying

P (x, ·) ≥ εQ(·), ∀x ∈ R, (2.77)

is asymptotically bounded away from 0. Denoting Â := ∆
n−1 − V , we have

R =

{
x ∈ X : n(θ̄ − Ȳ )2 + n

[(
∆

n− 1
− V

)
−A

]2

≤ d

}

⊆

{
x ∈ X : |θ̄ − Ȳ | ≤

√
d

n

}⋂{
x ∈ X : |A− Â| ≤

√
d

n

} (2.78)

Denoting

R′ :=

{
x ∈ X : |θ̄ − Ȳ | ≤

√
d

n
, |A− Â| ≤

√
d

n

}
(2.79)
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since R ⊆ R′, it suffices to show the minorization volume ε satisfying

P (x(0), ·) ≥ εQ(·), ∀x(0) ∈ R′, (2.80)

is asymptotically bounded away from 0. One common technique to obtain ε is by integrating the infimum

of densities of P (x(0), ·) where in our case the infimum is over all θ̄(0) and A(0) such that |θ̄(0)− Ȳ | ≤
√

d
n

and |A(0) − Â| ≤
√

d
n .

Note that the intuition behind the proof is: since R′ is determined by |θ̄(0) − Ȳ | ≤
√

d
n and

|A(0) − Â| ≤
√

d
n . The size of uncertainties of the initial θ̄(0) and A(0) is of order O(1/

√
n). Therefore,

for any fixed initial state x(0) ∈ R′, if the transition kernel P (x(0), ·) concentrates at a rate of Ω(1/
√
n)

then ε is bounded away from 0.

For the density function of the Markov transition kernel P (x(0), ·), recall the order of Gibbs sampler

µ(1) ∼ N
(
θ̄(0),

A(0)

n

)
,

θ
(1)
i ∼ N

(
µ(1)V + YiA

(0)

V +A(0)
,
A(0)V

V +A(0)

)
, i = 1, . . . , n

A(1) ∼ IG

(
a+

n− 1

2
, b+

1

2

n∑
i=1

(θ
(1)
i − θ̄

(1))2

)
.

(2.81)

Then ε can be computed using the three steps of integration according to the reverse order of the Gibbs

sampler:

1. For given µ(1) and {θ(1)
i }, integrating the infimum of the density of A(1). Note that the infimum is

over a subset of θ̄(0) and A(0). However,

A(1) ∼ IG

(
a+

n− 1

2
, b+

1

2

n∑
i=1

(θ
(1)
i − θ̄

(1))2

)
(2.82)

does not depend on θ̄(0) and A(0). Therefore, the integration of the infimum of the density in this

step always equals one;

2. For given µ(1), integrating the infimum of the densities of {θ(1)
i }. We first note that {θ(1)

i } appear in

the densities only in the forms of θ̄(1) and S =
∑
i(θ

(1)
i −θ̄

(1))2

n−1 . Therefore, instead of integrating over

(θ
(1)
1 , . . . , θ

(1)
n ) we can integrate over θ̄(1) and S. Furthermore, we have shown θ̄(1) is conditional

independent with S given A(0) in the proof of Lemma 2.3.3, we can integrate them separately.

Finally, we note that the infimum is over

{
A(0) : |A(0) − Â| ≤

√
d
n

}
. Overall, we need to show
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g̃n(µ(1)) is lower bounded away from 0, which is defined by

g̃n(µ(1)) :=

∫
dSdθ̄ inf

x(0)∈R′

{
fS(A(0), n;S)N

(
µ(1)V + Ȳ A(0)

V +A(0)
,

A(0)V

n(V +A(0))
; θ̄

)}
≥

[∫
dS inf

x(0)∈R′
fS(A(0), n;S)

]

·

[∫
dθ̄ inf

x(0)∈R′
N
(
µ(1)V + Ȳ A(0)

V +A(0)
,

A(0)V

n(V +A(0))
; θ̄

)]
,

(2.83)

where fS(A(0), n;S) denotes the density function of S =
∑
i(θi−θ̄)

2

n−1 for given A(0), with

θi ∼ N
(
µ(1)V + YiA

(0)

V +A(0)
,
A(0)V

V +A(0)

)
, i = 1, . . . , n, (2.84)

and N
(
µ(1)V+Ȳ A(0)

V+A(0) , A(0)V
n(V+A(0))

; θ̄
)

denotes the density function of

θ̄ ∼ N
(
µ(1)V + Ȳ A(0)

V +A(0)
,

A(0)V

n(V +A(0))

)
. (2.85)

3. Finally, we integrate the infimum of the densities of µ(1) to get ε. That is,

ε =

∫
dµ

{
g̃n(µ) inf

x(0)∈R′
N
(
θ̄(0),

A(0)

n
;µ

)}
. (2.86)

In the following, we show ε is lower bounded away from 0 in three steps.

First, it is easy to see that the density of S does not depend on µ(1). We show∫
dS inf

x(0)∈R′
fS(A(0), n;S) = Θ(1). (2.87)

Second, we show∫
dθ̄ inf

x(0)∈R′
N
(
µ(1)V + Ȳ A(0)

V +A(0)
,

A(0)V

n(V +A(0))
; θ̄

)
≥ 1− erf

(
C|µ|+ C ′√

2

)
(2.88)

where erf(z) := 2√
π

∫ z
0
e−t

2

dt and C and C ′ are some constants.

Finally, we complete the proof by showing

∫
dµ

{(
1− erf(

C|µ|+ C ′√
2

)

)
inf

x(0)∈R′
N
(
θ̄(0),

A(0)

n
;µ

)}
= Θ(1). (2.89)

Proof of Eq. (2.87)

We omit the superscripts for simplicity. That is, we show∫
dS inf{

A:|A−Â|≤
√

d
n

} fS(A,n;S) = Θ(1). (2.90)
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Following the proof of Lemma 2.3.3 from Eq. (3.136) to Eq. (3.196), defining

ηi := θi −
YiA

V +A
∼ N

(
µV

V +A
,
AV

V +A

)
, (2.91)

we know

E

∣∣∣∣∣S −
∑
i(ηi − η̄)2

n− 1
−
(

A

V +A

)2
∆

n− 1

∣∣∣∣∣
2
 = O(1/n). (2.92)

Therefore, defining

S′ :=

∑
i(ηi − η̄)2

n− 1
+

(
A

V +A

)2
∆

n− 1
(2.93)

and denoting f ′S′(A,n;S′) as the density of S′, it suffices to show∫
dS′ inf{

A:|A−Â|≤
√

d
n

} f ′S′(A,n;S′) = Θ(1). (2.94)

Furthermore, note that under |A− Â| ≤
√

d
n , we have V+A

AV = V+Â
ÂV

+O(1/
√
n) = Θ(1). Then it suffices

to show ∫
dS′′ inf{

A:|A−Â|≤
√

d
n

} f ′′S′′(A,n;S′′) = Θ(1), (2.95)

where

S′′ : =
V +A

AV
S′ =

V +A

AV

∑
i(ηi − η̄)2

n− 1
+

1

V

(
A

V +A

)
∆

n− 1
(2.96)

and f ′′S′′(A,n;S′′) is the density function of S′′.

Next, note that V+A
AV

∑
i(ηi − η̄)2 ∼ χ2

n−1, we have

V+A
AV

∑
i(ηi − η̄)2 − (n− 1)√

2(n− 1)

d−→ N (0, 1), (2.97)

which does not depend on n. We define f̃(z,A;x),∀z ∈ R as the density function of a random variable

X̃z,A := z +
V+A
AV

∑
i(ηi − η̄)2 − (n− 1)√

2(n− 1)
, (2.98)

then we know X̃z,A
d−→ N (z, 1).

The rest of the proof is first to lower bound
∫

dS′′ inf{
A:|A−Â|≤

√
d
n

} f ′′S′′(A,n;S′′) using the density

function f̃(z,A;x) and then show it is asymptotically lower bounded away from 0.
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Notice that 1
V

(
A

V+A

)
∆
n−1 is not random, and there exists a constant C0 such that

 max
{A:|A−Â|≤

√
d/n}

A

V +A
− min
{A:|A−Â|≤

√
d/n}

A

V +A

 ∆/V

n− 1
≤ C0√

n− 1
. (2.99)

Finally we have ∫
dS′′ inf{

A:|A−Â|≤
√

d
n

} f ′′S′′(A,n;S′′)

≥ inf{
A:|A−Â|≤

√
d
n

}
∫

dxmin

{
f̃

(
−C0√

2
, A;x

)
, f̃

(
+
C0√

2
, A;x

)}

= 1− sup
{A:|A−Â|≤

√
d/n}

∫ √2C0

−
√

2C0

dxf̃(0, A;x)

= 1− sup
{A:|A−Â|≤

√
d/n}

P(−
√

2C0 ≤ X̃0,A ≤
√

2C0)

→ 1−
∫ √2C0

−
√

2C0

dxN (0, 1;x) = Θ(1).

(2.100)

Proof of Eq. (2.88)

We again omit the subscripts for simplicity. The goal is to lower bound∫
dθ̄ inf{

A:|A−Â|≤
√

d
n

}N
(
µV + Ȳ A

V +A
,

AV

n(V +A)
; θ̄

)
(2.101)

Note that there exists some constants C1 and C2 such that

max{
A:|A−Â|≤

√
d
n

} µV + Ȳ A

V +A
− min{

A:|A−Â|≤
√

d
n

} µV + Ȳ A

V +A
≤ C1|µ|+ C2√

n
, (2.102)

and another constant C3 such that

min{
A:|A−Â|≤

√
d
n

} AV

n(V +A)
≥ C3

n
. (2.103)

Therefore, we have ∫
dθ̄ inf{

A:|A−Â|≤
√

d
n

}N
(
µV + Ȳ A

V +A
,

AV

n(V +A)
; θ̄

)

≥ 2

∫ ∞
(C1|µ|+C2)/

√
n

dxN (0, C3/n;x)

= 2

∫ ∞
C4|µ|+C5

dxN (0, 1;x)

= 1− erf

(
C4|µ|+ C5√

2

)
,

(2.104)
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where C4 := C1√
C3

and C5 := C2√
C3

.

Proof of Eq. (2.89)

We omit the subscripts for simplicity. We show the following is asymptotically bounded away from 0:∫
dµ

{(
1− erf

(
C4|µ|+ C5√

2

))
inf
x∈R′

N
(
θ̄,
A

n
;µ

)}
(2.105)

Note that there exists A′n ∈ [Â−
√
d/n, Â+

√
d/n] such that

inf{
(θ̄,A):|θ̄−Ȳ |≤

√
d
n ,|A−Â|≤

√
d
n

}N
(
θ̄,
A

n
;µ

)

= min

{
N

(
Ȳ −

√
d

n
,
A′n
n

;µ

)
,N

(
Ȳ +

√
d

n
,
A′n
n

;µ

)} (2.106)

Therefore, we have

∫ ∞
−∞

dµ


(

1− erf

(
C4|µ|+ C5√

2

))
inf{

(θ̄,A):|θ̄−Ȳ |≤
√

d
n ,|A−Â|≤

√
d
n

}N
(
θ̄,
A

n
;µ

)
≥
∫ 2Ȳ

0

dµ


(

1− erf

(
C4|µ|+ C5√

2

))
inf{

(θ̄,A):|θ̄−Ȳ |≤
√

d
n ,|A−Â|≤

√
d
n

}N
(
θ̄,
A

n
;µ

)
≥
(

1− erf

(
C4|2Ȳ |+ C5√

2

))∫ 2Ȳ

0

dµ inf{
(θ̄,A):|θ̄−Ȳ |≤

√
d
n ,|A−Â|≤

√
d
n

}N
(
θ̄,
A

n
;µ

)

=

(
1− erf

(
C4|2Ȳ |+ C5√

2

))
·

[∫ Ȳ

0

dµN

(
Ȳ +

√
d

n
,
A′n
n

;µ

)
+

∫ 2Ȳ

Ȳ

dµN

(
Ȳ −

√
d

n
,
A′n
n

;µ

)]

=

(
1− erf

(
C4|2Ȳ |+ C5√

2

))
·

[∫ 0

−Ȳ
dµN

(√
d

n
,
A′n
n

;µ

)
+

∫ Ȳ

0

dµN

(
−
√
d

n
,
A′n
n

;µ

)]

(2.107)

Finally, we show

∫ 0

−Ȳ
dµN

(√
d

n
,
A′n
n

;µ

)
+

∫ Ȳ

0

dµN

(
−
√
d

n
,
A′n
n

;µ

)
(2.108)

is asymptotically bounded away from 0. Note that when n → ∞, we have A′n → Â. So the density
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functions N
(
±
√

d
n ,

A′n
n ;µ

)
concentrate on 0. Therefore

∫ 0

−Ȳ
dµN

(√
d

n
,
A′n
n

;µ

)
+

∫ Ȳ

0

dµN

(
−
√
d

n
,
A′n
n

;µ

)

→
∫ 0

−∞
dµN

(√
d

n
,
Â

n
;µ

)
+

∫ ∞
0

dµN

(
−
√
d

n
,
Â

n
;µ

)

= 1−
∫ √d/n
−
√
d/n

dxN

(
0,
Â

n
;x

)

= 1−
∫ √d
−
√
d

dxN (0, Â;x) = Θ(1).

(2.109)

2.3.5 Proof of Lemma 2.2.5

In this proof, we write fn(x) as f(x) for simplicity. We first consider a Markov chain starting from initial

state x(0) defined by Eq. (2.15). By Eq. (2.14), we have A(0) =
∑n
i=1(Yi−Ȳ )2

n−1 − V for large enough n,

which implies f(x(0)) = 0. Therefore, for large enough n, we have E(f(x(1))) ≤ b from Lemma 2.2.3.

Furthermore, we can continue to get upper bounds E(f(x(i))) ≤ ib for all i = 1, . . . , k. This implies

E

[((
∆

n− 1
− V

)
−A(i)

)2
]
≤ i b

n
, i = 1, . . . , k. (2.110)

By the Markov’s inequality, we have

P
(∣∣∣∣A(i) −

(
∆

n− 1
− V

)∣∣∣∣ ≥ ∣∣∣∣T − ( ∆

n− 1
− V

)∣∣∣∣) ≤ i

n

b[
T −

(
∆
n−1 − V

)]2 , (2.111)

for i = 1, . . . , k. Therefore, we have

k∑
i=1

P i(x(0), RcT ) ≤ b[
T −

(
∆
n−1 − V

)]2 k∑
i=1

i

n
=
k(1 + k)

2n

b[
T −

(
∆
n−1 − V

)]2 . (2.112)

Next, we consider a Markov chain starting from π. According to Lemma 2.2.3, we have

Eπ

[(
1−

(
V 2 + 2V A

V 2 + 2V A+A2

)2
)
f(x)

]

= Eπ
[(

1 +
V 2 + 2V A

V 2 + 2V A+A2

)(
1− V 2 + 2V A

V 2 + 2V A+A2

)
f(x)

]
= Eπ

[(
1 +

V 2 + 2V A

V 2 + 2V A+A2

)(
A

V +A

)2

f(x)

]
≤ b,

(2.113)

where Eπ[·] denotes the expectation is over x ∼ π(·). Note that by Hölder’s inequality (in the reverse
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way)

Eπ

[(
1 +

V 2 + 2V A

V 2 + 2V A+A2

)(
A

V +A

)2

f(x)

]

≥ Eπ

[(
A

V +A

)2

f(x)

]

≥ [Eπ(f(x)
1
2 )]2

{
Eπ

[(
A

V +A

)−2
]}−1

= [Eπ(f(x)
1
2 )]2/Eπ[(1 + V/A)2].

(2.114)

Therefore, we have

Eπ(f(x)
1
2 ) ≤

√
b
√

1 + 2V Eπ(1/A) + V 2Eπ(1/A2). (2.115)

Next, we show Eπ(1/A) ≤ 2/δ and Eπ(1/A2) ≤ 2/δ2 for large enough n.

Lemma 2.3.4. There exists a positive integer N , which only depends on a, b, V , and δ, such that for

all n ≥ N , we have

Eπ(1/A) ≤ 2/δ, Eπ(1/A2) ≤ 2/δ2. (2.116)

Proof. The posterior distribution can be written as

π(x |Y1, . . . , Yn) =
fa(x, Y1, . . . , Yn)∫
fa(x, Y1, . . . , Yn)dx

, (2.117)

where we use fa(x, Y1, . . . , Yn) to denote the joint distribution of x and {Yi} when IG(a, b) is used as

the prior for A. That is,

fa(x, Y1, . . . , Yn)

=
ba

Γ(a)
A−a−1e−b/A

n∏
i=1

1√
2πA

e−
(θi−µ)

2

2A
1√
2π
e−

(Yi−θi)
2

2V

=
1

(2π)n
ba

Γ(a)
A−a−1−n2 e−b/A exp

[
−

n∑
i=1

(
(θi − µ)2

2A
+

(Yi − θi)2

2V

)]
.

(2.118)

Now using 1
Afa(x, Y1, . . . , Yn) = a

b fa+1(x, Y1, . . . , Yn), we have

Eπ(1/A) =
a

b

∫
fa+1(x, Y1, . . . , Yn)dx∫
fa(x, Y1, . . . , Yn)dx

, Eπ(1/A2) =
a2

b2

∫
fa+2(x, Y1, . . . , Yn)dx∫
fa(x, Y1, . . . , Yn)dx

. (2.119)

Therefore, it suffices to show the ratios
∫
fa+1(x,Y1,...,Yn)dx∫
fa(x,Y1,...,Yn)dx

and
∫
fa+2(x,Y1,...,Yn)dx∫
fa(x,Y1,...,Yn)dx

are (asymptotically)

bounded. Next, we focus on the first ratio. The second ratio can be proved using a similar argument.
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Using the fact that∫
exp

[
−
(
V (θi − µ)2 +A(Yi − θi)2

2AV

)]
dθi

=

∫ exp

−
(
θ − V µ+Y A

A+V

)2

2AV
A+V

 dθi

(exp

[
− (Yi − µ)2

2(V +A)

])

=

√
2π

2AV

V +A
exp

[
− (Yi − µ)2

2(V +A)

]
,

(2.120)

and ∫
exp

[
−
∑n
i=1(Yi − µ)2

2(V +A)

]
dµ

=

(∫
exp

[
− (µ− Ȳ )2

2(V +A)/n

]
dµ

)(
exp

[
−
∑
i Y

2
i − nȲ 2

2(V +A)

])
= exp

[
−
∑n
i=1(Yi − Ȳ )2

2(V +A)

]√
2π

2(V +A)

n
,

(2.121)

we can write Eπ(1/A) as a function of ∆ =
∑
i(Yi − Ȳ )2. Denote hn(∆) := Eπ(1/A), then we have

hn(∆) :=

∫
A−a−2e−b/A(V +A)

−n+1
2 exp

[
− ∆

2(V+A)

]
dA∫

A−a−1e−b/A(V +A)
−n+1

2 exp
[
− ∆

2(V+A)

]
dA

. (2.122)

Next, we show hn((n− 1)(c+ V )) is (asymptotically) bounded for any fixed c > 0. Note that∫
A−a−1e−b/A(V +A)

−n+1
2 exp

[
− ∆

2(V +A)

]
dA

=

∫
A−a−1e−b/A

{
1√

V +A
exp

[
−

∆
n−1

2(V +A)

]}n−1

dA.

(2.123)

We change variable y = 1√
V+A

and apply the Laplace approximation. Note that for any c > 0, let

y0 = arg maxy
[
y exp

(
− c+V2 y2

)]
, then y0 = 1√

c+V
. Therefore, by the Laplace approximation [ZC04,

Thm. 1, Chp. 19.2.4], we have

hn((n− 1)(c+ V )) =
c−a−2e−b/c

[
y0 exp

(
− c+V2 y2

0

)]n−1
(1 +O(n−

1
2 ))

c−a−1e−b/c
[
y0 exp

(
− c+V2 y2

0

)]n−1
(1 +O(n−

1
2 ))

=
1

c
(1 +O(n−1/2)),

(2.124)

where the term O((n−1/2) only depends on constants a, b, and V . Finally, since for all n ≥ N0 we

have ∆ ≥ (n− 1)(V + δ), this implies hn(∆) ≤ 1
δ (1 +O(n−1/2)),∀n ≥ N0. Therefore, there exists large

enough positive integer N0, which only depends on a, b, V , and δ, such that for all n ≥ N0, we have

Eπ(1/A) = hn(∆) ≤ 1
δ (1 +O(n−1/2)) ≤ 2

δ .

For Eπ(1/A2), we can follow a similar argument to show that Eπ(1/A2) ≤ 2
δ2 for large enough n.

Therefore, we can conclude that there exists large enough positive integer N , which only depends on a, b,
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V , and δ, such that for all n ≥ N , we have both Eπ(1/A) ≤ 2
δ and Eπ(1/A2) ≤ 2

δ2 .

By Lemma 2.3.4, we have
√

1 + 2V Eπ(1/A) + V 2Eπ(1/A2) ≤ 1 + 2V/δ for large enough n. Therefore,

we get

Eπ
(∣∣∣∣( ∆

n− 1
− V

)
−A

∣∣∣∣) ≤
√
b

n
(2V/δ + 1). (2.125)

Thus, by the Markov’s inequality

π(RcT ) = Pπ
(∣∣∣∣( ∆

n− 1
− V

)
−A

∣∣∣∣ ≥ ∣∣∣∣( ∆

n− 1
− V

)
− T

∣∣∣∣)

≤

√
b
n (2V/δ + 1)∣∣∣( ∆

n−1 − V
)
− T

∣∣∣ .
(2.126)

Finally, we have

k π(RcT ) +

k∑
i=1

P i(x(0), RcT )

≤ k√
n

√
b(2V/δ + 1)∣∣∣( ∆

n−1 − V
)
− T

∣∣∣ +
k(1 + k)

2n

b[
T −

(
∆
n−1 − V

)]2 . (2.127)



Chapter 3

Optimal scaling of random-walk

Metropolis algorithms on general

target distributions

One main limitation of the existing optimal scaling results for Metropolis–Hastings algorithms is that

the assumptions on the target distribution are unrealistic. In this chapter, we consider optimal scaling

of random-walk Metropolis algorithms on general target distributions in high dimensions arising from

practical MCMC models from Bayesian statistics. For optimal scaling by maximizing expected squared

jumping distance (ESJD), we show the asymptotically optimal acceptance rate 0.234 can be obtained

under general realistic sufficient conditions on the target distribution. The new sufficient conditions

are easy to be verified and may hold for some general classes of MCMC models arising from Bayesian

statistics applications, which substantially generalize the product i.i.d. condition required in most existing

literature of optimal scaling. Furthermore, we show one-dimensional diffusion limits can be obtained

under slightly stronger conditions, which still allow dependent coordinates of the target distribution.

We also connect the new diffusion limit results to complexity bounds of Metropolis algorithms in high

dimensions.

3.1 Background on optimal scaling

Practical implementations of Metropolis–Hastings algorithms suffer from slow mixing for at least two

reasons: the Markov chain moves very slowly to the target distribution when the proposed jumps are

too short; the Markov chain stays at a state for most of the time when the proposed jumps are long

but the chain ends up in low probability areas of the target distribution. The optimal scaling problem

[RGG97] considers the choice of proposed distribution to optimize mixing of the Metropolis–Hastings

algorithm. We focus on one of the most popular MCMC algorithms, the RWM algorithm. This algorithm

proceeds by running a Markov chain {Xd(t), t = 0, . . . ,∞} as follows. Given a target distribution πd

on the state space Rd and the current state Xd(t) = xd, a new state is proposed by Y d ∼ N (xd, σ2
dI),

which is sampled from a multivariate Gaussian distribution centered at xd, then the proposal is accepted

with probability min{1, πd(Y d)/πd(xd)} so that Xd(t+ 1) = Y d. Otherwise the proposal is rejected and

43
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Xd(t + 1) = xd. This is precisely to ensure the Markov chain is reversible with respect to the target

distribution πd. It can be shown that the normal proposals automatically make the RWM algorithm

πd-irreducible, aperiodic, and hence ergodic [RS94; MT96]. Therefore, it will converge asymptotically to

πd in law. Note that the only computational cost involved in calculating the acceptance probabilities is

the relative ratio of densities. Within the class of all Metropolis–Hastings algorithms, the RWM algorithm

is still widely used in many applications because of its simplicity and robustness.

3.1.1 Optimal scaling via diffusion limits

The most common technique to prove optimal scaling results is to show a weak convergence to diffusion

limits as the dimension of a sequence of target densities converges to infinity [RGG97; RR98]. More

specifically, even though different coordinates of the Markov chain are not independent nor even

individually Markovian, when the proposal is appropriately scaled according to the dimension, the

sequence of sped-up stochastic processes formed by one fixed coordinate of each Markov chain converges to

an appropriate Markovian Langevin diffusion process. The limiting diffusion limit admits a straightforward

efficiency maximization problem which leads to asymptotically optimal acceptance rate of the proposed

moves for the Metropolis–Hastings algorithm. In [RGG97], the target distribution πd is assumed to be

an d-dimensional product density with respect to Lebesgue measure, that is

πd(xd) =

d∏
i=1

f(xi), (3.1)

where xd = (x1, x2, . . . , xd). It is shown that with the choice of scaling σ2
d = `2/(d− 1) for some fixed

` > 0, individual components of the resulting Markov chain converge to the solution of a stochastic

differential equation (SDE). More specifically, denoting Xd = (Xd
1 , X

d
2 , . . . , X

d
d ), the first coordinate of

the RWM algorithm, Xd
1 , sped up by a factor of d, i.e. {Xd

1 (bdtc), t = 0, 1, . . . }, converges weakly in the

usual Skorokhod topology to a limiting ergodic Langevin diffusion.

Proposition 3.1.1. [RGG97, Theorem 1.1] Suppose density f satisfies that f ′/f is Lipschitz continuous

and ∫ [
f ′(x)

f(x)

]8

f(x)dx <∞,
∫ [

f ′′(x)

f(x)

]4

f(x)dx <∞. (3.2)

Then for Ud(t) := Xd
1 (bdtc), as d → ∞, we have Ud ⇒ U , where ⇒ denotes weak convergence in

Skorokhod topology, and U satisfies the following Langevin SDE

dU(t) = (h(`))1/2dB(t) + h(`)
f ′(U(t))

2f(U(t))
dt, (3.3)

with h(`) := 2`2Φ(−`
√
Ĩ/2) is the speed measure for the diffusion process, Ĩ :=

∫ [ f ′(x)
f(x)

]2
f(x)dx, and Φ

being the standard Gaussian cumulative density function.

This weak convergence result leads to the interpretation that, started in stationarity and applied to

target measures of the i.i.d. form, the RWM algorithm will take on the order of d steps to explore the

invariant measure. Furthermore, it may be shown that the value of ` which maximizes the speed measure

h(`) and, therefore, maximizes the speed of convergence of the limiting diffusion, leads to a universal
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acceptance probability, for the RWM algorithm applied to targets of i.i.d. forms, of approximately 0.234.

Proposition 3.1.1 is proved in [RGG97] using the generator approach [EK86]. The same method of proof

has also been applied to derive optimal scaling results for other types of MCMC algorithms: for example,

the convergence of MALA to diffusion limits when σ2
d = `2/d1/3 (see e.g. [RR98; RR01; BPS04; CRR05;

NR06]) with asymptotically optimal acceptance rate 0.574.

3.1.2 Optimal scaling by maximizing ESJD

Another popular technique to prove optimal scaling is by maximizing expected squared jumping distance

(ESJD) [PG10; ARR11; RR14], which is defined as follows.

Definition 3.1.2. (Expected Squared Jumping Distance)

ESJD(d) :=EXd∼πdEY d
[
‖Y d −Xd‖2

(
1 ∧ π

d(Y d)

πd(Xd)

)]
(3.4)

where the expectation over Y d is taken for Y d ∼ N (xd, `2

d−1I) for given Xd = xd, and ‖ · ‖ denotes the

Euclidean distance, i.e. ‖Y d −Xd‖2 =
∑d
i=1(Yi −Xi)

2.

Choosing a proposal variance to maximize ESJD is equivalent to minimizing the first-order auto-

correlation of the Markov chain, and thus maximizing the efficiency if the higher order auto-correlations

are monotonically increasing with respect to the first-order auto-correlation [PG10]. Furthermore, if weak

convergence to a diffusion limit is established, then the ESJD converges to the quadratic variation of the

diffusion limit. This suggests that maximizing the ESJD is a reasonable problem. For example, Atchadé,

Roberts, and Rosenthal [ARR11] considered to maximize the ESJD to choose optimal temperature

spacings for Metropolis-coupled Markov chain Monte Carlo and simulated tempering algorithms. Later,

Roberts and Rosenthal [RR14] proved a diffusion limit for the simulated tempering algorithms. Using a

new comparison of asymptotic variance of diffusions, Roberts and Rosenthal [RR14] showed the results

in the choice of temperatures in [ARR11] does indeed minimize the asymptotic variance of all functionals.

Another example is the optimal scaling result for HMC, with asymptotically optimal acceptance rate

0.651 with the choice of scaling σ2
d = `2/d1/4 for some fixed ` > 0 [Bes+13], is proven by maximizing the

ESJD.

Although establishing weak convergence of diffusion limits gives stronger guarantee than maximizing

ESJD, the price to pay is to require stronger conditions on the target distribution. Maximizing ESJD

instead can lead to (much) weaker conditions on the target distribution. Later in this chapter, we will

show that we are able to relax the restrictive product i.i.d. condition on the target distribution for both

cases. In particular, the new sufficient conditions on the target distribution for maximizing ESJD are

weak enough to allow target distributions arising from realistic MCMC models.

3.1.3 Background on complexity bounds

Because of the big data world, in recent years, there is much interest in the “large d, large n” or

“large d, small n” high-dimensional regime, where d is the number of parameters and n is the sample

size. Rajaratnam and Sparks [RS15] use the term convergence complexity to denote the ability of a

high-dimensional MCMC scheme to draw samples from the posterior, and how the ability to do so changes

as the dimension of the parameter set grows. This requires the study of computer-science-style complexity
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bounds [Cob65; Coo71] in terms of running time complexity order as the “size” of the problem goes

to infinity. In the Markov chain context, computer scientists have been bounding convergence times of

Markov chain algorithms focusing largely on spectral gap bounds for Markov chains [SJ89; LV03; Vem05;

LV06; WSH09a; WSH09b]. In contrast, statisticians usually study total variation distance or other

metric for MCMC algorithms. In order to bridge the gap between statistics-style convergence bounds,

and computer-science-style complexity results, in one direction, Yang and Rosenthal [YR17] recently

show that complexity bounds for MCMC can be obtained by quantitative bounds using a modified

drift-and-minorization approach. In another direction, Roberts and Rosenthal [RR16] connect existing

results on diffusion limits of MCMC algorithm to the computer science notion of algorithm complexity.

The main result in [RR16] states that any weak limit of a Markov process implies a corresponding

complexity bound in an appropriate metric. More specifically, Roberts and Rosenthal [RR16] connect the

diffusion limits to complexity bound using the Wasserstein metric. Let (X ,F , ρ) be a general measurable

metric space, the distance of a stochastic process {X(t)} on (X ,F) to its stationary distribution π is

defined by the KR distance

‖Lx(X(t))− π‖KR := sup
g∈Lip1

1

|E[g(X(t))]− π(g)| (3.5)

where Lx(X(t)) denotes the law of X(t) conditional on starting at X(0) = x, π(g) :=
∫
g(x)π(dx) is the

expected value of g with respect to π, ‘KR’ stands for ‘Kantorovich–Rubinstein’, and Lip1
1 is the set of all

functions g from X to R with Lipschitz constant no larger than 1 and with |g(x)| ≤ 1 for all x ∈ X , i.e.

Lip1
1 := {g : X → R, |g(x)− g(y)| ≤ ρ(x, y),∀x, y ∈ X , |g| ≤ 1}. (3.6)

Note that the KR distance defined in Eq. (3.5) is exactly the 1-st Wasserstein metric. Then it can

be shown that the π-average of the KR distance to stationarity from all initial states X(0) in X is

non-increasing, which leads to the following complexity linking proposition.

Proposition 3.1.3. [RR16, Theorem 1] Let Xd = {Xd(t), t ≥ 0} be a stochastic process on (X ,F , ρ),
for each d ∈ N. Suppose Xd converges weakly in the Skorokhod topology as d→∞ to a càdlàg process

X∞. Assume these processes all have the same stationary distribution π and that X∞ converges weakly

to π. Then for any ε > 0, there are D <∞ and T <∞ such that

EXd(0)∼π‖LXd(0)(X
d(t))− π‖KR < ε, ∀t ≥ T, d ≥ D. (3.7)

Proposition 3.1.3 allows us to bound the convergence of the sequence of processes uniformly over all

sufficiently large d, if the sequence of Markov processes converges weakly to a limiting ergodic process.

Combining Proposition 3.1.3 with previously-known MCMC diffusion limit results, Roberts and Rosenthal

[RR16] prove that the RWM algorithm in d dimensions takes O(d) iterations to converge to stationarity.

However, in [RR16], the target distribution needs to be product i.i.d. with density satisfies all the

assumptions of Proposition 3.1.1. Furthermore, the condition Eq. (3.2) is replaced by a stronger condition

∫ [
f ′(x)

f(x)

]12

f(x)dx <∞,
∫ [

f ′′(x)

f(x)

]6

f(x)dx <∞. (3.8)
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3.2 Main results

In this section, we show our main results on optimal scaling of RWM algorithms on general target

distributions. We first consider optimal scaling by maximizing ESJD in Section 3.2.1. We show

asymptotic form of the ESJD in Theorem 3.2.10 under very mild conditions on the target distribution.

Then we show in Theorem 3.2.13 that if we directly maximize the asymptotic ESJD, we can obtain 0.234

as an upper bound of the asymptotically optimal acceptance rate. Next, we show the acceptance rate

0.234 is asymptotically optimal under one more weak law of large number (WLLN) condition on the

target distribution in Theorem 3.2.14. In order to give the reader a brief idea that to what extend the

class of target distributions can be enlarged. We first present an example of a non-product non-i.i.d. class

of distributions, which is a straightforward corollary of our main result in Theorem 3.2.14. Note that our

main result includes much more general class of distributions that this simple example. Recall that a

(probabilistic) graphical model is a family of probability distributions defined in terms of a directed or

undirected graph [Jor04]. Suppose that the statistical model can be represented as a graphical model,

then we have the following corollary.

Corollary 3.2.1. (A Simple Corollary of Theorem 3.2.14) If the following three conditions hold, 0.234

is indeed the asymptotic acceptance rate: (i) in the graph representation, each node of the graph has at

most o(d1/4) links; (ii) the target density πd is bounded and log πd has up to the third bounded partial

derivatives; (iii) for Xd ∼ πd, 1
d

∑d
i=1

(
∂
∂xi

log πd(Xd)
)2

converges to a positive constant as d→∞.

In Section 3.2.2, we consider optimal scaling via diffusion limits. We prove the new conditions for

weak convergence to diffusion limits in Theorem 3.2.19. We then strengthen this result to consider

fixed starting state in Theorem 3.2.21. Finally, in Section 3.2.3, we apply our new result on diffusion

limits with fixed starting state to obtain complexity bounds for the RMW algorithm, which is given in

Corollary 3.2.23.

Before presenting our main results, we first define a sequence of “sets of typical states”.

Definition 3.2.2. We call {Fd} a sequence of “sets of typical states” if πd(Fd)→ 1.

Next, we enlarge {Fd} in different ways, which will be used later for the new conditions on the target.

Definition 3.2.3. For a given sequence of “sets of typical states” {Fd}, we define

F
(i)
d := {(x1, . . . , xi−1, y, xi+1, . . . , xd) : ∃(x1, . . . , xd) ∈ Fd, such that |y − xi| <

√
log d/d}. (3.9)

Furthermore, we define F+
d :=

⋃d
i=1 F

(i)
d .

Remark 3.2.4. It is clear from the definitions that F
(i)
d is to enlarge the i-th coordinate of xd ∈ Fd by

covering it with an open interval (xi −
√

log d/d, xi +
√

log d/d); F+
d is the union of F

(i)
d , i = 1, . . . , d.

Then clearly we have Fd ⊆ F (i)
d ⊆ F

+
d .

Finally, we introduce the idea of “neighborhoods” of a coordinate, which is later used to capture

the correlation among different coordinates. We use Hi to denote a collection of coordinates which are

called “neighborhoods” of coordinate i. That is, Hi ⊆ {1, . . . , d}. We also assume i ∈ Hi. Although

the definition of the set Hi is quite arbitrary, we expect that j ∈ Hi implies the coordinates i and j are

correlated even conditional on all other coordinates. This idea of “neighborhoods” become clearer if the
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target distribution comes from a model which can be written as a probabilistic graphical model [Jor04].

For a graphical model, it is convenient to define the “neighborhood” j ∈ Hi if there is an edge between

nodes i and j. In this definition, clearly j /∈ Hi implies that the two coordinates i and j are conditional

independent given all the other d− 2 coordinates.

3.2.1 Optimal scaling for maximizing ESJD

Suppose {Fd} is a sequence of “sets of typical states” and {Hi} are collections of “neighborhoods” for

each coordinate. Throughout the chapter, we assume supi∈{1,...,d} |Hi| < ld where ld = o(d).

Remark 3.2.5. For graphical models, if we define Hi as the collection of nodes that is directly connected

to i by an edge, then ld = o(d) rules out “dense graphs” for which ld ∝ d.

Now we introduce the first assumption A1 on the target πd.

sup
(i,j):j /∈Hi

sup
xd∈F+

d

∂2 log πd(xd)

∂xi∂xj
= o(1), sup

(i,j):j∈Hi
sup

xd∈F+
d

∂2 log πd(xd)

∂xi∂xj
= o(

√
d/ld). (A1)

Remark 3.2.6. For graphical models, if node i is not directly connected to node j, we always have
∂2 log πd(xd)
∂xi∂xj

= 0. Therefore, in order to make A1 hold, it suffices to check for each edge of the graph, say

(i, j), that ∂2 log πd(xd)
∂xi∂xj

= o(
√
d/ld). Since we have assumed ld = o(d), this is a very weak condition. For

example, A1 holds for all graphical models with bounded second partial derivatives.

Next, we denote the conditional density of the i-th and j-th coordinates, given all the other coordinates

fixed, by πi,j|−i−j := πd(xi, xj |x−i−j) where x−i−j with i < j denotes all coordinates of xd other than

the i-th, and j-th coordinates, i.e.

x−i−j := (x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , xd).

Note that πi,j|−i−j is a probability measure in R2. Then we introduce the next assumption A2 on the

target as follows.

sup
(i,j):j /∈Hi

sup
{x−i−j :xd∈Fd}

∫
∂2πi,j|−i−j

∂x2
i

∂2πi,j|−i−j

∂x2
j

1

πi,j|−i−j
dxidxj = o(1). (A2)

Remark 3.2.7. The assumption A2 is very weak, since it is only to require that the target has a “flat

tail”. To see this, consider the target distribution πd has the special i.i.d. product form of Eq. (3.1), then

A2 reduces to ∫
∂2f(xi)f(xj)

∂x2
i

∂2f(xi)f(xj)

∂x2
j

1

f(xi)f(xj)
dxidxj =

(∫
d2f(x)

dx2
dx

)2

= 0, (3.10)

when f has a “flat tail” so that df(x)
dx → 0 when |x| → ∞. Similarly, for graphical models, if there is no

edge between i and j, then when πd has “flat tail” we have
∫ ∂2πi,j|−i−j

∂x2
i

∂2πi,j|−i−j
∂x2
j

1
πi,j|−i−j

dxidxj = 0.
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The next assumption is about conditions on the third partial derivatives.

sup
(i,j):j /∈Hi

sup
xd∈Rd

∂3 log πd(xd)

∂x2
i ∂xj

= o(1), sup
(i,j):j∈Hi

sup
xd∈Rd

∂3 log πd(xd)

∂x2
i ∂xj

= o(d/ld),

sup
i

sup
xd∈Rd

∂3 log πd(xd)

∂x3
i

= o(d1/2),
∑
i 6=j 6=k

(
sup
xd∈Rd

∣∣∣∣∂3 log πd(xd)

∂xi∂xj∂xk

∣∣∣∣) = o(d3/2).

(A3)

Remark 3.2.8. We consider graphical models that satisfy A3. The first three equations of A3 are similar

to A1 and they hold for all graphical models with bounded third partial derivatives. Recall that, in graph

theory, a n-clique of a graph is a fully-connected subset of nodes of the graph with cardinality n. The last

equation of A3 then involves the number of 3-cliques in the graph. Note that for many realistic hierarchical

models, there are no 3-cliques for the corresponding graphs, which implies
∑
i6=j 6=k

∣∣∣∂3 log πd(xd)
∂xi∂xj∂xk

∣∣∣ = 0.

Even for the worst case, considering a graph that has d nodes and each has ld neighbors, since there are

dld/2 links, the number of 3-cliques is at most
(
ld
2

)
d/3 = O(l2dd). Therefore, A3 holds for any graphical

model with ld = o(d1/4) and bounded third partial derivatives.

The next assumption is the last assumption before our first main result. We first define a quantity

which measures the “roughness” of log πd.

Id(x
d) :=

1

d

d∑
i=1

(
∂

∂xi
log πd(xd)

)2

. (3.11)

Similarly, we can consider Id(X
d) where Xd ∼ πd as a random variable. Later we will see that it turns

out that Id(X
d) is a key quantity for optimal scaling results. Assumption A4 is as follows.

There exists α with 0 < α < 1/2 such that

sup
i

sup
xd∈F (i)

d

∂ log πd(xd)

∂xi
= O(dα), sup

xd∈F+
d

πd(xd) = o(d1/2−α), sup
xd∈F+

d

1/Id(x
d) = O(dα/2). (A4)

Remark 3.2.9. For A4, the first two conditions do not even require πd and the first partial derivative of

log πd to be bounded. Thus, they are quite weak. For the last condition, although the mode of πd is

ruled out from F+
d , the condition can hold as long as supi sup

xd∈F (i)
d

∂ log πd(xd)
∂xi

= O(dα/2) and Id(X
d)

is tight. That is, ∀0 < ε < 1, there exists Kε > 0 such that P(Id(X
d) > Kε) < 1− ε). To see this, one

can choose Fd using the tightness such that supxd∈Fd 1/Id(x
d) = O(dα/2). Then we can replace Fd by

F+
d since infxd∈Fd Id(x

d)− infxd∈F+
d
Id(x

d) = O(dα/2(log d)1/2d−1/2) = o(d−1/4) = o(d−α/2). Note that

Id(X
d) being tight is a very reasonable assumption, since if Id(X

d) is not tight, the target πd becomes

“flat” at almost every state xd.

We are now ready to present our first main result using the assumptions A1, A2, A3, and A4. We

establish the following results on asymptotic ESJD and asymptotic acceptance rate.

Theorem 3.2.10. (Asymptotic ESJD and acceptance rate) Suppose πd satisfies A1, A2, A3, and A4,
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then as d→∞, we have∣∣∣∣∣ESJD(d)− 2
d`2

d− 1
EXd∼πd

[
Φ

(
−`
√
Id(Xd)

2

)]∣∣∣∣∣→ 0, (3.12)∣∣∣∣∣EXd∼πdEY d
(

1 ∧ π
d(Y d)

πd(Xd)

)
− 2EXd∼πd

[
Φ

(
−`
√
Id(Xd)

2

)]∣∣∣∣∣→ 0, (3.13)

where the expectation over Y d is taken for Y d ∼ N (xd, `2

d−1I) for given Xd = xd.

Proof. See Section 3.4.1.

Since the assumptions required by Theorem 3.2.10 are very mild, the result of Theorem 3.2.10 holds

for a large class of realistic MCMC models. As an example, we give a class of graphical models that

all conditions A1, A2, A3, and A4 hold. Therefore, the asymptotic ESJD and acceptance rate by

Theorem 3.2.10 hold for this class of graphical models. We will further discuss realistic MCMC models

later in Section 3.3.1 and Section 3.3.2.

We give a simple criterion that the assumptions A1, A2, A3, and A4 hold. More discussions and

examples are delayed to Section 3.3.

Corollary 3.2.11. If a graphical model satisfies (i) either each node has at most ld = o(d1/4) links or

the number of 3-cliques of the graph is o(d3/2); (ii) Id(X
d) is tight; (iii) πd has bounded density and

log πd has up to the third bounded partial derivatives, then the assumptions A1, A2, A3, and A4 hold.

Therefore, the asymptotic ESJD and acceptance rate results by Theorem 3.2.10 hold.

Proof. First, the assumption A1 holds when second partial derivatives of log πd are bounded. Next, the

assumption A2 automatically holds for graphical models. Furthermore, ld = o(d1/4) implies that the

number of 3-cliques is o(d3/2). Then one can easily verify that the assumption A3 holds using the fact

that the third partial derivatives of log πd are bounded. Finally, the assumption A4 holds since Id(X
d) is

tight.

Note that Theorem 3.2.10 suggests that under mild conditions on the target distribution, the expected

acceptance rate

EXd∼πdEY d
(

1 ∧ π
d(Y d)

πd(Xd)

)
→ 2EXd∼πd

[
Φ

(
−`
√
Id(Xd)

2

)]
. (3.14)

Therefore, we can define asymptotic acceptance rate as a function of ` as follows.

Definition 3.2.12. (Asymptotic acceptance rate) The asymptotic acceptance rate function is defined by

a(`) := 2EXd∼πd

[
Φ

(
−`
√
Id(Xd)

2

)]
. (3.15)

The next theorem shows that if the target distribution satisfies A1, A2, A3 and A4, then if we

maximize the asymptotic ESJD, the resulting asymptotic acceptance rate is no larger than 0.234.
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Theorem 3.2.13. Defining the optimal parameter for maximizing the asymptotic ESJD by ˆ̀, i.e.

ˆ̀ := arg max
`
h(`), h(`) := 2`2EXd∼πd

[
Φ

(
−`
√
Id(Xd)

2

)]
, (3.16)

then we have a(ˆ̀) ≤ 0.234 (to three decimal places).

Proof. We follow the arguments in [Taw17, Lemma 5.1.4]. First, it can be verified by taking the second

derivatives of h(`) with respect to ` that the maximum of h(`) is achieved at ` such that ∂h(`)
∂` = 0.

Therefore, the optimal ˆ̀ satisfies

2EXd∼πd

[
Φ

(
−

ˆ̀
√
Id(Xd)

2

)]
= EXd∼πd

[
ˆ̀
√
Id(Xd)

2
Φ′

(
−

ˆ̀
√
Id(Xd)

2

)]
. (3.17)

Therefore, the asymptotic acceptance rate

a(ˆ̀) = EXd∼πd

[
ˆ̀
√
Id(Xd)

2
Φ′

(
−

ˆ̀
√
Id(Xd)

2

)]
= EXd∼πd

[
−Φ−1(V )Φ′

(
Φ−1(V )

)]
, (3.18)

where V := Φ

(
−

ˆ̀
√
Id(Xd)

2

)
. By [She06], the function −Φ−1(x)Φ′

(
Φ−1(x)

)
is a concave function for any

x ∈ (0, 1). Therefore, we have

a(ˆ̀) = EXd∼πd
[
−Φ−1(V )Φ′

(
Φ−1(V )

)]
≤ −Φ−1[EXd∼πd(V )]Φ′

[
Φ−1(EXd∼πd(V ))

]
. (3.19)

Defining m := −Φ−1[EXd∼πd(V )], we can then write a(ˆ̀) = 2Φ(−m) ≤ mΦ′(−m). Finally, it suffices

to show that 2Φ(−m) ≤ mΦ′(−m) implies 2Φ(−m) ≤ 0.234 (to three decimal places). Note that the

function x2Φ(−x) is maximized at m̂ such that 2Φ(−m̂) = m̂Φ′(−m̂) ≈ 0.234. By [Taw17, Lemma

5.1.4], the function 2Φ(−x) − xΦ′(−x) is positive for x < m̂ and negative for x > m̂. Therefore,

2Φ(−m) ≤ mΦ′(−m) implies that m > m̂. Since Φ(−x) is monotonically decreasing with x, we have

a(ˆ̀) = 2Φ(−m) ≤ 2Φ(−m̂) ≈ 0.234.

The next result is our main result for optimal scaling by maximizing ESJD. Defining the following

WLLN condition for the target πd:

Id(X
d)− Īd → 0 in probability (A5)

where Xd ∼ πd and Īd := EXd∼πd [Id(Xd)], we show that if the target distribution πd satisfies A1, A2,

A3, A4, and the WLLN assumption in A5, then the acceptance rate 0.234 is asymptotically optimal.

Theorem 3.2.14. (Optimal scaling for maximizing ESJD) Suppose the target distribution πd satisfies

A1, A2, A3, A4, and A5. Then the asymptotic optimal acceptance rate a(ˆ̀) ≈ 0.234 (to three decimal

places).

Proof. By convexity of the function Φ(−x) when x ≥ 0, we can immediately obtain a lower bound

`2EXd∼πd

[
Φ

(
−`
√
Id(Xd)

2

)]
≥ `2

[
Φ

(
−`EXd∼πd [

√
Id(Xd)]

2

)]
. (3.20)
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Under A5, this lower bound is asymptotically tight. Therefore, as d → ∞, according to [RGG97], we

have (to two decimal places)

ˆ̀→ 2.38

EXd∼πd [
√
Id(Xd)]

, h(ˆ̀)→ 1.3(
EXd∼πd [

√
Id(Xd)]

)2 . (3.21)

The acceptance rate which maximizing the asymptotic ESJD is

a(ˆ̀) = 2EXd∼πd

[
Φ

(
−

ˆ̀
√
Id(Xd)

2

)]
→ 2Φ

(
−

ˆ̀EXd∼πd
√
Id(Xd)

2

)
(3.22)

≈ 2Φ

(
− 2.38

EXd∼πd [
√
Id(Xd)]

EXd∼πd [
√
Id(Xd)]

2

)
= 2Φ(−1.19) ≈ 0.234. (3.23)

Remark 3.2.15. Comparing the results of Theorem 3.2.13 and Theorem 3.2.14, it is clear that the

“roughness” of πd, Id(X
d), is the key quantity which determines the optimal acceptance rate a(ˆ̀) ≤ 0.234

when only the tightness of Id(X
d) can be verified, or a(ˆ̀) ≈ 0.234 when the concentration of Id(X

d) as

defined in A5 can be verified. We will later demonstrate how to verify A5 for some realistic MCMC

models in Section 3.3.1 and Section 3.3.2.

3.2.2 Optimal scaling via diffusion limits

In this subsection, we consider sufficient conditions on πd for establishing weak convergence of diffusion

limits. As we discussed before, establishing such results gives stronger guarantee for optimal scaling than

maximizing ESJD. However, it also requires stronger conditions on the target distribution. As we will see

in the following, we need to strengthen assumptions A2, A3, A4, A5 and add one more assumption A6.

We first strengthen A2 to a new assumption A2+ as follows.

d∑
i=1

d∑
j=1

d∑
k=1

∫ (
∂2πd

∂x2
i

1

πd

)(
∂2πd

∂x2
j

1

πd

)(
∂2πd

∂x2
k

1

πd

)
πddxd = O(d2−δ) (A2+)

for some δ > 0.

Remark 3.2.16. The new assumption A2+ is stronger than A2 but is still very mild. To see this, we

consider graphical models as examples. For graphical models with d nodes each with O(ld) links, there

are at most O(dl2d) 3-cliques. Therefore, A2+ holds for any graphical model with ld = o(d1/2−δ) and

bounded second partial derivatives of log πd. Note that this is only for the worst case, as many realistic

graphical models do not have 3-cliques.

Next, we slightly strengthen A3 and A4 to A3+ and A4+.

sup
(i,j):j /∈Hi

sup
xd∈Rd

∂3 log πd(xd)

∂x2
i ∂xj

= o(1), sup
(i,j):j∈Hi

sup
xd∈Rd

∂3 log πd(xd)

∂x2
i ∂xj

= o(
√
d/ld),

∑
i 6=j 6=k

(
sup
xd∈Rd

∣∣∣∣∂3 log πd(xd)

∂xi∂xj∂xk

∣∣∣∣) = o(d3/2).

(A3+)
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Suppose exists 0 < α < 1/2 that

sup
i

sup
xd∈F (i)

d

∂2 log πd(xd)

∂x2
i

= o(dα), sup
i

sup
xd∈F (i)

d

∂ log πd(xd)

∂xi
= O(dα/2),

sup
xd∈F+

d

πd(xd) = o(d1/2−α), sup
xd∈F+

d

1/Id(x
d) = O(dα/4).

(A4+)

Furthermore, we strengthen the WLLN condition A5 to the following A5+.

sup
xd∈F+

d

∣∣Id(xd)− Ī∣∣→ 0 (A5+)

where Ī := limd→∞ Īd exists.

Remark 3.2.17. A3+ is only slightly stronger than A3 on the rates. A4+ also includes a new condition

on the rate of ∂2 log πd(xd)
∂x2
i

which is quite weak. A5+ requires any sequence (x1, x2, . . . , xd, . . . ) where

xi ∈ F+
i converges to the same limit Ī, so it is (slightly) stronger than WLLN condition in A5. It will

become clear in the proof of Theorem 3.2.19 that A5+ is to ensure the speed measure of the diffusion

process h(`) does not depend on the state xd.

Finally, we define a new assumption A6 on the target distribution. Roughly speaking, the new

assumption is to require the first coordinate of πd is asymptotically independent with the rest.

lim
d→∞

sup
xd∈F+

d

∣∣∣∣ d

dx1

[
log πd(x1 |x−1)− log π̃(x1)

]∣∣∣∣=0, (A6)

where x−1 := (x2, . . . , xd), π̃ is a one-dimensional density and (log π̃)′ is Lipschitz continous.

Remark 3.2.18. Note that A6 is a strong condition, which may not be satisfied for many realistic MCMC

models. However, it might be necessary in order to get a one-dimensional diffusion limit for the first

coordinate. In the proof of the optimal scaling via diffusion limits result in Theorem 3.2.19, the assumption

A6 is to ensure the SDE for the first coordinate x1 doesn’t depend on the values of other coordinates.

Furthermore, although we do not pursue in this work, if in A6 we instead assume not just the first

component but a finite collection of components are asymptotically independent from the rest, a version

of weak convergence to multi-dimensional diffusion limits could be obtained following similar arguments

as the proof of the one-dimensional diffusion limit case in Theorem 3.2.19.

Now we are ready for the main result of optimal scaling via diffusion limits, which is given in

Theorem 3.2.19. Comparing with the assumptions in Theorem 3.2.14, the new sufficient conditions for

diffusion limits include strengthening A2 to A2+, A3 and A4 to A3+ and A4+, A5 to A5+, and adding

A6. We also require slightly stronger condition on the sequence of “sets of typical states” {Fd}.

Theorem 3.2.19. (Optimal scaling via diffusion limits) Suppose the sequence {Fd} satisfies πd(F cd ) =

O(d−1−δ) for some δ > 0, the target distribution πd satisfies A1, A2+, A3+, A4+, A5+, and A6, then

for Ud(t) := Xd
1 (bdtc), as d→∞, we have Ud ⇒ U , where ⇒ denotes weak convergence in Skorokhod

topology, and U satisfies the Langevin SDE

dU(t) = (h(`))1/2dB(t) + h(`)
π̃′(U(t))

2π̃(U(t))
dt, (3.24)
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where h(`) := 2`2Φ(−`
√
Ī/2) is the speed measure for the diffusion process.

Proof. See Section 3.4.3.

Remark 3.2.20. Note that Theorem 3.2.19 allows dependent coordinates on the target distribution, which

is much more general than the product i.i.d. condition. The only strong assumption is A6 which requires

the first coordinate is asymptotically independent with other coordinates.

Next, we present another result with slightly stronger conditions, which allows the RWM algorithm to

start at a fixed state. This stronger convergence result later allows us to establish a complexity bound for

the RMW algorithm in Section 3.2.3 Let Xd = {Xd(t), t ≥ 0} for d ∈ N be the RWM processes defined

earlier. Without loss of generality, suppose {Xd, d = 1, 2, . . . } are defined in a common measurable

metric space (R∞,F , ρ) as independent processes.

Theorem 3.2.21. (Optimal scaling via diffusion limits with fixed starting state) Suppose Xd
1 converges

weakly in the Skorokhod topology as d→∞ to a càdlàg process X∞1 . Moreover, assume these processes

{Xd, d = 1, 2, . . . } all have the same marginal stationary distribution π1 for the first coordinate and that

the first coordinate of X∞ converges weakly to π1. Suppose the sequence {Fd} satisfies πd(F cd ) = O(d−2−δ)

for some δ > 0, the target distribution πd satisfies A1, A3+, A4+, A5+, and A6. We strengthen A2+ to

the following condition

∑
i,j,k,l,m∈{2,...,d}

∫ (
∂2π−1

∂x2
i

· ∂
2π−1

∂x2
j

· ∂
2π−1

∂x2
k

· ∂
2π−1

∂x2
l

· ∂
2π−1

∂x2
m

)(
1

π−1

)5

πddxd = O(d3−6δ). (A2++)

Then as d→∞, we have xU
d ⇒ xU , where xU

d(t) := (Xd
1 (bdtc) |Xd

1 (0) = x) is the first coordinate of

the RWM algorithm sped up by a factor of d, conditional on starting at the state x, and xU is the limiting

ergodic Langevin diffusion U in Eq. (3.24) also conditional on starting at x.

Proof. See Section 3.4.5.

Remark 3.2.22. The new assumption A2++ is stronger than A2+ but is still not strong. To see this, for

graphical models with d nodes, each with O(ld) links, we have at most O(dl2d) 3-cliques. Under flat tail

assumptions, at most O(d2l3d) terms in the summation in A2++ is not zero. Therefore, A2++ holds for

any graphical model with ld = o(d1/3−2δ) and bounded second partial derivatives of log πd. Note that

this is only for the worst case, as many realistic graphical models do not have 3-cliques.

3.2.3 Complexity bounds via diffusion limits

In the following, by combing Theorem 3.2.21 and Proposition 3.1.3, we present a complexity bound for

the RWM algorithm which holds for much more general target distributions comparing with [RR16].

More specifically, if the target distribution satisfies the conditions given in Theorem 3.2.21 which allows

dependent coordinates of the target distribution, the RWM algorithm in d dimensions takes O(d) iterations

to converge to stationarity.

Corollary 3.2.23. (Complexity bound for RWM algorithms) Under the conditions of Theorem 3.2.21,

for any ε > 0, there exists D <∞ and T <∞, such that

EXd1 (0)∼π1
‖LXd1 (0)(X

d
1 (bdtc))− π1‖KR < ε, ∀t ≥ T, d ≥ D, (3.25)
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where π1 denotes the marginal stationary distribution of the first coordinate.

Proof. The result directly comes from Proposition 3.1.3 and Theorem 3.2.21.

3.3 Examples and applications

In this section, we further discuss examples and applications of the main results in Section 3.2. We first

discuss in Section 3.3.1 on verifying the assumptions of Theorem 3.2.14 for realistic MCMC models. We

have explained in Remarks 3.2.6 to 3.2.9 that A1, A2, A3, and A4 are typically very weak conditions and

they hold for some classes of graphical models. However, as discussed in Remark 3.2.15, the assumption

A5 may need to be verified case by case. Particularly, in order to satisfy A5, we may need to make

additional assumptions on the observed data. Fortunately, we show by a simple Gaussian example in

Example 3.3.1 that, in some cases, A5 can be easily verified without any further assumptions. Then,

in Section 3.3.2, we extend the simple Gaussian example in Example 3.3.1 to a more realistic MCMC

model in Example 3.3.5 and show it satisfies all the assumptions required by Theorem 3.2.14. Thus, the

acceptance rate 0.234 is indeed asymptotically optimal for this realistic MCMC model.

3.3.1 Discussions on Theorem 3.2.14

The optimal scaling result for maximizing ESJD in Theorem 3.2.14 requires one to verify that the target

distribution satisfies A1, A2, A3, A4, and A5. We discuss how to verify the conditions on the target

distribution required by Theorem 3.2.14 in practice. We explain that A1, A2, A3 and A4 are quite mild

and usually easy to be verified. Therefore, we usually only need to focus on the WLLN condition in A5,

which might be difficult to check in practice. Throughout this subsection, we demonstrate verification of

all the assumptions by a simple Gaussian example, which can be seen as a simplified version of typical

Bayesian hierarchical models.

Example 3.3.1. (A Gaussian example) Consider a simple Gaussian MCMC model

Yij | θij ∼ N (θij , 1), i, j ∈ {1, . . . , n}

θij | µj ∼ N (µj , 1), i ∈ {1, . . . , n}

µj | ν ∼ N (ν, 1)

ν ∼ flat prior on R,

(3.26)

where {Yij}ni,j=1 are the observed data, and xd = (ν, {µj}nj=1, {θij}ni,j=1) are parameters. Note that we

have the number of parameters d = n2 + n+ 1 in this example. The target distribution (i.e. the posterior

distribution) satisfies

πd(xd) = P(xd | {Yij}ni,j=1) ∝
n∏
j=1

n∏
i=1

1√
2π
e−

(µj−ν)
2

2
1√
2π
e−

(θij−µj)
2

2
1√
2π
e−

(Yij−θij)
2

2 . (3.27)

Note that the hyperparameters ν is conditionally independent given {θij}. Therefore, ν is only directly

dependent with n coordinates {µj}nj=1. We can define the “neighborhoods” of ν using the collection of

µj , j = 1, . . . , n. Similarly, µj is directly dependent with ν and {θij}ni=1 and θij is directly dependent
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with µj . Therefore, if we choose the directly dependent coordinates as “neighborhoods”, we have

ld = n+ 1 = O(d1/2).

Verifying A1 to A4

First of all, the two conditions for (i, j) : j 6= Hi in A1 and A3 hold trivially for graphical models.

Furthermore, in Example 3.3.1, the parameter ν is conditional independent with all θij and the corre-

sponding conditional posterior distributions all have Gaussian tails, which implies A2 holds for any pair

of coordinates (ν, θij). Similarly, one can easily verify the assumption holds for other pairs of parameters.

Next, all the conditions on the third partial derivatives of log πd hold, since there is no 3-cliques.

Moreover, in Example 3.3.1, we have ld = O(d1/2). The second partial derivative is O(1), and the density

πd is bounded, so the following conditions hold without the need of choosing {Fd}:

sup
(i,j):j∈Hi

sup
xd∈F+

d

∂2 log πd(xd)

∂xi∂xj
= o(

√
d/ld), sup

xd∈F+
d

πd(xd) = o(d1/2−α). (3.28)

Finally, the last two conditions are almost immediately true once A5 has been verified:

sup
i∈{1,...,d}

sup
xd∈F+

d

∂ log πd(xd)

∂xi
= O(dα), sup

xd∈F+
d

1/I(xd) = O(dα/2). (3.29)

To see this, under A5, we have 1
d

∑d
i=1

(
∂
∂xi

log πd(xd)
)2

→ Īd. If Īd → Ī and Ī > 0, then we can select

constant K2 > 0 small enough such that Ī > K2d
−α/2 > 0 then Īd > K2d

−α/2 for all large enough d. Next,

by choosing the typical set Fd such that for any xd ∈ F+
d , we have ∂ log πd(xd)

∂xi
≤ K1d

α, Id(x
d) ≥ K2d

−α/2,

where K1 is a large enough constant. Then it suffices to check if {Fd} is a valid sequence of typical sets

such that πd(Fd)→ 1. For Example 3.3.1, we have Xd = (ν, {νj}nj=1, {θij}ni,j=1). We will show later that

A5 holds such that under Xd ∼ πd we have 1
d

∑d
i=1

(
∂
∂xi

log πd(Xd)
)2

→ 3. For example, we can choose

K2 = 0.01, K1 = 100, and the typical set Fd such that, for any Xd = xd ∈ F+
d , we have

Id(x
d) > 0.01n−α,

∂ log πd

∂ν
= n(µ̄− ν) ≤ 100n2α, (3.30)

∂ log πd

∂µj
= (n+ 1)

(∑
i θij + ν

n+ 1
− µj

)
≤ 100n2α, (3.31)

∂ log πd

∂θij
= 2

(
Yij + µj

2
− θij

)
≤ 100n2α, (3.32)

where α < 1/2 can be arbitrarily close to 1/2. Observing that, under Xd ∼ πd, we have the following

conditional distributions.

θij | Yij , µj ∼indep. N
(
µj + Yij

2
,

1

2

)
, i, j ∈ {1, . . . , n},

µj |
∑
i

θij , ν ∼indep. N
(∑

i θij + ν

n+ 1
,

1

n+ 1

)
, i ∈ {1, . . . , n},

ν | µ̄ ∼ N
(
µ̄,

1

n

)
.

(3.33)

Then it can be easily verified that πd(Fd)→ 1.
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Verifying A5

One assumption of Theorem 3.2.14 that could be difficult to verify in practice is A5. It requires the

sequence of random variables {Id(Xd)} converge to a sequence of constants in probability. We feel this

assumption has to be checked case by case and it is hard to get general sufficient condition for it to hold.

For realistic MCMC models, this may require assumptions on the observed data so that the posterior

distribution has certain “concentration” properties as d→∞.

Fortunately, for Example 3.3.1, we can verify that A5 holds without any further assumption on the

observed data {Yij}. Note that in Example 3.3.1, we have

(
∂ log πd

∂ν

)2

=

∑
j

(µj − ν)

2

= n2 (µ̄− ν)
2
, (3.34)

(
∂ log πd

∂µj

)2

=

(∑
i

(θij − µj)− (µj − ν)

)2

= (n+ 1)2

(∑
i θij + ν

n+ 1
− µj

)2

, (3.35)

(
∂ log πd

∂θij

)2

= ((Yij − θij)− (θij − µj))2
= 4

(
Yij + µj

2
− θij

)2

. (3.36)

Hence, if suffices to show that, under Xd = (ν, {µj}nj=1, {θij}ni,j=1) ∼ πd, the following three terms

converges to some constants in probability or in distribution:

1

d

(
∂ log πd

∂ν

)2

=
n2

n2 + n+ 1
(µ̄− ν)2, (3.37)

1

d

∑
j

(
∂ log πd

∂µj

)2

=
(n+ 1)2

n2 + n+ 1

∑
j

(∑
i θij + ν

n+ 1
− µj

)2

, (3.38)

1

d

∑
ij

(
∂ log πd

∂θij

)2

=
4

d

∑
ij

(
Yij + µj

2
− θij

)2

. (3.39)

We have observed that the target distribution πd has conditional independence structure in Eq. (3.33),

which immediately leads to

(µ̄− ν)2 →P 0,
∑
j

(∑
i θij + ν

n+ 1
− µj

)2

→P 1,
1

d

∑
ij

(
Yij + µj

2
− θij

)2

→P 1

2
. (3.40)

Therefore, A5 is satisfied.

Overall, we have checked all the assumptions of Theorem 3.2.14 for our simple Gaussian example.

Therefore, by Theorem 3.2.14, we have the following optimal scaling result for Example 3.3.1.

Proposition 3.3.2. The optimal scaling for Example 3.3.1 by maximizing ESJD is to choose (to two

decimal places) ˆ̀≈ 2.38

E
Xd∼πd [

√
I(Xd)]

→ 2.38√
3
≈ 1.37 and the corresponding asymptotic acceptance rate is

(to three decimal places) 0.234.

3.3.2 Optimal scaling of a realistic MCMC model

We first discuss sufficient conditions for two more classes of graphical models. In Proposition 3.3.3, we

give sufficient conditions for the first equation of A1, A2, and the first equation of A3 to hold for one
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particular class of graphical models. In Proposition 3.3.4, we give sufficient conditions for A5 to hold for

one specific class of graphical models.

First, we consider the class of graphical models represented by the factor graphs:

πd(xd) ∝
Kd∏
k=1

ψk({xi : i ∈ Ck}), (3.41)

where Ck are cliques, ψk are potentials, Kd denotes the number of potentials.

Proposition 3.3.3. For the class of graphical models represented by Eq. (3.41). Let md denotes the

maximum number of cliques a coordinate can belong to. If all the potentials ψk have “flat tails” in the

sense that for all k we have ∂ψk
∂xi
→ 0 as |xi| → ∞ for all i ∈ Ck, and the cardinality of Ck satisfies

supk |Ck| = o(d/md), then the first equation in A1, A2, and the first equation in A3 hold.

Next, we consider Bayesian hierarchical modeling where K denotes the number of “layers” or “stages”

of the model. We use θ(k), k = 1, . . . ,K to denote the parameter vector with length nk for the k-th layer,

where θ(k) := (θ
(k)
1 , . . . , θ

(k)
nk ). We consider the special structure of the graphical model such that θ(k) is

only connected to θ(k−1) and θ(k+1). Using factor graphs, let xd = (θ(1), . . . , θ(K)) we can represent the

target distribution as

πd(xd) ∝
K∏
k=1

ψk(θ(k−1), θ(k)), (3.42)

where d =
∑K
k=1 nk, {ψk} are the potentials, and without loss of generality we assumed θ(0) to be the

observed data.

In the following, we show that A5 hold for the class of graphical models represented by Eq. (3.42)

under certain conditions.

Proposition 3.3.4. For the class of graphical models represented by Eq. (3.42), if θ(k) = (θ
(k)
1 , θ

(k)
2 , . . . , θ

(k)
nk )

are independent conditional on θ(k−1) and θ(k+1) and this holds for all k. Moreover, if under Xd =

(θ(1), . . . , θ(K)) ∼ πd all the potentials ψk satisfy

sup
i∈{1,...,nk}

∣∣∣∣∣∂ logψk

∂θ
(k)
i

∣∣∣∣∣ = OP

(√
d/nk

)
, sup

j∈{1,...,nk−1}

∣∣∣∣∣∂ logψk

∂θ
(k−1)
j

∣∣∣∣∣ = OP

(√
d/nk−1

)
(3.43)

then A5 holds.

Next, we extend the simple Gaussian example in Example 3.3.1 to a more realistic MCMC model which

belongs to both classes of graphical models in Eqs. (3.41) and (3.42) and show that all the assumptions

for the optimal scaling result in Theorem 3.2.14 hold.
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Example 3.3.5. (A realistic MCMC model) Consider a realistic MCMC model

Yij | θij ∼ N (θij ,W ), i, j ∈ {1, . . . , n}

θij | µj ∼ N (µj , V ), i ∈ {1, . . . , n}

µj | ν ∼ N (ν,A)

ν ∼ flat prior on R,

A ∼ IG(a, b),

(3.44)

where xd = (ν,A, {µj}nj=1, {θij}ni,j=1) are parameters, {Yij} are the observed data, and a, b,W, V are

known constants.

We further assume that the observed data {Yij} is not abnormal so that the posterior of the

hyperparameter A concentrates to some unknown constant.

Assumption. The posterior of the hyperparameter A in Example 3.3.5 concentrates to some unknown

constant A0 > 0 as n→∞.

Note that this is a very reasonable assumption which implies the MCMC model is not seriously

misspecified. We do not discuss sufficient conditions on the observed data {Yij}ni,j=1 for concentration

of posterior distribution of A here since it is not the focus of this work. Next, we show that, under

this assumption, the realistic MCMC model satisfies all the conditions required for optimal scaling in

Theorem 3.2.14. Therefore, the acceptance rate 0.234 is indeed asymptotically optimal for this MCMC

model in the sense of maximizing ESJD.

Proposition 3.3.6. Under the above assumption, the optimal asymptotic acceptance rate for the realistic

MCMC model in Example 3.3.5 is (to three decimal places) 0.234.

Proof. See Section 3.4.6.

3.4 Appendices

3.4.1 Proof of Theorem 3.2.10

Throughout the proof, for simplicity, we assume the coordinates are linear ordered. The “neighborhoods”

of a coordinate is defined by Hi := {j : |i − j| < ld}. Therefore sup(i,j):j∈Hi can be simplified to

sup|i−j|<ld and sup(i,j):j /∈Hi can be simplified to sup|i−j|≥ld . Note that the use of linear ordering is only

for simplifying notations. It is straightforward to extend the proof to the cases of general ordering.

For Theorem 3.2.10, we only prove∣∣∣∣∣ESJD(d)− 2
d`2

d− 1
EXd∼πd

[
Φ

(
−`
√
Id(Xd)

2

)]∣∣∣∣∣→ 0, (3.45)

since the proof of ∣∣∣∣∣EXd∼πdEY d
(

1 ∧ π
d(Y d)

πd(Xd)

)
− 2EXd∼πd

[
Φ

(
−`
√
Id(Xd)

2

)]∣∣∣∣∣→ 0 (3.46)
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follows similarly.

First, we write ESJD as ESJD(d) =:
∑d
i=1 ESJDi(d), where

ESJDi(d) := EXd∼πdEY d
[
(Yi −Xi)

2

(
1 ∧ π

d(Y d)

πd(Xd)

)]
. (3.47)

Then it suffices to show that

sup
i∈{1,...,d}

∣∣∣∣∣ESJDi(d)− 2`2

d− 1
EXd∼πd

[
Φ

(
−`
√
Id(Xd)

2

)]∣∣∣∣∣ = o(d−1). (3.48)

Writing ESJDi(d) = EXd∼πdEYi
[
(Yi −Xi)

2EY−i
(

1 ∧ πd(Y d)
πd(Xd)

)]
, it suffices to show that uniformly over

i ∈ {1, . . . , d}

EXd∼πd

∣∣∣∣∣EYi
[
(Yi −Xi)

2EY−i
(

1 ∧ π
d(Y d)

πd(Xd)

)]
− 2`2

d− 1
Φ

(
−`
√
Id(Xd)

2

)∣∣∣∣∣ (3.49)

= EXd∼πd

∣∣∣∣∣EYi
{

(Yi −Xi)
2

[
EY−i

(
1 ∧ π

d(Y d)

πd(Xd)

)
− 2Φ

(
−`
√
Id(Xd)

2

)]}∣∣∣∣∣ (3.50)

= o(d−1). (3.51)

It then suffices to show

sup
xd∈Fd

∣∣∣∣∣EYi
{

(Yi − xi)2
1
yd(i)∈F (i)

d

[
EY−i

(
1 ∧ π

d(Y d)

πd(xd)

)
− 2Φ

(
−`
√
Id(xd)

2

)]}∣∣∣∣∣ (3.52)

≤ EYi

(Yi − xi)2 sup
yd(i)∈F (i)

d ,xd∈Fd

∣∣∣∣∣EY−i
(

1 ∧ π
d(Y d)

πd(xd)

)
− 2Φ

(
−`
√
Id(xd)

2

)∣∣∣∣∣
 = o(d−1), (3.53)

where yd(i) := (x1, . . . , xi−1, Yi, xi+1, . . . , xd). Defining M
(i)

xd
(Yi) := EY−i

(
1 ∧ πd(Y d)

πd(xd)

)
, since

log
πd(Y d)

πd(xd)
= log

πi(Yi)

πi(xi)
+ log

π−i(Y−i |Yi)
π−i(x−i |xi)

(3.54)

=

(
log

πi(Yi)

πi(xi)
+ log

π−i(x−i |Yi)
π−i(x−i |xi)

)
+ log

π−i(Y−i |Yi)
π−i(x−i |Yi)

, (3.55)

we can write

M
(i)

xd
(Yi) =EY−i

[
1 ∧ π

d(Y d)

πd(xd)

]
= EY−i

[
1 ∧ exp

(
log

πd(Y d)

πd(xd)

)]
(3.56)

=EY−i
[
1 ∧ exp

(
log

πi(Yi)

πi(xi)
+ log

π−i(x−i |Yi)
π−i(x−i |xi)

+ log
π−i(Y−i |Yi)
π−i(x−i |Yi)

)]
. (3.57)

Note that the expectation is taken over Y−i and only the last term, log π−i(Y−i |Yi)
π−i(x−i |Yi) , involves Y−i.

In the following, we then first focus on approximating log π−i(Y−i | xi)
π−i(x−i | xi) for given xd ∈ F+

d . Since

Y d ∼ N (xd, `2

d−1I), we first approximate log π−i(Y−i | xi)
π−i(x−i | xi) by the first two terms of its Taylor expansion.



Chapter 3. Optimal scaling of random-walk Metropolis algorithms 61

Define

m
(i)
1 (Y−i, x

d) := (∇ log π−i)
T (Y−i − x−i) +

1

2
(Y−i − x−i)T [∇2 log π−i](Y−i − x−i), (3.58)

where

(∇ log π−i)
T (Y−i − x−i) :=

∑
j∈{1,...,d},j 6=i

∂ log π−i(x−i |xi)
∂xj

(Yj − xj) (3.59)

and [∇2 log π−i] denotes the (d− 1)× (d− 1) matrix with elements{
∂2 log π−i(x−i |xi)

∂xj∂xk

}
j,k∈{1,...,d},j 6=i,k 6=i

.

Then, we have the following result.

Lemma 3.4.1. Uniformly over i ∈ {1, . . . , d}, we have

sup
xd∈F+

d

EY−i
[∣∣∣∣m(i)

1 (Y−i, x
d)− log

π−i(Y−i |xi)
π−i(x−i |xi)

∣∣∣∣]→ 0. (3.60)

Proof. See Section 3.4.2.

Next, we approximate the second order term of the Taylor approximation 1
2 (Y−i−x−i)T [∇2 log π−i](Y−i−

x−i) by a non-random term 1
2
`2

d−1

∑
j 6=i

∂2 log π−i
∂x2
j

.

Lemma 3.4.2. Uniformly over i ∈ {1, . . . , d}, we have

sup
xd∈F+

d

EY−i

∣∣∣∣∣∣(Y−i − x−i)T [∇2 log π−i](Y−i − x−i)−
`2

d− 1

∑
j 6=i

∂2 log π−i
∂x2

j

∣∣∣∣∣∣
→ 0. (3.61)

Proof. See Section 3.4.2.

Defining

m
(i)
2 (Y−i, x

d) := (∇ log π−i)
T (Y−i − x−i) +

1

2

`2

d− 1

∑
j 6=i

∂2 log π−i
∂x2

j

, (3.62)

we have

m
(i)
2 (Y−i, x

d) ∼ N
(
`2S

(i)
d /2, `2R

(i)
d

)
, (3.63)

where

R
(i)
d :=

1

d− 1

∑
j 6=i

(
∂ log π−i(x−i |xi)

∂xj

)2

, S
(i)
d :=

1

d− 1

∑
j 6=i

∂2 log π−i(x−i |xi)
∂x2

j

. (3.64)

Next, we show we can approximate S
(i)
d by −R(i)

d .
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Lemma 3.4.3. There exists a sequence of subsets of states {F ′d}, such that πd(F ′d)→ 1 and

sup
i∈{1,...,d}

sup
xd∈F ′d

∣∣∣R(i)
d + S

(i)
d

∣∣∣→ 0. (3.65)

Proof. See Section 3.4.2.

Now defining

m
(i)
3 (Y−i, x

d) := (∇ log π−i)
T (Y−i − x−i) +

1

2

`2

d− 1

∑
j 6=i

(
∂ log π−i(x−i |xi)

∂xj

)2

, (3.66)

we have

m
(i)
3 (Y−i, x

d) ∼ N
(
−`2R(i)

d /2, `2R
(i)
d

)
. (3.67)

By triangle inequality, we can write∣∣∣∣m(i)
3 (Y−i, x

d)− log
π−i(Y−i |xi)
π−i(x−i |xi)

∣∣∣∣ ≤ ∣∣∣∣m(i)
1 (Y−i, x

d)− log
π−i(Y−i |xi)
π−i(x−i |xi)

∣∣∣∣ (3.68)

+
∣∣∣m(i)

2 (Y−i, x
d)−m(i)

1 (Y−i, x
d)
∣∣∣ (3.69)

+
∣∣∣m(i)

3 (Y−i, x
d)−m(i)

2 (Y−i, x
d)
∣∣∣ . (3.70)

Therefore, using Lemmas 3.4.1 to 3.4.3, we get

sup
i∈{1,...,d}

sup
xd∈F+

d ∩F
′
d

EY−i
[∣∣∣∣m(i)

3 (Y−i, x
d)− log

π−i(Y−i |xi)
π−i(x−i |xi)

∣∣∣∣]→ 0. (3.71)

Next, we abuse the notation a little bit by defining

R
(i)
d (y) :=

1

d− 1

∑
j 6=i

(
∂ log π−i(x−i |xi = y)

∂xj

)2

. (3.72)

Then by the definition of m
(i)
3 , we replace xd by yd(i) = (x1, . . . , xi−1, Yi, xi+1, . . . , xd), which yields

m
(i)
3 (Y−i, y

d(i)) = (∇ log π−i(x−i |Yi))T (Y−i − x−i) (3.73)

+
1

2

`2

d− 1

∑
j 6=i

(
∂ log π−i(x−i |Yi)

∂xj

)2

. (3.74)

Then, we have

m
(i)
3 (Y−i, y

d(i)) ∼ N
(
−`2R(i)

d (Yi)/2, `
2R

(i)
d (Yi)

)
. (3.75)

Recall that M
(i)

xd
(Yi) = EY−i

[
1 ∧ exp

(
log πi(Yi)

πi(xi)
+ log π−i(x−i |Yi)

π−i(x−i | xi) + log π−i(Y−i |Yi)
π−i(x−i |Yi)

)]
, defining

M̂
(i)

xd
(Yi) = EY−i

[
1 ∧ exp

(
log

πi(Yi)

πi(xi)
+ log

π−i(x−i |Yi)
π−i(x−i |xi)

+m
(i)
3 (Y−i, y

d(i))

)]
, (3.76)
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we next apply the following two lemmas from [RGG97].

Lemma 3.4.4. ([RGG97, Proposition 2.2]) The function g(x) = 1 ∧ ex is Lipschitz such that

|g(x)− g(y)| ≤ |x− y|, ∀x, y. (3.77)

Lemma 3.4.5. ([RGG97, Proposition 2.4]) If z ∼ N (µ, σ2) then

E(1 ∧ ez) = Φ(µ/σ) + exp(µ+ σ2/2)Φ(−σ − µ/σ). (3.78)

By Lemma 3.4.4 and Eq. (3.71), we have that uniformly over i ∈ {1, . . . , d}

sup
yd(i)∈F+

d ∩F
′
d

∣∣∣M (i)

xd
(Yi)− M̂ (i)

xd
(Yi)

∣∣∣→ 0. (3.79)

Applying Lemma 3.4.5 to M̂
(i)

xd
(Yi) yields

M̂
(i)

xd
(Yi) = Φ

(
R

(i)
d (Yi)

−1/2

(
`−1 log

πd(yd(i))

πd(xd)
− `R(i)

d (Yi)/2

))
(3.80)

+ exp

(
log

πd(yd(i))

πd(xd)

)
Φ

(
−`R(i)

d (Yi)
1/2/2− log

πd(yd(i))

πd(xd)
R

(i)
d (Yi)

−1/2`−1

)
. (3.81)

Note that it is easy to check that M̂
(i)

xd
(xi) = 2Φ

(
− `

√
R

(i)
d

2

)
. We then show M̂

(i)

xd
(xi) converges to

2Φ

(
− `
√
Id(xd)

2

)
.

Lemma 3.4.6.

sup
i∈{1,...,d}

sup
xd∈F+

d

∣∣∣∣∣∣2Φ

−`
√
R

(i)
d

2

− 2Φ

(
−`
√
Id(xd)

2

)∣∣∣∣∣∣→ 0. (3.82)

Proof. See Section 3.4.2.

Finally, using Taylor expansion together with EYi(Yi−xi)2 = `2/(d−1) and EYi |Yi−xi|3 = O(d−3/2),

we have

EYi

{
(Yi − xi)2 sup

yd(i)∈F+
d

∣∣∣∣∣M̂ (i)

xd
(Yi)− 2Φ

(
−`
√
Id(xd)

2

)∣∣∣∣∣
}

(3.83)

≤ `2

d− 1
sup

xd∈F+
d

∣∣∣∣∣∣2Φ

−`
√
R

(i)
d

2

− 2Φ

(
−`
√
Id(xd)

2

)∣∣∣∣∣∣ (3.84)

+O(d−3/2) sup
yd(i)∈F+

d

∣∣∣∣∣dM̂
(i)

xd
(yi)

dyi
(Yi)

∣∣∣∣∣ . (3.85)

For the last term, we have the following lemma.
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Lemma 3.4.7.

sup
i∈{1,...,d}

sup
yd(i)∈F+

d

∣∣∣∣∣dM̂
(i)

xd
(yi)

dyi
(Yi)

∣∣∣∣∣ = o
(
d1/2

)
. (3.86)

Proof. See Section 3.4.2.

The proof of Theorem 3.2.10 is completed by applying Lemma 3.4.6 and Lemma 3.4.7.

3.4.2 Proof of lemmas in Section 3.4.1

Proof of Lemma 3.4.1

For xd ∈ F+
d , by Taylor expansion and mean value theorem, we have

| log π−i(Y−i |xi)− log π−i(x−i |xi)−m1(Y−i, x
d)| (3.87)

≤ sup
x̃d∈Rd

∣∣∣∣∣∣16
∑
j,k,l 6=i

∂3 log πd(x̃d)

∂xj∂xk∂xl
(Yj − xj)(Yk − xk)(Yl − xl)

∣∣∣∣∣∣ . (3.88)

In the above summation, the summation over the cases of j = k = l equals to

sup
x̃d∈Rd

∣∣∣∣∣∂3 log πd(x̃d)

∂x3
j

∣∣∣∣∣O(dE|Yj − xj |3) = o(d1/2)O
(
d(
√
`2/(d− 1))3

)
= o(1). (3.89)

For the cases of j = k 6= l, we have

∑
j=k 6=l

∂3 log π−i(x̃
d)

∂x2
j∂xl

(Yj − xj)2(Yl − xl) =
∑
j

(Yj − xj)2
∑
l 6=k

∂3 log π−i(x̃
d)

∂x2
j∂xl

(Yl − xl). (3.90)

By Assumption A3, we have E
∣∣∣∑j 6=l

∂3 log π−i(x̃
d)

∂x2
j∂xl

(Yl − xl)
∣∣∣ = O(ld/d)o(d/ld) = o(1) since ∂3 log πd(x̃d)

∂x2
j∂xl

goes to zero when |k− i| > ld. Then, by E|Yj − xj |2 = O(1/d), the summation over all cases of j = k 6= l

equals to dOP(1/d)oP(1) = oP(1).

Finally, for j 6= k 6= l, it suffices to show

sup
x̃d∈Rd

∣∣∣∣∣∣
∑

j 6=k 6=l 6=i

∂3 log π−i(x̃
d)

∂xj∂xk∂xl
(Yj − xj)(Yk − xk)(Yl − xl)

∣∣∣∣∣∣ (3.91)

≤
∑

i 6=j 6=k 6=l

(
sup
x̃d∈Rd

∣∣∣∣∂3 log π−i(x̃
d)

∂xj∂xk∂xl

∣∣∣∣) |(Yj − xj)(Yk − xk)(Yl − xl)| = oP(1). (3.92)

Note that {|(Yj − xj)(Yk − xk)(Yl − xl)|}j 6=k 6=l are independent random variables which don’t depend on

the values of xj , xk, xl, and

|(Yj − xj)(Yk − xk)(Yl − xl)| = OP

(
(
√
`2/(d− 1))3

)
= OP(d−3/2). (3.93)

Therefore, the summation for cases j 6= k 6= l is oP(1) under Assumption A3. We have proven the result

for fixed i. Finally, it is easy to check the proof holds uniformly over i ∈ {1, . . . , d}.
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Proof of Lemma 3.4.2

Lemma 3.4.8. (Quadratic form of Gaussian random vector) If zd ∼ Nd(µ,Σ), then

E(zTAz) = tr(AΣ) + µTAµ, var(zTAz) = 2 tr(AΣAΣ) + 4µTAΣAµ. (3.94)

Note that Y−i ∼ Nd−1(x−i,
`2

d−1I) and (Y−i − x−i)T [∇2 log π−i](Y−i − x−i) is a quadratic form of

Gaussian random vector. By Lemma 3.4.8,

E
[
(Y−i − x−i)T [∇2 log π−i](Y−i − x−i)

]
=

`2

d− 1

∑
j 6=i

∂2 log π−i
∂x2

j

. (3.95)

Therefore, it suffices to show the variance of the quadratic form goes to zero. Using the assumptions, the

variance satisfies

2`4

(d− 1)2
tr
(
[∇2 log π−i][∇2 log π−i]

)
(3.96)

=
2`4

(d− 1)2

∑
j 6=i

∑
k 6=i

(
∂2 log π−i
∂xj∂xk

)2

(3.97)

≤ 2`4

(d− 1)2

d−1∑
l=0

∑
{j,k:|j−k|=l}

(
∂2 log πd

∂xj∂xk

)2

(3.98)

=
2`4

(d− 1)2

∑
l≤ld

∑
{j,k:|j−k|=l}

(
∂2 log πd

∂xi∂xj

)2

(3.99)

+
2`4

(d− 1)2

∑
l>ld

∑
{j,k:|j−k|=l}

(
∂2 log πd

∂xj∂xk

)2

(3.100)

≤ 2`4

(d− 1)2
(d− 1)ld sup

|j−k|≤ld
sup

xd∈F+
d

(
∂2 log πd

∂xj∂xk

)2

(3.101)

+
2`4

(d− 1)2
(d− 1)2 sup

|j−k|>ld
sup

xd∈F+
d

(
∂2 log πd

∂xj∂xk

)2

(3.102)

= O(ld/d)o(d/ld) + o(1) = o(1), (3.103)

where we have used supxd∈F+
d

sup|j−k|≤ld
∂2 log πd

∂xj∂xk
= o(

√
d/ld) from Assumption A1.
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Proof of Lemma 3.4.3

Note that

R
(i)
d + S

(i)
d =

1

d− 1

∑
j 6=i

(
∂ log π−i
∂xj

)2

+
1

d− 1

∑
j 6=i

∂2 log π−i
∂x2

j

(3.104)

=
1

d− 1

∑
j 6=i

{(
∂ log πd

∂xj

)2

+
∂2 log πd

∂x2
j

}
(3.105)

=
1

d− 1

∑
j 6=i

{
1

(πd)2

(
∂πd

∂xj

)2

+
∂

∂xj

(
∂ log πd

∂xj

)}
(3.106)

=
1

d− 1

∑
j 6=i

{
1

(πd)2

(
∂πd

∂xj

)2

+
∂

∂xj

(
1

πd
∂πd

∂xj

)}
(3.107)

=
1

d− 1

∑
j 6=i

 1

(πd)2

(
∂πd

∂xj

)2

+
πd ∂

2πd

∂x2
j
−
(
∂πd

∂xj

)2

(πd)2

 (3.108)

=
1

(d− 1)

∑
j 6=i

∂2πd

∂x2
j

1

πd
. (3.109)

Next, we show E
[
supi(R

(i)
d + S

(i)
d )2

]
converges to 0. To prove this, consider writing E

[
supi(R

(i)
d + S

(i)
d )2

]
as sum of (d− 1)2 terms

E
[
sup
i

(R
(i)
d + S

(i)
d )2

]
=

1

(d− 1)2

∫
sup
i

∑
j 6=i

∑
k 6=i

(
∂2πd

∂x2
j

1

πd

)(
∂2πd

∂x2
k

1

πd

)
πddxd (3.110)

≤ 1

(d− 1)2

d∑
j=1

d∑
k=1

∫ (
∂2πd

∂x2
j

1

πd

)(
∂2πd

∂x2
k

1

πd

)
πddxd − 2

(d− 1)2

∫
inf
i

∑
j 6=i

(
∂2πd

∂x2
j

1

πd

)
πddxd (3.111)

=
1

(d− 1)2

d∑
j=1

d∑
k=1

∫ (
∂2πd

∂x2
j

1

πd

)(
∂2πd

∂x2
k

1

πd

)
πddxd + o(1), (3.112)

where the last equality follows from

2

(d− 1)2

∫
inf
i

∑
j 6=i

(
∂2πd

∂x2
j

1

πd

)
πddxd ≥ 2

(d− 1)2

∫
inf
i

∑
j 6=i

(
∂2 log π−i
∂x2

j

)
πddxd (3.113)

=
2

(d− 1)2
o(d
√
d/ld) = o(1). (3.114)
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When |j − k| ≥ ld, by Assumption A2, we have

∫ (
∂2πd

∂x2
j

1

πd

)(
∂2πd

∂x2
k

1

πd

)
πddxd (3.115)

=

∫ (
∂2πd

∂x2
j

)(
∂2πd

∂x2
k

)
1

πd
dxd (3.116)

=

∫ (
∂2πj,k|−j−k

∂x2
j

)(
∂2πj,k|−j−k

∂x2
k

)
1

πj,k|−j−k
π−j−kdx−j−kdxjdxk (3.117)

≤
∫ [

sup
xd∈Fd

∫ (
∂2πj,k|−j−k

∂x2
j

)(
∂2πj,k|−j−k

∂x2
k

)
1

πj,k|−j−k
dxjdxk

]
π−j−kdx−j−k (3.118)

→ 0. (3.119)

This implies E
[
supi(R

(i)
d + S

(i)
d )2

]
= O(d ld)+(d−ld)2o(1)

(d−1)2 + o(1)→ 0. Therefore, uniformly over i, R
(i)
d +

S
(i)
d → 0 in probability, then there exists a sequence {F ′d} such that P(R

(i)
d + S

(i)
d ∈ F ′d,∀i)→ 1 and the

following holds

sup
i

sup
xd∈F ′d

∣∣∣R(i)
d + S

(i)
d

∣∣∣→ 0. (3.120)

Proof of Lemma 3.4.6

Note that Assumption A4 implies

sup
i∈{1,...,d}

sup
xd∈F+

d

∂

∂xi
log πd(xd) = o

(
d1/2

)
. (3.121)

Then, by the definitions of R
(i)
d and Id(x

d), we have

R
(i)
d − Id(x

d) =
1

d− 1

∑
j 6=i

(
∂ log π−i(x−i |xi)

∂xj

)2

− 1

d

d∑
j=1

(
∂

∂xj
log πd(xd)

)2

(3.122)

=
1

d− 1

∑
j 6=i

(
∂ log πd(xd)

∂xj

)2

− 1

d

d∑
j=1

(
∂

∂xj
log πd(xd)

)2

(3.123)

=
1

d
R

(i)
d −

1

d

(
∂

∂xi
log πd(xd)

)2

→ 0. (3.124)

Proof of Lemma 3.4.7

Recall that we have shown

M̂
(i)

xd
(Yi) = Φ

(
R

(i)
d (Yi)

−1/2

(
`−1 log

πd(yd(i))

πd(xd)
− `R(i)

d (Yi)/2

))
(3.125)

+ exp

(
log

πd(yd(i))

πd(xd)

)
Φ

(
−`R(i)

d (Yi)
1/2/2− log

πd(yd(i))

πd(xd)
R

(i)
d (Yi)

−1/2`−1

)
. (3.126)
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For notational simplicity, we omit the index i and write R
(i)
d by Rd. To simplify the derivation, we note

that M̂
(i)

xd
(y) has the following form

M(y) = Φ

(
f(y)g(y)− 1

2
f−1(y)

)
+ exp(g(y))Φ

(
−1

2
f−1(y)− f(y)g(y)

)
, (3.127)

where f−1(y) := `R
1/2
d (y) and g(y) = log πd(yd(i))− log πd(xd). Taking the derivative with respect to y,

we get

dM(y)

dy
= Φ′(fg − f−1/2)

d

dy
(fg − f−1/2) (3.128)

+ exp(g)Φ′(−f−1/2− fg)
d

dy
(−fg − f−1/2) (3.129)

+ exp(g)

(
d

dy
g

)
Φ(−fg − f−1/2) (3.130)

≤ ‖Φ′‖∞
∣∣∣∣dfdy

g +
dg

dy
f − 1

2

df−1

dy

∣∣∣∣ (3.131)

+ exp(g)‖Φ′‖∞
∣∣∣∣dfdy

g +
dg

dy
f +

1

2

df−1

dy

∣∣∣∣ (3.132)

+ exp(g)

∣∣∣∣dgdy

∣∣∣∣ ‖Φ‖∞ (3.133)

Note that both Φ and Φ′ are bounded functions. It then suffices to show

exp(g)

∣∣∣∣dgdy

∣∣∣∣ = o(d1/2), exp(g)

∣∣∣∣dfdy
g

∣∣∣∣ = o(d1/2), (3.134)

exp(g)

∣∣∣∣dgdy
f

∣∣∣∣ = o(d1/2), exp(g)

∣∣∣∣df−1

dy

∣∣∣∣ = o(d1/2). (3.135)

Observing that df−1

dy = 1
2`R

′
d/R

1/2
d and df

dy = − 1
2`

1
Rd

R′d
R

1/2
d

, if we can show

sup
i∈{1,...,d}

dR
(i)
d (y)

dy

1

[R
(i)
d (y)]1/2

= o(1), (3.136)

then we can get df−1

dy = o(1) and df
dy = o(1/Rd). Using R

(i)
d → Id(x

d) from Section 3.4.2, it suffices to

show (
sup

xd∈F+
d

πd(xd)

)sup
i

sup
xd∈F (i)

d

∂ log πd(xd)

∂xi

 = o(d1/2), (3.137)

(
sup

xd∈F+
d

πd(xd)

)(
sup

xd∈F+
d

∣∣log(πd(xd))/Id(x
d)
∣∣) = o(d1/2), (3.138)

(
sup

xd∈F+
d

πd(xd)

)sup
i

sup
xd∈F (i)

d

∣∣∣∣∂ log πd(xd)

∂xi
/
√
Id(xd)

∣∣∣∣
 = o(d1/2). (3.139)

One can easily verify that the above equations hold under Assumption A4.
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Finally, we complete the proof by showing Eq. (3.136). Recall that

R
(i)
d (y) =

1

d− 1

∑
j 6=i

(
∂ log π−i(x−i |xi = y)

∂xj

)2

. (3.140)

For notational simplicity, we write

R
(i)
d (y) =

1

d− 1

∑
j 6=i

f2
j (y), (3.141)

where fj(y) := ∂ log π−i(x−i | xi=y)
∂xj

. Then, by Cauchy–Schwartz inequality

∂R
(i)
d (y)

dy
=

2

d− 1

∑
j 6=i

fj(y)f ′j(y) ≤ 2

d− 1

√∑
j 6=i

f2
j (y)

∑
j 6=i

|f ′j(y)|2. (3.142)

Note that by A1, if |i− j| > ld then f ′j(y) ≤ supxd∈Fd
∂2 log πd(xd)
∂xi∂xj

→ 0. Hence, we have

sup
i∈{1,...,d}

dR
(i)
d (y)

dy

1

[R
(i)
d (y)]1/2

≤ sup
i

2
d−1

√∑
j 6=i f

2
j (y)

∑
j 6=i |f ′j(y)|2√

1
d−1

∑
j 6=i f

2
j (y)

(3.143)

= 2 sup
i

√
1

d− 1

∑
j 6=i

|f ′j(y)|2 ≤ 2

√√√√ 1

d− 1

d∑
j=1

|f ′j(y)|2 = o

(√
ld
d

(
√
d/ld)2

)
= o(1). (3.144)

3.4.3 Proof of Theorem 3.2.19

Similar to Section 3.4.1, we assume the coordinates are linear ordered for simplicity. The proof follows

the framework of [RGG97] using the generator approach [EK86].

Define the (discrete time) generator of xd by

(Gdf)(xd) : = dEY d
{

[f(Y d)− f(xd)]

(
1 ∧ π

d(Y d)

πd(xd)

)}
, (3.145)

for any function f for which this definition makes sense. In the Skorokhod topology, it doesn’t cause

any problem to treat Gd as a continuous time generator. We shall restrict attention to test functions

such that f(xd) = f(x1). We show uniform convergence of Gd to G, the generator of the limiting

(one-dimensional) Langevin diffusion, for a suitable large class of real-valued functions f , where, for some

fixed function h(`),

(Gf)(x1) := h(`)

{
1

2
f ′′(x1) +

1

2
[(log π̃)′(x1)] f ′(x1)

}
, (3.146)

in which π̃ is a one-dimensional density of the first coordinate of πd. Since we have assumed in A6 that

(log π̃)′ is Lipschitz, by [EK86, Thm 2.1 in Ch.8], a core for the generator has domain C∞c , which is the

class of continuous functions with compact support such that all orders of derivatives exist. This enable

us to restrict attentions to functions fc ∈ C∞c such that fc(x
d) = fc(x1).

Note that using Assumption A2+, and the assumption πd(F cd ) = O(d−1−δ), following the arguments in
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the proof of Lemma 3.4.3 we can get a stronger version of Lemma 3.4.3 for F ′d := {xd : supi |R
(i)
d +S

(i)
d | ≤

d−δ}. Then using a union bound yields

P(Xd(bdsc) /∈ Fd ∩ F ′d,∃0 ≤ s ≤ t)→ 0. (3.147)

Therefore, for any fixed t, if d→∞ then the probability of all Xd(bdsc), 0 ≤ s ≤ t are in Fd ∩ F ′d goes to

1. Since Fd ∩ F ′d ⊆ F
+
d ∩ F ′d ⊆ F

+
d , it suffices to consider xd ∈ F+

d .

Note that Y d ∼ N (xd, `2

d−1I), we can write

(Gdfc)(x
d) = dEY1

{
[fc(Y1)− fc(x1)]EY−1

[
1 ∧ π

d(Y d)

πd(xd)

]}
, (3.148)

where EY−1
[·] is short for EY2,...,Yd |Y1

[·] and πd denotes the target distribution in d-dimension. The goal

is then to prove (Gdfc) converges to (Gfc).

Recall the definition Eq. (3.56), we omit the index to write M
(1)

xd
as Mxd , which is defined by

Mxd(Y1) = EY−1

(
1 ∧ π

d(Y d)

πd(xd)

)
. (3.149)

Then we have previously shown in Eq. (3.79) that Mxd(Y1) can be approximated by

M̂xd(Y1) = Φ

(
Rd(Y1)−1/2

(
`−1 log

πd(Y1, x−1)

πd(xd)
− `Rd(Y1)/2

))
(3.150)

+ exp

(
log

πd(Y1, x−1)

πd(xd)

)
Φ

(
−`Rd(Y1)1/2/2− log

πd(Y1, x−1)

πd(xd)
Rd(Y1)−1/2`−1

)
(3.151)

For xd ∈ F+
d , some properties of M̂xd is given as follows.

Lemma 3.4.9. For M̂xd , we have

M̂xd(x1) = 2Φ

(
−
`R

1/2
d (x1)

2

)
, (3.152)

M̂ ′xd(x1) = Φ

(
−
`R

1/2
d (x1)

2

)
d[log π1(x) + log π−1(x−1 |x)]

dx
(x1) + o(1), (3.153)

M̂ ′xd(x1) = o(d1/2), sup
xd∈F+

d

M̂ ′′xd = o(d1/2). (3.154)

Proof. See Section 3.4.4.

Since fc(Y1)− fc(x1) is bounded, it suffices to show

EY1

{
d[fc(Y1)− fc(x1)]M̂xd(Y1)

}
→ (Gfc)(x1). (3.155)

Now using mean value theorem and Taylor expansion of EY1

{
[fc(Y1)− fc(x1)]M̂xd(Y1)

}
at (Y1 − x1)
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yields

[fc(Y1)− fc(x1)]M̂xd(Y1) (3.156)

=

[
f ′c(x1)(Y1 − x1) +

1

2
f ′′c (x1)(Y1 − x1)2 +K(Y1 − x1)3

]
(3.157)

·
[
M̂xd(x1) + M̂ ′xd(x1)(Y1 − x1) +

1

2
M̂ ′′xd(x′)(Y1 − x1)2

]
(3.158)

= f ′c(x1)M̂xd(x1)(Y1 − x1) +

[
1

2
f ′′c (x1)M̂xd(x1) + f ′c(x1)M̂ ′xd(x1)

]
(Y1 − x1)2 (3.159)

+

[
KM̂xd(x1) +

1

2
f ′′c (x1)M̂ ′xd(x1) +

1

2
M̂ ′′xd(x′)f ′c(x1)

]
(Y1 − x1)3 (3.160)

+

[
1

4
M̂ ′′xd(x′)f ′′c (x1) +KM̂ ′xd(x1)

]
(Y1 − x1)4 +

1

2
M̂ ′′xd(x′)K(Y1 − x1)5, (3.161)

where K is a constant since fc has bounded third derivative. Note that both f ′c(x1) and f ′′c (x1) are

bounded as well. Therefore, taking expectation over Y1 and using M̂ ′xd(x1) = o(d1/2), supxd M̂
′′
xd = o(d1/2)

in Lemma 3.4.9, we have

EY1

{
[fc(Y1)− fc(x1)]M̂xd(Y1)

}
=

[
1

2
f ′′c (x1)M̂xd(x1) + f ′c(x1)M̂ ′xd(x1)

]
`2

d− 1
+ o(d−1). (3.162)

Finally, by Assumption A6, we have

f ′c(x1)M̂ ′xd(x1) +
1

2
f ′′c (x1)M̂xd(x1) (3.163)

= 2Φ

(
−
`R

1/2
d (x1)

2

)(
1

2
f ′′c (x1) +

1

2
f ′c(x1)

d[log π1(x) + log π−1(x−1 |x)]

dx
(x1)

)
(3.164)

= 2Φ

(
−
`R

1/2
d (x1)

2

)(
1

2
f ′′c (x1) +

1

2
f ′c(x1)

d log π1|−1(x |x−1)

dx
(x1)

)
(3.165)

→ 2Φ

(
−`I(xd)1/2

2

)(
1

2
f ′′c (x1) +

1

2
f ′c(x1)

d log π̃(x)

dx
(x1)

)
(3.166)

→ 2Φ

(
−`Ī

1/2

2

)(
1

2
f ′′c (x1) +

1

2
f ′c(x1)

d log π̃(x)

dx
(x1)

)
, (3.167)

which implies that EY1

{
d[fc(Y1)− fc(x1)]M̂xd(Y1)

}
→ (Gfc)(x1) where h(`) := 2`2Φ(−`

√
Ī/2).

3.4.4 Proof of Lemma 3.4.9

The proof is quite tedious. In order to simplify the notations, we first introduce the following lemma.

Lemma 3.4.10. For the function M(y) defined by

M(y) = Φ

(
f(y)g(y)− 1

2
f−1(y)

)
+ eg(y)Φ

(
−1

2
f−1(y)− f(y)g(y)

)
, (3.168)
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we have

dM(y)

dy
= Φ′(fg − f−1/2)

d

dy
(fg − f−1/2) (3.169)

+ egΦ′(−f−1/2− fg)
d

dy
(−fg − f−1/2) (3.170)

+ eg
(

d

dy
g

)
Φ(−fg − f−1/2). (3.171)

d2M(y)

dy2
= Φ′′(fg − f−1/2)

[
d

dy
(fg − f−1/2)

]2

+ Φ′(fg − f−1/2)
d2

dy2
(fg − f−1/2) (3.172)

+ eg
(

d

dy
g

)
Φ′(−f−1/2− fg)

d

dy
(−fg − f−1/2) (3.173)

+ eg

{
Φ′′(−fg − f−1/2)

[
d

dy
(−fg − f−1/2)

]2

+ Φ′(−fg − f−1/2)
d2

dy2
(−fg − f−1/2)

}
(3.174)

+ eg
(

d

dy
g

)
Φ′(−fg − f−1/2)

d

dy
(−fg − f−1/2) (3.175)

+ Φ(−fg − f−1/2)

[
eg
(

d2

dy2
g

)
+ eg

(
d

dy
g

)2
]
. (3.176)

Furthermore, if g(x1) = 0, then we have

dM(y)

dy
(x1) =

(
Φ′(−f−1/2)

d

dy
(fg − f−1/2) (3.177)

+Φ′(−f−1/2)
d

dy
(−fg − f−1/2) (3.178)

+

(
d

dy
g

)
Φ(−f−1/2)

)
(x1) (3.179)

=

(
Φ′(−f−1/2)

d

dy
(−f−1) +

(
d

dy
g

)
Φ(−f−1/2)

)
(x1) (3.180)

= −Φ′
(
−f
−1(x1)

2

)
df−1(y)

dy
(x1) +

dg(y)

dy
(x1)Φ

(
−f
−1(x1)

2

)
. (3.181)

Remark 3.4.11. Let g(y) = log πd(y,x−1)
πd(xd)

and f−1(y) = `R
1/2
d (y) then M̂xd(y) = M(y).

Now substituting g(y) = log πd(y,x−1)
πd(xd)

and f−1(y) = `R
1/2
d (y) to Lemma 3.4.10, we have

M̂xd(x1) = 2Φ

(
−
`R

1/2
d (x1)

2

)
, (3.182)
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and

M̂ ′xd(x1) =
dM̂xd(y)

dy
(x1) (3.183)

=Φ

(
−
`R

1/2
d (x1)

2

)
d[log π1(x) + log π−1(x−1 |x)]

dx
(x1) (3.184)

− Φ′

(
−
`R

1/2
d (x1)

2

)
`

2R
1/2
d (x1)

R′d(x1). (3.185)

Since Φ′ is bounded and by Eq. (3.136), R′d(x1)/R
1/2
d (x1)→ 0, therefore

Φ′

(
−
`R

1/2
d (x1)

2

)
`

2R
1/2
d (x1)

R′d(x1) = o(1). (3.186)

Also, M̂ ′xd(x1) = o(d1/2) since ∂ log πd

∂xi
= O(dα/2) = o(d1/2).

Now we prove supxd M̂
′′
xd = o(d1/2). For simplicity, we keep the notations of f and g (recall that

g(y) = log πd(y,x−1)
πd(xd)

and f−1(y) = `R
1/2
d (y)) and use the results in Section 3.4.2. Since Φ,Φ′,Φ′′ are

bounded, it suffices to bound all the following terms to be o(d1/2):[
d

dy
(fg − f−1/2)

]2

,
d2

dy
(fg − f−1/2), exp(g)

(
dg

dy

)
d

dy
(−fg − f−1/2), (3.187)

exp(g)

[
d

dy
(fg − f−1/2)

]2

, exp(g)
d2

dy
(fg − f−1/2), exp(g)

(
d2g

dy2

)
, exp(g)

(
dg

dy

)2

. (3.188)

Next, we show that most of them can be verified using Assumption A4+, and the results in Section 3.4.2:

[
d

dy
(fg − f−1/2)

]2

= O

( sup
xd∈F+

d

log πd(xd)O(dα/4) + sup
xd∈F+

d

∂ log πd

∂x1

)2
 (3.189)

= O
[
(dα/4 log d+ dα/2)2

]
= o(d1/2), (3.190)∣∣∣∣eg(dg

dy
)

d

dy
(−fg − f−1/2)

∣∣∣∣ = O

[
sup

xd∈F+
d

πd(xd) sup
xd∈F+

d

∂ log πd

∂x1

(
dα/4 log d+ dα/2

)]
(3.191)

= o(d1/2−αdα/2(dα/4 log d+ dα/2)) = o(d1/2), (3.192)∣∣∣∣∣exp(g)

[
d

dy
(fg − f−1/2)

]2
∣∣∣∣∣ = o(d1/2−αdα) = o(d1/2), (3.193)

∣∣∣∣exp(g)

(
d2g

dy2

)∣∣∣∣ = O

[
sup

xd∈F+
d

πd(xd) sup
xd∈F+

d

∂2 log πd

∂x2
1

]
= o(d1/2−α)O(dα) = o(d1/2), (3.194)∣∣∣∣∣exp(g)

(
dg

dy

)2
∣∣∣∣∣ = O

[
sup

xd∈F+
d

πd(xd) sup
xd∈F+

d

(
∂ log πd

∂x2
1

)2
]

= o(d1/2−α)O(dα/2)2 = o(d1/2). (3.195)

The only terms left are d2

dy (fg − f−1/2) and exp(g) d2

dy (fg − f−1/2). Therefore, it suffices to show

d2

dy
(fg − f−1/2) = O(dα). (3.196)
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Note that

d2

dy
(fg − f−1/2) =

d

dy
(f ′g + g′f − 1

2
df−1) (3.197)

=
d

dy

[
1

Rd

R′d

R
1/2
d

g +
1

R
1/2
d

g′ − 1

2

R′d

R
1/2
d

]
(3.198)

=
1

Rd

R′d

R
1/2
d

g′ +

(
1

Rd

R′d

R
1/2
d

)′
g +

1

R
1/2
d

g′′ +

(
1

R
1/2
d

)′
g′ − 1

2

(
R′d

R
1/2
d

)′
. (3.199)

Note that we have shown R′d = o(R
1/2
d ) in Section 3.4.2. Similarly, we also can show using Assumption

A3+ that

R′′d =
1

d− 1
(
∑
j 6=1

fjf
′
j)
′ =

1

d− 1

∑
j 6=1

(f ′j)
2 +

1

d− 1

∑
j 6=1

fjf
′′
j (3.200)

≤ 1

d− 1

∑
j 6=1

(f ′j)
2 +

√
1

d− 1

∑
j 6=1

f2
j

√
1

d− 1

∑
j 6=1

(f ′′j )2 (3.201)

= O(ld/d)o((
√
d/ld)

2) + o(R
1/2
d

√
ld/d(

√
d/ld)2) = o(R

1/2
d ), (3.202)

where fj(x) := ∂ log π−1(x−1 | x1=x)
∂xj

. Therefore R′′d = o(R
1/2
d ) as well. Finally, we can complete the proof

by verifying Eq. (3.196) using Assumption A4+ as follows.∣∣∣∣∣ 1

Rd

R′d

R
1/2
d

g′

∣∣∣∣∣ = O
(

1

Rd

)
o(1)O

(
sup

xd∈F+
d

∂ log πd

∂x1

)
= O(dα/4)o(dα/2) = o(dα), (3.203)

∣∣∣∣∣
(

1

Rd

R′d

R
1/2
d

)′
g

∣∣∣∣∣ = O

[
R′′dR

3/2
d + 3/2(R′d)

2R
1/2
d

R3
d

g

]
= O

[
1

R
3/2
d

(R′′dg)

]
(3.204)

= O(dα/4)o(1)O(dα/2) = o(dα), (3.205)∣∣∣∣∣ 1

R
1/2
d

g′′

∣∣∣∣∣ = O

(
sup

xd∈F+
d

∂2 log πd

∂x2
1

)
= o(dα), (3.206)

∣∣∣∣∣
(

1

R
1/2
d

)′
g′

∣∣∣∣∣ = O

(
1

2

1

R
3/2
d

R′dg
′

)
= o(1/Rd)O

(
sup

xd∈F+
d

∂ log πd

∂x1

)
= O(dα/4)o(dα/2) = o(dα), (3.207)

∣∣∣∣∣
(

R′d

R
1/2
d

)′∣∣∣∣∣ =

∣∣∣∣∣∣
R′′dR

1/2
d − 1

2 (R′d)
2 1

R
1/2
d

Rd

∣∣∣∣∣∣ = O
(
R′′d/R

1/2
d

)
= o(1) = o(dα). (3.208)

3.4.5 Proof of Theorem 3.2.21

We follow the same approach as in the proof of [RR16, Proposition 3]. The idea is to follow the proof of

Theorem 3.2.19 except in the proof of Eq. (3.79), we need a stronger version of Lemma 3.4.3 to determine

the sequence of “typical sets” {F ′d}.
Given fixed time t, considering the sequence of “typical sets” {F ′d} defined by

F ′d := {xd : |Rd + Sd| ≤ d−δ}, (3.209)

where δ > 0 and we used Rd and Sd to denote R
(1)
d and S

(1)
d for simplicity. We need to guarantee that
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when d is large enough, we always have Xd(bdsc) ∈ Fd ∩ F ′d,∀0 ≤ s ≤ t and this happens for almost all

starting state Xd
1 (0) = x. That is, defining

p(d, x) := P(X(bdsc) /∈ Fd ∩ F ′d,∃0 ≤ s ≤ t |Xd
1 (0) = x), (3.210)

letting π1 denote the marginal stationary distribution for the first coordinate, we want to show that for

any given ε > 0, as d→∞

Px∼π1
[p(d, x) ≥ ε, infinite often] = 0. (3.211)

We prove it using Borel–Cantelli Lemma. Note that the application of Borel–Cantelli lemma is valid since

we have assumed all of the processes are jointly defined on the same probability space as independent

processes. First, note that

Ex∼π1 [p(d, x)] = dtPπd((Fd ∩ F ′d)c) = dtPπd(F cd ∪ (F ′d)
c) ≤ dtPπd(F cd ) + dtPπd((F ′d)

c). (3.212)

For any given ε > 0, we have

∞∑
d=2

P(p(x, d) ≥ ε) ≤
∞∑
d=2

Ex∼π1
[p(d, x)]

ε
(3.213)

≤ dt

ε

∞∑
d=2

Pπd(|Rd + Sd| > d−δ) +
dt

ε

∞∑
d=2

P(Xd /∈ Fd). (3.214)

By πd(F cd ) = O(d−2−δ), we have dt
∑∞
d=2 P(Xd /∈ Fd) <∞. Now in order to use Borel–Cantelli Lemma,

the condition we need is that for some number of moments m such that

Pπd(|Rd + Sd| > d−δ) ≤ E|Rd + Sd|m

d−mδ
= dmδE|Rd + Sd|m = O(d−2−δ), (3.215)

which leads to
∑∞
d=2 P(p(x, d) ≥ ε) < ∞. In order to obtain non-trivial conditions, we let m = 5 and

Assumption A2++ implies E|Rd + Sd|5 = O(d−2−6δ). We can then use this sequence of typical sets {F ′d}
in the proof of Theorem 3.2.19 to replace the sequence of {F ′d} used in Lemma 3.4.3. The residual proof

follows the same as Theorem 3.2.19.

3.4.6 Proof of Proposition 3.3.6

Note that we have the number of parameters d = n2 + n+ 2 in this example. The target distribution (i.e.

the posterior distribution) satisfies

πd(xd) = P(xd | {Yij}ni,j=1)

∝ ba

Γ(a)
A−a−1e−b/A

n∏
j=1

1√
2πA

e−
(µj−ν)

2

2A

n∏
i=1

1√
2πV

e−
(θij−µj)

2

2V
1√

2πW
e−

(Yij−θij)
2

2W .
(3.216)

Clearly, this model can be represented by the graphical model in Eq. (3.41). It can be easily checked

that the maximum number cliques any coordinate belongs to is n+ 1 and the cardinality of cliques is

bounded by constant 2, so supk |Ck| = o(d/md) = o(n). Furthermore, the target distribution clearly

satisfies “flat tail” condition required by Proposition 3.3.3 since all the conditional distributions are
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standard distributions. Therefore, the first equation in A1, the first equation in A3, and A2 hold by

Proposition 3.3.3.

Next, we verify A5 using Proposition 3.3.4. Note that this model can be represented by the graphical

model in Eq. (3.42) using K = 3 layers. In order to check the conditions in Proposition 3.3.4, note that

log πd ∝ (−a− 1− n

2
) logA− b

A
−
∑
j(µj − ν)2

2A
−
∑
i,j(θij − µj)2

2V
−
∑
i,j(Yij − θij)2

2W
. (3.217)

Observing that, under Xd = (ν,A, {µj}nj=1, {θij}ni,j=1) ∼ πd, we have

θij | Yij , µj ∼indep. N
(
Wµj + V Yij
W + V

,
V W

W + V

)
, i, j ∈ {1, . . . , n}, (3.218)

µj |
∑
i

θij , ν, A ∼indep. N
(∑

iAθij + V ν

nA+ V
,

AV

nA+ V

)
, i ∈ {1, . . . , n}, (3.219)

ν | µ̄, A ∼ N
(
µ̄,
A

n

)
, (3.220)

A | {µj}, ν ∼ IG

a+
n

2
, b+

1

2

∑
j

(µj − ν)2

 . (3.221)

Therefore, we have ∣∣∣∣∂ log πd

∂A

∣∣∣∣ =

∣∣∣∣∣b+ 1
2

∑
j(µj − ν)2

A2
−
a+ 1 + n

2

A

∣∣∣∣∣ = OP(d1/2). (3.222)

since a+1+n/2
A →P

a+1+n/2
A0

= O(d1/2) and
∑
j(µj − ν)2 →P

∑
j(µj − µ̄)2 + A0

n = OP(d1/2). Other

coordinates can also be verified, which are shown as follows.(
∂ log πd

∂ν

)2

=

(
n(µ̄− ν)

A

)2

= OP

( n
A

)
= OP(d/n), (3.223)(

∂ log πd

∂µj

)2

=

(∑
i(θij − µj)

V
− µj − ν

A

)2

= (nA+ V )2

(
A
∑
i θij + V ν

nA+ V
− µj

)2

(3.224)

= OP

[
(nA+ V )2 AV

nA+ V

]
= OP(d/n), (3.225)(

∂ log πd

∂θij

)2

=

(
Yij − θij

V
− θij − µj

W

)2

= (W + V )2

(
V Yij +Wµj
W + V

− θij
)2

= OP(d/n2). (3.226)

(3.227)

Therefore, A5 holds by Proposition 3.3.4. Finally, all the other conditions in A1, A3, and A4 can be

verified in a similar way as in Section 3.3.1 for Example 3.3.1.



Chapter 4

A Bayesian decision-theoretic

analysis of Bayesian model

misspecification

One of the hallmarks of Bayesian analysis is the use of “prior distributions”. If we adopt the classical

notion of a statistical model, where the data are assumed to be distributed according to one in a parametric

family of probability distributions, the prior distribution is assumed to capture the statistician’s prior

knowledge and/or subjective beliefs about which parameters are most likely. The combination of the prior

and model yields a joint distribution on the data and parameters. If a model is misspecified, it is often

the case that no prior distribution yields a joint distribution that accurately represents the statistician’s

uncertainty. In the misspecified setting, the usual notion of a “subjective” prior may make no sense.

Indeed, the statistician may believe that every available parameter setting should be assigned zero prior

probability. As essentially every statistical model is misspecified, this raises the question: what is a prior?

We focus on this setting of a misspecified model and the question of what prior distribution should be.

Our solution is to view inference in pragmatic terms. Relative to one’s beliefs, there is a surrogate prior

that is most likely to produce the best answers.

In this work, we formalize the problem of choosing a (surrogate) prior as a Bayesian decision theory

task, and develop theory for choosing optimal surrogate priors. The resulting framework, which we call

meta-Bayesian analysis, gives (optimal surrogate) priors a pragmatic interpretation: relative to one’s

actual subjective beliefs, they lead to the best inference possible using the misspecified model. We discuss

some early results on meta-Bayesian analysis in this work, which have some surprising consequences. For

example, in violation of tradition Bayesian tenets, the optimal surrogate prior may depend on the loss

function, on the number of data points you plan to observe, and on the number of predictions you expect

to make. Furthermore, for general cases when the belief is a mixture of i.i.d. distributions, we show

that under certain conditions, the belief on the “asymptotic locations” of posterior distributions is an

asymptotically optimal prior. Finally, we study the i.i.d Bernoulli model relative to a general stationary

belief on a binary sequence. We show that, under some conditions, the marginal prior belief on the

limiting frequency of ones is asymptotically optimal when the number of predictions goes to infinity.

77
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4.1 Related work on misspecification

There is a long history of work on inference and prediction under model misspecification. The study of

Bayesian analysis under misspecification has its roots in the study of the asymptotic behavior of the

maximum likelihood estimator (MLE). Building on work characterizing the consistency and asymptotic

normality of the MLE in well-specified models [Wal49; LeC53], Berk [Ber66] showed that, asymptotically,

a sequence of posterior distributions need not converge but will eventually be confined to the set of

“pseudo-true” parameter values, i.e., the parameter values minimizing the Kullback–Liebler divergence

with the distribution of the data. Later, Berk [Ber70] studied conditions under which a sequence of

posterior distributions converges weakly to a degenerate distribution. Independently of [Ber66], Huber

[Hub67] established general conditions implying the consistency and asymptotic normality of the MLE

under model misspecification. (Huber’s results actually apply beyond the MLE.) Simpler, though more

restrictive, conditions were later given by White [Whi82]. The limit obtained by Huber agrees with that

by Berk: The MLE ultimately stays within any neighborhood of the set of pseudo-true values. When the

limit is unique, Huber also established the MLE’s asymptotic covariance, now known as the “sandwich”

covariance matrix.

There is a vast literature building on these foundational results. In the Bayesian context, the

asymptotic normality of the posterior distribution under misspecification was studied by Chen [Che85]

and Bunke and Milhaud [BM98]. Their work establishes that the posterior distribution is asymptotically

normal, centered at the MLE, but with covariance equal to the reciprocal of the second derivative

of the log likelihood function, not the sandwich covariance matrix. Royall and Tsou [RT03] show

that the posterior distribution based on the adjusted (profile) likelihood function [Sta96] can be robust

asymptotically, in the sense that it agrees with the posterior under the true model in the limit. Fushiki

[Fus05] compares the Bayesian predictive distribution with the Bootstrap prediction obtained by applying

Breiman’s “bagging” method under the KL loss. It is shown that the Bootstrap prediction dominates

the Bayesian prediction when model is misspecified. Müller [Mül13] shows that Bayesian inference

about the pseudo-true parameter under squared error has lower frequentist risk asymptotically when the

posterior is substituted by an artificial normal posterior centered at the MLE with sandwich covariance

matrix. Other studies of artificial likelihoods and posteriors using the sandwich covariance matrix include

[HW13] and [SD12]. These studies work with the asymptotic normal form of the posterior, where there is

typically no longer a role played by the prior.

Lindsey [Lin99] discusses model misspecification within the Bayesian context. There, he questions

the existence of a “true” model, and points out the contradiction between assigning probability one to a

model at the outset and, at the same time, planning to check the model after seeing the data. He suggests

that we should rather think in terms of models being appropriate simplifications, which are useful for

detecting and understanding generalizable patterns in data, and for prediction. The type of patterns

and the predictions, as well as the models to be used will depend on the questions to be answered. The

validity of Bayesian probabilistic statements requires that the prior be personal and be specified before

obtaining new information. However, Lindsey [Lin99] proposes neither an alternative meaning of priors,

nor a method for choosing them.

Similar ideas appear in the discussion on specification and interpretation of nonparametric priors

by Walker et al. [Wal+99]. An interesting example is given that, using the Bayesian nonparametric

approach, one can ensure that the first two moments of the unknown function match those derived from

a parametric model, which effectively creates a region where the function is thought to be located that is
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the same for both parametric and nonparametric cases. The difference is that in the parametric case the

shape of the unknown function is restricted whereas in the nonparametric case it is not. Gutierrez-Pena

and Walker [GPW01] propose a method for model selection under model misspecification by working

within a larger nonparametric model and taking a Bayesian predictive approach. Their approach involves

performing posterior inference in a larger nonparametric model and then selecting the model whose

posterior predictive distribution is closest according to some measure of divergence, such as KL divergence

or Hellinger distance. Walker [Wal02] extends this approach by choosing the predictive distribution

on the basis of a decision-theoretic criterion. The choice of divergence and the choice of the larger

(nonparametric) model can be adhoc and are left up to the statistician.

Finally, we mention some recent work related to Bayesian model misspecification. Bühlmann and

van de Geer [Bv15] investigate the robustness of asymptotic inference for misspecified linear models.

Grünwald [Grü12] studies the use of power likelihood (i.e., adjusted likelihood) to improve the robustness

to misspecification and proposes a method for choosing the power term. Miller and Dunson [MD15]

propose the “coarsened posterior”, obtained by conditioning on a KL neighborhood of the empirical

distribution, rather than on the data directly, and show that the resulting posterior can be approximated

by a power likelihood. Power likelihood approaches can obtain optimal convergence rates, but there

is, as of yet, no clear motivation for the particular form of powered likelihood. Bissiri, Holmes, and

Walker [BHW16] suggest a general framework for Bayesian inference and argue that a valid update of a

prior belief distribution to a posterior can be made for parameters which are connected to observations

through a loss function rather than the traditional likelihood function. Under model misspecification,

the framework uses loss functions to connect information in the data to functionals of interest without

building a more complex model.

4.2 Preliminaries

Let S, T be measurable spaces, and letM1(S) denote the usual measurable space of probability measures

on S. For µ ∈M1(S) and τ : S → T measurable, let τ∗µ ∈M1(T ) denote the (pushforward) measure

given by (τ∗µ)(B) = µ(τ−1[B]) = µ{s ∈ S : τ(s) ∈ B} for measurable B ⊆ T . Let κ be a probability

kernel from S to T , i.e., a measurable map κ : S →M1(T ). We will abuse notation and write κ(B|s) for

(κ(s))(B) for all s ∈ S and measurable B ⊆ T . Let µ⊗ κ denote the probability measure on S × T given

by (µ⊗ κ)(A×B) =
∫
A
κ(B|s)µ(ds), for all measurable A ⊆ S and B ⊆ T . Finally, let µτ : T →M1(S)

denote (some version of) the disintegration of µ along τ , i.e., µτ is a probability kernel from S to T

satisfying

µ{s ∈ A : τ(s) ∈ B} =

∫
B

µτ (A|t)(τ∗µ)(dt), (4.1)

for all measurable A ⊆ S and B ⊆ T . When S = S0 × S1 is a product space, we will write µSi for the

pushforward of µ through the projection map (s0, s1) 7→ si and write µS1−i|Si for the disintegration of µ

with respect to the same projection map. Let µκ = (µ⊗ κ)T denote the marginal distribution induced

on T , and note that µ⊗ κ = (µ⊗ κ)S ⊗ (µ⊗ κ)T |S .
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4.2.1 Bayesian decision theory

In the classical definition of a statistical decision problem, one introduces a space of parameters Θ. The

unknown loss of an action a ∈ A is defined to be a known function L(θ, a) of an unknown parameter

θ ∈ Θ. The usual way to apply Bayesian decision theory is under the assumption that the model is

well specified: one places a prior probability distribution on Θ and introduces a probability kernel

on Θ to model the relationship between observations and the unknown parameter, so that they may

serve as evidence about the losses we may incur after choosing an action. In particular, the model

specifies a family of distributions, Qθ, θ ∈ Θ, each defined on a common space, X . Together with the

probability kernel on Θ, a joint distribution on Θ×X is defined, which, given any observation, determines

conditional expectations of the loss function for each potential action. In order to study Bayesian model

misspecification, however, we need a more general setting in which there is no “parameter”, which we

now sketch. A detailed presentation is deferred to Section 4.4.1.

Let (L̄(α))α∈A be a R+-valued stochastic process, modeling unknown losses associated with available

actions α ∈ A. Let ξ be a random element in a measurable space X , representing evidence we have

collected. Write µ for the distribution of ξ. Let D be the set of all maps δ : X → A such that

L̄(δ(ξ)) is a random variable, i.e., we have a belief about the loss we may incur upon responding to

evidence ξ by taking action δ(ξ). Elements of D are called decision procedures, and the Bayes risk

of δ ∈ D is the expected loss, EL̄(δ(ξ)), which may be infinite. A decision procedure δ∗ is Bayes if

EL̄(δ∗(ξ)) = infδ∈D EL̄(δ(ξ)). Readers may be more familiar with Bayes (optimal) decision procedures

being defined in terms of actions that minimize the posterior expected loss. We provide further details

in Section 4.4.1. In particular, we shed more light on the relationship between these two definitions by

revealing some structure in D using measure theory.

4.2.2 Some key results in Bayesian decision theory

We present several key results in Bayesian decision theory that we later reanalyze from a meta-Bayesian

perspective.

Theorem 4.2.1. Fix a σ-finite measure ν on Y, let A = {ν′ ∈M1(Y) : ν′ � ν} be the convex set of all

distributions dominated by ν. Suppose Y is a random element in Y such that

L̄(α) := − log
dα

dν
(Y ), ∀α ∈ A. (4.2)

Assume that PY | ξ ∈ A for µ-almost all ξ, then the conditional distribution of Y given ξ is the unique

Bayes optimal action, i.e., δ∗(ξ) = PY | ξ for µ-almost all ξ.

Let mi[ν] denote the i-th moment of a distribution ν on R, provided it exists. We will write

var[ν] := m2[ν]− (m1[ν])2 for the variance. For a distribution ν on Rd, we will write m[ν] for the vector

of coordinate-wise means and write m2[ν] for the mean after the pushforward map x 7→ ‖x‖22.

Theorem 4.2.2. Let Y ⊆ Rd and A = conv(Y) be the convex hull of Y. Suppose Y is a random element

in Y such that

L̄(α) := ‖Y − α‖22, ∀α ∈ A. (4.3)
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Assume that m2[PY | ξ] <∞ for µ-almost all ξ, then the mean of PY | ξ is the unique Bayes optimal action,

i.e., δ∗(ξ) = m[PY | ξ] for µ-almost all ξ.

4.3 Main results

4.3.1 Meta-Bayesian decision principle

The Bayesian decision principle says that, among a subclass C ⊆ D, of decision procedures, one should

prefer δ0 ∈ C to δ ∈ C if EL̄(δ0(ξ)) ≤ EL̄(δ(ξ)). In particular, if the infimum infδ∈C EL̄(δ(ξ)) is achieved

by some element of C, then we do not prefer using any procedure over this one.

Definition 4.3.1. A decision procedure δ∗ is meta-Bayes within C if

EL̄(δ∗(ξ)) = inf
δ∈C

EL̄(δ(ξ)).

The meta-Bayesian decision principle can be used to study model misspecification. Under model

misspecification, the subclass C includes all available decision procedures. The following example

demonstrate the meta-Bayesian decision problem of choosing a prior for a misspecified model.

Example 4.3.2. (Meta-Bayesian decision problem of choosing a prior) We now consider a misspecified

model Q and the meta-Bayesian decision problem of choosing a prior among a class F . Every prior

π ∈ F induces a joint belief on the losses (L̄(α))α∈A and evidence ξ. Thus, π determines which decision

procedures are meta-Bayes within F . Fix a Bayes decision procedure δπ for each prior π. That is, for

every π ∈ F , let δπ ∈ D be Bayes under prior π and model Q. Having fixed a procedure for each prior,

we see that choosing a prior π implicitly determines a procedure, and thus the loss L̄(δπ(ξ)) that one will

incur once observing ξ and taking the action δπ(ξ). The meta-Bayesian optimal prior is then the prior

that agrees with the Bayesian decision principle among {δπ : π ∈ F}, i.e.,

Π = arg min
π∈F

EL̄(δπ(ξ)). (4.4)

In the rest of the chapter, we will study Example 4.3.2 to demonstrate the meta-Bayesian principle

under model misspecification. We will consider a particular setting for prediction tasks. More specifically,

we assume that L̄(α) can be written as L(Y, α) where Y is a random element in Y and L(·, ·) is a jointly

measurable function on Y×A. Writing the evidence ξ as X, the joint belief on the loss L̄(α) and evidence

ξ reduces to a joint belief on Y and X, which is a probability measure on X × Y. More details are given

in Section 4.3.2.

4.3.2 Model misspecification in prediction tasks

Let X and Y be measurable spaces, assumed to be Borel, let A be a space of actions, and let L : Y×A → R
be a loss function, where L(·, a) is assumed to be measurable for every a ∈ A. We are faced with the

following task: We are shown the first element X in a pair (X,Y ) of values in X ×Y . We are then asked

to make a decision by choosing an action A(X) in A. Finally, we suffer a loss of L(Y,A(X)). Our goal is

to choose actions so as to minimize our expected loss. We define the space of (nonrandomized) decision
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procedures, denoted D, to be the set of all functions A : X → A such that the map

(x, y) 7→ L(y,A(x)) (4.5)

is product measurable. Let P be a probability measure on X ×Y representing our subjective uncertainty

in the pair (X,Y ). The Bayes risk of a decision procedure A ∈ D is defined to be

r(P,A) :=

∫
X×Y

L(y,A(x))P (d(x, y)) (4.6)

=

∫
X

{∫
Y
L(y,A(x))PY|X (dy|x)

}
P 1(dx). (4.7)

A decision procedure A ∈ D is Bayes optimal with respect to P if the infimum

inf
A′∈D

r(P,A′) (4.8)

is achieved by A. (Note that, in general, there may be zero, one, or more decision procedures satisfying

this criterion.) Under some mild regularity conditions, we can describe Bayes optimal decision procedures

directly: The Bayes optimal decision, conditioned on having observed some value x in X , minimizes the

conditional expected loss, i.e.,

A(x) ∈ A[P, x] := arg min
a∈A

∫
Y
L(y, a)PY|X (dy|x), for P 1-almost all x, (4.9)

where arg mina∈A f(a) := {a ∈ A : ∀a′ ∈ A, f(a′) ≥ f(a)} may be empty. We will assume that A[P, x] is

a singleton set for P 1-almost all x and that Eq. (4.9) holds for some decision procedure A ∈ D.1 In this

case, there is a unique (up to a P 1-null set) Bayes optimal decision procedure, which we will denote by

AP .

The following results are direct corollaries of Theorem 4.2.1 and Theorem 4.2.2.

Corollary 4.3.3 ([BS94, Proposition 3.14]). Fix a σ-finite measure ν on Y, let A = {ν′ ∈M1(Y) : ν′ �
ν} be the convex set of all distributions dominated by ν, and assume that PY|X (x) ∈ A for P 1-almost

all x. Under the strictly convex log loss or self-information loss, L(y, ξ) = − log dξ
dν (y), the posterior

distribution is the unique Bayes optimal action, i.e., AP (x) = PY|X (x) for P 1-almost all x.

Corollary 4.3.4 ([Sch96, Example 3.8]). Let Y ⊆ Rd and A = conv(Y) be the convex hull of Y, and

assume that m2[PY|X (x)] <∞ for P 1-almost all x. Under the strictly convex quadratic loss, L(y, z) =

‖y − z‖22, the posterior predictive mean is the unique Bayes optimal action, i.e., Aπ(x) = m[PY|X (x)] for

P 1-almost all x.

Models and priors

In many practical applications of Bayesian analysis, one works with a belief P that takes the form

of a mixture P = πQ, where Q : Θ → M1(X × Y) is a probability kernel from a (Borel) space Θ of

parameters and π ∈M1(Θ). In general, there are many such decompositions. However, there is a unique

1If the action space A is a convex subset of a vector space and the loss L(y, a) is a strictly convex function of a for every
y, then there is no more than one Bayes optimal action, i.e., A(x) is a singleton or empty set. See [Fer67, §2.5] for an
abstract discussion of the existence of Bayes decision procedures.)
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decomposition P = PYQ where Y = Θ and Q(θ) = PX|Y(θ)⊗ δθ. In standard nomenclature, Q is called

a model and π a prior distribution.

Misspecified models

In practice, subjectivists can neither faithfully represent P nor leap directly to the optimal decision

procedure AP . Instead, pragmatism leads one to replace one’s belief P by a mixture πQ over some

tractable parametric family Q = (Qθ)θ∈Θ of distributions on X × Y, measurably indexed by Θ, where

the mixing weights are given by some distribution π on Θ.

We will refer to Q as the model, borrowing the terminology from classical statistics. This terminology

may suggest that the model is somehow objective, or at least defines the problem at hand. This is often

a mathematically productive stance, but in any real decision problem, π and Q are both chosen by the

statistician and subject to (subjective) criticism insofar as P 6= πQ. Regardless, in many situations,

substantially more effort is invested in the development of Q and so we proceed as if Q has been fixed.

(Without much difficulty, the problem of model selection can be cast into this framework, although this

is not the emphasis here.)

Fix a model Q. If, in fact, P = πQ for some distribution π, i.e., if no approximation is necessary,

then we are in the well-specified setting. In this case, in addition to the existence of random variables X

and Y modeling our uncertainty in the pair, there is a random variable ϑ with distribution π such that

Qϑ is (a regular version of) the conditional distribution of the pair (X,Y ) given ϑ. The distribution π

represents our subjective uncertainty on ϑ, i.e., π is our prior distribution, and Bayes optimal decisions

can be expressed in terms of our posterior beliefs on ϑ given X. In particular,

PY|X (x) = πQY|X (x) =

∫
Θ

(Qθ)Y|X (x)π(dθ|x), for P 1-almost all x, (4.10)

where π(dθ|x) is defined so as to make the second equality hold for πQX -almost all x. In the well-specified

setting, π(dθ|X) is the conditional distribution of ϑ given X, and represents our posterior beliefs on ϑ

given X.

The misspecified setting, where P 6= πQ for any distribution π, is the typical one. In this case, there

is no random variable ϑ such that Qϑ is the conditional distribution of (X,Y ) given ϑ. As there is no

such random variable ϑ, strictly speaking, there is no subjective prior distribution to speak of, and the

use of subjectivist language in reference to π is inappropriate. At the very least, the subjective content

of π is unclear and the subjective content of the “posterior” π(dθ|x) is no clearer.

Irrespective of whether a model is misspecified, it is still possible that, for some distribution π, a

decision procedure A ∈ D is Bayes optimal with respect to P if it is Bayes optimal with respect to πQ, in

which case we will say that πQ yields optimal decisions (under loss L). In this case, using π as a “prior”

in order to derive an action minimizing the “posterior” expected loss is arguably rational, at least for the

particular loss function under consideration, even if the subjective content of π is unclear.

For example, if P 1 6= πQX then the misspecification of Q does not necessarily contradict Eq. (4.10)

holding for some distribution π and all versions of the disintegrations PY|X and πQY|X . In this case,

call the model Q conditionally well-specified.2 Then, for the appropriate choice of π, the conditional

2The reference to versions is a consequence of the fact that disintegrations are uniquely defined only up to null sets.
When a canonical version of a disintegration exists, one might insist on agreement only for that version, although we do not
explore this. This might be necessary if one were to model, e.g., a discrete variable with a continuous one.
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distribution πQY|X (X) exactly matches the subjective conditional belief on Y given X, which implies

that πQ yields optimal decisions for every loss function.

4.3.3 Meta-Bayesian decision problem for choosing priors

Let F denote a set of probability measures on Θ. For π ∈ F , let Aπ be the Bayes optimal decision

procedure with respect to πQ, which we have assumed to be unique.3 The meta-Bayesian risk of π,

written R(P, π), is the Bayes risk under P of performing Bayesian analysis under model Q with prior π,

i.e.,

R(P, π) = r(P,Aπ) =

∫
X

{∫
Y
L(y,Aπ(x))PY|X (x)

}
P 1(dx). (4.11)

We are interested in solutions to the meta-Bayesian decision problem, i.e., elements of the set

Π = arg min
π∈F

R(P, π), (4.12)

which contains all π that achieve the minimum meta-Bayesian risk. Elements of Π will be called optimal

surrogate priors.

We now specialize the meta-Bayesian decision problem to several classical loss functions: Recall that

when µ� ν, the KL divergence from ν to µ is defined as KL (µ||ν) =
∫

log
(

dµ
dν

)
dµ.

Proposition 4.3.5. Let ν ∈M(Y) be σ-finite, let MF
1 (Y) be the set of probability measures on Y that

have finite differential entropy, let A = {µ ∈ MF
1 (Y) : µ � ν}, and assume that A contains PY|X (x)

and πQY|X (x) for P 1-almost all x and all π ∈ F . Under log loss, as defined in Corollary 4.3.3, the

meta-Bayesian decision problem is equivalent to minimizing the conditional relative entropy [Gra90], i.e.,

Π = arg min
π∈F

∫
KL
(
PY|X (x)||πQY|X (x)

)
P 1(dx). (4.13)

Proof. See Section 4.4.2.

Remark 4.3.6. Gray [Gra90] gives a geometric interpretation of the conditional relative entropy, which

can be used to translate the meta-Bayesian decision problem under log loss. In particular,∫
KL
(
PY|X (x)||πQY|X (x)

)
P 1(dx) = KL

(
P ||P 1 ⊗ πQY|X

)
. (4.14)

Hence, the optimal prior π minimizes the KL divergence from P 1 ⊗ πQY|X to P .

Furthermore, if there exists a parametric family {Qθ, θ ∈ Θ} and a prior π̃(dθ) such that P 1 = π̃Q

and PY|X (x) = π̃QY|X , then minimizing the conditional relative entropy in Eq. (4.13) is equivalent to

Π = arg min
π∈F

∫
Θ

[∫
X

KL
(
πθQY|X (x)||πQY|X (x)

)
Pθ(dx)

]
π̃(dθ) (4.15)

where πθ is a degenerate distribution on {θ}. Eq. (4.15) is first derived by Aitchison [Ait75] and is

sometimes referred to as the Bayes risk under the KL loss [Kom96]. In [SDG06], the conditional relative

3Alternatively, we can fix some measurable selector π → Aπ that identifies a Bayes optimal decision procedure for each
prior choice. The meta-Bayesian risk is then that of Aπ, and the meta-Bayesian decision problem is selecting decision
procedures, not priors.
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entropy
∫

KL
(
π̃QY|X (x)||πQY|X (x)

)
P 1(dx) is defined as a function of (π̃, π) and called the predictive

relative entropy regret.

Similar forms to Eq. (4.15) has appeared in Bayesian predictive methods for model selection [PV17].

The so-called reference model approach is to construct a full encompassing reference model, which is

believed to best describe our knowledge about the future observations, and perform the utility estimation

almost as if it was the true data generating distribution. Then one idea for model selection is first to

project the information in the posterior of the reference model onto the candidate models and then select

the candidate model whose predictive distribution is closest to the reference model. See, for example,

[VO12; GR98] for more details.

Other problems that have similar forms to Eq. (4.15) have appeared in existing literature. This

includes some work on nonsubjective priors [Gho11] and minimax shrinkage predictive algorithms [GLX12].

The main difference between those work and our work is threefold. First, most existing work assumes the

model is well-specified, in this work, however, we study model misspecification; second, although in some

work the objective has the form of KL divergence, but it is usually not the KL divergence of predictive

distributions; finally, nonsubjective priors have been widely studied through a minimax approach, which

is different from our work since we study subjective priors by directly minimizing the conditional relative

entropy. In the following, we give a literature review of such existing work in both areas of nonsubjective

priors and shrinkage prediction.

There is a subclass of nonsubjective priors named “divergence priors” due to Ghosh [Gho11]. The

loss function defined using the KL divergence is studied, such as in the reference priors [Ber79; BBS09].

Another example is the maximum likelihood prior by Hartigan [Har98], in which a truncated KL loss is

defined. However, the aforementioned work is not based on KL divergence of predictive distributions.

The most relevant work in nonsubjective priors is the work by Sweeting, Datta, and Ghosh [SDG06].

They suggest to use posterior relative entropy regret for deriving nonsubjective prior. It is argued that

the reference prior criterion [Ber79] based on scoring the prior predictive distribution is less relevant than

the posterior predictive distribution. This is because we are not so much interested in predicting the

data already observed as future data yet to be observed. More details can be found in [SDG06] and also

the discussion of the paper [Gho11] by Sweeting [Swe11].

Without taking expectation over θ in Eq. (4.15), the expected KL divergence over x ∈ X for fixed θ

is defined as the KL loss in the development of shrinkage estimators for multivariate normal predictive

densities [GLX06; BGX08]. This work can be seen as parallel developments of the classical results on

minimax shrinkage estimators under quadratic loss in [Bro71; BH82; Ste81]. A review of the work in

this area can be found in [GLX12]. For models that satisfies some differential geometric conditions,

asymptotic analysis when the number of data goes to infinity is studied [Kom96; Kom06] using the tool

of information geometry [AN00]. For example, Komaki [Kom06] shows that there exists a shrinkage prior

that asymptotically gives smaller KL loss than the Jeffreys prior, for any given θ. However, there is very

little work that studies model misspecification. Perhaps the most relevant work is by Fushiki [Fus05].

Fushiki [Fus05] compares the Bayesian predictive distribution with the Bootstrap prediction obtained by

applying Breiman’s “bagging” method to a plug-in prediction. The result of [Fus05] is for the asymptotic

cases where the number of observed data goes to infinity. It is worth to further investigate the work in

[Fus05] and its relations to both [Mül13] and [RT03]. It is promising that the rationality of the methods

in [Mül13] and [RT03] can be analyzed in the framework of meta-Bayesian analysis.

Proposition 4.3.7. Under quadratic loss, the meta-Bayesian decision problem is equivalent to minimizing
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the expected quadratic distance between the true and model posterior means, i.e.,

Π = arg min
π∈F

∫
‖m[πQY|X (x)]−m[PY|X (x)]‖22 P 1(dx). (4.16)

Proof. See Section 4.4.2.

Optimal surrogate priors depend on the loss

From Propositions 4.3.5 and 4.3.7, we can see that the meta-Bayesian decision problem takes different

forms under different loss functions. In this section, we investigate the set of optimal surrogate priors

under various hypotheses and show that the set of optimal surrogate priors depends, in general, on the

loss function.

We begin with the following result, which characterizes the set of optimal priors in the case where the

model can yield optimal decisions for some prior:

Proposition 4.3.8. Let Π̃ = {π ∈ F : Aπ(x) = AP (x) for P 1-a.a. x}. If Π̃ 6= ∅, then Π = Π̃.

Proof. See Section 4.4.2.

The following corollary implies that meta-Bayesian analysis reduces to ordinary Bayesian analysis in

the well-specified case. In other words, one’s own subjective prior is optimal, provided it is in the class F
of priors under consideration.

Corollary 4.3.9 (Self-consistency). If there exists π ∈ F such that πQY|X = PY|X on a P 1-measure

one set, then π ∈ Π. In particular, if P = πQ for some π ∈ F , then π ∈ Π.

Proof. If πQY|X = PY|X on a P 1-measure one set, then by the definitions of Aπ(x) and AP (x), we have

Aπ(x) = AP (x) for P 1-a.a. x. Therefore, π ∈ Π from Proposition 4.3.8.

The following corollaries demonstrate that Π can depend on the choice of the loss function:

Corollary 4.3.10. Under log loss,

Π = {π ∈ F : PY|X (x) = πQY|X (x) for P 1-a.a. x}

if the r.h.s. is not empty.

Corollary 4.3.11. Under quadratic loss,

Π = {π ∈ F : m[PY|X (x)] = m[πQY|X (x)] for P 1-a.a. x}

if the r.h.s. is not empty.

From Corollaries 4.3.10 and 4.3.11 it follows that, if πQ yields optimal decisions under log loss, then

πQ yields optimal decisions under quadratic loss, provided the first moments exist. However, the reverse

implication does not hold in general, and so the set of optimal surrogate priors can, in general, depend

on the loss.

The following example is of a model that yields optimal decisions under squared loss, but does not

yield optimal decisions under log loss:
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Figure 4.1: Optimal zero-mean normal prior for simple normal model with misspecified variance when
true standard deviation is set to r = 4.

Example 4.3.12. Let the true belief be Pθ = N (θ, r2) with prior belief π̃ = N (0, 1). Suppose the model

Qθ = N (θ, s2) where s2 > 0 may not equal r2. We consider the optimal prior on Qθ that has the form

π = N (0, V ) with the only parameter V . The predictive distributions of Y given X under P and πQ are,

respectively,

N
( x

1 + r2
, r2 +

r2

1 + r2

)
and N

( x

1 + s2/V
, s2 +

s2

1 + s2/V

)
. (4.17)

The optimal value of V for different values of s when r = 4 is shown in Fig. 4.1. According to the figure,

one can see that the optimal zero-mean normal prior depends on the loss function. The only case when

the optimal values of V coincide is when the model is well-specified (s = r = 4), in which case the

meta-Bayesian analysis reduces to traditional Bayesian analysis. Note that under the quadratic loss, the

optimal V = s2

r2 , which matches the predictive mean. The optimal V under log loss is less intuitive. For

example, the optimal V is zero when s2 ≥ r2 + 3. In this case, the predictive distribution for Y reduces

to N (0, s2), which does not depend on x. This scenario can be intuitively explained as follows. Because

minimizing the log loss results in minimizing the conditional relative entropy, when s2 is much larger

than r2, the optimal prior is chosen to match the predictive variance, ignoring the predictive mean.

Optimal surrogate priors are not necessarily true beliefs

Next, we consider the case that the parameter of the misspecified model has certain realistic meaning

such that one actually has a “true belief” on it. We demonstrate that this “true belief” may not be the

optimal surrogate prior for the misspecified model.

Consider a {0, 1}-valued sequence {Xi}. As our true belief, consider {X2i−1, i = 1, 2, . . . } are i.i.d.

Bernoulli random variables with parameter θ, and X2i−1 = X2i,∀i. Suppose our true belief on θ follows

a uniform distribution on [0, 1]. Then we show that this uniform prior may not be the optimal surrogate
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prior when the misspecified model is the i.i.d. Bernoulli model.

Example 4.3.13. (Prediction using i.i.d. Bernoulli model) Suppose we aim to predict Y = X2 after

observing X = X1 using the misspecified i.i.d. Bernoulli model with parameter θ. Under the log loss, the

optimal surrogate prior is given by Eq. (4.13). Clearly, a prior that concentrates on {0, 1} is a solution of

Eq. (4.13) since the prediction using such a prior is always Y = X, which is optimal. The uniform prior

is clearly not the optimal surrogate prior, even though it is the true belief on θ.

Example 4.3.14. (Inference using i.i.d. Bernoulli model) Suppose we aim to construct an inference

for Y = θ after observing X = (X1, X2) using the misspecified i.i.d. Bernoulli model with parameter

θ. Under the quadratic loss, the optimal surrogate prior is given by Eq. (4.16). Under a Beta prior

π ∼ Beta(α, β),

∫
‖m[πQY|X (x)]−m[PY|X (x)]‖22 P 1(dx) = E

(
α+ 2X1

α+ β + 2
− 1 +X1

3

)2

, (4.18)

where the expectation is taken over X1 ∼ Beta(1, 1). Clearly, the uniform prior α = β = 1 is not the

optimal surrogate prior since

E
(

1 + 2X1

1 + 1 + 2
− 1 +X1

3

)2

= E
(

2X1 − 1

12

)2
.
= 0.0231, (4.19)

is dominated by the optimal surrogate prior Beta(2, 2), which leads to

E
(

2 + 2X1

2 + 2 + 2
− 1 +X1

3

)2

= 0. (4.20)

4.3.4 Asymptotically optimal priors for i.i.d. models and i.i.d. beliefs

Existing results on the asymptotic behavior of posterior distributions under misspecification can suggest

the form of asymptotically optimal surrogate priors. In particular, Berk [Ber66], building on the work of

LeCam [LeC53], studied dominated i.i.d. models under misspecification and showed that, under some

regularity conditions, the posterior distribution of the parameter converges weakly to the set (called

the asymptotic carrier) of parameters of the model that minimize the Kullback–Leibler divergence with

respect to the data-generating distribution (which is assumed to be i.i.d. as well). The asymptotic carrier

may, in general, contain more than one point, and may depend on both the model and the data-generating

distribution. When the model is well-specified and identifiable, the asymptotic carrier contains only one

point, which indexes the data-generating distribution. In general, however, there need be no convergence

(in any sense) of the posterior distribution to a limiting distribution over the asymptotic carrier. The

conditions under which a sequence of posterior distributions converges weakly to a degenerate distribution

were further studied by Berk [Ber70]. Later, Bunke and Milhaud [BM98] strengthened the convergence

beyond a.s. weak convergence under additional hypotheses.

In the well-specified and identifiable case, our prior distribution can be equivalently characterized

as our belief on the asymptotic location of the posterior distribution. As a heuristic in the misspecified

setting, our surrogate prior can be taken to be our personal belief as to the asymptotic location of

the model’s posterior distribution, which depends on a surrogate prior only through its support under

regularity conditions. Our result shows that this heuristic is indeed meta-Bayesian optimal asymptotically.
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We begin with the classic result due to Berk [Ber66].

Lemma 4.3.15. Let X and Θ be Borel subsets of complete separable metric spaces. Let Qθ, for θ ∈ Θ,

be a measurable family of probability measures on X , dominated by a σ-finite measure µ with conditional

density g(· | ·) : X ×Θ→ R+. Let π be a prior distribution on the Borel subsets of Θ, and assume π has

full support.

Let F be a probability measure on X which admits a density g∗ with respect to µ, and let F∞ denote

the infinite product measure on X∞. Assume:

1. for F -almost all x, g(x | ·) is continuous in θ;

2. for all θ ∈ Θ, F{x : g(x | θ) > 0} = 1;

3. for all θ ∈ Θ, there is an open neighborhood U of θ such that∫
sup
θ∈U

{
log

g(x | θ)
g∗(x)

}
F (dx) <∞; and (4.21)

4. there is a positive integer k such that for every r ∈ R, there is a co-compact subset D ⊆ Θ such that

∫
Xk

sup
θ∈D

{
1

k

k∑
i=1

log

[
g(xi | θ)
g∗(xi)

]}
F (dx1) · · ·F (dxk) ≤ r. (4.22)

Define A0 = arg minθ∈Θ KL (F ||Qθ) to be the set of all θ ∈ Θ that achieves the minimum. For every

open set U ⊇ A0,

lim
k→∞

∫
U

∏k
i=1 g(xi | θ)π(dθ)∫

Θ

∏k
i=1 g(xi | θ)π(dθ)

= 1, F∞-a.a. x. (4.23)

Proof. See [Ber66, Main theorem].

Suppose the true belief can be written as a mixture P∞ = ν̃P̃ , =
∫
P̃ψ ν̃(dψ), where P̃ψ is i.i.d.

For each ψ ∈ Ψ, there is a unique parameter φ(ψ) ∈ Θ such that Qφ(ψ) is the distribution minimizing

the KL divergence with P̃ψ. Viewing φ as a many-to-one mapping from Ψ to Θ, let π̃ = ν̃ ◦ φ−1 be

the pushforward of ν̃ through φ, and let ν̃φ(dψ) be the disintegration of ν̃ along the map φ. Defining

Pθ = P (θ, ·) =
∫
P̃ψ ν̃

φ(dψ|θ), we can write the true belief as P∞ =
∫

Θ
Pθπ̃(dθ) =

∫
Θ
P (θ, ·)π̃(dθ) = π̃P .

Note that nested models are special cases of our formulation when Θ ⊂ Ψ.

In this section, we will write P
(k)
θ to denote the restriction of Pθ to X k obtained by marginalizing out

all but the first k elements of the sequence. We will also define the kernel product Qk by Qk(θ, ·) = (Qθ)
k

for every θ ∈ Θ. Next, we show our main result on the asymptotically optimal prior when n = 0 and

k →∞.

Theorem 4.3.16. Let X , Θ, Q, µ and g(· | ·) be as in Lemma 4.3.15. Let Pθ, for θ ∈ Θ, be a measurable

family of probability measures on X admitting a conditional density g∗(· | ·) : X ×Θ→ R+ w.r.t. µ, such

that Pθ and g∗(· |θ) satisfy the conditions on F for every θ.

Let π̃ be a probability measure on Θ that admits a density fπ̃ w.r.t. µ and has full support. Assume

5. For every θ ∈ Θ, the point θ is the unique point in Θ achieving the infimum infθ′′∈Θ KL (Qθ′′ ||Pθ).
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6. Let F be the set of all priors that (a) admit a density fπ; (b) have full support; (c) fπ(θ)
fπ̃(θ) is

continuous w.r.t. θ and has a continuous extension to Θ̄, the closure of Θ; (d) supθ∈U{
fπ(θ)
fπ̃(θ)} <∞

for all open sets U ⊆ Θ.

Then π̃ is the asymptotically optimal prior in the sense that as k →∞,

KL
(
π̃P (k)||π̃Qk

)
− inf
π∈F

KL
(
π̃P (k)||πQk

)
→ 0. (4.24)

Proof. See Section 4.4.2.

If we assume that all the conditions in Proposition 4.3.5 hold so that R(πP (k), π)−R(πP (k), π′) =

KL
(
πP (k)||πQk

)
−KL

(
πP (k)||π′Qk

)
, for every π, π′, then this implies that π̃ is asymptotically optimal.

Other results on misspecification may yield results in meta-Bayesian analysis: In recent work, Kleijn

and van der Vaart [Kv06] extended the results of [Ber66; Ber70; BM98] to characterize the asymptotic

behavior and rate of convergence of the posterior distribution in the setting of infinite-dimensional

nonparametric models under misspecification. Recently, Kleijn and van der Vaart [Kv12] showed that,

the posterior distribution under misspecified parametric models is approximately normal as in the

well-specified case, however, the covariance structure under misspecification results in credible regions

failing to have the desired frequentist coverage. Under squared loss, we would conjecture that optimal

surrogate priors would be those that, on average, tend to correct the covariance structure.

4.3.5 Optimal priors when the i.i.d. Bernoulli model is well-specified

By Corollary 4.3.9, when a model is well-specified, the set of optimal priors contains the true prior.

However, there will, in general, be additional surrogate priors. By characterizing the set of optimal

surrogate priors, we can gain insight into what aspects of our prior can possibly affect our inferences,

which can reduce the complexity of the problem of eliciting prior beliefs for the task at hand.

In this section, we investigate sufficient conditions for the optimality of surrogate priors in the

well-specified i.i.d. Bernoulli setting (Section 4.3.5). Fix n, k ∈ N, and let B = {0, 1}, X = Bn, and

Y = Bk. Recall that n is the number of Bernoulli observations we will observe before being asked to make

a prediction, and k is the number of Bernoulli observations we will be asked to predict. Let Q = (Qθ)θ∈Θ

be the family of all (Bernoulli) product measures on X × Y indexed by their common mean in Θ = [0, 1],

and assume that P is some mixture π̃Q of (Bernoulli) product measures on X × Y. Let F ⊆M1(Θ) be

the set of priors under consideration.

Sufficient condition for optimal surrogate priors

Recall that mi[µ] denotes the i-th moment of µ. We have the following results:

Proposition 4.3.17. Under log loss, if the r.h.s. is not empty, then

Π = {π ∈ F : mi[π] = mi[π̃],∀i = 1, . . . , n+ k} (4.25)

Proof. See Section 4.4.2.

That is, if feasible, the optimal surrogate priors are exactly those priors that match the first n+ k

moments of the prior belief π̃.
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Proposition 4.3.18. Under quadratic loss, if the r.h.s. is not empty, then

Π = {π ∈ F : mi[π] = mi[π̃],∀i = 1, . . . , n+ 1} (4.26)

Proof. See Section 4.4.2.

That is, under quadratic loss, if feasible, a surrogate prior is optimal if it matches the first n + 1

moments of the prior belief. Note that Π does not depend on k under the quadratic loss. If the Π in

Proposition 4.3.17 is not empty, then the Π under the log loss is a subset of the Π under the quadratic

loss.

4.3.6 The i.i.d. Bernoulli model when exchangeability does not hold

In this section, we investigate optimal surrogate priors for the i.i.d. Bernoulli model when the underlying

exchangeability assumption does not hold under the subjective belief P . We will take n = 0, k ≥ 1,

and study log loss. It follows that the meta-Bayesian decision problem must reason about sequential

forecasting: at each stage, we must produce a probability for the next Bernoulli observation and the

loss is the sum of our log losses across stages. Our belief does not assume that the observations are

conditionally i.i.d., but the model does, and so the model will not, in general, yield optimal decisions.

Let Q = (Qθ)θ∈[0,1] denote the family of all Bernoulli measures on B, indexed by their means, and

write Qkθ and Q∞θ for the k-product and infinite product measures, respectively, i.e., the distributions of

length-k and infinite i.i.d. Bernoulli sequence, each element having mean θ. Let ϑk(x) := 1
k

∑
j xj for

x ∈ B∞ and k ∈ N. By the law of large numbers, ϑk(x) → θ as k → ∞ for Q∞θ -almost all x. In other

words, the limiting relative frequency ϑ = limϑk exists almost surely and coincides with the parameter θ

almost surely.

Consider an arbitrary distribution P∞ on B∞, subject to the condition that ϑ(x) exists for P∞-almost

all x. Note that the existence of the limiting relative frequency is implied by exchangeability, but does

not imply exchangeability. Instead, we will say that P∞ merely believes in a limiting relative frequency.

In this case, we define π̃ to be the P∞-distribution of ϑ, i.e., the pushforward of P∞ through the map

ϑ, and define the map θ 7→ P
(∞)
θ to be the disintegration of P∞ with respect to ϑ, which then satisfies

π̃P (∞) = P∞. We assume that, uniformly over θ ∈ [0, 1], ϑk(x)→ θ as k →∞ for P∞θ -almost all x. For

k ∈ N, let P (k) be the restriction of P (∞) to Bk obtained by marginalizing out all but the first k elements

of the sequence. Let Mc
1[0, 1] be the set of all absolutely continuous probability measures π on [0, 1]

whose density functions are Lipschitz continuous.

Theorem 4.3.19. If π̃ ∈ Mc
1[0, 1], then π̃ is an asymptotically optimal prior with respect to Mc

1[0, 1],

i.e., as k →∞,

R(π̃P (k), π̃)− inf
π∈Mc

1[0,1]

R(π̃P (k), π)→ 0. (4.27)

Proof. See Section 4.4.2.

Note that when n 6= 0 and/or k is small, π̃ may be far from optimal. The following example illustrates

this fact.
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Example 4.3.20. Consider a {0, 1}-valued discrete-time Markov chain with transition matrix[
1− p p

q 1− q

]
. (4.28)

Then the limiting relative frequency of 1’s is θ := p
p+q and the second eigenvalue of the transition

matrix is 1 − p − q, and these two parameters determine p and q. (Note that the Markov chain is

i.i.d. if and only if the second eigenvalue is zero, i.e., if and only if p+ q = 1.) As our true belief P∞,

consider a mixture of such Markov processes, where 2θ ∼ Beta(a, b) and p+ q ∼ Beta(c, d), independently.

Note that the independence assumption is valid since θ ∈ (0, 1/2) implies p = θ(p + q) ∈ (0, 1/2)

and q = (1 − θ)(p + q) ∈ (0, 1/2). In this case, the spectral gap ν := 1 − |1 − p − q| reduces to

ν = p + q ∼ Beta(c, d). The meta-Bayesian risk of using an i.i.d. model with prior Beta(a, b) can be

written in closed form as a function of the parameters (a, b, c, d). We will exploit this to understand the

role of the spectral gap.

For simplicity, take a = b > 0, hence Eθ = 1
4 . A typical chain could mix very slowly when the expected

spectral gap Eν = c
c+d is small and an i.i.d. sequence can be seen as the special case where Eν = 1. Next,

we consider the case of n = 0 and k = 2, where the true belief π̃P (2) is

π̃P (2)({11}) =
1 + a

8(1 + 2a)
Eν +

1

4a
(1− Eν) (4.29)

π̃P (2)({00}) =
3

4
− 1 + 3a

8(1 + 2a)
Eν (4.30)

π̃P (2)({10}) = π̃P (2)({01}) =
1 + 3a

8(1 + 2a)
Eν. (4.31)

For example, if the true belief is a = c = 1 and d = 1000, the Markov chain is very “sticky” (i.e.,

Eν = 1
1001 is small). Under the i.i.d. model with a Beta(1, 1) prior, the probability of {01, 10} is higher

and of {11, 00} is lower. Indeed, because 1+a
8(1+2a) is decreasing and 1+3a

8(1+2a) is increasing with a, it can be

verified that for all x ∈ {0, 1}2, we have

d

da′

[
π̃P (2)(x) log

π̃P (2)(x)

πQ(2)(x)

]∣∣∣∣
a′=1

> 0, (4.32)

where π denotes the beta prior Beta(a′, a′). This implies

d

da′
R(P, π)

∣∣∣∣
a′=1

=
d

da′
KL
(
π̃P (2)||πQ(2)

)∣∣∣
a′=1

> 0. (4.33)

Therefore, choosing a Beta(a′, a′) prior for some a′ < 1 leads to a lower meta-Bayesian risk. Indeed,

a′ = 0.001 is preferred to a′ = 1, because R(P, π) = KL
(
π̃P (2)||πQ(2)

) .
= 0.444 bits while R(P, π̃) =

KL
(
π̃P (2)||π̃Q(2)

) .
= 0.666 bits. The situation is similar when n = 1 and k = 1: in this case, R(P, π) =

1.2543 bits, while R(P, π̃) = 1.9363 bits.
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4.4 Appendices

4.4.1 Bayesian decision theory in general settings

In order to shed more light on the Bayes relation, we begin by revealing some structure in D: For every

α ∈ A, let α̌ denote the constant map from X to A, taking every point in X to α. For every measurable

partition B1, B2, · · · ⊆ X of X and sequence δ1, δ2, · · · ∈ D, let [δ1 : B1, δ2 : B2, . . . ] denote the map from

X to A sending x ∈ Bn to δn(x). The we have the following result (the proof is given in Section 4.4.2).

Lemma 4.4.1. For every α ∈ A, α̌ ∈ D. For every measurable partition B1, B2, · · · ⊆ X of X and

sequence δ1, δ2, · · · ∈ D, [δ1 : B1, δ2 : B2, . . . ] ∈ D.

For a random variable V , write E[V ; ξ ∈ B] for E(1{ξ∈B}V ) and let σ(V ) denote the σ-algebra

generated by V . Let δ ∈ D and let EξL̄(δ(ξ)) denote the conditional expectation of L̄(δ(ξ)) given ξ,

i.e., EξL̄(δ(ξ)) is a σ(ξ)-measurable random variable and, for all measurable B ⊆ X , E[EξL̄(δ(ξ)); ξ ∈
B] = E[L̄(δ(ξ)); ξ ∈ B]. In particular, we have the chain rule, EEξL̄(δ(ξ)) = EL̄(δ(ξ)). By the σ(ξ)-

measurability, there is a measurable function `δ : X → R+ such that EξL̄(δ(ξ)) = `δ(ξ). We call `δ the

posterior risk function.

We now describe the Bayes relation in terms of lattice infimum: Consider a measured space (X , ν)

and the quotient of the space of real-valued measurable functions on X under the equivalence relation

f ∼ g iff f = g ν-a.e. Given a class F of real-valued measurable functions on (X , ν), recall that the

lattice infimum of F is (the equivalence class of) a measurable function
∧
F : X → R+ that satisfies

∀f ∈ F ,
∧
F ≤ f ν-a.e. (4.34)

∀ measurable g,
(
∀f ∈ F , g ≤ f ν-a.e.

)
=⇒

(
g ≤

∧
F ν-a.e.

)
. (4.35)

Note that, if F is countable, then inf F is measurable and inf F =
∧
F ν-a.e. In general, inf F may not

be measurable. If X is a Borel subset of Rn, and F is a class of real-valued measurable functions on X ,

then the lattice infimum of F exists and is equivalent to the pointwise infimum of some countable subset

F ′ ⊆ F due to Haj lasz and Malý [HM02, Lemma 2.6]. Then we have the following equivalent statements

to being Bayes. The proof is given in Section 4.4.2.

Lemma 4.4.2. Let δ∗ ∈ D. The following are equivalent:

1. δ∗ is Bayes;

2. ∀δ ∈ D, `δ∗ ≤ `δ µ-a.e.; and

3. `δ∗ =
∧
{`δ : δ ∈ D} µ-a.e.

4. For every δ ∈ D and measurable subset B ⊆ X ,

E[`δ∗(ξ); ξ ∈ B] ≤ E[`δ(ξ); ξ ∈ B]. (4.36)

Remark 4.4.3. Suppose δ∗ is Bayes. If X is a Borel subset of Rn, then there exists some countable subset

D′ ⊆ D such that `δ∗ =
∧
{`δ : δ ∈ D} = infδ∈D′ `δ µ-a.e. [HM02, Lemma 2.6].
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We have shown that, if a Bayes procedure δ∗ exists, its posterior risk function `δ∗ is the lattice

infimum (w.r.t. µ) among all posterior risk functions. We now relate this to the more elementary notion

of a Bayes procedure being one that minimizes the posterior risk pointwise.

For every α ∈ A, let `′α(·) = `α̌(·). That is, `′α(·) : X → R+ is a measurable function satisfying

`′α(ξ) = EξL̄(α).

Definition 4.4.4. We say that coherent version exists for δ ∈ D if `′δ(ξ)(ξ) = `δ(ξ) a.s. We say that

coherent versions exist if coherent version exists for all δ ∈ D.

Next, we discuss sufficient conditions for a decision procedure to be Bayes if coherent versions exist.

The proof is given in Section 4.4.2.

Lemma 4.4.5. Assume coherent versions exist. Let δ0 ∈ D and assume there exists some µ-measure

one set on which `δ0 = inf{`′α(·) : α ∈ A}. Then δ0 is Bayes.

Particularly, the following result shows that if A is finite, Bayes procedure always exists. The proof is

given in Section 4.4.2.

Lemma 4.4.6. Assume A is finite. Then there exists δ0 ∈ D such that `δ0 = inf{`′α(·) : α ∈ A}. In

particular, δ0 is Bayes.

For a function f , write f [A] for the image of a set A under f . The following result shows that, a

coherent version exists for any δ such that δ[X ] is countable. The proof is given in Section 4.4.2.

Lemma 4.4.7. Let δ ∈ D and assume δ[X ] ⊆ A′ where A′ ⊆ A is countable. Then a coherent version

exists for δ.

The following is a direct consequence of Lemma 4.4.7.

Corollary 4.4.8. If A is countable, coherent versions exist.

Fix a separable topology on A, i.e., with a countable dense subset. A process L̄ indexed by A is

continuous if, almost surely, the map α 7→ L̄(α) is a continuous function from A to R.

Lemma 4.4.9. Assume A is separable and L̄ is a continuous process. If L(α) ≤ Y a.s. for all α ∈ A,

where Y is integrable, and there exists a sequence of jointly measurable functions αn : Ω×A → D, where

D ⊆ A be a countable dense subset, such that

P
(
∀α, lim

n→∞
L̄(αn(α)) = L̄(α)

)
= 1, (4.37)

then coherent versions exist.

The proof of Lemma 4.4.9 is given in Section 4.4.2. The following corollary is a direct consequence of

Lemma 4.4.9.

Corollary 4.4.10. Assume A is separable and L̄ is a uniformly continuous process. If L(α) ≤ Y a.s.

for all α ∈ A, where Y is integrable, then coherent versions exist.
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4.4.2 Proofs

Proof of Lemma 4.4.1

We have L̄(α̌)(ξ) = L̄(α), where the r.h.s. is, by definition, a random variable. Similarly, L̄([δ1 : B1, δ2 :

B2, . . . ](ξ)) =
∑∞
n=1 1{ξ∈Bn} L̄(δn(ξ)). The r.h.s. is also random variable, being a countable sum of finite

products of random variables.

Proof of Lemma 4.4.2

That Item 2 implies Item 1 is immediate from the definition of `δ and the chain rule.

To see that Item 1 implies Item 2, assume δ∗ is Bayes and there exists δ ∈ D such that Eq. (4.38)

fails. Then, for some measurable set B ⊆ X , with µ(B) > 0, we have

E[EξL̄(δ∗(ξ)); ξ ∈ B] > E[EξL̄(δ(ξ)); ξ ∈ B]. (4.38)

Let B̄ = X \B and define δ′ = [δ : B; δ∗ : B̄], which is an element of D by Lemma 4.4.1. Then

EL̄(δ′(ξ)) = EEξL̄(δ′(ξ)) = E[EξL̄(δ(ξ)); ξ ∈ B] + E[EξL̄(δ∗(ξ)); ξ ∈ B̄] (4.39)

< E[EξL̄(δ∗(ξ)); ξ ∈ B] + E[EξL̄(δ∗(ξ)); ξ ∈ B̄] (4.40)

= EEξL̄(δ∗(ξ)) = EL̄(δ∗(ξ)), (4.41)

a contradiction.

Finally, clearly Item 3 implies Item 2. To see the other direction, note that Item 2 implies that `δ∗

is a lower bound on the set {`δ : δ ∈ D}, with respect to the partial order f � g iff f ≥ g µ-a.e., thus

Eq. (4.34) holds. Because `δ∗ is also an element of this set, Eq. (4.35) holds, hence `δ∗ is the infimum.

For Item 4, assume δ∗ is not Bayes, which implies there exists δ ∈ D whose Bayes risk is less. Take

B = {x ∈ X : `δ∗(x) 6= `δ(x)}. This set is measurable. Therefore, Eq. (4.36) and the chain rule implies

δ∗ has risk no greater than that of δ, a contradiction.

Proof of Lemma 4.4.5

Let δ ∈ D. Then, on some µ-measure-one set,

`δ0(ξ) = inf
α∈A

`′α(ξ) ≤ `′δ(ξ)(ξ). (4.42)

By coherence, `′δ(ξ)(ξ) = `δ(ξ) a.s. Hence Item 3 of Lemma 4.4.2 holds of δ0, and so δ0 is Bayes.

Proof of Lemma 4.4.6

WriteA = {α1, . . . , αk}. For i ∈ [k], letBi ⊆ X be the (measurable) set on which αi = argα inf{`′α(·) : α ∈ A}.
Then {B1, . . . , Bk} is a partition of X . Let δ0 = [α̌1 : B1, . . . , α̌k : Bk]. Then δ0 ∈ D by Lemma 4.4.1.

Clearly, `δ0 = inf{`′α(·) : α ∈ A}, and so by Lemma 4.4.5, δ0 is Bayes.
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Proof of Lemma 4.4.7

Let A′ = {α1, α2, . . .}. We can write

L̄(δ(ξ)) =
∑
α∈A′

1{δ(ξ)=α}L̄(α). (4.43)

LetA′n = {α1, . . . , αn} and L̄(δ(ξ))n =
∑
α∈A′n

1{δ(ξ)=α}L̄(α). Since L is nonnegative, we have L̄(δ(ξ))n ≤
L̄(δ(ξ)) and L̄(δ(ξ))n → L̄(δ(ξ)) a.s. By conditional monotone convergence theorem, we have, almost

surely, limn→∞ EξL̄(δ(ξ))n = EξL̄(δ(ξ)). It follows that, almost surely,

EξL̄(δ(ξ)) = lim
n→∞

Eξ
∑
α∈A′n

1{δ(ξ)=α} L̄(α) (4.44)

= lim
n→∞

∑
α∈A′n

1{δ(ξ)=α} EξL̄(α) (4.45)

=
∑
α∈A′

1{δ(ξ)=α} EξL̄(α) (4.46)

=
∑
α∈A′

1{δ(ξ)=α} `
′
α(ξ) (4.47)

= `′δ(ξ)(ξ). (4.48)

Proof of Lemma 4.4.9

From Eq. (4.37), we have L̄(δ(ξ)) = limn→∞ L̄(αn(δ(ξ))). Since L̄(αn(δ(ξ))) ≤ Y a.s., by conditional

dominated convergence theorem, we have, a.s.,

`δ(ξ) = EξL̄(δ(ξ)) = lim
n→∞

EξL̄(αn(δ(ξ))). (4.49)

By the countability of D, a.s.,

L̄(αn(δ(ξ))) =
∑
α∈D

1{αn(δ(ξ))=α} L̄(α). (4.50)

By conditional monotone convergence theorem, almost surely,

EξL̄(αn(δ(ξ))) =
∑
α∈D

1{αn(δ(ξ))=α} EξL̄(α) (4.51)

=
∑
α∈D

1{αn(δ(ξ))=α} `
′
α(ξ) (4.52)

= `′αn(δ(ξ))(ξ). (4.53)

Furthermore, by Eq. (4.37) and conditional dominated convergence theorem, we have

P
(
∀α, EξL̄(α) = lim

n→∞
EξL̄(αn(α))

)
= 1. (4.54)

Note that `′α(ξ) = EξL̄(α). Therefore, we have limn→∞ `′αn(δ(ξ))(ξ) = `′δ(ξ)(ξ) a.s., completing the proof.
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Proof of Proposition 4.3.5

From Corollary 4.3.3, we know that, under πQ and log loss, the unique Bayes optimal action is πQY|X (x).

Therefore, the meta-Bayesian risk is

R(P, π) =

∫
− log

(
d(πQY|X (x))

dν
(y)

)
P (d(x, y)) (4.55)

=

∫ [∫
− log

(
d(πQY|X (x))

dν
(y)

)
PY|X (dy|x)

]
P 1(dx). (4.56)

By assumption, PY|X (x) � ν for P 1-almost all x. Write p2(·|x) for the conditional density. By the

assumption of finite differential entropy, we have∣∣∣∣∫ log (p2(y|x)) p2(y|x) ν(dy)

∣∣∣∣ <∞. (4.57)

Then R(P, π) can be written as

R(P, π) =

∫ [∫
− log

(
d(πQY|X (x))

dν
(y)

)
p2(y|x) ν(dy)

]
P 1(dx) (4.58)

=

∫ [∫
− log

(
d(πQY|X (x))

dν
(y)

)
p2(y|x) ν(dy) (4.59)

−
∫

log (p2(y|x)) p2(y|x) ν(dy) (4.60)

+

∫
log (p2(y|x)) p2(y|x) ν(dy)

]
P 1(dx) (4.61)

=

∫ [∫
log

(
p2(y|x)

d(πQY|X (x))

dν (y)

)
p2(y|x) ν(dy) (4.62)

−
∫

log (p2(y|x)) p2(y|x) ν(dy)

]
P 1(dx) (4.63)

=

∫ [
KL
(
PY|X (x)||πQY|X (x)

)
−
∫

log (p2(y|x)) p2(y|x) ν(dy)

]
P 1(dx). (4.64)

As the second term does not depend on π, if π ∈ Π, π also achieves the minimum of

min
π∈F

∫
KL
(
PY|X (x)||πQY|X (x)

)
P 1(dx). (4.65)

Proof of Proposition 4.3.7

By the definition of R(P, π), we have

R(P, π) =

∫
L(y,Aπ(x))P (d(x, y)),
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where L(y, a) = ‖a− y‖22. Since Aπ(x) = m[πQY|X (x)], we have

R(P, π) =

∫ [∫
‖Aπ(x)− y‖22PY|X (dy|x)

]
P 1(dx)

=

∫
yT yP (d(x, y))

+

∫ [
Aπ(x)TAπ(x)−Aπ(x)Tm[PY|X (x)]−m[PY|X (x)]TAπ(x)

]
P 1(dx),

(4.66)

where m[PY|X (x)] is the first moment of PY|X (dy|x).

Sincem[PY|X (x)] does not depend on π, we may replace the first term by
∫
m[PY|X (x)]Tm[PY|X (x)]P 1(dx).

Then

arg min
π∈F

R(P, π) = arg min
π∈F

∫
‖m[πQY|X (x)]−m[PY|X (x)]‖2P 1(dx).

i.e., on average of x, the posterior mean using π, m[πQY|X (x)] is close to the “true” posterior mean

m[PY|X (x)].

Proof of Proposition 4.3.8

For any π ∈ F and π′ ∈ Π̃, we have

R(P, π) =

∫
X×Y

L(y,Aπ(x))P (dx× dy)

≥
∫
X×Y

L(y,AP (x))P (dx× dy)

=

∫
X×Y

L(y,Aπ′(x))P (dx× dy)

= R(P, π′)

(4.67)

Therefore, π′ ∈ Π.

On the other hand, if there exists π′′ ∈ Π \ Π̃, then there exists a measurable subset B ⊆ X such that

P 1(B) > 0 and for all x ∈ B, AP (x) 6= Aπ′′(x). Then, we have∫
B×Y

L(y,Aπ′′(x))P (dx× dy)

>

∫
B×Y

L(y,AP (x))P (dx× dy)

=

∫
B×Y

L(y,Aπ′(x))P (dx× dy).

(4.68)

Therefore, we have R(P, π′) < R(P, π′′), which contradicts π′′ ∈ Π.

Proof of Theorem 4.3.16

We begin with a simple well-known bound:

Lemma 4.4.11. If x > 0, then

1− 1

x
≤ log x ≤ x− 1 (4.69)
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with equality holds when x = 1.

For every measurable set U ⊆ Θ, measurable function h(· | ·) : X ×Θ→ R+, and prior π ∈M1(Θ),

define

`U (h, π) :=

∫
U

k∏
i=1

h(xi|p)π(dp). (4.70)

Then

d(π̃P (k))

dµ
=

∫
Θ

k∏
i=1

g∗(xi | p)π̃(dp) = `Θ(g∗, π̃),
d(πQk)

dµ
=

∫
Θ

k∏
i=1

g(xi | p)π(dp) = `Θ(g, π). (4.71)

Recall the Kullback–Leibler divergence

KL
(
π̃P (k)||πQk

)
=

∫
Xk

log

(
d(π̃P (k))

d(πQk)

)
π̃P (k)(dx) (4.72)

=

∫
Xk

log

(
`Θ(g∗, π̃)

`Θ(g, π)

)
π̃P (k)(dx) (4.73)

Therefore, it is equivalent to show

KL
(
π̃P (k)||π̃Qk

)
− inf
π∈F

KL
(
π̃P (k)||πQk

)
(4.74)

= sup
π∈F

∫
Xk

log

(
`Θ(g, π)

`Θ(g, π̃)

)
π̃P (k)(dx) (4.75)

= sup
π∈F

∫
Θ

∫
Xk

log

(
`Θ(g, π)

`Θ(g, π̃)

)
P

(k)
θ (dx)π̃(dθ)→ 0. (4.76)

The key observation is that, by Lemma 4.3.15, we have

lim
k→∞

`Θ(g, π)

`Θ(g, π̃)
= lim
k→∞

`U (g, π)

`U (g, π̃)
a.s. Pθ (4.77)

for any open set U contains A0 = {θ}.

Using the inequality

`U (g, π̃) =

∫
U :θ∈U

[
k∏
i=1

g(xi | p)fπ̃(p)

] [
fπ(p)

fπ̃(p)

]
dp (4.78)

≤
[

sup
p∈U

fπ(p)

fπ̃(p)

] ∫
U :θ∈U

k∏
i=1

g(xi | p)fπ̃(p)dp =

[
sup
p∈U

fπ(p)

fπ̃(p)

]
`U (g, π̃), (4.79)

we can get that for all k and any open set U ⊆ Θ, by assumption,

`U (g, π)

`U (g, π̃)
≤ sup
p∈U

fπ(p)

fπ̃(p)
<∞ a.s. P

(k)
θ . (4.80)
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Since by assumption, fπ(p)
fπ̃(p) has a continuous extension to Θ̄, then for any k we can get

`Θ(g, π)

`Θ(g, π̃)
≤ sup
p∈Θ̄

fπ(p)

fπ̃(p)
<∞ a.s. P

(k)
θ (4.81)

which implies that for any k and θ, we have

log

(
`Θ(g, π)

`Θ(g, π̃)

)
<∞ a.s. P

(k)
θ (4.82)

then ∫
log

(
`Θ(g, π)

`Θ(g, π̃)

)
P

(k)
θ (dx) <∞. (4.83)

This allows us to use the dominated convergence theorem. Letting U = Bθ(ε), then for any ε > 0, we

have

lim
k

∫ ∫
log

(
`Θ(g, π)

`Θ(g, π̃)

)
P

(k)
θ (dx)π̃(dθ) (4.84)

=︸︷︷︸
by Eq. (4.83)

∫
lim
k

∫
log

(
`Θ(g, π)

`Θ(g, π̃)

)
P

(k)
θ (dx)π̃(dθ) (4.85)

=︸︷︷︸
by Eq. (4.82)

∫ ∫
lim
k

log

(
`Θ(g, π)

`Θ(g, π̃)

)
Pθ(dx)π̃(dθ) (4.86)

=︸︷︷︸
by Eq. (4.81)

∫ ∫
log

(
lim
k

`Θ(g, π)

`Θ(g, π̃)

)
Pθ(dx)π̃(dθ) (4.87)

=︸︷︷︸
by Eq. (4.77)

∫ ∫
log

(
lim
k

`Bθ(ε)(g, π)

`Bθ(ε)(g, π̃)

)
Pθ(dx)π̃(dθ) (4.88)

≤︸︷︷︸
by Eq. (4.80)

∫
log

(
sup

p∈Bθ(ε)

fπ(p)

fπ̃(p)

)
fπ̃(θ)dθ (4.89)

≤︸︷︷︸
by Lemma 4.4.11

∫ [
sup

p∈Bθ(ε)

fπ(p)

fπ̃(p)

]
fπ̃(θ)dθ − 1. (4.90)

which holds for all ε > 0.

Since the above upper bound is finite for any ε and by continuity the limit

lim
ε→0

sup
p∈Bθ(ε)

fπ(p)

fπ̃(p)
↓ fπ(θ)

fπ̃(θ)
(4.91)

for any θ. Finally, by assumption

sup
p∈Bθ(ε)

fπ(p)

fπ̃(p)
<∞, (4.92)
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by dominated convergence theorem, we have

lim
ε→0

∫ [
sup

p∈Bθ(ε)

fπ(p)

fπ̃(p)

]
fπ̃(θ)dθ =

∫ [
lim
ε→0

sup
p∈Bθ(ε)

fπ(p)

fπ̃(p)

]
fπ̃(θ)dθ (4.93)

=

∫
fπ(θ)

fπ̃(θ)
fπ̃(θ)dθ = 1. (4.94)

Proof of Proposition 4.3.17

For i.i.d. Bernoulli case, the optimality condition for the general case reduces to

PY|X ({y}|x) = πQY|X ({y}|x), ∀y ∈ Bk, ∀x ∈ Bn.

If we write π̃ as the prior belief, and π as the surrogate prior, we get∫
θn1(1− θ)n2 π̃(dθ)∫
θn
′
1(1− θ)n′2 π̃(dθ)

=

∫
θn1(1− θ)n2π(dθ)∫
θn
′
1(1− θ)n′2π(dθ)

,

for all nonnegative integers n1, n2, n
′
1, n
′
2 such that

n′1 + n′2 = n, n1 + n2 = n+ k, n1 ≥ n′1, n2 ≥ n′2.

Now for fixing (n1, n2), the following equality of c(n1, n2) holds for all (n′1, n
′
2) such that n′1 ≤ n1, n

′
2 ≤

n2, n
′
1 + n′2 = n.

c(n1, n2) :=

∫
θn1(1− θ)n2 π̃(dθ)∫
θn1(1− θ)n2π(dθ)

=

∫
θn
′
1(1− θ)n′2 π̃(dθ)∫

θn
′
1(1− θ)n′2π(dθ)

.

Taking (n1, n2) = (n+ k − 1, 1) yields

c(n+ k − 1, 1) =

∫
θn(1− θ)0π̃(dθ)∫
θn(1− θ)0π(dθ)

=

∫
θn−1(1− θ)1π̃(dθ)∫
θn−1(1− θ)1π(dθ)

.

Using the notation mk[π̃] and mk[π], the above equation implies

c(n+ k − 1, 1) =
mn[π̃]

mn[π]
=
mn−1[π̃]−mn[π̃]

mn−1[π]−mn[π]
.

Therefore, we have
mn[π̃]

mn[π]
=
mn−1[π̃]

mn−1[π]
.

Similarly, if we continue to write down c(n+ k − 2, 2), · · · , c(0, n+ k), eventually we can get

mn[π̃]

mn[π]
=
mn−1[π̃]

mn−1[π]
= · · · = m[π̃]

m[π]
= 1.

Next, we fix (n′1, n
′
2) and consider

c′(n′1, n
′
2) :=

∫
θn
′
1(1− θ)n′2 π̃(dθ)∫

θn
′
1(1− θ)n′2π(dθ)

= c(n1, n2), ∀n1 ≥ n′1, n2 ≥ n′2, n1 + n2 = n+ k.
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Taking (n′1, n
′
2) = (n, 0), we have

c′(n, 0) = c(n, k) = c(n+ 1, k − 1) = · · · = c(n+ k, 0),

which lead to
mn+k[π̃]

mn+k[π]
=
mn+k−1[π̃]

mn+k−1[π]
= · · · = mn+1[π̃]

mn+1[π]
= 1.

Therefore, we have the result that in i.i.d Bernoulli case, matching the first n+ k moments is optimal (if

feasible).

Proof of Proposition 4.3.18

Since both PY|X (x) and πQY|X (x) are exchangeable measures on Bk, the posterior means m[PY|X (x)]

and m[πQY|X (x)] are vectors of length k whose elements are equal. Therefore, it suffices to consider

k = 1. The property

m[PY|X (x)] = m[πQY|X (x)], ∀x ∈ Bn, (4.95)

is equivalent to

PY|X ({y}|x) = πQY|X ({y}|x), ∀y ∈ B1, ∀x ∈ Bn. (4.96)

According to Proposition 4.3.17, we can get mi[π] = mi[π̃], ∀i = 1, . . . , n+ 1.

Proof of Theorem 4.3.19

We begin with a well-known lemma.

Lemma 4.4.12 (Laplace approximation). Let S and f be continuous functions on (0, 1), assume that the

supremum of S is achieved at a unique point x0 ∈ (0, 1), that S is three-times continuously differentiable

in a neighborhood of x0, and that S′′(x0) 6= 0. Let

F (λ) =

∫ 1

0

f(x) exp(λS(x))dx, for λ ∈ R. (4.97)

If it is known that f(x0) 6= 0 and f(x) = f(x0) +O(x− x0) for x→ x0, then, as λ→∞, we have

F (λ) =

√
2π

−S′′(x0)
f(x0) exp(λS(x0))λ−1/2[1 +O(λ−1/2)]. (4.98)

Proof. See [ZC04, Thm. 1, Chp. 19.2.4].

Under the assumption of finite differential entropy, it is straightforward to establish that

R(π̃P (k), π̃)− inf
π∈Mc

1[0,1]

R(π̃P (k), π)

= KL
(
π̃P (k)||π̃Qk

)
− inf
π∈Mc

1[0,1]

KL
(
π̃P (k)||πQk

)
.

(4.99)
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Thus it suffices to show

sup
π

∫ ∫
log

(
πQk{x}
π̃Qk{x}

)
P

(k)
θ (dx)π̃(dθ)→ 0, (4.100)

where this and all subsequent limits are taking as k →∞, unless stated otherwise. First note that P
(k)
θ

is a discrete probability measure on Bk for each k. Let θ̃x,k = 1
k

∑k
i=1 xi be the relative frequency of 1’s

in x up to entry k. Then, kθ̃x,k is the number of 1’s in x, and k(1− θ̃x,k) is the number of 0’s in x, up to

entry k. Thus it suffices to show

sup
π

∫ ∑
x∈Bk

log

(∫
pkθ̃x,k(1− p)k(1−θ̃x,k)π(dp)∫
pkθ̃x,k(1− p)k(1−θ̃x,k)π̃(dp)

)
P

(k)
θ {x}

 π̃(dθ)→ 0. (4.101)

Let π ∈Mc
1[0, 1] and suppose ε ∈ (0, 1/2). For every θ ∈ (ε, 1− ε), define

Aε,θ,k = {x ∈ Bk : |θ̃x,k − θ| ≤ ε} (4.102)

Then since we have assumed that, uniformly over θ ∈ (ε, 1− ε), θ̃x,k → θ a.s. under P
(∞)
θ , we have

P
(k)
θ (Acε,θ,k) = P

(k)
θ ({x ∈ Bk : |θ̃x,k − θ| > ε})→ 0, (4.103)

uniformly over θ ∈ (ε, 1− ε). Then, by writing Bk = Aε,θ,k ∪Acε,θ,k, one can write

∑
x∈Bk

log

(∫
pkθ̃x,k(1− p)k(1−θ̃x,k)π(dp)∫
pkθ̃x,k(1− p)k(1−θ̃x,k)π̃(dp)

)
P

(k)
θ (x)

=
∑

x∈Aε,θ,k

log

(∫
pkθ̃x,k(1− p)k(1−θ̃x,k)π(dp)∫
pkθ̃x,k(1− p)k(1−θ̃x,k)π̃(dp)

)
P

(k)
θ (x)

+
∑

x∈Acε,θ,k

log

(∫
pkθ̃x,k(1− p)k(1−θ̃x,k)π(dp)∫
pkθ̃x,k(1− p)k(1−θ̃x,k)π̃(dp)

)
P

(k)
θ (x).

(4.104)

Let fπ and fπ̃ be probability density functions for π and π̃, respectively, which exist because

π, π̃ ∈Mc
1[0, 1] by assumption. By a Laplace approximation (Lemma 4.4.12), we have∫
pkθ(1− p)k(1−θ)π(dp) =

∫
[fπ(p)] exp(k[θ log p+ (1− θ) log(1− p)]) dp

=

√
2πθ(1− θ)

k
[(θ)θ(1− θ)1−θ]kfπ(θ)[1 +O(k−1/2)].

(4.105)

Note that fπ(θ) has a continuous extension to [0, 1] and the extension of fπ̃ to [0, 1] is strictly positive,

then fπ(θ)
fπ̃(θ) has a continuous extension to [0, 1] so

sup
θ∗∈{|θ∗−θ|>ε}

fπ(θ∗)

fπ̃(θ∗)
<∞, sup

θ∗∈{|θ∗−θ|≤ε}

fπ(θ∗)

fπ̃(θ∗)
<∞. (4.106)

Furthermore, by examining the use of Taylor expansion in the proof of Lemma 4.4.12, the constant for

the term O(λ−1/2) in Lemma 4.4.12 only involves x0 by the term S′′(x0). In our context of Eq. (4.105),
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S′′(x0) equals to 1
θ(1−θ) and it is bounded for θ ∈ (ε, 1−ε). Therefore, following the proof of Lemma 4.4.12

one can get that the term O(k−1/2) in Eq. (4.105) is uniform over θ ∈ (ε, 1− ε).
Using Eqs. (4.104) and (4.105) and the Taylor expansion

log(1 +O(k−1/2)) = O(k−1/2), (4.107)

for θ ∈ (ε, 1− ε), we have

∑
x∈Bk

log

(∫
pkθ̃x,k(1− p)k(1−θ̃x,k)π(dp)∫
pkθ̃x,k(1− p)k(1−θ̃x,k)π̃(dp)

)
P

(k)
θ (x)

≤ P (k)
θ (Aε,θ,k) sup

{θ̃∈[0,1]:|θ̃−θ|≤ε}

[
log

(
fπ(θ̃)

fπ̃(θ̃)

)
+O(k−1/2)

]

+ P
(k)
θ (Acε,θ,k) sup

{θ∗∈[0,1]:|θ∗−θ|>ε}

[
log

(
fπ(θ∗)

fπ̃(θ∗)

)
+O(k−1/2)

]
.

(4.108)

By the facts that the term O(k−1/2) and P
(k)
θ (Acε,θ,k) → 0 are uniform over θ ∈ (ε, 1 − ε), the second

term of the right hand side of Eq. (4.108) goes to zero and the first term

P
(k)
θ (Aε,θ,k) sup

{θ̃∈[0,1]:|θ̃−θ|≤ε}

[
log

(
fπ(θ̃)

fπ̃(θ̃)

)
+O(k−1/2)

]
→ sup
{θ̃∈[0,1]:|θ̃−θ|≤ε}

log

(
fπ(θ̃)

fπ̃(θ̃)

)
<∞, (4.109)

both uniformly over θ ∈ (ε, 1− ε). Then, as k →∞, using Lemma 4.4.11, we have

lim
k→∞

∫ ∑
x∈Bk

log

(∫
pkθ̃x,k(1− p)k(1−θ̃x,k)π(dp)∫
pkθ̃x,k(1− p)k(1−θ̃x,k)π̃(dp)

)
P

(k)
θ (x)

 π̃(dθ)

=

∫ 1−ε

ε

[
sup

{θ̃∈[0,1]:|θ̃−θ|≤ε}
log

(
fπ(θ̃)

fπ̃(θ̃)

)]
fπ̃(θ)dθ +O(ε).

(4.110)

Note that ∫ 1−ε

ε

[
sup

{θ̃∈[0,1]:|θ̃−θ|≤ε}
log

(
fπ(θ̃)

fπ̃(θ̃)

)]
fπ̃(θ)dθ

≤
∫ 1−ε

ε

[
sup

{θ̃∈[0,1]:|θ̃−θ|≤ε}

fπ(θ̃)

fπ̃(θ̃)
− 1

]
fπ̃(θ)dθ

=

∫ 1−ε

ε

[
sup

{θ̃∈[0,1]:|θ̃−θ|≤ε}

fπ(θ̃)

fπ̃(θ̃)

]
fπ̃(θ)dθ − 1 +O(ε) <∞.

(4.111)

As the inequality holds for any ε ∈ (0, 1/2), letting ε↓0 yields

lim
{ε↓0}

∫ 1−ε

ε

[
sup

{θ̃∈[0,1]:|θ̃−θ|≤ε}

fπ(θ̃)

fπ̃(θ̃)

]
fπ̃(θ)dθ − 1 +O(ε) =

∫ 1

0

fπ(θ)dθ − 1 = 0. (4.112)



Chapter 5

Fast-rate PAC-Bayes generalization

bounds via shifted Rademacher

processes

The developments of Rademacher complexity and PAC-Bayesian theory have been largely independent.

One exception is the PAC-Bayes theorem of Kakade, Sridharan, and Tewari [KST08], which is established

via Rademacher complexity theory by viewing Gibbs classifiers as linear operators. The goal of this

chapter is to extend this bridge between Rademacher complexity and state-of-the-art PAC-Bayesian

theory. We first demonstrate that one can match the fast rate of Catoni’s PAC-Bayes bounds [Cat07]

using shifted Rademacher processes [Weg03; LM12; ZH18]. We then derive a new fast-rate PAC-Bayes

bound in terms of the “flatness” of the empirical risk surface on which the posterior concentrates. Our

analysis establishes a new framework for deriving fast-rate PAC-Bayes bounds and yields new insights on

PAC-Bayesian theory.

5.1 Background

Let D be an unknown distribution over a space Z of labeled examples, and let H be a hypothesis

class. Relative to a binary loss function ` : H × Z → {0, 1}, we define the associated loss class

F := {`(h, ·) : h ∈ H} of functions from Z → {0, 1}, each associated to one or more hypotheses. Let

LD(f) := Ez∼Df(z) denote the expected loss, i.e., risk, of every hypothesis associated to f . Let

S = (z1, · · · , zm) ∼ Dm be a sequence of i.i.d. random variables. Let L̂S(f) = 1
m

∑m
i=1 f(zi) denote the

empirical risk of every hypothesis associated to f .

We will be primarily interested in Gibbs classifiers, i.e., distributions P on F which are interpreted as

randomized classifiers that classify each new example according to a hypothesis drawn independently from

P . (It is more common to work with distributions over H, but these lead to looser results.) For a Gibbs

classifier P and labeled example z ∈ Z, let EP f(z) = Ef∼P [f(z)] be the expected loss P suffers when

labeling z. For Gibbs classifiers, the (expected) risk is defined to be LD(P ) := Ef∼PLD(f) = Ez∼DEP f(z).

The (expected) empirical risk is L̂S(P ) := Ef∼P L̂S(f) = 1
m

∑m
i=1 EP f(zi).

105
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5.1.1 PAC-Bayes

The PAC-Bayes framework [McA99] provides data-dependent generalization guarantees for Gibbs classi-

fiers. Each bound is specified in terms of a Gibbs classifier P called the prior, as it must be independent

of the training sample. The bound then holds for all posterior distributions, i.e., Gibbs classifiers that

may be defined in terms of the training sample.

Theorem 5.1.1 (PAC-Bayes [McA99]). For any prior distribution P over F , for any δ ∈ (0, 1), with

probability at least 1− δ over draws of training data S ∼ Dm, for all distributions Q over F ,

LD(Q) ≤ L̂S(Q) +

√
KL (Q||P ) + log m

δ

2(m− 1)
. (5.1)

Note in Theorem 5.1.1, the generalization bound scales as O(m−
1
2 ). Catoni [Cat07] presents a fast

rate PAC-Bayesian bound, in which the generalization bound scales as O(m−1).

Theorem 5.1.2 (Fast-Rate PAC-Bayes [Cat07, Thm 1.2.6]). For any prior distribution P over F , for

any δ ∈ (0, 1) and C > 0, with probability at least 1 − δ over draws of training data S ∼ Dm, for all

distributions Q over F ,

LD(Q) ≤ 1

1− e−C

[
CL̂S(Q) +

KL (Q||P ) + log 1
δ

m

]
. (5.2)

Because the constant C/(1− e−C) > 1 holds for any C > 0, the generalization bound in Theorem 5.1.2

will always be bounded below by the empirical risk. Usually for a well-trained distribution Q over training

set, the empirical risk L̂S(Q) is small, therefore the generalization bound is dominated by the KL term.

Compared to the standard PAC-Bayes bound in Theorem 5.1.1, where the KL term decreases at a

rate O(m−
1
2 ), the KL term of Catoni’s bound decreases at a rate O(m−1). For this reason, we say

that Catoni’s bound achieves a fast rate of convergence. Note that fast-rate bounds can lead to much

tighter bounds. Of course, C/(1− e−C)→ 1 as C → 0, but, in that limit, the constants ignored in the

asymptotic rate O(m−1) degrade. (See [LLST13] for more discussion.)

5.1.2 Rademacher viewpoint

Fix a prior Gibbs classifier P on F . Then, for measurable functions g, h, consider the inner product

〈g, h〉 =
∫
g(f)h(f)P (df). The key observation of Kakade, Sridharan, and Tewari is that one can view

LD(Q) (resp., L̂S(Q)) as the inner product 〈dQ/dP ,LD(·)〉 (resp., 〈dQ/dP , L̂S(·)〉) between the posterior

Q, represented by its Radon–Nikodym derivative with P , and the risk (resp., empirical risk), viewed

as measurable function on F . Thus, Gibbs classifiers can be viewed as linear predictors. Using their

distribution-independent bounds on the Rademacher complexity of certain classes of linear predictors,

Kakade, Sridharan, and Tewari [KST08] derive a PAC-Bayes bound similar to Theorem 5.1.1. We refer

to this as the “Rademacher viewpoint” on PAC-Bayes.

We now summarize their argument in more detail. Let Q(κ) := {Q : KL (Q||P ) ≤ κ}. One can

follow the classical steps for controlling the generalization error uniformly over Q(κ) using Rademacher

complexity. Their first step is to connect supQ∈Q(κ)

[
LD(Q)− L̂S(Q)

]
to ES supQ∈Q(κ)

[
LD(Q)− L̂S(Q)

]
by the bounded difference inequality (McDiarmid’s inequality). In particular, with probability at least
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1− δ,

sup
Q∈Q(κ)

[
LD(Q)− L̂S(Q)

]
≤ ES sup

Q∈Q(κ)

[
LD(Q)− L̂S(Q)

]
+

√
log(1/δ)

m
. (5.3)

Then they apply a symmetrization argument to obtain an upper bound in terms of Rademacher complexity

[BM02]. In particular, recalling that S = (z1, · · · , zm) is our training data,

ES sup
Q∈Q(κ)

[
LD(Q)− L̂S(Q)

]
≤ 2ESEε sup

Q∈Q(κ)

[
1

m

m∑
i=1

εiEQf(zi)

]
, (5.4)

where {εi} are i.i.d. Rademacher random variables, i.e., P(εi = +1) = P(εi = −1) = 1/2. Their last step

is to bound the Rademacher complexity ESEε supQ∈Q(κ)

[
1
m

∑m
i=1 εiEQf(zi)

]
, which can be seen as the

Rademacher complexity of a linear class with a (strongly) convex constraint [KST08]. According to

[KST08], the Rademacher complexity in Eq. (5.4) is of order
√
κ/m, which eventually leads to a term of

order
√

KL (Q||P ) /m after applying a union bound argument on κ.

In the end, using the above arguments and their sharp bounds on the Rademacher and Gaussian

complexities of (constrained) linear classes [KST08, Thm. 1], Kakade, Sridharan, and Tewari obtain the

following PAC-Bayes bound [KST08, Cor. 8]: for every prior P over F , with probability at least 1− δ
over draws of training data S ∼ Dm, for all distribution Q over F ,

LD(Q) ≤ L̂S(Q) + 4.5

√
max{KL (Q||P ) , 2}

m
+

√
log(1/δ)

m
. (5.5)

Note that this PAC-Bayes bound has a slow rate of
√

1/m, but it slightly improves the rate in the term√
log(m/δ)/m of McAllester’s bound [McA99] to

√
log(1/δ)/m.

Since McAllester’s bound is far from the state-of-art in PAC-Bayesian theory, this raises the question

whether one can extend the “Rademacher viewpoint” of PAC-Bayes to derive more advanced bounds,

such as one matching the fast rate of Catoni’s bound.

5.2 Extending the Rademacher viewpoint

There are at least two difficulties in the “Rademacher viewpoint” that prevent fast rates. First, if we

connect the generalization error to Rademacher complexity using the bounded difference inequality, a

slow rate term
√

log(1/δ)/m will appear. Second, as is shown by Kakade, Sridharan, and Tewari [KST08],

the standard Rademacher complexity of (constraint) linear classes leads to an upper bound with a slow

rate of order O(
√

KL (Q||P ) /m). Therefore, in order to derive fast rate PAC-Bayes bounds, we need to

extend the “Rademacher viewpoint”.

In order to obtain fast rates, we work with so-called shifted Rademacher processes, i.e., processes of the

form { 1
m

∑m
i=1 ε

′
if(zi)}f∈F where the variables {ε′i} are independent from S, i.i.d., and take two values

with equal probability. (These shifted Rademacher variables, {ε′i}, are not necessarily zero mean. When

they take values in {±1}, we obtain a standard Rademacher process.) Shifted Rademacher processes are

examples of shifted empirical processes [Weg03; LM12; ZH18].

Recall that Rademacher complexity is the expected value of the supremum of Rademacher processes

over a class [BM02]. In order to get a fast rate, we connect the tail probabilities of the supremum of the
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generalization error to the tail probabilities of shifted Rademacher processes via a symmetrization-in-

deviation argument instead of the symmetrization-in-expectation argument. The key is that we can avoid

using the bounded difference inequality by bounding the deviation. This removes the slow rate term

of
√

log(1/δ)/m. It remains to bound the deviation of shifted Rademacher processes to get a fast rate

bound of order O(KL (Q||P ) /m).

In the following, we demonstrate how the extended “Rademacher viewpoint” via shifted Rademacher

processes can be applied to derive a fast rate PAC-Bayes bound that matches the fast rate of Catoni’s

bound. Note that, since C/(1− e−C) > 1 for fixed C > 0 in Catoni’s bound in Eq. (5.2), we can write

C/(1− e−C) = 1 + c for some constant c > 0. Furthermore, note that our goal in this section is not to

derive new PAC-Bayes bounds. Therefore, we do not make attempts to optimize the constants.

Proposition 5.2.1 (Matching Catoni’s fast rate via shifted Rademacher processes). For any given c > 0

and prior P over F , there exists constants C1, C2, and C3 such that, with probability at least 1− δ, for

all distributions Q over F

LD(Q) ≤(1 + c)L̂S(Q) + C1
KL (Q||P )

m
+ C2

log 1
δ

m
+ C3

1

m
. (5.6)

Outline of the proof. We wish to emphasize two key differences from traditional machinery for deriving

Rademacher-complexity-based generalization bounds. The complete proof is given in Section 5.5.1.

Fix P and let Q(κ) := {Q : KL (Q||P ) ≤ κ} be defined as in Section 5.1.2. Rather than control

supQ∈Q(κ)

[
LD(Q)− L̂S(Q)

]
in terms of its expectation via the bounded difference inequality and

Rademacher complexity, we bound the tail/deviation of supQ∈Q(κ)

[
LD(Q)− (1 + c)L̂S(Q)

]
, thus avoiding

the use of the bounded differences inequality altogether. In particular, we can obtain fast rates by

bounding the tail in terms of tail of supremum of shifted Rademacher processes [Weg03; LM12; ZH18].

Define Gκ := {EQf(·) : Q ∈ Q(κ)} and, by an abuse of notation, let LD(g) denote Ez∼D[g(z)]. Then

we can write supQ∈Q(κ)

[
LD(Q)− (1 + c)L̂S(Q)

]
as supg∈Gκ

[
LD(g)− (1 + c)L̂S(g)

]
. We start from

bounding the tail probability PS
(

supg∈Gκ LD(g)− (1 + c)L̂S(g) ≥ t
)

. For fixed constants c > c2 > 0,

let c′ = c−c2
1+c2

and t′ = t
2(1+c2) . Then, by [ZH18, Cor. 1], we have

PS
(

sup
g∈Gκ

LD(g)− (1 + c)L̂S(g) ≥ t
)
≤ 4PS,ε

(
sup
g∈Gκ

[
1 + c′

2

m

m∑
i=1

(
εi −

c′

2 + c′

)
g(zi)

]
≥ t′

2

)
. (5.7)

Letting ε′i := εi − c′

2+c′ , one can see that {ε′i} are i.i.d. “shifted” Rademacher random variables with mean

− c′

2+c′ . For any g ∈ Gκ, there exists Q ∈ Q(κ) such that

1

m

m∑
i=1

ε′ig(zi) =
1

m

m∑
i=1

ε′iEQf(zi) = EQ
[

1

m

m∑
i=1

ε′if(zi)

]
, (5.8)

which can be viewed as a linear function of Q. Further, it can be verified that the set Q(κ) is (strongly)

convex. Therefore, supQ∈Q(κ)
1
m

∑m
i=1 ε

′
iEQf(zi) is a convex optimization problem. By duality [BV04,

Chp. 5], and, in this particular case, the Legendre transform of Kullback–Leibler divergence (see, e.g.,



Chapter 5. Fast-rate PAC-Bayes generalization bounds via shifted Rademacher processes109

[Gue19]), we have

sup
g∈Gκ

1

m

m∑
i=1

ε′ig(zi) = sup
Q∈Q(κ)

1

m

m∑
i=1

ε′iEQf(zi) = inf
λ>0

{
κ

λ
+

1

λ
logEP

[
exp

(
λ

m

m∑
i=1

ε′if(zi)

)]}
. (5.9)

Combining the shifted symmetrization in deviation in Eq. (5.7) and the dual problem in Eq. (5.9),

Markov’s inequality yields, for every λ > 0,

PS

(
sup

Q∈Q(κ)

EQ[LD(f)− (1 + c)L̂S(f)] ≥ t

)
≤ 4eκ−

λt′
2+c′ ESEεEP

[
exp

(
λ

m

m∑
i=1

ε′if(zi)

)]
. (5.10)

We then exploit the shifted property of ε′i to bound the expectation term on the right-hand side and

obtain fast rates. In particular, we show that, so long as k ≥ log cosh(λ/m)
λ/m ,

EPESEε

[
exp

(
λ

m

m∑
i=1

(εi − k)f(zi)

)]
≤ 1. (5.11)

In our case, k = c′

2+c′ , which leads to constraints relating λ, c, and c2. In particular, when c = 0, the

required condition for the above result, k ≥ log cosh(λ/m)
λ/m , does not hold. Therefore, this approach obtains

fast rates only if c > 0, i.e., if we shift. Combing Eqs. (5.10) and (5.11), there exists a constant C ′,

depending only on c, c2 and δ, such that, with probability at least 1− δ,

sup
Q∈Q(κ)

EQ[LD(f)− (1 + c)L̂S(f)] ≤ C ′

m
(κ+ log(4/δ)). (5.12)

Finally, we may apply the same union-bound argument as in the proof of [KST08, Cor. 7] in order to

cover all possible values of κ. This completes the proof.

5.3 New fast-rate PAC-Bayes bound based on “flatness”

The extended “ Rademacher viewpoint” of PAC-Bayes provides a new approach for deriving fast-rate

PAC-Bayes bounds. In this section, we demonstrate the use of shifted Rademacher processes to derive a

new fast-rate PAC-Bayes bound using a notion of “flatness”. This notion is inspired by the proposal by

Dziugaite and Roy [DR17] to formalize the empirical connection between “flat minima” and generalization

using PAC-Bayes bounds, and, in particular, posterior distributions which concentrate in these “flat

minima”.

Definition 5.3.1 (Notion of “flatness”). For given h ∈ [0, 1], the “h-flatness” of Q (w.r.t. the training

data S) is

1

m

m∑
i=1

EQ[f(zi)− (1 + h)EQf(zi)]
2. (5.13)

One way to understand this new notion is to observe that, under zero–one loss, h-flatness can be
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written as the difference between the empirical risk and the quadratic empirical risk:

1

m

m∑
i=1

EQ[f(zi)− (1 + h)EQf(zi)]
2 = L̂S(Q)− 1− h2

m

m∑
i=1

(EQf(zi))
2. (5.14)

Note that, for [0, 1]-valued (bounded) loss, equality is replaced by an inequality: the r.h.s. is an upper

bound of the l.h.s.

Remark 5.3.2. To see that optimizing h-flatness prefers “flat minima”, consider the following simplified

case: Call a posterior Q “completely flat” if f = g on S a.s., when f, g ∼ Q. It can be verified that, if

the posterior is “completely flat”, then under the zero–one loss, the “h-flatness” is h2L̂S(Q). That is,

given a “completely flat” posterior, the “h-flatness” goes to zero as h→ 0. For h > 0, the “h-flatness” is

zero when Q is “completely flat” and L̂S(Q) = 0.

The following PAC-Bayes theorem establishes favorable bounds for h-flat posteriors:

Theorem 5.3.3 (Fast-rate PAC-Bayes using “flatness”). For any given c > 0 and h ∈ (0, 1), with

probability at least 1− δ over random draws of training set S ∼ Dm, for all distributions Q over F ,

LD(Q) ≤L̂S(Q) +
c

m

m∑
i=1

EQ[f(zi)− (1 + h)EQf(zi)]
2 +

4

Cm

[
3KL (Q||P ) + log

1

δ
+ 5

]
, (5.15)

where C = 2h4c
1+16h2c .

This bound can be tighter than Catoni’s bound under certain conditions. We delay the comparison

with Catoni’s bound to Section 5.3.1. We now give an outline of the proof of Theorem 5.3.3, highlighting

the technical differences from the proof of Proposition 5.2.1. The complete proof is given in Section 5.5.2.

Outline of the proof of Theorem 5.3.3. By Eq. (5.14), we can write

EQLD(f)− L̂S(Q)− c

m

m∑
i=1

EQ[f(zi)− (1 + h)EQf(zi)]
2

= LD(Q)− (1 + c)L̂S(Q) +
c(1− h2)

m

m∑
i=1

(EQf(zi))
2. (5.16)

There are at least two new challenges compared with the proof of Proposition 5.2.1. First, the

shifted symmetrization in Eq. (5.7) cannot be applied because of the existence of the quadratic term
c(1−h2)

m

∑m
i=1(EQf(zi))

2. This means we need to derive a new shifted symmetrization involving the

quadratic term. Second, the quadratic term c(1−h2)
m

∑m
i=1(EQf(zi))

2 cannot be seen as a linear function

of Q. Therefore, some technical arguments are required in order to apply the Legendre transform of

Kullback–Leibler divergence.

First, we derive a new shifted symmetrization which involves quadratic terms. The proof is inspired

by an argument due to Zhivotovskiy and Hanneke [ZH18]. The result extends [ZH18, Cor. 1], which is

recovered as a special case when h = 1. For κ > 0, recall that we have definedQ(κ) = {Q : KL (Q||P ) ≤ κ}
and Gκ = {EQf(·) : Q ∈ Q(κ)}. Then for any g ∈ Gκ, there exists a Q ∈ Q(κ) such that g = EQf(·). We

can first show a tail bound that for any given c2 > 0 and g ∈ Gκ, if t ≥ (1+c2)(1+c2h
2)

mc2h2 , then

PS
(
LD(g)− (1 + c2)L̂S(g) + c2(1− h2)L̂S(g2) ≥ t

2

)
≤ 1

2
. (5.17)
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Then, consider another independent random data set S′ = {z′1, . . . , z′m} ∈ Dm. For c > c2, by taking the

difference of LD(g) − (1 + c)L̂S(g) + c(1 − h2)L̂S(g2) and LD(g) − (1 + c2)L̂S′(g) + c2(1 − h2)L̂S′(g2)

and using Eq. (5.17), we obtain

1

4
PS
(

sup
g∈Gκ

LD(g)− (1 + c)L̂S(g) + c(1− h2)L̂S(g2) ≥ t
)

(5.18)

≤ 1

2
PS,S′

(
sup
g∈Gκ

(1 + c2)L̂S′(g)− c2(1− h2)L̂S′(g2)− (1 + c)L̂S(g) + c(1− h2)L̂S(g2) ≥ t

2

)
. (5.19)

Now by writing (1 + c2)L̂S′(g)− c2(1− h2)L̂S′(g2)− (1 + c)L̂S(g) + c(1− h2)L̂S(g2) as

(1 +
c+ c2

2
)
(
L̂S′(g)− L̂S(g)

)
− c+ c2

2
(1− h2)

(
L̂S′(g2)− L̂S(g2)

)
− c− c2

2
L̂S
(
g − (1− h2)g2

)
− c− c2

2
L̂S′

(
g − (1− h2)g2

)
, (5.20)

one can apply the symmetrization argument to get

1

4
PS
(

sup
g∈Gκ

LD(g)− (1 + c)L̂S(g) + c(1− h2)L̂S(g2) ≥ t
)

≤ PS,ε

(
sup
g∈Gκ

[
1

m

m∑
i=1

εi
(
(1 + c′) g(zi)− c′(1− h2)g2(zi)

)
− c′′L̂S

(
g − (1− h2)g2

)]
≥ t

4

)
, (5.21)

where c′ = c+c2
2 , c′′ = c−c2

2 . Therefore, we have derived the new shifted symmetrization in deviation

involving a quadratic term.

Recalling the definition of Gκ, we have

sup
g∈Gκ

1

m

m∑
i=1

εi
(
(1 + c′) g(zi)− c′(1− h2)g(zi)

2
)
− c′′L̂S(g − (1− h2)g2)

= sup
Q∈Q(κ)

1

m

m∑
i=1

[εi (1 + c′)− c′′]EQf(zi)− [εic
′ − c′′] (1− h2)[EQf(zi)]

2. (5.22)

Note that there are two shifted Rademacher random variables εi (1 + c′)− c′′ and εic
′ − c′′, which not

only involve a shift term −c′′ but also scale terms (1 + c′) and c′, respectively. Furthermore, the term

[EQf(zi)]
2 cannot be seen as a linear function of Q. This prevents the use of the key argument in [KST08]

to formulate an upper bound using Rademacher complexities of constrained linear classes by considering

the generalization error as a linear function of Q.

In order to sidestep this obstruction, define ε := {εi}mi=1, z := {zi}mi=1 and suppose Q̂(ε, z) achieves

the supremum above. (If the supremum cannot be achieved, one can use a carefully chosen sequence of

{Q̂i(ε, z)} to prove the same statement as the supremum can be approximated arbitrarily closely.) The

following inequality then holds:

sup
Q∈Q(κ)

1

m

m∑
i=1

[εi (1 + c′)− c′′]EQf(zi)− [εic
′ − c′′] (1− h2)[EQf(zi)]

2

≤ sup
Q∈Q(κ)

1

m

m∑
i=1

[εi (1 + c′)− c′′]EQf(zi)− [εic
′ − c′′] (1− h2)EQf(zi)EQ̂(ε,z)f(zi). (5.23)
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To see this, note that, on the one hand, if we plug in Q = Q̂(ε, z) the inequality is tight; on the other

hand, by definition, Q = Q̂(ε, z) already achieves the supremum of the l.h.s. Note that the r.h.s. can be

seen as a linear function of Q, because Q̂(ε, z) is a random variable which does not depend on Q.

Let ε′′i := εic
′ − c′′ = εi

c1+c2
2 − c1−c2

2 . Then by keeping the term Q̂(ε, z), one can apply the convex

conjugate of relative entropy to get

P

[
sup

Q∈Q(κ)

LD(Q)− (1 + c)L̂S(Q) +
c(1− h2)

m

m∑
i=1

(EQf(zi))
2 ≥ t

]

≤ 4 exp

(
κ− λt

4

)
ESEεEP

[
exp

(
λ

m

m∑
i=1

f(zi)
[
(εi + ε′′i )− ε′′i (1− h2)EQ̂(ε,z)f(zi)

])]
. (5.24)

Therefore, the problem turns to bounding the expectation of a function involving shifted Rademacher

processes. Although the expectation looks quite complicated since it involves two scaled and shifted

Rademacher variables as well as the unknown Q̂(ε, z), fortunately, we are able to show that, for any

random variables Yi ∈ [0, 1], we have

ESEεEP

[
exp

(
λ

m

m∑
i=1

f(zi)
[
(εi + ε′′i )− ε′′i (1− h2)Yi

])]
≤ 1, (5.25)

if h ∈ (0, 1], 1 > h2c > c2 > 0 and 0 < λ
m < C = h2c−c2

2(1+h2c)(1+c2) . This result removes the term Q̂(ε, z) by

letting Yi = EQ̂(ε,z)f(zi). Finally, we combine different values of κ by a union bound argument similar to

the proof of Proposition 5.2.1 to complete the proof.

5.3.1 Comparison with Catoni’s bound

As we have shown in Proposition 5.2.1, using shifted Rademacher processes, we can match Catoni’s

fast-rate PAC-Bayesian bound (Theorem 5.1.2) up to constants. We have also presented a new fast-rate

PAC-Bayes bound based on ”flatness”. Although both our bound and Catoni’s bound show fast O(m−1)

rates of convergence, our bound can exploit flatness in the posterior distribution.

In particular, our PAC-Bayes bound based on flatness (Eq. (5.15)) can be much tighter than

Catoni’s bound (Eq. (5.6)) when the posterior is chosen to concentrate on a “flat minimum” where
c
m

∑m
i=1 EQ[f(zi) − (1 + h)EQf(zi)]

2 is very small yet L̂S(Q) is nonzero. It can be verified that the

“flatness” term c
m

∑m
i=1 EQ[f(zi)− (1 +h)EQf(zi)]

2 in Eq. (5.15) is smaller than the excess empirical risk

term cL̂S(Q) when 1−h2

m

∑m
i=1(EQf(zi))

2 is greater than 0, which is precisely when the empirical risk is

greater than zero. (See Eq. (5.14).)

Based on this observation, we expect our bound to be tighter for sufficient flat posteriors, nonzero

empirical risk, and sufficient training data. In order to see this, note that Catoni’s bound has the form

(1 + cc)L̂SQ+ Cc
m (KL(Q‖P ) + log 1

δ ), while our bound based on Eq. (5.14) can be written (1 + cr)L̂SQ−
cr(1−h2)

m

∑m
i=1(EQf(zi))

2 + Cr
m (KL(Q‖P ) + log 1

δ + 1). Here cc, cr inflate the empirical risk and Cc, Cr are

constants. Let Tm be cr(1−h2)
m

∑m
i=1(EQf(zi))

2. Note that cc and cr must be fixed before seeing the data.

Assuming we equate the inflation of the empirical risk, i.e., cc = cr, the proposed bound is tighter than

Catoni’s bound provided m > 1
Tm

(
(Cr − Cc)

(
KL(Q‖P ) + log 1

δ

)
+ Cr

)
. If Tm converges to a positive

number (a reasonable assumption), then our proposed bound will be tighter for sufficiently many samples.

If we assume cc 6= cr, our bound can still be tighter than Catoni’s bound under more involved conditions.
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5.4 Related work and conclusion

5.4.1 Related work

There is a large literature on obtaining fast 1/m convergence rates for generalization error and excess

risk using Rademacher processes and their generalizations [BBM05; Kol06; LM12; LRS15; ZH18]. As far

as we know, this literature does not connect with the PAC-Bayesian literature. There do exist, however,

PAC-Bayesian analyses for specific learning algorithms that achieve fast rates [Aud09; Lac+07; Ger+15].

These specific analyses do not lead to general PAC-Bayes bounds, like those produced by Catoni [Cat07].

Our new PAC-Bayes bound based on flatness bears a superficial resemblance to a number of bounds

in the literature. However, our notion of flatness is not related to the variance of the randomized classifier

caused by the randomness of the observed data. Therefore, our new bound is fundamentally different

from existing PAC-Bayes bounds based on this type of variance [Lac+07; Ger+15; TS13].

For example, Tolstikhin and Seldin [TS13, Thm. 4] presents a generalization bound based on the

“empirical variance”, which is distinct from our ”flatness”. The “empirical variance” is EQ 1
m

∑m
i=1[f(zi)−

1
m

∑m
i=1 f(zi)]

2, while our “flatness” is 1
m

∑m
i=1 EQ[f(zi)−EQf(zi)]

2. Note that it is possible for flatness

to be zero, even when empirical variance is large.

To the best of our knowledge, the closest work to ours in the literature is that by Audibert [Aud09].

The bound given in [Aud09, Thm. 6.1] uses a notion similar to our “flatness”. The bound is, however,

not comparable with ours for several reasons: First, [Aud09, Theorem 6.1] holds only for the particular

algorithm proposed by Audibert, and so it is not a general PAC-Bayes bound like ours. Second, our

notion of “flatness” is empirical, while the “flatness” term in [Aud09, Theorem 6.1] is defined by an

expectation over the data distribution, which is often presumed unknown. Finally, the proof techniques

used to establish [Aud09, Theorem 6.1] are specialized to the proposed algorithm and not based on the

use of Rademacher processes. Our proof techniques via shifted Rademacher processes provides a blueprint

for other approaches to deriving fast-rate PAC-Bayes bounds.

Grünwald and Mehta [GM19] establish new excess risk bounds in terms of a novel complexity measure

based on “luckiness” functions. In the setting of randomized classifiers, particular choices of luckiness

functions can be related to PAC-Bayesian notions of complexity based on “priors”. Indeed, in this setting,

their complexity measure can be bounded in terms of a KL divergence, as in PAC-Bayesian bounds. In a

setting with deterministic classifiers, the authors show that their complexity measure can be bounded in

terms of Rademacher complexity. Thus, while their framework connects with both PAC-Bayesian and

Rademacher-complexity bounds, it is not immediately clear whether it produces direct connections, as

we have accomplished here. It is certainly interesting to consider whether our bounds can be achieved (or

surpassed) by an appropriate use of their framework.

5.4.2 Conclusion

In this chapter we exploit the connections between modern PAC-Bayesian theory and Rademacher

complexities. Using shifted Rademacher processes [Weg03; LM12; ZH18], we derive a novel fast-rate

PAC-Bayes bound that depends on the empirical ”flatness” of the posterior. Our work provides new

insights on PAC-Bayesian theory and opens up new avenues for developing stronger bounds.

It is worth highlighting some potentially interesting directions that may be worth further investigation:

We have “rederived” Catoni’s bound via shifted Rademacher processes, up to constants. It is
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interesting to ask whether the Rademacher approach can dominate the direct PAC-Bayes bound. In the

other direction, we have not derived our flatness bound via a direct PAC-Bayes approach. Whether this

is possible and what it achieves might shed light on the relative strengths of these two distinct approaches

to PAC-Bayes bounds. It may also be interesting to pursue PAC-Bayes bounds via some adaptation of

Talagrand’s concentration inequalities [Wai19, Ch.3].

We have derived PAC-Bayes bounds for zero–one loss. While the extension to bounded loss is

straightforward, the problem of extending our approach to unbounded loss relates to a growing body of

work on this problem within the PAC-Bayesian framework. (See, for example, [AG18] and the references

therein). Whether the Rademacher perspective is helpful or not in this regard is not clear at this point.

There has been a surge of interest in PAC-Bayes bounds and their application to the study of

generalization in large-scale neural networks. One promising direction is to consider Rademacher-process

techniques may aid in the development of PAC-Bayesian analyses of specific algorithms [Aud09; Lac+07;

Ger+15], especially in the case when the algorithms are related to large-scale neural networks trained by

stochastic gradient descent [NBS17; Ney+17; Lon17].

It would be interesting to perform a careful empirical study of our flatness bound in the context of

large-scale neural networks, in the vein of the work of Dziugaite and Roy [DR17]. Preliminary work

suggests that the posteriors found by PAC-Bayes bound optimization are not flat in our sense. After

some investigation, we believe the reason is that optimizing the PAC-Bayes bound results in underfitting,

due in part to the distribution-independent prior. It would be interesting to compare various PAC-Bayes

bounds under strict constraints on the empirical risk.

5.5 Appendices

5.5.1 Proof of Proposition 5.2.1

To match Catoni’s bound, we need to control supf∈F LD(f)− (1 + c)L̂S(f), given c > 0. We apply an

existing result due to Zhivotovskiy and Hanneke [ZH18], which we quote here:

Lemma 5.5.1 (Shifted symmetrization in deviation [ZH18, Cor. 7]). Fix constants c > c2 > 0,

1

4
PS

(
sup
f∈F
LD(f)− (1 + c)L̂S(f) ≥ t

)

≤ PS,ε

(
sup
f∈F

[
1 + c′/2

m

m∑
i=1

(
εi −

c′/2

1 + c′/2

)
f(zi)

]
≥ t′

2

)
. (5.26)

where c′ = c−c2
1+c2

, t′ = t
2(1+c2) , and {εi} are Rademacher random variables.

Let ε′i := εi − c′

2+c′ . For κ > 0, define Q(κ) := {Q : KL (Q||P ) ≤ κ}. Next, using convex conjugate of

the Kullback–Leibler divergence (the change-measure inequality), for λ > 0,

sup
Q∈Q(κ)

[
1

m

m∑
i=1

ε′iEQf(zi)−
1

λ
KL (Q||P )

]
≤ 1

λ
logEP

[
exp

(
λ

m

m∑
i=1

ε′if(zi)

)]
, (5.27)
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which implies

sup
Q∈Q(κ)

1

m

m∑
i=1

ε′iEQf(zi) ≤
κ

λ
+

1

λ
logEP

[
exp

(
λ

m

m∑
i=1

ε′if(zi)

)]
. (5.28)

Therefore, we have

PS

(
sup

Q∈Q(κ)

EQ[LD(f)− (1 + c)L̂S(f)] ≥ t

)
(5.29)

= PS

(
sup

Q∈Q(κ)

LD(EQf)− (1 + c)L̂S(EQf) ≥ t

)
(5.30)

≤ 4PS,ε

(
sup

Q∈Q(κ)

1

m

m∑
i=1

(εi −
c′

2 + c′
)EQf(zi) ≥

t′

2 + c′

)
(5.31)

≤ 4PS,ε

(
κ

λ
+

1

λ
logEP

[
exp

(
λ

m

m∑
i=1

ε′if(zi)

)]
≥ t′

2 + c′

)
(5.32)

= 4PS,ε

(
logEP

[
exp

(
λ

m

m∑
i=1

ε′if(zi)

)]
≥ λt′

2 + c′
− κ

)
(5.33)

= 4PS,ε

(
EP

[
exp

(
λ

m

m∑
i=1

ε′if(zi)

)]
≥ exp

(
λt′

2 + c′
− κ
))

(5.34)

≤︸︷︷︸
Markov

4 exp

(
κ− λt′

2 + c′

)
ESEεEP

[
exp

(
λ

m

m∑
i=1

ε′if(zi)

)]
. (5.35)

Now we use the result of Lemma 5.5.2. For any c2 such that 0 < c2 < c, if t ≥ 1
m

(1+c2)2

c2
and

c′

c′+2 ≥
log cosh(λ/m)

λ/m then we have

P

(
sup

Q∈Q(κ)

EQ[LD(f)− (1 + c)L̂S(f)] ≥ t

)
≤ 4 exp

(
κ− λt′

2 + c′

)
, (5.36)

where c′ = c−c2
1+c2

and t′ = t
2(1+c2) . Now letting 4 exp

(
κ− λt′

2+c′

)
equals to δ, we have

t = 2(1 + c2)t′ = 2(1 + c2)

[
2 + c′

λ
(κ+ log(4/δ))

]
. (5.37)

Now let λ
m = C, noting that

t ≥ 2(1 + c2)

[
2 + c′

λ
log(4/δ)

]
(5.38)

then we can choose C small enough (clearly bounded away from 0) to satisfy

log cosh(C)

C
≤ c′

c′ + 2
, C ≤ 2(1 + c2)(2 + c′) log(4/δ)

(1 + c2)2/c2
(5.39)

which guarantees both t ≥ 1
m

(1+c2)2

c2
and c′

c′+2 ≥
log cosh(λ/m)

λ/m .
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Therefore, using such C we have

P

(
sup

Q∈Q(κ)

EQ[LD(f)− (1 + c)L̂S(f)] ≥ 2(1 + c2)(2 + c′)

Cm
(κ+ log(4/δ))

)
≤ δ, (5.40)

which implies

sup
Q∈Q(κ)

EQ[LD(f)− (1 + c)L̂S(f)] ≤ C ′

m
(κ+ log(4/δ)), w.p. 1− δ. (5.41)

where C ′ = 2(1+c2)(2+c′)
C .

Finally, we combine all possible κ using a union bound. Define Γ0 := {Q : KL (Q||P ) ≤ 2} and

Γj := {Q : KL (Q||P ) ∈ [2j , 2j+1]} for j ≥ 1. Let δj = 2−(j+1)δ so
∑∞
j=0 δj = δ. Then for any Q there is

a jQ such that Q ∈ ΓjQ . Then by definition we have

KL (Q||P ) ≤ 2jQ+1 ≤ 2 max{KL (Q||P ) , 1} (5.42)

δjQ = 2−(jQ+1)δ ≥ δ

2 max{KL (Q||P ) , 1}
. (5.43)

Therefore, we have that for any Q, with probability 1− δ, we have

LD(Q)− (1 + c)L̂S(Q) ≤ C ′

m
(2 max{KL (Q||P ) , 1}+ log(8 max{KL (Q||P ) , 1}/δ)) (5.44)

≤ C ′

m
(2 max{KL (Q||P ) , 1}+ log(max{KL (Q||P ) , 1}) + log(8/δ)) . (5.45)

Now we simplify the order without optimizing the constants, which gives

log(max{KL (Q||P ) , 1}) ≤ max{KL (Q||P ) , 1} ≤ KL (Q||P ) + 1. (5.46)

Therefore, we have

LD(f)− (1 + c)L̂S(f) ≤ C1

m
KL (Q||P ) +

C2

m
log(1/δ) +

C3

m
, w.p. 1− δ. (5.47)

Lemma 5.5.2. If k ≥ log cosh(λ/m)
λ/m , then

EPESEε

[
exp

(
λ

m

m∑
i=1

(εi − k)f(zi)

)]
≤ 1. (5.48)



Chapter 5. Fast-rate PAC-Bayes generalization bounds via shifted Rademacher processes117

Proof. Noting that {f(zi)} are independent Bernoulli random variables, we have

EPESEε

[
exp

(
λ

m

m∑
i=1

(εi − k)f(zi)

)]
(5.49)

=︸︷︷︸
indep

EP
m∏
i=1

ESEεi
[
exp

(
λ

m
(εi − k)f(zi)

)]
(5.50)

=︸︷︷︸
Rademacher

EP
m∏
i=1

ES

[
e(1−k) λm f(zi) + e−(1+k) λm f(zi)

2

]
(5.51)

=︸︷︷︸
Bernoulli

EP
m∏
i=1

[
(1− ES [f(zi)]) +

(
e
λ
m + e−

λ
m

2ek
λ
m

)
ES [f(zi)]

]
(5.52)

= EP
m∏
i=1

[
(1− ES [f(zi)]) +

cosh
(
λ
m

)
ek

λ
m

ES [f(zi)]

]
, (5.53)

which is upper bounded by 1 if we choose k such that

cosh(λ/m) =
eλ/m + e−λ/m

2
≤ ekλ/m. (5.54)

That is

k ≥ log cosh(λ/m)

λ/m
. (5.55)

5.5.2 Proof of Theorem 5.3.3

We first present some lemmas that will be used in the later proof.

Lemma 5.5.3 (Shifted-flatness inequality). Consider a function f : Z → [0, 1], constants h ∈ [0, 1] and

c2 > 0, if t ≥ (1+c2)(1+c2h
2)

mc2h2 , we have

PS
(
LD(f)− (1 + c2)L̂S(f) + c2(1− h2)L̂S(f2) ≥ t

2

)
≤ 1

2
. (5.56)

Proof. Let v = c2LD(f)− c2(1− h2)LD(f2) = c2LD(f − (1− h2)f2). Then, we have

P
(
LD(f)− (1 + c2)L̂S(f) + c2(1− h2)L̂S(f2) ≥ t

2

)
(5.57)

= P
(
LD(f)− c2(1− h2)

1 + c2
LD(f2)− L̂S(f) +

c2(1− h2)

1 + c2
L̂S(f2) ≥ t/2 + v

1 + c2

)
(5.58)

= P

(
Ez∼D(f(z)− c2(1− h2)

1 + c2
f(z)2)− 1

m

m∑
i=1

(f(zi)−
c2(1− h2)

1 + c2
f(zi)

2) ≥ t/2 + v

1 + c2

)
. (5.59)

Because f(zi) − c2(1−h2)
1+c2

f(zi)
2, i = 1, . . . ,m are i.i.d. random samples, using Chebyshev’s inequality



Chapter 5. Fast-rate PAC-Bayes generalization bounds via shifted Rademacher processes118

together with 4ab ≤ (a+ b)2 and f ∈ [0, 1], the formula above is upper bounded by

(1 + c2)2 var(f − c2(1−h2)
1+c2

f2)

m(t/2 + v)2
≤

(1 + c2)2LD(f − c2(1−h2)
1+c2

f2)2

2mvt
≤

(1 + c2)2LD(f − c2(1−h2)
1+c2

f2)

2mvt
. (5.60)

We can further decompose the term in the numerator by

LD(f − c2(1− h2)

1 + c2
f2) =

c2
1 + c2

LD(f − (1− h2)f2) +
1

1 + c2
LD(f) (5.61)

≤ 1

1 + c2
v +

1

1 + c2

1

c2h2
v =

c2h
2 + 1

(1 + c2)c2h2
v, (5.62)

Therefore the lemma follows directly from t ≥ (1+c2)(1+c2h
2)

mc2h2 .

Lemma 5.5.4 (New shifted symmetrization in deviation). Fix constants c > c2 > 0, h ∈ [0, 1], if

t ≥ (1+c2)(1+c2h
2)

mc2h2 , we have

1

4
PS

(
sup
f∈F
LD(f)− (1 + c)L̂S(f) + c(1− h2)L̂S(f2) ≥ t

)

≤ PS,ε

(
sup
f∈F

[
1

m

m∑
i=1

εi
(
(1 + c′) f(zi)− c′(1− h2)f2(zi)

)
− c′′L̂S

(
f − (1− h2)f2

)]
≥ t

4

)
, (5.63)

where c′ = c+c2
2 , c′′ = c−c2

2 , ε := {εi}mi=1, in which {εi} are independent Rademacher random variables.

Proof. Consider a random set S′ = {z′i}mi=1 ∈ Dm, in Lemma 5.5.3 we have shown that

PS′
(
LD(f)− (1 + c2)L̂S′(f) + c2(1− h2)L̂S′(f2) ≥ t

2

)
≤ 1

2
. (5.64)

Therefore, we can get

1

4
PS

(
sup
f∈F
LD(f)− (1 + c)L̂S(f) + c(1− h2)L̂S(f2) ≥ t

)
(5.65)

≤ 1

2
PS,S′

(
sup
f∈F

(1 + c2)L̂S′(f)− c2(1− h2)L̂S′(f2)− (1 + c)L̂S(f) + c(1− h2)L̂S(f2) ≥ t

2

)
(5.66)

=
1

2
PS,S′

[
sup
f∈F

(1 +
c+ c2

2
)
(
L̂S(f)− L̂S′(f)

)
− c+ c2

2
(1− h2)

(
L̂S(f2)− L̂S′(f2)

)
(5.67)

−c− c2
2
L̂S′

(
f − (1− h2)f2

)
− c− c2

2
L̂S
(
f − (1− h2)f2

)
≥ t

2

]
(5.68)

≤ PS,ε

(
sup
f∈F

[
1

m

m∑
i=1

εi
(
(1 + c′) f(zi)− c′(1− h2)f2(zi)

)
− c′′L̂S

(
f − (1− h2)f2

)]
≥ t

4

)
, (5.69)

where c′ = c+c2
2 , c′′ = c−c2

2 , and the last inequality is by the symmetrization argument.

Lemma 5.5.5. For constants h ∈ (0, 1], h2c > c2 > 0, let C = h2c−c2
2(1+h2c)(1+c2) , if 0 < λ

m < C, then given
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independent Bernoulli random variables Xi, for any random variables Yi ∈ [0, 1],

EεEXEY |X,ε

[
exp

(
λ

m

m∑
i=1

Xi

[
(εi + ε′′i )− ε′′i (1− h2)Yi

])]
≤ 1, (5.70)

where {εi} are i.i.d. Rademacher random variables and ε′′i = εi
c+c2

2 − c−c2
2 .

Proof. Note when Xi = 0, the value of Yi has no effect onto LHS. When Xi = 1,

(εi + ε′′i )− ε′′i (1− h2)Yi = (1 + c2)− c2(1− h2)Yi, if εi = 1, (5.71)

(εi + ε′′i )− ε′′i (1− h2)Yi = −(1 + c) + c(1− h2)Yi, if εi = −1, (5.72)

Therefore, we have

(εi + ε′′i )− ε′′i (1− h2)Yi ≤ (εi + ε′′i )− ε′′i (1− h2)
1− εi

2
. (5.73)

Denoting µi = E[Xi], by the monotonicity of the exponential function, we have

EεEXEY |X,ε

[
exp

(
λ

m

m∑
i=1

Xi

[
(εi + ε′′i )− ε′′i (1− h2)Yi

])]
(5.74)

≤ EεEX

[
exp

(
λ

m

m∑
i=1

Xi

[
(εi + ε′′i )− ε′′i (1− h2)

1− εi
2

])]
(5.75)

=

m∏
i=1

[
1− µi +

µi
2

exp

(
λ

m
(1 + c2)

)
+
µi
2

exp

(
− λ
m

(1 + h2c)

)]
, (5.76)

For the formula upper bounded by 1, it is sufficient to prove

exp

(
λ

m
(1 + c2)

)
+ exp

(
− λ
m

(
1 + h2c

))
≤ 2. (5.77)

Because we have ex ≥ x + 1, thus e−x ≤ 1
1+x for x > −1 and ex ≤ 1

1−x for x < 1. Therefore, it is

sufficient to have

1

1− λ
m (1 + c2)

+
1

1 + λ
m (1 + h2c)

≤ 2,
λ

m
(1 + c2) ≤ 1. (5.78)

Thus, we know the argument holds for

λ

m
≤ min

{
h2c− c2

2(1 + h2c)(1 + c2)
,

1

1 + c2

}
=

h2c− c2
2(1 + h2c)(1 + c2)

, (5.79)

where the last equality holds when c2 < h2c.
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Now we are ready for the proof of Theorem 5.3.3. Denoting g(·) = EQf(·), one can write

LD(Q)− L̂S(Q)− c

m

m∑
i=1

EQ[f(zi)− (1 + h)EQf(zi)]
2 (5.80)

= LD(Q)− (1 + c)L̂S(Q) +
c(1− h2)

m

m∑
i=1

(EQf(zi))
2 (5.81)

= LD(g)− (1 + c)L̂S(g) +
c(1− h2)

m

m∑
i=1

(g(zi))
2 (5.82)

= LD(g)− (1 + c)L̂S(g) + c(1− h2)L̂S(g2). (5.83)

Recall that for κ > 0, we have defined Q(κ) = {Q : KL (Q||P ) ≤ κ}. We start from the formula,

PS

[
sup

Q∈Q(κ)

LD(g)− (1 + c)L̂S(g) + c(1− h2)L̂S(g2) ≥ t

]
. (5.84)

By Lemma 5.5.4, let c′ = c+c2
2 , c′′ = c−c2

2 , and {εi} being i.i.d. Rademacher random variables, we

have

PS

[
sup

Q∈Q(κ)

LD(g)− (1 + c)L̂S(g) + c(1− h2)L̂S(g2) ≥ t

]
(5.85)

≤ 4PS,ε

[
sup

Q∈Q(κ)

1

m

m∑
i=1

εi
(
(1 + c′) g(zi)− c′(1− h2)g(zi)

2
)
− c′′L̂S(g − (1− h2)g2) ≥ t

4

]
. (5.86)

Plugging into g = EQf(·) yields

sup
Q∈Q(κ)

1

m

m∑
i=1

εi
(
(1 + c′) g(zi)− c′(1− h2)g(zi)

2
)
− c′′L̂S(g − (1− h2)g2) (5.87)

= sup
Q∈Q(κ)

1

m

m∑
i=1

[εi (1 + c′)− c′′]EQf(zi)− [εic
′ − c′′] (1− h2)[EQf(zi)]

2. (5.88)

Given ε = {εi}mi=1, z = {zi}mi=1, we suppose Q̂(ε, z) achieves the supremum above (if the supremum cannot

be achieved, one can use a sequence of {Q̂i(ε, z)} to approximate arbitrarily close to the supremum).

Using

ε′′i := εic
′ − c′′ = εi

c1 + c2
2

− c1 − c2
2

, (5.89)
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we have

sup
Q∈Q(κ)

1

m

m∑
i=1

[εi (1 + c′)− c′′]EQf(zi)− [εic
′ − c′′] (1− h2)[EQf(zi)]

2 (5.90)

≤ sup
Q∈Q(κ)

1

m

m∑
i=1

[εi (1 + c′)− c′′]EQf(zi)− [εic
′ − c′′] (1− h2)EQf(zi)EQ̂(ε,z)f(zi) (5.91)

= sup
Q∈Q(κ)

EQ

[
1

m

m∑
i=1

(εi + ε′′i )f(zi)− ε′′i (1− h2)f(zi)EQ̂(ε,z)f(zi)

]
(5.92)

≤ κ

λ
+

1

λ
logEP

[
exp

(
λ

m

m∑
i=1

f(zi)
[
(εi + ε′′i )− ε′′i (1− h2)EQ̂(ε,z)f(zi)

])]
, (5.93)

where the last inequality follows from duality for convex optimization [BV04, Chp. 5].

Therefore, we have

P

[
sup

Q∈Q(κ)

LD(Q)− (1 + c)L̂S(Q) +
c(1− h2)

m

m∑
i=1

(EQf(zi))
2 ≥ t

]
(5.94)

≤ 4P

[
κ

λ
+

1

λ
logEP

[
exp

(
λ

m

m∑
i=1

f(zi)
[
(εi + ε′′i )− ε′′i (1− h2)EQ̂(ε,z)f(zi)

])]
≥ t

4

]
(5.95)

≤ 4 exp

(
κ− λt

4

)
ESEεEP

[
exp

(
λ

m

m∑
i=1

f(zi)
[
(εi + ε′′i )− ε′′i (1− h2)EQ̂(ε,z)f(zi)

])]
(5.96)

≤ 4 exp

(
κ− λt

4

)
, (5.97)

where the last inequality comes from Lemma 5.5.5 by considering Xi as f(zi) and Yi as EQ̂(ε,z)f(zi), with

C :=
λ

m
≤ h2c− c2

2(1 + h2c)(1 + c2)
. (5.98)

Now let 4 exp
(
κ− λt

4

)
equals to δ, we have

t =
4

λ
(κ+ log

4

δ
) =

4

Cm
(κ+ log

4

δ
). (5.99)

Note that the shifted symmetrization inequality requires t ≥ (1+c2)(1+c2h
2)

mc2h2 by Lemma 5.5.3. Combining

with the previous requirement for C together, we have

C ≤ min

{
h2c− c2

2(1 + h2c)(1 + c2)
,

4c2h
2

(1 + c2)(1 + c2h2)
(κ+ log

4

δ
)

}
. (5.100)

Using such C we have with probability at least 1− δ,

sup
Q∈Q(κ)

EQLD(f)− EQL̂S(f)− c

m

m∑
i=1

EQ[f(zi)− (1 + h)EQf(zi)]
2 ≤ 4

Cm
(κ+ log

4

δ
). (5.101)

Finally we combine all possible κ using a union bound. Define Γ0 = {Q : KL (Q||P ) ≤ 2} and

Γj = {Q : KL (Q||P ) ∈ [2j , 2j+1]} for j ≥ 1. Let δj = 2−(j+1)δ so that
∑∞
j=0 δj = δ. Then for any Q



Chapter 5. Fast-rate PAC-Bayes generalization bounds via shifted Rademacher processes122

there is a jQ such that Q ∈ ΓjQ . Then we have

KL (Q||P ) ≤ 2jQ+1 ≤ 2 max(KL (Q||P ) , 1) (5.102)

δjQ = 2−(jQ+1)δ ≥ δ

2 max(KL (Q||P ) , 1)
, (5.103)

Therefore with probability at least 1− δ over draws of S, for any Q,

EQLD(f) ≤ EQL̂S(f) +
c

m

m∑
i=1

EQ[f(zi)− (1 + h)EQf(zi)]
2

+
4

Cm

[
2 max(KL (Q||P ) , 1) + log

8 max(KL (Q||P ) , 1)

δ

]
(5.104)

≤ EQL̂S(f) +
c

m

m∑
i=1

EQ[f(zi)− (1 + h)EQf(zi)]
2 +

4

Cm

[
3KL (Q||P ) + log

1

δ
+ 5

]
, (5.105)

provided that

C ≤ min

{
h2c− c2

2(1 + h2c)(1 + c2)
,

4c2h
2

(1 + c2)(1 + c2h2)
(κ+ log

4

δ
)

}
. (5.106)

Therefore, it is sufficient if

C =
2h4c

1 + 16h2c
, c2 =

h2c

1 + 16h2c
. (5.107)
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[JLM14] B. Jourdain, T. Lelièvre, and B. a. Miasojedow. “Optimal scaling for the transient phase of

Metropolis Hastings algorithms: the longtime behavior”. Bernoulli 20.4 (2014), pp. 1930–

1978.
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