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Harris and Topological Recurrence

In this chapter we consider stronger concepts of recurrence and link them with the
dichotomy proved in Chapter 8. We also consider several obvious definitions of global
and local recurrence and transience for chains on topological spaces, and show that
they also link to the fundamental dichotomy.

In developing concepts of recurrence for sets A € B(X), we will consider not just
the first hitting time 74, or the expected value U( -, A) of n4, but also the event that
@ € A infinitely often (i.0.), or n4 = 0o, defined by

(B cAio):= ﬁ Ej (P € A}

N=1k=N
which is well defined as an F-measurable event on (2. For z € X, A € B(X) we write
Q(z,A) =P {®P € Aio.}: (9.1)

obviously, for any x, A we have Q(x, A) < L(z, A), and by the strong Markov property
we have

Q(s,4) = E, [Py, {® € Aio}{rs < o0}] = /A Un(z,dy)Q(y, A). 9.2)

Harris recurrence

The set A is called Harris recurrent if

Q(z,A) = Py(na = 00) =1, T € A.

A chain @ is called Harris (recurrent) if it is ¢-irreducible and every set
in BT (X) is Harris recurrent.
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We will see in Theorem 9.1.4 that when A € BT (X) and @ is Harris recurrent then in
fact we have the seemingly stronger and perhaps more commonly used property that
Q(z,A) =1 for every z € X.

It is obvious from the definitions that if a set is Harris recurrent, then it is
recurrent. Indeed, in the formulation above the strengthening from recurrence to
Harris recurrence is quite explicit, indicating a move from an expected infinity of
visits to an almost surely infinite number of visits to a set.

This definition of Harris recurrence appears on the face of it to be stronger than
requiring L(z, A) = 1 for z € A, which is a standard alternative definition of Harris
recurrence. In one of the key results of this section, Proposition 9.1.1, we prove that
they are in fact equivalent.

The highlight of the Harris recurrence analysis is

Theorem 9.0.1 If & is recurrent, then we can write
X=HUN (9.3)

where H is absorbing and non-empty and every subset of H in BT (X) is Harris
recurrent; and N is P-null and transient.

Proor  This is proved, in a slightly stronger form, in Theorem 9.1.5. O

Hence a recurrent chain differs only by a 1/-null set from a Harris recurrent chain.
In general we can then restrict analysis to H and derive very much stronger results
using properties of Harris recurrent chains.

For chains on a countable space the null set N in (9.3) is empty, so recurrent
chains are automatically Harris recurrent.

On a topological space we can also find conditions for this set to be empty, and
these also provide a useful interpretation of the Harris property.

We say that a sample path of @ converges to infinity (denoted & — o0) if the
trajectory visits each compact set only finitely often. This definition leads to

Theorem 9.0.2 For a v-irreducible T-chain, the chain is Harris recurrent if and
only if Py{® — oo} = 0 for each z € X.

PrROOF  This is proved in Theorem 9.2.2 O

Even without its equivalence to Harris recurrence for such chains this “recurrence”
type of property (which we will call non-evanescence ) repays study, and this occupies
Section 9.2.

In this chapter, we also connect local recurrence properties of a chain on a topo-
logical space with global properties: if the chain is a i-irreducible T-chain, then re-
currence of the neighborhoods of any one point in the support of ¥ implies recurrence
of the whole chain.

Finally, we demonstrate further connections between drift conditions and Harris
recurrence, and apply these results to give an increment analysis of chains on IR which
generalizes that for the random walk in the previous chapter.
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9.1 Harris recurrence

9.1.1 Harris properties of sets

We first develop conditions to ensure that a set is Harris recurrent, based only on the
first return time probabilities L(z, A).

Proposition 9.1.1 Suppose for some one set A € B(X) we have L(z,A) =1,z € A.
Then Q(z,A) = L(x, A) for every x € X, and in particular A is Harris recurrent.

PrOOF  Using the strong Markov property, we have that if L(y,4) = 1, y € A,
then for any z € A

Po(ra(2) < 00) = [ Ua(e,dy)Ly, 4) = 1
inductively this gives for z € A, again using the strong Markov property,
Po(ra(k+1) < 00) = /AUA(m,dy)Py(TA(k) <oo)=1.

For any = we have
Pz(na > k) = Py(ra(k) < 00),

and since by monotone convergence
Q(z, 4) = limPy(na 2 k)

we have Q(z, A) =1 for z € A.

It now follows since
Qe A) = [ Uaa.dy)Qy. 4) = Lz, 4)

that the theorem is proved. O
This shows that the definition of Harris recurrence in terms of @ is identical to a
similar definition in terms of L: the latter is often used (see for example Orey [208])
but the use of @ highlights the difference between recurrence and Harris recurrence.
We illustrate immediately the usefulness of the stronger version of recurrence in
conjunction with the basic dichotomy to give a proof of transience of random walk
on Z.

We showed in Section 8.4.3 that random walk on Z is transient when the incre-
ment has non-zero mean and the range of the increment is bounded.

Using the fact that, on the integers, recurrence and Harris recurrence are identical
from Proposition 8.1.3, we can remove this bounded range restriction. To do this we
use the strong rather than the weak law of large numbers, as used in Theorem 8.1.5.

The form we require (see again, for example, Billingsley [25]) states that if &,
is a random walk such that the increment distribution I" has a mean 8 which is not
zero, then

Po( lim n~ 1@, = B) = 1.

n—oo

Write C,, for the event {|n"'®, — 8] > B/2}. We only use the result, which follows
from the strong law, that
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Po(lim sup Cy,) = 0. (9.4)

n—oo

Now let D,, denote the event {&, = 0}, and notice that D,, C C, for each n. Imme-
diately from (9.4) we have
Po(lim sup D,,) =0 (9.5)

n—o0

which says exactly Q(0,0) = 0.
Hence we have an elegant proof of the general result

Proposition 9.1.2 If & denotes random walk on Z and if
B = ZwF(w) >0
then P is transient. O

The most difficult of the results we prove in this section, and the strongest,
provides a rather more delicate link between the probabilities L(z, A) and Q(z, A)
than that in Proposition 9.1.1.

Theorem 9.1.3 (i) Suppose that D ~» A for any sets D and A in B(X). Then
{#eDio}C{PcAdio} a.s. [P (9.6)

and hence Q(y, D) < Q(y, A), for all y € X.

(ii) If X~ A then A is Harris recurrent, and in fact Q(z,A) =1 for every z € X.

PROOF  Since the event {@ € Ai.o.} involves the whole path of @, we cannot deduce
this result merely by considering P" for fixed n. We need to consider all the events

E, ={®,1 € A}, neZy

and evaluate the probability of those paths such that an infinite number of the FE,
hold.
We first show that, if F¥ is the o-field generated by {®y,...,®,}, then as n — oo

PIUE 7] ->1(N UE) as [P (9.7)
i=n m=11i=m
To see this, note that for fixed k < n
[e.e] [ee] o0 [e.e]
PlUE 78] >P[UE £ >P[N U E| 72 (9:8)
1=k i=n m=11i=m

Now apply the Martingale Convergence Theorem (see Theorem D.6.1) to the extreme
elements of the inequalities (9.8) to give

> lim sup, P [U;ﬁn E; | .7:,?]
> lim inf, P[UZ, B | 7] (9.9)
> 1[N Uy Bil.

1 [U?ik Ez}
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As k — oo, the two extreme terms in (9.9) converge, which shows the limit in (9.7)
holds as required.

By the strong Markov property, P,[US2,, E; | F2] = L(®,, A) a.s. [P.]. From our
assumption that D ~» A we have that L(®,, A) is bounded from 0 whenever &, € D.
Thus, using (9.7) we have P,-a.s,

(N3 U {@i € DY) < 1(lim sup, L(@,, 4) > 0)
1 (limy, L(®y, 4) = 1) (9.10)
= (0o Uz Br),

which is (9.6).
The proof of (ii) is then immediate, by taking D = X in (9.6). O
As an easy consequence of Theorem 9.1.3 we have the following strengthening of
Harris recurrence:

Theorem 9.1.4 If & is Harris recurrent then Q(z,B) = 1 for every z € X and every
B € Bt(X).

ProoF Let {C, : n € Z} be petite sets with UC,, = X. Since the finite union of
petite sets is petite for an irreducible chain by Proposition 5.5.5, we may assume that
Cp, C Cp41 and that C,, € BT (X) for each n.

For any B € B*(X) and any n € Z, we have from Lemma 5.5.1 that C,, ~ B, and
hence, since Cy, is Harris recurrent, we see from Theorem 9.1.3 (i) that Q(z,B) =1
for any x € C),. Because the sets {Cy} cover X, it follows that Q(z,B) =1 for all =
as claimed. O

Having established these stability concepts, and conditions implying they hold for
individual sets, we now move on to consider transience and recurrence of the overall
chain in the t-irreducible context.

9.1.2 Harris recurrent chains

It would clearly be desirable if, as in the countable space case, every set in Bt (X)
were Harris recurrent for every recurrent @. Regrettably this is not quite true.

For consider any chain & for which every set in B+ (X) is Harris recurrent: append
to X a sequence of individual points N = {z;}, and expand P to P’ on X':=XUN
by setting P'(z, A) = P(z,A) for z € X, A € B(X), and

Pz, zi41) = Bi, Pz, o) =1-6;

for some one specific a« € X and all z; € N.
Any choice of the probabilities ; which provides

o
1>H,31'>0
=0

then ensures that

L'(zi,A) = L'(zi,0) =1 — ﬁ Bi<1, AeB*X)

n=t
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so that no set B C X’ with BN X in BT (X) and B N N non-empty is Harris recurrent:
but
U'(zi, A) > L' (zi, @)U (e, A) = 00, A € B(X)

so that every set in BT(X') is recurrent.

We now show that this example typifies the only way in which an irreducible chain
can be recurrent and not Harris recurrent: that is, by the existence of an absorbing
set which is Harris recurrent, accompanied by a single t-null set on which the Harris
recurrence fails.

For any Harris recurrent set D, we write D*® = {y : L(y,D) = 1}, so that
D C D*, and D* is absorbing.

We will call D a mazimal absorbing set if D = D®°. This will be used, in general,
in the following form:

Maximal Harris sets

We call a set H mazimal Harris if H is a maximal absorbing set such
that @ restricted to H is Harris recurrent.

Theorem 9.1.5 If @ is recurrent, then we can write
X=HUN (9.11)

where H is a non-empty maximal Harris set, and N 1is transient.

PROOF Let C be a 1,-petite set in BT (X), where we choose 1, as a maximal
irreducibility measure. Set H = {y : Q(z,C) = 1} and write N = H°.
Clearly, since H*® = H, either H is empty or H is maximal absorbing. We first
show that H is non-empty.
Suppose otherwise, so that Q(z,C) < 1 for all . We first show this implies the
set
Ci:={zeC:L(z,C) <1} :

is in BT (X).

For if not, and 9(C7) = 0, then by Proposition 4.2.3 there exists an absorbing
full set F' C Cf. We have by definition that L(z,C) =1 for any z € C N F, and since
F' is absorbing we must have L(z,CNF) =1 for x € C N F. From Proposition 9.1.1
it follows that Q(z,C N F) = 1 for z € C N F, which gives a contradiction, since
Q(z,C) > Q(z,C N F). This shows that in fact ¥(Cy) > 0.

But now, since C; € B1(X) there exists B C C1,B € BT (X) and § > 0 with
L(z,C1) <6 < 1 for all z € B: accordingly

L(z,B) < L(z,Cy) <6, z € B.
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Now Proposition 8.3.1 (iii) gives U(z,B) < [1 — §]~!,z € B and this contradicts the
assumed recurrence of @.

Thus H is a non-empty maximal absorbing set, and by Proposition 4.2.3 H is
full: from Proposition 8.3.7 we have immediately that N is transient. It remains to
prove that H is Harris.

For any set A in B*(X) we have C ~ A. It follows from Theorem 9.1.3 that if
Q(z,C) = 1 then Q(z, A) = 1 for every A € BT (X). Since by construction Q(z,C) = 1
for x € H, we have also that Q(z,A) = 1 for any z € H and A € BT(X): so &
restricted to H is Harris recurrent, which is the required result. ad

We now strengthen the connection between properties of @ and those of its skele-
tons.

Theorem 9.1.6 Suppose that P is p-irreducible and aperiodic. Then @ is Harris if
and only if each skeleton is Harris.

PrROOF  If the m-skeleton is Harris recurrent then, since m7}* > 74 for any A €
B(X), where 77 is the first entrance time for the m-skeleton, it immediately follows
that @ is also Harris recurrent.

Suppose now that @ is Harris recurrent. For any m > 2 we know from Proposi-
tion 8.2.6 that @™ is recurrent, and hence a Harris set H,, exists for this skeleton.
Since H,, is full, there exists a subset H C H,, which is absorbing and full for ¢, by
Proposition 4.2.3.

Since @ is Harris recurrent we have that P,{7y < oo} = 1, and since H is
absorbing we know that m7 < 7y + m. This shows that

P < oo} =P {tg < 0} =1

and hence @™ is Harris recurrent as claimed. O

9.1.3 A hitting time criterion for Harris recurrence

The Harris recurrence results give useful extensions of the results in Theorem 8.3.5
and Theorem 8.3.6.

Proposition 9.1.7 Suppose that @ is ¥-irreducible.

(1) If some petite set C is recurrent, then @ is recurrent; and the set C N N is
uniformly transient, where N is the transient set in the Harris decomposition
(9.11).

(ii) If there exists some petite set in B(X) such that L(z,C) = 1,x € X, then ¥ is
Harris recurrent.

Proor (i) If C is recurrent then so is the chain, from Theorem 8.3.5. Let D =
C N N denote the part of C not in H. Since N is t-null, and v is an irreducibility
measure we must have v(N) = 0 by the maximality of 1/; hence (8.35) holds and from
(8.37) we have a uniform bound on U(z, D),z € X so that D is uniformly transient.

(ii) If L(z,C) =1, z € X for some 1,-petite set C, then from Theorem 9.1.3
C is Harris recurrent. Since C is petite we have C ~» A for each A € BT (X). The
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Harris recurrence of C, together with Theorem 9.1.3 (ii), gives Q(z, A) = 1 for all z,
so @ is Harris recurrent. O
This leads to a stronger version of Theorem 8.4.3.

Theorem 9.1.8 Suppose @ is a P-irreducible chain. If there exists a petite set C C X,
and a function V which is unbounded off petite sets such that (V1) holds then P is
Harris recurrent.

PrROOF In Theorem 8.4.3 we showed that L(z,C U Cy(n)) = 1, for some n, so
Harris recurrence has already been proved in view of Proposition 9.1.7. ad

9.2 Non-evanescent and recurrent chains

9.2.1 Evanescence and transience

Let us now turn to chains on topological spaces. Here, as was the case when consider-
ing irreducibility, it is our major goal to delineate behavior on open sets rather than
arbitrary sets in B(X); and when considering questions of stability in terms of sure
return to sets, the objects of interest will typically be compact sets.

With probabilistic stability one has “finiteness” in terms of return visits to sets
of positive measure of some sort, where the measure is often dependent on the chain;
with topological stability the “finite” sets of interest are compact sets which are
defined by the structure of the space rather than of the chain. It is obvious from
the links between petite sets and compact sets for T-chains that we will be able to
describe behavior on compacta directly from the behavior on petite sets described in
the previous section, provided there is an appropriate continuous component for the
transition law of &.

In this section we investigate a stability concept which provides such links between
the chain and the topology on the space, and which we touched on in Section 1.3.1.

As we discussed in the introduction of this chapter, a sample path of @ is said to
converge to infinity (denoted é — oo) if the trajectory visits each compact set only
finitely often. Since X is locally compact and separable, it follows from Lindelof’s
Theorem D.3.1 that there exists a countable collection of open precompact sets {Oy, :
n € Z.} such that

{P — 0} = ﬁ{¢ € O, io0.}°
n=0

In particular, then, the event {@ — oo} lies in F.

Non-evanescent Chains

A Markov chain @ will be called non-evanescent if P,{® — oo} = 0 for
each z € X.
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We first show that for a T-chain, either sample paths converge to infinity or they enter
a recurrent part of the space. Recall that for any A, we have A% = {y : L(y, A) = 0}.

Theorem 9.2.1 Suppose that D is a T-chain. For any A € B(X) which is transient,
and for each x € X,

P{{® = 00} U{® enters 4°}} = 1. (9.12)

Thus if @ is a non-evanescent T-chain, then X is not transient.

Proor Let A = |JBj, with each B; uniformly transient; then from Proposi-
tion 8.3.2, the sets B;(M) = {z € X : Ej]vil Pi(z,B;) > M~} are also uniformly
transient, for any ¢,j. Thus A = |J A; where each A; is uniformly transient.

Since T is lower semicontinuous, the sets O;;:={z € X : T'(z, 4;) > j '} are open,
asis Oj:={z € X: T(z,A%) > 7'}, 4, j € Z,. Since T is everywhere non-trivial we
have for all x € X,

T(z, (U A UAY) =T(z,X) >0

and hence the sets {O;;,0;} form an open cover of X.
Let C be a compact subset of X, and choose M such that {Opr,Oinr : 1 <i < M}
is a finite subcover of C. Since each A; is uniformly transient, and

Ko(z,A)) > T(x,A;) > 57" 2 €0y (9.13)

we know from Proposition 8.3.2 that each of the sets O;; is uniformly transient. It
follows that with probability one, every trajectory that enters C' infinitely often must
enter Oy infinitely often: that is,

{#eCio}C{PecOyio} a.s. [P

But since L(z, A%) > 1/M for x € Oy we have by Theorem 9.1.3 that
{#cOpyio}c{®ecAio} a.s. [Py

and this completes the proof of (9.12). g

9.2.2 Non-evanescence and recurrence

We can now prove one of the major links between topological and probabilistic sta-

bility conditions.

Theorem 9.2.2 For a y-irreducible T-chain, the space admits a decomposition
X=HUN

where H is either empty or a mazimal Harris set, and N is transient: and for all
z € X,
L(z,H) =1—Pp{® — oc}. (9.14)

Hence we have

(i) the chain is recurrent if and only if Py{® — oo} < 1 for some z € X; and

(ii) the chain is Harris recurrent if and only if the chain is non-evanescent.
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PROOF  We have the decomposition X = HUN from Theorem 9.1.5 in the recurrent
case, and Theorem 8.3.4 otherwise.

We have (9.14) from (9.12), since N is transient and H = NV.

Thus if @ is a non-evanescent T-chain, then it must leave the transient set NV in
(9.11) with probability one, from Theorem 9.2.1. By construction, this means N is
empty, and @ is Harris recurrent.

Conversely, if ¢ is Harris recurrent (9.14) shows the chain is non-evanescent. [

This result shows that natural definitions of stability and instability in the topo-
logical and in the probabilistic contexts are exactly equivalent, for chains appropri-
ately adapted to the topology.

Before exploring conditions for either recurrence or non-evanescence, we look at
the ways in which it is possible to classify individual states on a topological space,
and the solidarity between such definitions and the overall classification of the chain
which we have just described.

9.3 Topologically recurrent and transient states

9.3.1 Classifying states through neighborhoods

We now introduce some natural stochastic stability concepts for individual states
when the space admits a topology. The reader should be aware that uses of terms
such as “recurrence” vary across the literature. Our definitions are consistent with
those we have given earlier, and indeed will be shown to be identical under appropriate
conditions when the chain is an irreducible T-chain or an irreducible Feller process;
however, when comparing them with some terms used by other authors, care needs
to be taken.

In the general space case, we developed definitions for sets rather than individual
states: when there is a topology, and hence a natural collection of sets (the open
neighborhoods) associated with each point, it is possible to discuss recurrence and
transience of each point even if each point is not itself reached with positive proba-
bility.

Topological recurrence concepts

We shall call a point z* topologically recurrent if U(z*,0) = oo for all
neighborhoods O of z*, and topologically transient otherwise.

We shall call a point z* topologically Harris recurrent if Q(z*,0) = 1 for
all neighborhoods O of z*.
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We first determine that this definition of topological Harris recurrence is equivalent
to the formally weaker version involving finiteness only of first return times.

Proposition 9.3.1 The point z* is topologically Harris recurrent if and only if
L(z*,0) =1 for all neighborhoods O of x*.

PrROOF  Our assumption is that
P (10 < o0) =1, (9.15)

for each neighborhood O of z*. We show by induction that if 7o(7) is the time of the
4™ return to O as usual, and for some integer j > 1,

Pe- (T0(j) < 00) =1, (9.16)
for each neighborhood O of z*, then for each such neighborhood
Pos(t0(j +1) < 00) = 1. (9.17)

Thus (9.17) holds for all j and the point z* is by definition topologically Harris
recurrent.
Recall that for any B C O we have the following probabilistic interpretation of
the kernel Up:
Uo(z*,B) = Py«(170 < o0 and &,, € B)

Suppose that Up(z*,{z*}) = ¢ > 0 where {z*} is the set containing the one point
z*, so that

Uo(z*,0\{z*}) =1—q. (9.18)
The assumption that j distinct returns to O are sure implies that
P+ (QSTO(I) = :L‘*,QSTO(T) €O, r=2,...,5+1) =gq. (9.19)

Let O4 | {z*} be a countable neighborhood basis at z*. The assumption (9.16) applied
to each Oy also implies that

P, (70, (7) < 00) = 1, (9.20)
for almost all y in O\Oy with respect to Up(z*,-). But by (9.18) we have
Uo(z*,0\0q4) 11 —g¢,
as Og4 } {z*} and so by (9.20),
Joriz+y Uo(, dy)Py(10(j) < o00) = limay [o0, Uo(z", dy)Py(10,(j) < o0)
= 1—gq.

(9.21)
This yields the desired conclusion, since by (9.19) and (9.21),

Po(r0(j + 1) < 00) = /OUo(m*,dy)Py(To(j) <o0) = 1.
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9.3.2 Solidarity of recurrence for T-chains

For T-chains we can connect the idea of properties of individual states with the
properties of the whole space under suitable topological irreducibility conditions.

The key to much of our analysis of chains on topological spaces is the following
simple lemma.

Lemma 9.3.2 If & is a T-chain, and T(z*,B) > 0 for some x*, B, then there is
a neighborhood O of z* and a distribution a such that O ~» B, and hence from
Lemma 5.5.1, O ~ B.

PROOF  Since @ is a T-chain, there exists some distribution a such that for all z,
K,(z, B) > T(z, B).

But since T'(z*, B) > 0 and T'(z, B) is lower semicontinuous, it follows that for some
neighborhood O of z*,

inf T'(z,B) >0

z€0

and thus, as in (5.45),

inf L(z, B) > inf K,(z,B) > inf T(z, B
Inf (z, )—z”élo a(, )—520 (z,B)

and the result is proved. ad

Theorem 9.3.3 Suppose that P is a P-irreducible T-chain, and that * is reachable.
Then @ is recurrent if and only if x* is topologically recurrent.

PrROOF  If z* is reachable then z* € supp and so O € BT (X) for every neighbor-
hood of z*. Thus if @ is recurrent then every neighborhood O of z* is recurrent, and
so by definition z* is topologically recurrent.

If @ is transient then there exists a uniformly transient set B such that 7'(z*, B) >
0, from Theorem 8.3.4, and thus from Lemma 9.3.2 there is a neighborhood O of z*
such that O ~+» B; and now from Proposition 8.3.2, O is uniformly transient and thus
z* is topologically transient also. O

We now work towards developing links between topological recurrence and topo-
logical Harris recurrence of points, as we did with sets in the general space case.

It is unfortunately easy to construct an example which shows that even for a
T-chain, topologically recurrent states need not be topologically Harris recurrent
without some extra assumptions. For take X = [0,1] U {2}, and define the transition
law for ¢ by

P(.’L‘, ) = M RS (Oa 1] (922)
P2 ) = &

where p is Lebesgue measure on [0, 1] and ds is the point mass at {2}. Set the every-
where non-trivial continuous component T' of P itself as

T(z,-) = up/2, z € [0,1]
TQ,-) = 6. (9.23)
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By direct calculation one can easily see that {0} is a topologically recurrent state but
is not topologically Harris recurrent.

It is also possible to develop examples where the chain is weak Feller but topo-
logical recurrence does not imply topological Harris recurrence of states.

Let X = {0,+1,+2,..., 400}, and choose 0 < p <  and ¢ = 1 —p. Put P(0,1) =
p,P(0,—1) =g, and for n = 1,2, ... set

(P(n,n+1; = p P(n,(n—lg =g ( | 1

P—n,—n—l = p P_n,o = 1y P—n,n _ 1

P(-00,-%0) = p P(-o0,0) = L-p P(-oo,00) = 1 (9.24)
P(c0,00) = 1.

By comparison with a simple random walk, such as that analyzed in Proposition 8.4.4,
it is clear that the finite integers are all recurrent states in the countable state space
sense.

Now endow the space X with the discrete topology on the integers, and with
a countable basis for the neighborhoods at oo, —oc given respectively by the sets
{n,n+1,...,00} and {—n,—n — 1,...,—o0c} for n € Z,. The chain is a Feller
chain in this topology, and every neighborhood of —oo is recurrent so that —oc is a
topologically recurrent state.

But L(—o00,{—00,—1}) < 1, so the state at —oco is not topologically Harris re-
current.

There are however some connections which do hold between recurrence and Harris
recurrence.

Proposition 9.3.4 If @ is a T-chain and the state x* is topologically recurrent then
Q(z*,0) > 0 for all neighborhoods O of x*.

If P(z*, -) 2 T(x*, -) then also x* is topologically Harris recurrent. In particular,
therefore, for strong Feller chains topologically recurrent states are topologically Harris
recurrent.

PrOOF (i) Assume the state z* is topologically recurrent but that O is a neigh-
borhood of z* with Q(z*,0) = 0. Let O = {y : Q(y, O) = 1}, so that L(z*, O*>) = 0.
Since

L(z,A) > Ky(z,A) > T(z,A), zeX, AeB(X)

this implies T'(z*, O0*°) = 0, and since 7' is non-trivial, we must have
T (", [0%]) > 0. (9.25)

Let Dy, :={y : Py(no < n) > n~'}: since D,, T [0%®]¢, we must have T'(z*, D,,) > 0 for
some n. The continuity of 7" now ensures that there exists some § and a neighborhood
Os C O of z* such that

T(z,Dy) > 6, z € Os. (9.26)

Let us take m large enough that Y ° a(j) < §/2: then from (9.26) we have

max P?(z,D,) > 6/2m, z € Oy, (9.27)
1<j<m

which obviously implies
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Pe(mp, <m) > §/2m, z € Og. (9.28)
It follows that

P$(7705 S m+n) Z Pw(nO S m—l—n)

> T fDn DnPk(xady)Py("IO <n)
(9.29)

v

n P(tp, < m)

Vv

n=16/2m, z € Os.

With (9.29) established we can apply Proposition 8.3.1 to see that Oy is uniformly
transient.

This contradicts our assumption that z* is topologically recurrent, and so in fact
Q(z*,0) > 0 for all neighborhoods O.

(ii)  Suppose now that P(z*, -) and T'(z*, -) are equivalent. Choose z* topo-
logically recurrent and assume we can find a neighborhood O with Q(z*,0) < 1.
Define O as before, and note that now P(z*,[O*]¢) > 0 since otherwise

Q@"0)> [ Pl dy)Q(y.0) = 1
and so also T'(z*,[0*°]¢) > 0. Thus we again have (9.25) holding, and the argument in
(i) shows that there is a uniformly transient neighborhood of z*, again contradicting
the assumption of topological recurrence. Hence z* is topologically Harris recurrent.

O

The examples (9.22) and (9.24) show that we do not get, in general, the second
conclusion of this proposition if the chain is merely weak Feller or has only a strong
Feller component.

In these examples, it is the lack of irreducibility which allows such obvious “patho-
logical” behavior, and we shall see in Theorem 9.3.6 that when the chain is a -
irreducible T-chain then this behavior is excluded. Even so, without any irreducibility
assumptions we are able to derive a reasonable analogue of Theorem 9.1.5, showing
that the non-Harris recurrent states form a transient set.

Theorem 9.3.5 For any chain P there is a decomposition
X=RUN

where R denotes the set of states which are topologically Harris recurrent, and N is
transient.

Proor Let O; be a countable basis for the topology on X. If x € R then, by
Proposition 9.3.1, we have some n € Z, such that z € O,, with L(z,0,,) < 1. Thus
the sets D, = {y € O, : L(y,0,) < 1} cover the set of non-topologically Harris
recurrent states. We can further partition each D,, into

Dn(]) = {y €D, : L(y, On) <1 _j_l}

and by this construction, for y € D,,(j) we have
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L(y,Dy(5)) < L(y, Dy) < L(y,0p) <1—j7":

it follows from Proposition 8.3.1 that U(z, D, (7)) is bounded above by j, and hence
is uniformly transient. O

Regrettably, this decomposition does not partition X into Harris recurrent and
transient states, since the sets D,(j) in the cover of non-Harris states may not be
open. Therefore there may actually be topologically recurrent states which lie in the
set which we would hope to have as the “transient” part of the space, as happens in
the example (9.22).

We can, for 1-irreducible T-chains, now improve on this result to round out the
links between the Harris properties of points and those of the chain itself.

Theorem 9.3.6 For a i-irreducible T-chain, the space admits a decomposition
X=HUN

where H is non-empty or a mazximal Harris set and N is transient; the set of Harris
recurrent states R is contained in H; and every state in N is topologically transient.

PrOOF  The decomposition has already been shown to exist in Theorem 9.2.2. Let
z* € R be a topologically Harris recurrent state. Then from (9.14), we must have
L(z,H) =1, and so z* € H by maximality of H.

We can write N = Ng U Ny where Ng ={y € N : T(y,H) >0} and Ng ={y €
N :T(y,H) = 0}. For fixed z* € Ny there exists § > 0 and an open set Os such that
z* € Os and T'(y,H) > ¢ for all y € Oy, by the lower semicontinuity of T'(-, H).

Hence also the sampled kernel K, minorized by T satisfies K,(y, H) > ¢ for all
y € Os. Now choose M such that ), < 3ra(n) < /2. Then for all y € O;

> P'(y,H)a(n) > §/2

n<M
and since H is absorbing
Py(’r)]v > M) = Py(TH > M) <1 —(5/2

which shows that Oy is uniformly transient from (8.37).

If on the other hand z* € Ng then since T is non-trivial, there exists a uniformly
transient set D C N such T'(z*, D) > 0; and now by Lemma 9.3.2, there is again a
neighbourhood O of z* with O ~% D, so that O is uniformly transient by Proposi-
tion 8.3.2 as required. O

The maximal Harris set in Theorem 9.3.6 may be strictly larger than the set R of
topologically Harris recurrent states. For consider the trivial example where X = [0, 1]
and P(z,{0}) = 1 for all z. This is a dy-irreducible strongly Feller chain, with R = {0}
and yet H = [0, 1].

9.4 Criteria for stability on a topological space

9.4.1 A drift criterion for non-evanescence

We can extend the results of Theorem 8.4.3 in a number of ways if we take up the
obvious martingale implications of (V1), and in the topological case we can also gain
a better understanding of the rather inexplicit concept of functions unbounded off
petite sets for a particular chain if we define “norm-like” functions.
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Norm-like Functions

A function V is called norm-like if V(z) — oo as z — oo: this means
that the sublevel sets {z : V(z) < r} are precompact for each r > 0.

This nomenclature is designed to remind the user that we seek functions which behave
like norms: they are large as the distance from the center of the space increases.
Typically in practice, a norm-like function will be a norm on Euclidean space, or at
least a monotone function of a norm. For irreducible T-chains, functions unbounded
off petite sets certainly include norm-like functions, since compacta are petite in that
case; but of course norm-like functions are independent of the structure of the chain
itself.
Even without irreducibility we get a useful conclusion from applying (V1).

Theorem 9.4.1 If condition (V1) holds for a norm-like function V and a compact
set C then P is non-evanescent.

PROOF  Suppose that in fact P,{® — oo} > 0 for some = € X. Then, since the set
C is compact, there exists M € Z with

P{{®y € C% k> M} N {® = co}} > 0.
Hence letting 4 = PM(z, -), we have by conditioning at time M,
Pu{{cc =0} N{P — c0}} > 0. (9.30)

We now show that (9.30) leads to a contradiction.
In order to use the martingale nature of (V1), we write (8.44) as

E[V(Pri1) | FRIS V(D) as. [P,

when oc >k, k€ Z,.
Now let M; = V(®;)1{oc > i}. Using the fact that {oc > k} € F? |, we may
show that (My, F¥) is a positive supermartingale: indeed,

E[My | Fi1] = Yoo > KYE[V () | Fiy] < Hoe > K}V (Pe—1) < My-i.

Hence there exists an almost surely finite random variable M, such that My — M,
as k — oo.

There are two possibilities for the limit My,. Either o¢ < oo in which case
My, =0, or o¢ = oo in which case lim supy_,, V(@) = M < 00 and in particular
@ /4 oo since V is norm-like. Thus we have shown that

Pu{{oc < o0} U{P — 0}} =1,
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which clearly contradicts (9.30). Hence @ is non-evanescent. O

Note that in general the set C used in (V1) is not necessarily Harris recurrent,
and it is possible that the set may not be reached from any initial condition. Consider
the example where X = IR, P(0,{1}) =1, and P(z,{z}) = 1 for > 0. This is non-
evanescent, satisfies (V1) with V(z) = z, and C = {0}, but clearly from z there is no
possibility of reaching compacta not containing {z}.

However, from our previous analysis in Theorem 9.1.8 we obviously have that if
@ is y-irreducible and Condition (V1) holds for C petite, then both C' and & are
Harris recurrent.

9.4.2 A converse theorem for Feller chains

In the topological case we can construct a converse to the drift condition (V1), pro-
vided the chain has appropriate continuity properties.

Theorem 9.4.2 Suppose that @ is a weak Feller chain, and suppose that there exists
a compact set C satisfying oc < 0o a.s. [Py

Then there exists a compact set Cy containing C and a norm-like function V,
bounded on compacta, such that

AV(z) <0, z € Cj. (9.31)

ProOOF Let {4,} be a countable increasing cover of X by open precompact sets
with C C Ay; and put D), = A forn € Z,. For n € Z ., set

Va(z) = Py(op, <o4,)- (9.32)

For any fixed n and any z € A§ we have from the Markov property that the sequence
V() satisfies, for z € A§N DE

fP(x,dy)Vn(y) = Ew[P¢1{0Dn < UAO}]
Pe{op, <040} (9.33)
= Vp(z)

whilst for z € D,, we have V,(z) = 1; so that for all n € Z and z € A§

/ P(z,dy)Va(y) < Va(w). (9.34)

We will show that for suitably chosen {n;} the function
o0
Viz)=>_ V(=) (9.35)
i=0

which clearly satisfies the appropriate drift condition by linearity from (9.34) if finitely
defined, gives the required converse result.

Since V,(z) = 1 on D, it is clear that V is norm-like. To complete the proof
we must show that the sequence {n;} can be chosen to ensure that V' is bounded on
compact sets, and it is for this we require the Feller property.

Let m € Z and take the upper bound
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Va(z) = Pe{{op, <04y} N{oa, <m}U{op, <oa}N{oa, >m}}
< Py{op, <m}+P{oa, > m}. (9.36)

Choose the sequence {n;} as follows. By Proposition 6.1.1, the function P,{o4, > m}
is an upper semi-continuous function of z, which converges to zero as m — oo for
all z. Hence the convergence is uniform on compacta, and thus we can choose m; so
large that

Po{oa, > mi} <270 g e 4, (9.37)

Now for m; fixed for each %, consider P,{op, < m;}: as a function of z this is also
upper semi-continuous and converges to zero as n — oo for all . Hence again we
see that the convergence is uniform on compacta, which implies we may choose n; so
large that

Po{op,, <mi} <2 0tD ge A, (9.38)

Combining (9.36), (9.37) and (9.38) we see that V,,, < 27¢ for z € A;. From (9.35)
this implies, finally, for all k € Z, and = € Ay

[ee]
Vi) < k+ Z Vo, ()
i=k
o
< k+> 27
1=k
< k+1 (9.39)
which completes the proof. O

The following somewhat pathological example shows that in this instance we
cannot use a strongly continuous component condition in place of the Feller property
if we require V' to be continuous.

Set X = IR and for every irrational  and every integer x set P(z,{0}) = 1. Let
{rn} be an ordering of the remaining rationals Q\Z ,, and define P for these states by
P(rp,0) = 1/2, P(ry,n) = 1/2. Then the chain is dy-irreducible, and clearly recurrent;
and the component T'(z, A) = £60{A} renders the chain a T-chain. But PV (r,) >
V(n)/2, so that for any norm-like function V, within any open set [ P(z,dy)V (y) is
unbounded.

However, for discontinuous V we do get a norm-like test function: just take
V(rn) = n, and V(z) = z, for z not equal to any r,. Then PV (r,,) = n/2 < V(ry),
and PV (z) =0 < V(z), for z not equal to any r,, so that (V1) does hold.

9.4.3 Non-evanescence of random walk

As an example of the use of (V1) we consider in more detail the analysis of the
unrestricted random walk

b, =d, 1+ W,.
We will show that if W is an increment variable on IR with 8 = 0 and
E(W?) = /wZF(dw) < 00

then the unrestricted random walk on IR with increment W is non-evanescent.
To verify this using (V1) we first need to add to the bounds on the moments of
I' which we gave in Lemma 8.5.2 and Lemma 8.5.3.



222 9. Harris and Topological Recurrence

Lemma 9.4.3 Let W be a random variable, s a positive number and t any real num-
ber. Then for any B C {w: —s+ tw > 0},

Ellog(—s + tW)1{W € B}] < P(B)(log(s) — 2) + (t/s)E[WI{W € B}].

Proor For all z > 1, log(—1 + z) < z — 2. Thus

log(—s +tW)I{W € B} = [log(s)+log(—1+tW/s)|]l{W € B}
< (log(s) +tW/s — 2)1{W € B};

taking expectations again gives the result. O

Lemma 9.4.4 Let W be a random wvariable with distribution function I' and finite
variance. Let s, ¢, ug, and vy be positive numbers, and let t1 > ty and uy, v, t be real
numbers. Then

(1)

li)m 22— T'(—oo0, t, +sz) log(uy —usx)+I'(—o0, ta+ sz) (log(vy —vax) — )] < 0.
r—r—0Q
(9.40)

(ii)

Jim 2~ (ta + sz, 00) log(vy + vozx) + I'(t1 + sz, 00)(log(us + uaz) — ¢)] < 0.
(9.41)

PrOOF  To see (i), note that from

lim 2°T'(—o0,ts + sx) = 0

T—00

and

x]gngo log[(u1 — ugz)/(v1 — vox)] = log(ug/va),

we have

lim z? [—F(—oo,tl + sxz) log(u1 — ugx) + I'(—00, ta + sx)(log(vy — vox) — c)]

T—00

= lim [—$2(F(—oo,t1 + sx) — I'(—00,t9 + sz)) log(u; — uzx)]

T—00

[—I2F(—OO, ty + sz) log[(us — upz)/(v1 — voz)] — cx®I'(—00, o + sx)]

which is non-positive. The proof of (ii) is similar. ]
We can now prove the most general version of Theorem 8.1.5 using a drift con-
dition that we shall attempt.

Proposition 9.4.5 If W is an increment variable on IR with 8 = 0 and E(W?) < oo
then the unrestricted random walk on IR with increment W is non-evanescent.



9.4 Criteria for stability on a topological space 223

PrROOF In this situation we use the test function

log(l+2z) >R

Viz) = {log(l —z) z<-R (9-42)

and V(z) = 0 in the region [—R, R], where R > 1 is again a positive constant to be
chosen.

We need to evaluate the behavior of E;[V(X7)] near both co and —oo in this
case, and we write

Vi(z) = Egllog(l1+2z+ W)Il{z+ W > R}]

Vo(z) = Egllog(l —z— W)1l{z + W < —R}] (9.43)

so that
E-[V(X1)] = Vi(z) + Va(z).

This time we develop bounds using the functions
V) (/00 L NEW IR s s w <oy o
Vs(z) = (1/(1 —2)EWH{W < —R — z}].
For £ > R,1+z > 0, and thus as in (8.61), by Lemma 8.5.2,
Vi(z) < T'(R — z,00)log(1 + z) + V3(z) — Va(x),
while 1 — < 0, and by Lemma 9.4.3,
Va(z) < I'(=o00, =R — z)(log(~1 + x) — 2) — Vs(x).
Since E(W?) < oo
Vi(z) = (1/(2(1 + 2)*))E[W?I{W < 0}] — o(z™?),

and by Lemma 8.5.3, both V3 and Vs are also o(z~2). By Lemma 9.4.4 (i) we also
have

—I'(—o00,R — z)log(1 +z) + I'(—o0, —R — z)(log(—1 + z) — 2) < o(z2).
Thus by choosing R large enough

E.[V(X1)] < V(z) - (1/2Q1 +2)))EW*H{W < 0}] +o(z™?)

< V(z), z>R. (9.45)

The situation with £ < —R is exactly symmetric, and thus we have that V is a norm-

like function satisfying (V1); and so the chain is non-evanescent from Theorem 9.4.1.
O
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9.5 Stochastic comparison and increment analysis

There are two further valuable tools for analyzing specific chains which we will con-
sider in this final section on recurrence and transience. Both have been used implicitly
in some of the examples we have looked at in this and the previous chapter, but be-
cause they are of wide applicability we will discuss them somewhat more formally
here.

The first method analyzes chains through an “increment analysis”. Because they
consider only expected changes in the one-step position of some function V of the
chain, and because expectation is a linear operator, drift criteria such as those in
Section 9.4 essentially classify the behavior of the Markov model by a linearization
of its increments. They are therefore often relatively easy to use for models where
the transitions are already somewhat linear in structure, such as those based on the
random walk: we have already seen this in our analysis of random walk on the half
line in Section 8.4.3.

Such increment analysis is of value in many models, especially if combined with
“stochastic comparison” arguments, which rely heavily on the classification of chains
through return time probabilities.

In this section we will further use the stochastic comparison approach to discuss
the structure of scalar linear models and general random walk on IR, and the special
nonlinear SETAR models; we will then consider an increment analysis of general
models on IR} which have no inherent linearity in their structure.

9.5.1 Linear models and the stochastic comparison technique

Suppose we have two ¢-irreducible chains @ and &' evolving on a common state
space, and that for some set C' and for all n

Pr(tc > n) < P (¢ > n), z € C°. (9.46)

This is not uncommon if the chains have similarly defined structure, as is the case
with random walk and the associated walk on a half line.

The stochastic comparison method tells us that a classification of one of the
chains may automatically classify the other.

In one direction we have, provided C is a petite set for both chains, that when
P.(tc > n) — 0 as n — oo for x € C¢, then not only is &' Harris recurrent, but & is
also Harris recurrent.

This is obvious. Its value arises in cases where the first chain @’ has a (relatively)
simpler structure so that its analysis is straightforward through, say, drift conditions,
and when the validation of (9.46) is also relatively easy.

In many ways stochastic comparison arguments are even more valuable in the
transient context: as we have seen with random walk, establishing transience may
need a rather delicate argument, and it is then useful to be able to classify “more
transient” chains easily.

Suppose that (9.46) holds, and again that C is a ¢-irreducible petite set for both
chains. Then if @ is transient, we know that from Theorem 8.3.6 that there exists
D C C¢ such that L(z,C) <1 —¢ for z € D where (D) > 0; it then follows that &’
is also transient.
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We first illustrate the strengths and drawbacks of this method in proving tran-
sience for the general random walk on the half line IR .

Proposition 9.5.1 If & is random walk on R4 and if B > 0 then @ is transient.

PrOOF  Consider the discretized version W) of the increment variable W with
distribution
P(Wh == ’th) = I’h(nh)

where I',(nh) is constructed by setting, for every n

(n+1)h
Lhnh) = [ I(dw),
nh
and let @}, be the corresponding random walk on the countable halfline {nh,n € Z . }.
Then we have firstly that for any starting point nh, the chain @, is “stochastically
smaller” than &, in the sense that if 77 is the first return time to zero by &, then

Po(0 < k) > Py(mo < k).

Hence @ is transient if &}, is transient.
But now we have that

B i=Sanha(nh) > S, [$"(w — b) T (dw)

T

[(w — k)T (dw) (9.47)
B—h

v

so that if h < 8 then 8, > 0.
Finally, for such sufficiently small ~ we have that the chain @, is transient from
Proposition 9.1.2, as required. O
Let us next consider the use of stochastic comparison methods for the scalar
linear model

X, = aX, 1+ W,.

Proposition 9.5.2 Suppose the increment variable W in the scalar linear model is
symmetric with density positive everywhere on [—R, R] and zero elsewhere. Then the
scalar linear model is Harris recurrent if and only if |a| < 1.

PROOF  The linear model is, under the conditions on W, a u™*-irreducible chain
on IR with all compact sets petite.

Suppose a > 1. By stochastic comparison of this model with a random walk &
on a half line with mean increment « — 1 it is obvious that provided the starting
point z > 1, then (9.46) holds with C' = (—o0, 1]. Since this set is transient for the
random walk, as we have just shown, it must therefore be transient for the scalar linear
model. Provided the starting point £ < —1, then by symmetry, the hitting times on
the set C = [—1,00) are also infinite with positive probability. This argument does
not require bounded increments.

If & < —1 then the chain oscillates. If the range of W is contained in [—R, R],
with R > 1, then by choosing x > R we have by symmetry that the hitting time of
the chain Xy, — X1, X9, —X3,... on C = (—00,1] is stochastically bounded below by
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the hitting time of the previous linear model with parameter |«|; thus the set [— R, R]
is uniformly transient for both models.

Thirdly, suppose that the 0 < a < 1. Then by stochastic comparison with random
walk on a half line and mean increment o — 1, from x > R we have that hitting time
on [—R, R] of the linear model is bounded above by the hitting time on [—R, R] of
the random walk; whilst by symmetry the same is true from z < —R. Since we know
random walk is Harris recurrent it follows that the linear model is Harris recurrent.

Finally, by considering an oscillating chain we have the same recurrence result
for -1 < a <0. O

The points to note in this example are

(i) without some bounds on W, in general it is difficult to get a stochastic compar-
ison argument for transience to work on the whole real line: on a half line, or
equivalently if a > 0, the transience argument does not need bounds, but if the
chain can oscillate then usually there is insufficient monotonicity to exploit in
sample paths for a simple stochastic comparison argument to succeed;

(i) even with o > 0, recurrence arguments on the whole line are also difficult to get
to work. They tend to guarantee that the hitting times on half lines such as
C = (—o0, 1] are finite, and since these sets are not compact, we do not have
a guarantee of recurrence: indeed, for transient oscillating linear systems such
half lines are reached on alternate steps with higher and higher probability.

Thus in the case of unbounded increments more delicate arguments are usually
needed, and we illustrate one such method of analysis next.

9.5.2 Unrestricted random walk and SETAR models
Consider next the unrestricted random walk on IR given by
Qn = @n—l + Wn

This is easy to analyze in the transient situation using stochastic comparison argu-
ments, given the results already proved.

Proposition 9.5.3 If the mean increment of an irreducible random walk on R is
non-zero then the walk is transient.

PROOF  Suppose that the mean increment of the random walk @ is positive. Then
the hitting time 7;_. ¢} on {—00,0} from an initial point = > 0 is the same as the
hitting time on {0} itself for the associated random walk on the half line; and we
have shown this to be infinite with positive probability. So the unrestricted walk is
also transient.

The argument if 8 < 0 is clearly symmetric. O

This model is non-evanescent when 8 = 0, as we showed under a finite variance
assumption in Proposition 9.4.5.

Now let us consider the more complex SETAR model

Xp = ¢(.7) + e(j)anl + Wn(])a Xn1 € Rj
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where —oco =19 <r; <:-- <ry =o0 and Rj = (rj_1,r;]; recall that for each j, the
noise variables {W,(j)} form independent zero-mean noise sequences, and again let
W (j) denote a generic variable in the sequence {W,,(j)}, with distribution I’.

We will see in due course that under a second order moment condition (SETAR3),
we can identify exactly the regions of the parameter space where this nonlinear chain
is transient, recurrent and so on.

Here we establish the parameter combinations under which transience will hold:
these are extensions of the non-zero mean increment regions of the random walk we
have just looked at.

As suggested by Figure B.1-Figure B.3 let us call the exterior of the parameter
space the area defined by

6(1) > 1 9.48
O(M) > 1 9.49
0(1) =1, (M) <1

(1) <1, (M) =1, ¢(M) >0
0(1) <0, (1)0(M) > 1
6(1) <0, 6(1)8(M) =1, ¢(M) +0(M)p(1) <0 (9.53

In order to make the analysis more straightforward we will make the following as-

(

(
$(1) <0 (9.50

(

(

sumption as appropriate.

(SETAR3) The variances of the noise distributions for the two
end intervals are finite; that is,

E(W2(1)) < oo, E(W?(M)) < oo

Proposition 9.5.4 For the SETAR model satisfying the assumptions (SETARI1)-
(SETARS3), the chain is transient in the exterior of the parameter space.

PROOF  Suppose (9.49) holds. Then the chain is transient, as we show by stochas-
tic comparison arguments. For until the first time the chain enters (—oo, —ras—1) it
follows the sample paths of a model

X;, = ¢(M) +0(M)X;, |+ Wy

and for this linear model Py(7(_s0) < o0) < 1 for all sufficiently large z, as in the
proof of Theorem 9.5.2, by comparison with random walk.

When (9.48) holds, the chain is transient by symmetry: now we find Py (7(,0,) <
o0) < 1 for all sufficiently negative z.

When (9.52) holds the same argument can be used, but now for the two step
chain: the one-step chain undergoes larger and larger oscillations and thus there is
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a positive probability of never returning to the set [ri,r3/—1] for starting points of
sufficiently large magnitude.

Suppose (9.50) holds and begin the process at z, < min(0,7;). Then until the
first time the process exits (—oo, min(0,71)), it has exactly the sample paths of a
random walk with negative drift, which we showed to be transient in Section 8.5. The
proof of transience when (9.51) holds is similar.

We finally show the chain is transient if (9.53) holds, and for this we need
(SETAR3). Here we also need to exploit Theorem 8.4.2 directly rather than con-
struct a stochastic comparison argument.

Let a and b be positive constants such that —b/a = (1) = 1/6(M). Since ¢(M)+
6(M)¢(1) < 0 we can choose u and v such that —a¢(1) < au+bv < —bg(M). Choose
¢ positive such that

c/a —u > max(0,rp—1), —c/b—v < min(0,77).

Consider the function

1-1/a(z+u), z>cla—u
V(z) {1—1/6 —c/b—v<z<cla—u
1+1/b(z+v) z<-c/b—v

Suppose z > R > ¢/a — u, where R is to be chosen. Let

AMz) =¢(M)+0(M)x +v

and
§z) = d(M)+0(M)x + u.
If we write
Vo(z) = —a™'E[(1/(6(z) + W (M) D (ry>c/a—d(a))]
Vi(z) = —c'P(—c/b—\z) < W(M) < c/a— ( )) (9.54)

<
Va(z) = 1/a(z +u)+ b 'E[(1/(A(z) + W (M) (w(m)<—c/b-A(z)])

then we get
E.[V(X1)] = V(z) + Vo(z) + Vi(z) + Va(z). (9.55)

It is easy to show that both V4(z) and Vi(z) are o(z~2). Since
1/(Mz) + W(M)) = 1/A(z) - W(M)/Mz)(A(z) + W (M)),
the second summand of Va2(z) equals
I'ar(=00, —¢/b = A(x)) /bA(z) — (W (M)/X(z)(Mz) + W (M) Lw (a1)<—c/p-A()])-
Since for 0 < W(M) < —c/b — A(z)

1/(1+W(M)/A(z)) <1+bW(M)/c
we have in this case that for = large enough
—a*W(M)/X(z)(A(z) + W (M)
—2?W(M)(1 4 bW (M) /c) /N ()
—2W (M)(1 + bW (M)/c)/6*(M); (9.56)

(AVARAVARIY]
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whilst for W(M) < 0, we have
/(1 +W(M)/A=)) <1
and so

—z*W (M)/A(z)(A(z) + W (M))
—2?W (M) /()
—2W (M) /6*(M). (9.57)

ININ A

Thus, by the Dominated Convergence Theorem,

lim 2?E[-W (M) /X (z)(M(z) + W(M)) Uw (a)<—c/b-A(@)]]

— E[-W(M)/62(M)] = 0. (9:58)
From (9.58) we therefore see that V5 equals
1/a(z 4+ u) + 1/bA(z) — Tpr(—c¢/b — A(z), 00) /bA(z) — o(z~?)
= (bp(M) + bv + au)/abX(z)(z + u) — o(z™2).
We now have from the breakup (9.55) that by choosing R large enough
E.[V(X1)] = V() + (bp(M) + bv + au)/ab)(z)(z + u) — o(z™?)
> V(z), z > R. (9.59)

Similarly, for x < —R < —¢/b — v < 71, it can be shown that
Eo[V(X1)] > V(z).

We may thus apply Theorem 8.4.2 with the set C taken to be [—R, R], and the test
function V' above to conclude that the process is transient. O

9.5.3 General chains with bounded increments

One of the more subtle uses of the drift conditions involves a development of the
interplay between first and second moment conditions in determining recurrence or
transience of a chain.

When the state space is IR, then even for a chain ¢ which is not a random walk it
makes obvious sense to talk about the increment at z, defined by the random variable

Ww = {‘151 — @0 | @0 = .’L’} (960)

with probability law

The defining characteristic of the random walk model is then that the law I is
independent of z, giving the characteristic spatial homogeneity to the model.
In general we can define the “mean drift” at x by

m(z) = Ex[W,] = / w Ty (duw)
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so that m(z) = AV (z) for the special choice of V(z) = z.
Let us denote the second moment of the drift at = by

v(z) = E,[W?] = / w? Iy(dw).

We will now show that there is a threshold or detailed balance effect between these
two quantities in considering the stability of the chain.

For ease of exposition let us consider the case where the increments again have
uniformly bounded range: that is, for some R and all z,

I[-R,R) = 1. (9.61)

To avoid somewhat messy calculations such as those for the random walk or SETAR
models above we will fix the state space as IRy and we will make the assumption
that the measures I'; give sufficient weight to the negative half line to ensure that the
chain is a dg-irreducible T-chain and also that v(z) is bounded from zero: this ensures
that recurrence means that 7g is finite with probability one and that transience means
that Py(19 < 00) < 1. The dp-irreducibility and T-chain properties will of course follow
from assuming, for example, that ¢ < I';(—o0, —¢) for some & > 0.

Theorem 9.5.5 For the chain @ with increment (9.60) we have
(1) if there exists 0 < 1 and xy such that for all x > xg
m(z) < Ov(z)/2z (9.62)
then @ is recurrent.
(ii) if there exists @ > 1 and xo such that for all x > xy
m(x) > Ov(x)/2z (9.63)

then @ is transient.

ProorF (i) We use Theorem 9.1.8, with the test function
V(z) = log(1 + z), z>0: (9.64)

for this test function (V1) requires

” Iy (dw)[log (w + 7 + 1) — log(x +1)] < 0, (9.65)

—Z

and using the bounded range of the increments, the integral in (9.65) after a Taylor
series expansion is, for x > R,

/R Iy (dw)w/(z +1) —w?/2(x +1)* + o(z?)] =
-k (9.66)

m(z)/(z+1) —v(z)/2(xz + 1)? + o(z?).

If x > z for sufficiently large =9 > R, and m(z) < 6v(x)/2z, then



9.5 Stochastic comparison and increment analysis 231

| Padvy) <V

and hence from Theorem 9.1.8 we have that the chain is recurrent.

(ii) It is obvious with the assumption of positive mean for I'; that for any z
the sets [0, z] and [z, 00) are both in BT (X).

In order to use Theorem 9.1.8, we will establish that for some suitable monotonic
increasing V

/y P(z,dy)V (y) > V(z) (9.67)

for z > xy. An appropriate test function in this case is given by
V(iz)=1-[1+=x]"%, z>0: (9.68)

we can write (9.67) for x > R as

R
/ Tu(dw)[(w + 2 + 1) — (2 +1)9] > 0. (9.69)
-R

Applying Taylor’s Theorem we see that for all w we have that the integral in (9.69)

equals
am(z)/(z + 1) — av(z)/2(z + 1)*T* + O(z737). (9.70)

Now choose a < 6 — 1. For sufficiently large xy we have that if x > zy then from
(9.70) we have that (9.69) holds and so the chain is transient. |

The fact that this detailed balance between first and second moments is a de-
terminant of the stability properties of the chain is not surprising: on the space IR+
all of the drift conditions are essentially linearizations of the motion of the chain,
and virtually independently of the test functions chosen, a two term Taylor series
expansion will lead to the results we have described.

One of the more interesting and rather counter-intuitive facets of these results is
that it is possible for the first-order mean drift m(z) to be positive and for the chain
to still be recurrent: in such circumstances it is the occasional negative jump thrown
up by a distribution with a variance large in proportion to its general positive drift
which will give recurrence.

Some weakening of the bounded range assumption is obviously possible for these
results: the proofs then necessitate a rather more subtle analysis and expansion of
the integrals involved. By choosing the iterated logarithm

V(z) = loglog(z + ¢)
as the test function for recurrence, and by more detailed analysis of the function
V(i)=1-[1+z]“

as a test for transience, it is in fact possible to develop the following result, whose
proof we omit.

Theorem 9.5.6 Suppose the increment W, given by (9.60) satisfies

sup E,[|W,|>™¢] < o0
X

for some € > 0. Then
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(1) if there exists 6 > 0 and xy such that for all z > xg
m(z) < v(z)/2z + Oz 179) (9.71)
the chain @ is recurrent.

(ii) if there exists 0 > 1 and zy such that for all x > xg
m(z) > Ov(z)/2x (9.72)
then @ 1is transient. O

The bounds on the spread of I, may seem somewhat artifacts of the methods of
proof used, and of course we well know that the zero-mean random walk is recurrent
even though a proof using an approach based upon a drift condition has not yet been
developed to our knowledge.

We conclude this section with a simple example showing that we cannot expect
to drop the higher moment conditions completely.

Let X=7Z,4, and let

P(z,z+1)=1-c¢/xz, P(z,0) = ¢/, x>0

with P(0,1) =1
Then the chain is easily shown to be recurrent by a direct calculation that for all
n>1

n
0(T0 > n) H [1-c/z].
=1
But we have m(z) = —c+ 1 — ¢/z and v(z) = cx + 1 — ¢/z so that
2zm(z) —v(z) = (2 - 3¢)z® — (c+ )z +c

which is clearly positive for ¢ < 2/3: hence if Theorem 9.5.6 were applicable we should
have the chain transient.
Of course, in this case we have

Eu[|[We|*T8] = 2** ¢/ +1 —c/x > x'T¢

and the bound on this higher moment, required in the proof of Theorem 9.5.6, is
obviously violated.

9.6 Commentary

Harris chains are named after T.E. Harris who introduced many of the essential ideas
in [95]. The important result in Theorem 9.1.3, which enables the properties of @ to
be linked to those of L, is due to Orey [207], and our proof follows that in [208]. That
recurrent chains are “almost” Harris was shown by Tuominen [268], although the key
links between the powerful Harris properties and other seemingly weaker recurrence
properties were developed initially by Jain and Jamison [106].

We have taken the proof of transience for random walk on Z using the Strong
Law of Large Numbers from Spitzer [255].
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Non-evanescence is a common form of recurrence for chains on IR¥: see, for exam-
ple, Khas’'minskii [134]. The links between evanescent and transient chains, and the
equivalence between Harris and non-evanescent chains under the T-chain condition,
are taken from Meyn and Tweedie [178], who proved Theorem 9.2.2. Most of the con-
nections between neighborhood and global behavior of chains are given by Rosenblatt
[228, 229] and Tuominen and Tweedie [269].

The criteria for non-evanescence or Harris recurrence here are of course closely
related to those in the previous chapter. The martingale argument for non-evanescence
is in [178] and [276], but can be traced back in essentially the same form to Lamperti
[151]. The converse to the recurrence criterion under the Feller condition, and the fact
that it does not hold in general, are new: the construction of the converse function V
is however based on a similar result for countable chains, in Mertens et al [168].

The term “norm-like” to describe functions whose sublevel sets are precompact
is new. The justification for the terminology is that norm-like functions do, in most
of our contexts, measure the distance from a point to a compact “center” of the state
space. This will become clearer in later chapters when we see that under a suitable
drift condition, the mean time to reach some compact set from @y, = x is bounded by
a constant multiple of V(z). Hence V(z) bounds the mean “distance” to this compact
set, measured in units of time. Benes in [19] uses the term moment for these functions.
Since “moments” are standard in referring to the expectations of random variables,
this terminology is obviously inappropriate here.

Stochastic comparison arguments have been used for far too long to give a detailed
attribution. For proving transience, in particular, they are a most effective tool. The
analysis we present here of the SETAR model is essentially in Petruccelli et al [214]
and Chan et al [43].

The analysis of chains via their increments, and the delicate balance required
between m(z) and v(x) for recurrence and transience, is found in Lamperti [151]; see
also Tweedie [276]. Growth models for which m(z) > 6v(z)/2z are studied by, for
example, Kersting (see [133]), and their analysis via suitable renormalization proves
a fruitful approach to such transient chains.

It may appear that we are devoting a disproportionate amount of space to unsta-
ble chains, and too little to chains with stability properties. This will be rectified in
the rest of the book, where we will be considering virtually nothing but chains with
ever stronger stability properties.



