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Transience and Recurrence

We have developed substantial structural results for 1-irreducible Markov chains in
Part I of this book. Part II is devoted to stability results of ever-increasing strength
for such chains.

In Chapter 1, we discussed in a heuristic manner two possible approaches to the
stability of Markov chains. The first of these discussed basic ideas of stability and
instability, formulated in terms of recurrence and transience for -irreducible Markov
chains. The aim of this chapter is to formalize those ideas.

In many ways it is easier to tell when a Markov chain is unstable than when it
is stable: it fails to return to its starting point, it eventually leaves any “bounded”
set with probability one, it returns only a finite number of times to a given set of
“reasonable size”. Stable chains are then conceived of as those which do not vanish
from their starting points in at least some of these ways. There are many ways in
which stability may occur, ranging from weak “expected return to origin” properties,
to convergence of all sample paths to a single point, as in global asymptotic stability
for deterministic processes. In this chapter we concentrate on rather weak forms of
stability, or conversely on strong forms of instability.

Our focus is on the behavior of the occupation time random variable 74 :=
Yoo 1{®, € A} which counts the number of visits to a set A. In terms of n4 we
study the stability of a chain through the transience and recurrence of its sets.

Uniform Transience and Recurrence

The set A is called uniformly transient if for there exists M < oo such
that Ez[na] < M for all z € A.

The set A is called recurrent if Ez[na] = oo for all z € A.

The highlight of this approach is a solidarity, or dichotomy, theorem of surprising
strength.
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Theorem 8.0.1 Suppose that P is 1p-irreducible. Then either

(i) every set in BT (X) is recurrent, in which case we call & recurrent; or

(ii) there is a countable cover of X with uniformly transient sets, in which case we
call @ transient; and every petite set is uniformly transient.

PROOF  This result is proved through a splitting approach in Section 8.2.3. We also
give a different proof, not using splitting, in Theorem 8.3.4, where the cover with
uniformly transient sets is made more explicit, leading to Theorem 8.3.5 where all
petite sets are shown to be uniformly transient if there is just one petite set in BT (X)
which is not recurrent. O

The other high point of this chapter is the first development of one of the themes
of the book: the existence of so-called drift criteria, couched in terms of the expected
change, or drift, defined by the one-step transition function P, for chains to be stable
or unstable in the various ways this is defined.

Drift for Markov Chains

The (possibly extended valued) drift operator A is defined for any non-
negative measurable function V' by

AV (z) = / Pz, dy)V(y) — V(z), z€X (8.1)

A second goal of this chapter is the development of criteria based on the drift function
for both transience and recurrence.

Theorem 8.0.2 Suppose @ is a P-irreducible chain.

(1) The chain b is transient if and only if there ezists a bounded non-negative function

V and a set C € BT (X) such that for all x € C¢,

AV (z) >0 (8.2)
and
D={V(z) > SlelgV(y)} € B (X). (8.3)

(ii) The chain @ is recurrent if there ezxists a petite set C C X, and a function V
which is unbounded off petite sets in the sense that Cy(n):={y : V(y) <n} is
petite for all n, such that

AV(z) <0, z € C°. (8.4)
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PROOF  The drift criterion for transience is proved in Theorem 8.4.2, whilst the
condition for recurrence is in Theorem 8.4.3. O

Such conditions were developed by Lyapunov as criteria for stability in deter-
ministic systems, by Khas'minskii and others for stochastic differential equations
[134, 149], and by Foster as criteria for stability for Markov chains on a countable
space: Theorem 8.0.2 is originally due (for countable spaces) to Foster [82] in essen-
tially the form given above.

There is in fact a converse to Theorem 8.0.2 (ii) also, but only for ¢-irreducible
Feller chains (which include all countable space chains): we prove this in Section 9.4.2.
It is not known whether a converse holds in general.

Recurrence is also often phrased in terms of the hitting time variables 74 =
inf{k > 1: &, € A}, with “recurrence” for a set A being defined by L(z, A) = Py(74 <
o0) = 1 for all z € A. The connections between this condition and recurrence as we
have defined it above are simple in the countable state space case: the conditions are
in fact equivalent when A is an atom. In general spaces we do not have such complete
equivalence. Recurrence properties in terms of 74 (which we call Harris recurrence
properties) are much deeper and we devote much of the next chapter to them. In
this chapter we do however give some of the simpler connections: for example, if
L(z,A) =1 for all z € A then n4 = oo a.s. when @) € A, and hence A is recurrent
(see Proposition 8.3.1).

8.1 Classifying chains on countable spaces

8.1.1 The countable recurrence/transience dichotomy

We turn as before to the countable space to guide and motivate our general results,
and to aid in their interpretation.

When X = Z,, we initially consider the stability of an individual state a. This
will lead to a global classification for irreducible chains.

The first, and weakest, stability property involves the expected number of visits
to a. The random variable 7, = Y o> 1{®, = a} has been defined in Section 3.4.3
as the number of visits by @ to a: clearly 7, is a measurable function from (2 to
Z, U{oo}.

Classification of States

The state « is called transient if E4(n,) < 00, and recurrent if Eq(n,) =
00.

From the definition U(z,y) = Yo P™(z,y) we have immediately that for any states
T,y € X
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Ezlny] = Ulz,y). (8.5)
The following result gives a structural dichotomy which enables us to consider, not
just the stability of states, but of chains as a whole.

Proposition 8.1.1 When X is countable and D is irreducible, either U(z,y) = oo
for all z,y € X or U(x,y) < oo for all x,y € X.

PROOF  This relies on the definition of irreducibility through the relation .
If Y, P"(z,y) = oo for some z,y, then since u — = and y — v for any u, v, we
have r, s such that P"(u,z) > 0, P*(y,v) > 0 and so

> P (u,) > P(u,3) Y P @, y)| PP (y,v) = oo, (8.6)

Hence the series U(z,y) and U(u,v) all converge or diverge simultaneously, and the
result is proved. O
Now we can extend these stability concepts for states to the whole chain.

Transient and recurrent chains

If every state is transient the chain itself is called transient.

If every state is recurrent, the chain is called recurrent.

The solidarity results of Proposition 8.1.3 and Proposition 8.1.1 enable us to classify
irreducible chains by the property possessed by one and then all states.

Theorem 8.1.2 When P is irreducible, then either & is transient or @ is recurrent.
O

We can say, in the countable case, exactly what recurrence or transience means in
terms of the return time probabilities L(z, z). In order to connect these concepts, for
a fixed n consider the event {®, = a}, and decompose this event over the mutually
exclusive events {®,, = a, 7, = j} for j = 1,...,n. Since P is a Markov chain, this
provides the first-entrance decomposition of P™ given for n > 1 by

n—1

P"(z,@) = Po{ra =0} + ) Pu{7a = j}P" (e, ). (8.7)
j=1

If we introduce the generating functions for the series P and oP" as

U (z,) = Y P'(z,a)z", |7 <1 (8.8)
n=1
L(Z)(w,a) = Z Py(7q = m)2", |z| < 1 (8.9)
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then multiplying (8.7) by 2" and summing from n =1 to oo gives for |z| < 1
U (z,a) = L (z,a) + LO (z,a)U¥ (a, av). (8.10)
From this identity we have

Proposition 8.1.3 For any z € X, U(z,z) = oo if and only if L(z,z) = 1.
PrOOF  Consider the first entrance decomposition in (8.10) with x = a: this gives
U9, ) = LD(a, @) [[1 - L) (e, )] - (8.11)
Letting z 71 in (8.11) shows that
Lla,a) =1 <= U(a,a) = 0.

a
This gives the following interpretation of the transience/recurrence dichotomy of
Proposition 8.1.1.

Proposition 8.1.4 When @ is irreducible, either L(z,y) = 1 for all z,y € X or
L(z,z) <1 for all x € X.

PrROOF  From Proposition 8.1.3 and Proposition 8.1.1, we have L(z,z) < 1 for all
z or L(z,z) = 1 for all z. Suppose in the latter case, we have L(z,y) < 1 for some
pair z,y: by irreducibility, U(y,z) > 0 and thus for some n we have Py(®, = z,7, >
n) > 0, from which we have L(y,y) < 1, which is a contradiction. 0

In Chapter 9 we will define Harris recurrence as the property that L(z, A) =1
forallz € A and A € Bt (X): for countable chains, we have thus shown that recurrent
chains are also Harris recurrent, a theme we return to in the next chapter when we
explore stability in terms of L(z, A) in more detail.

8.1.2 Specific models: evaluating transience and recurrence

Calculating the quantities U(z,y) or L(z,z) directly for specific models is non-trivial
except in the simplest of cases. However, we give as examples two simple models for
which this is possible, and then a deeper proof of a result for general random walk.

Renewal processes and forward recurrence time chains Let the transition
matrix of the forward recurrence time chain be given as in Section 3.3. Then it is
straightforward to see that for all states n > 1,

1P (n,1) = 1.

This gives
L(1,1) = Y _p(n)1P""}(n,1) =1
n>1

also. Hence the forward recurrence time chain is always recurrent if p is a proper
distribution.
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The calculation in the proof of Proposition 8.1.3 is actually a special case of the
use of the renewal equation. Let Z, be a renewal process with increment distribution
p as defined in Section 2.4. By breaking up the event {Z; = n} over the last time
before n that a renewal occurred we have

u(n) = i P(Zy =n) =1+ uxp(n)
k=0

and multiplying by 2™ and summing over n gives the form
U(z) =[1 - P(2)]! (8.12)

where U(z) := Y 02y u(n)2z" and P(z) := > o>, p(n)z".

Hence a renewal process is also called recurrent if p is a proper distribution, and
in this case U(1) = oo.

Notice that the renewal equation (8.12) is identical to (8.11) in the case of the
specific renewal chain given by the return time 7,(n) to the state a.

Simple random walk on Z_ Let P be the transition matrix of random walk on a
half line in the simplest irreducible case, namely P(0,0) = p and

P(z,z—1) = bp, z>0

P(z,z+1) = gq, z > 0. (8.13)
where p 4+ g = 1. This is known as the simple, or Bernoulli, random walk.
We have that 0,0 (1.0)
L(0,0) = p+4qL(1,0),
L(L0) = p+qL(2,0). (814

Now we use two tricks specific to chains such as this. Firstly, since the chain is
skip-free to the left, it must reach {0} from {2} only by going through {1}, so that
we have

L(2,0) = L(2,1)L(1,0).
Secondly, the translation invariance of the chain, which implies L(j,7 — 1) =
L(1,0),5 > 1, gives us
L(2,0) = [L(1,0)]”.
Thus from (8.14), we find that
L(1,0) = p + ¢[L(1,0)]? (8.15)

so that L(1,0) =1 or L(1,0) = p/q.
This shows that L(1,0) =1 if p > ¢, and from (8.14) we derive the well-known
result that L(0,0) =1if p > g.

Random walk on Z In order to classify general random walk on the integers we
will use the laws of large numbers. Proving these is outside the scope of this book:
see, for example, Billingsley [25] or Chung [50] for these results.

Suppose that @, is a random walk such that the increment distribution I" has a
mean which is zero. The form of the Weak Law of Large Numbers that we will use
can be stated in our notation as

P™(0,A(en)) = 1 (8.16)
for any €, where the set A(k) = {y : |y| < k}. From this we prove
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Theorem 8.1.5 If @ is an irreducible random walk on Z whose increment distribu-
tion I' has mean zero, then @ is recurrent.

ProOOF  First note that from (8.7) we have for any z
Ean:1 P™(z,0) = EkN:1 E?:o Pe(mo =k — j)Pj((),O)
= XL P0,0) XLy Polro =) (8.17)
< YL, Pi(0,0).
Now using this with the symmetry that >N _; P™(z,0) = YN_, P™(0, —z) gives
Ymeo P(0,0) > 2M + 171 Y < T, P(0, z)
> [2M + 171 Y, PI(0, AGM/N)) (8.18)
— [2aN + 171 2N, Pi(0, A(aj))

where we choose M = Na where a is to be chosen later.
But now from the Weak Law of Large Numbers (8.16) we have

P*(0, A(ak)) — 1
as k — oo; and so from (8.18) we have

lm infy o0 Yoo P™(2,0) > lim infy,e0[2aN + 1] 310, PI(0, A(aj))

= [2a]7!.
(8.19)
Since a can be chosen arbitrarily small, we have U(0,0) = oo and the chain is recur-
rent. a

This proof clearly uses special properties of random walk. If I" has simpler struc-
ture then we shall see that simpler procedures give recurrence in Section 8.4.3.

8.2 Classifying -irreducible chains

The countable case provides guidelines for us to develop solidarity properties of chains
which admit a single atom rather than a multiplicity of atoms. These ideas can then
be applied to the split chain and carried over through the m-skeleton to the original
chain, and this is the agenda in this section.

In order to accomplish this, we need to describe precisely what we mean by
recurrence or transience of sets in a general space.

8.2.1 Transience and recurrence for individual sets
For general A, B € B(X) recall from Section 3.4.3 the taboo probabilities given by

AP”(:L‘,B) = w{én € B;TA > n}a
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and by convention we set 4 P°(z, A) = 0. Extending the first entrance decomposition
(8.7) from the countable space case, for a fixed n consider the event {®, € B} for
arbitrary B € B(X), and decompose this event over the mutually exclusive events
{®, € B,74 = j} for j = 1,...,n, where A is any other set in B(X). The general
first-entrance decomposition can be written

n—1
P"(z,B) = 4P"(z,B) + 3 / 4P (z, dw)P" (w, B) (8.20)
i—1 A
whilst the analogous last-exit decomposition is given by
n
P"(z, B) = AP"(z,B) + 3 / Pi(z, dw) 4 P" (w, B). (8.21)
. A

The first-entrance decomposition is clearly a decomposition of the event {®, € A}
which could be developed using the Strong Markov Property and the stopping time
¢ = 74 An. The last exit decomposition, however, is not an example of the use of the
Strong Markov Property: for, although the first entrance time 74 is a stopping time
for &, the last exit time is not a stopping time. These decompositions do however
illustrate the same principle that underlies the Strong Markov Property, namely the
decomposition of an event over the sub-events on which the random time takes on
the (countable) set of values available to it.

We will develop classifications of sets using the generating functions for the series
{P"} and {4P"}:

=Y P"(z,B)z", lz| <1 (8.22)
n=1
UP(2,B):=3 aP™x,B)2",  |2| <L (8.23)
n=1

The kernel U then has the property

Uz, Z P"(z,A) = lim U@ (z, A) (8.24)

n=1

and as in the countable case, for any z € X, A € B(X)

Thus uniform transience or recurrence is quantifiable in terms of the finiteness or
otherwise of U(z, A).
The return time probabilities L(z, A) = P,{74 < oo} satisfy

L(z, Z AP"(z, A) = lim U (z, A). (8.26)
n=1
We will prove the solidarity results we require by exploiting the convolution forms
n (8.20) and (8.21). Multiplying by 2" in (8.20) and (8.21) and summing, the first
entrance and last exit decompositions give, respectively, for |z] < 1

U@ (2, B) = UD (2, B) + / (2, dw)U (w, B), (8.27)

U@ (2, B) = U (2, B) + / U@ (2, dw)U (w, B). (8.28)

In classifying the chain @ we will use these relationships extensively.
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8.2.2 The recurrence/transience dichotomy: chains with an atom

We can now move to classifying a chain ¢ which admits an atom in a dichotomous
way as either recurrent or transient. Through the splitting techniques of Chapter 5
this will then enable us to classify general chains.

Theorem 8.2.1 Suppose that @ is 1p-irreducible and admits an atom a € BT (X).
Then

(i) if a is recurrent, then every set in BT (X) is recurrent.

(ii) if « is transient, then there is a countable covering of X by uniformly transient
sets.

Proor (i) If A € B*(X) then for any z we have r, s such that P"(z,a) > 0,
P*(a, A) > 0 and so

> Pz, 4) > Pz, 0) Y P (a, )| PP (a, A) = . (8.29)

n

Hence the series U(z, A) diverges for every z, A when U(a, o) diverges.

(ii) To prove the converse, we first note that for an atom, transience is equiv-
alent to L(a, @) < 1, exactly as in Proposition 8.1.3.

Now consider the last exit decomposition (8.28) with A, B = a. We have for any
zeX

U (2, @) = U (2, @) + UP (2, 0)U) (@, @)

and so by rearranging terms we have for all z < 1
UG (@, @) = UL (z,0)[1 = U (@, )] * < [1 - L, )] ! < oc.

Hence U(z, o) is bounded for all z.
Now consider the countable covering of X given by the sets

J
a()={y: Y P'(y,e) >5 '}
n=1
Using the Chapman-Kolmogorov equations,

J
U(z,0) > j~'U(z,a(5) inf > P'(y,e) > 5 °Uz,a())
yea(y) n=1
and thus {@(j)} is the required cover by uniformly transient sets. O
We shall frequently find sets which are not uniformly transient themselves, but
which can be covered by a countable number of uniformly transient sets. This leads
to the definition
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Transient sets

If A € B(X) can be covered with a countable number of uniformly tran-
sient sets, then we call A transient.

8.2.3 The general recurrence/transience dichotomy

Now let us consider chains which do not have atoms, but which are strongly aperiodic.

We shall find that the split chain construction leads to a “solidarity result” for the
sets in BT (X) in the 9-irreducible case, thus allowing classification of @ as a whole.
Thus the following definitions will not be vacuous.

Stability Classification of ¥-irreducible Chains

(i) The chain @ is called recurrent if it is 9-irreducible and U(z, A) = oo
for every z € X and every A € Bt (X).

(ii) The chain @ is called transient if it is 1-irreducible and X is tran-
sient.

We first check that the split chain and the original chain have mutually consistent
recurrent/transient classifications.

Proposition 8.2.2 Suppose that @ is 1p-irreducible and strongly aperiodic. Then ei-
ther both @ and & are recurrent, or both @ and ® are transient.

PROOF  Strong aperiodicity ensures as in Proposition 5.4.5 that the Minorization
Condition holds, and thus we can use the Nummelin Splitting of the chain & to
produce a chain & on X which contains an accessible atom é.

We see from (5.9) that for every z € X, and for every B € BT (X),

S [ on) Py B) = 3 P, B). (8:30)
n=1 n=1
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If B € B (X) then since 9*(Bg) > 0 it follows from (8.30) that if & is recurrent, so is
&. Conversely, if & is transient, by taking a cover of X with uniformly transient sets
it is equally clear from (8.30) that @ is transient.
We know from Theorem 8.2.1 that & is either transient or recurrent, and so the
dichotomy extends in this way to &. O
To extend this result to general chains without atoms we first require a link
between the recurrence of the chain and its resolvent.

Lemma 8.2.3 For any 0 < € < 1 the following identity holds:

ZKaa: ZP"
n=1 n=0

€

PrROOF  From the generalized Chapman-Kolmogorov equations (5.46) we have

00 [ o)
S KL= Kun = bn)P"
n=1 n=1 n=0

where we define b(k) to be the kth term in the sequence Y o> aX™. To complete the
proof, we will show that b(k) = (1 —¢)/e for all k£ > 0.

Let B(z) = S b(k)2*, A.(2) = 3. a-(k)z* denote the power series representation
of the sequences b and a.. From the identities

1D =(75)  BE=Y(46)"

1l—c¢z

we see that B(z) = ((1—¢)/e)(1 — z) !. By uniqueness of the power series expansion
it follows that b(n) = (1 — ¢)/e for all n, which completes the proof. O
As an immediate consequence of Lemma 8.2.3 we have

Proposition 8.2.4 Suppose that @ is -irreducible.

(1) The chain D is transient if and only if each K,_-chain is transient.

(ii) The chain D is recurrent if and only if each K,_-chain is recurrent.

We may now prove

Theorem 8.2.5 If & is y-irreducible, then @ is either recurrent or transient.

PrOOF  From Proposition 5.4.5 we are assured that the K,_-chain is strongly ape-
riodic. Using Proposition 8.2.2 we know then that each K,_-chain can be classified
dichotomously as recurrent or transient.
Since Proposition 8.2.4 shows that the K,_-chain passes on either of these prop-
erties to P itself, the result is proved. ad
We also have the following analogue of Proposition 8.2.4:

Theorem 8.2.6 Suppose that @ is 1p-irreducible and aperiodic.

(1) The chain ¥ is transient if and only if one, and then every, m-skeleton ®™ is
transient.

(ii) The chain b is recurrent if and only if one, and then every, m-skeleton ™ is
recurrent.
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Proor (i) If A is a uniformly transient set for the m-skeleton @™, with
> Pim(x, A) < M, then we have from the Chapman-Kolmogorov equations

i Piz,A) =Y / P"(z,dy) S P™(y, A) < mM. (8.31)

j=1 r=1 j
Thus A is uniformly transient for ¢. Hence @ is transient whenever a skeleton is
transient. Conversely, if @ is transient then every $* is transient, since

Z Pi(z, A) > Z Pik(g, A).
7=1 7j=1

(i)  If the m-skeleton is recurrent then from the equality in (8.31) we again
have that
ZP” (z,4) = 0, z€X, AeBH(X) (8.32)

so that the chain & is recurrent.

Conversely, suppose that @ is recurrent. For any m it follows from aperiodicity
and Proposition 5.4.5 that é™ is -irreducible, and hence by Theorem 8.2.5, this
skeleton is either recurrent or transient. If it were transient we would have @ transient,
from (i). O

It would clearly be desirable that we strengthen the definition of recurrence to
a form of Harris recurrence in terms of L(x, A), similar to that in Proposition 8.1.4.
The key problem in moving to the general situation is that we do not have, for a
general set, the equivalence in Proposition 8.1.3. There does not seem to be a simple
way to exploit the fact that the atom in the split chain is not only recurrent but also
satisfies L(é, &) = 1, and the dichotomy in Theorem 8.2.5 is as far as we can go
without considerably stronger techniques which we develop in the next chapter.

Until such time as we provide these techniques we will consider various partial
relationships between transience and recurrence conditions, which will serve well in
practical classification of chains.

8.3 Recurrence and transience relationships

8.3.1 Transience of sets

We next give conditions on hitting times which ensure that a set is uniformly transient,
and which commence to link the behavior of 74 with that of n4.

Proposition 8.3.1 Suppose that P is a Markov chain, but not necessarily irreducible.

(1) If any set A € B(X) is uniformly transient with U(z, A) < M for x € A, then
U(z,A) <1+ M for every z € X.

(ii) If any set A € B(X) satisfies L(x, A) = 1 for all x € A, then A is recurrent. If &
is -irreducible, then A € BT (X) and we have U(z,A) = o< for z € X.

(iii) If any set A € B(X) satisfies L(z,A) <e <1 for z € A, then we have U(z, A) <
1/[1 — €] for z € X, so that in particular A is uniformly transient.
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(iv) Let Ta(k) denote the k' return time to A, and suppose that for some m
Pr(ta(m) <oo) <e <1,  z€A4; (8.33)

then U(z,A) <1+ m/[1 —¢] for every z € X.

PrOOF (i) We use the first-entrance decomposition: letting z 1 1 in (8.27) with
A = B shows that for all z,

U(z,A) <1+4+supU(y,A4), (8.34)
yeA

which gives the required bound.
(ii) Suppose that L(z,A) = 1 for z € A. The last exit decomposition (8.28)
gives

Uz, 4) = U (@, ) + [ U, dy)US 3, ).
A
Letting z 1 1 gives for xz € A,
Uz, A) = 1+ Uz, A),

which shows that U(z, A) = oo for z € A, and hence that A is recurrent.
Suppose now that @ is t-irreducible. The set A* = {z € X : L(z,A) = 1}
contains A by assumption. Hence we have for any =z,

| P@.dp)Liy, 4) = P, 4) + [ Pla.dyUa(y, 4) = Lia, A).

This shows that A is absorbing, and hence full by Proposition 4.2.3.
It follows from )-irreducibility that K,, (z, A) > 0 for all z € X, and we also
2

have for all z that, from (5.47),
Ule, A) > [ Kuy (o,dy)Uly, 4) = o0
A 2

as claimed.
(iii) Suppose on the other hand that L(z,A) < e < 1,z € A. The last exit
decomposition again gives

U @, 4) = U @A)+ [ UO@.apu w.4) <1409 @, 4)
A

and so U®)(z, A) < [1 — ] ': letting z 1 1 shows that A is uniformly transient as
claimed.

(iv)  Suppose now (8.33) holds. This means that for some fixed m € Z,, we
have ¢ < 1 with

P:(na>m)<e,  z€A4; (8.35)
by induction in (8.35) we find that
Pe(na 2m(k+1)) = [4Pu(®Pr,km) € dy)Py(na = m)
< ePyp(ralkm) < o0)
(8.36)
< €ePy(na > km)
< EIH_I,
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andsoforxz € A

U(z,A) = X321 Pu(na 2 n)
< mll S Palia > km)] (8.37)
< m/[1l—¢l.
We now use (i) to give the required bound over all of X. O

If there is one uniformly transient set then it is easy to identify other such sets,
even without irreducibility. We have

Proposition 8.3.2 If A is uniformly transient, and B ~> A for some a, then B is
uniformly transient. Hence if A is uniformly transient, there is a countable covering
of A by uniformly transient sets.

PrROOF  From Lemma 5.5.2 (iii), we have when B ~ A that for some § > 0,
Ul 4) > [ Ule,dy)Kaly, 4) > U (. B)

so that B is uniformly transient if A is uniformly transient. Since A is covered by the
sets A(m), m € Z, and each A(m) ~ A for some a, the result follows. O

The next result provides a useful condition under which sets are transient even
if not uniformly transient.

Proposition 8.3.3 Suppose D¢ is absorbing and L(xz,D¢) > 0 for all x € D. Then
D 1is transient.

PROOF  Suppose D¢ is absorbing and write B(m) = {y € D : P™(y, D) > m~'}:
clearly, the sets B(m) cover D since L(z, D) > 0 for all x € D, by assumption.
But since D¢ is absorbing, for every y € B(m) we have

Py(nB(m) >m) < Py(np >m) <1 —mfl]

and thus (8.33) holds for B(m); from (8.37) it follows that B(m) is uniformly tran-
sient. O

These results have direct application in the %)-irreducible case. We next give a
number of such consequences.

8.3.2 Identifying transient sets for v-irreducible chains

We first give an alternative proof that there is a recurrence/transience dichotomy for
general state space chains which is an analogue of that in the countable state space
case. Although this result has already been shown through the use of the splitting
technique in Theorem 8.2.5, the following approach enables us to identify uniformly
transient sets without going through the atom.

Theorem 8.3.4 If @ is -irreducible, then @ is either recurrent or transient.
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PROOF  Suppose @ is not recurrent: that is, there exists some pair A € BT (X),
z* € X with U(z*,A) < oo. If A, = {y : U(y,A) = oo}, then 9(A,) = 0: for
otherwise we would have P™(z*, A,) > 0 for some m, and then

U(.’B*,A) > fX Pm(m*,dw)U(w,A)
(8.38)
> [y, P (z*,dw)U(w, A) = oo.

Set A, ={ye€ A:U(y,A) <r}. Since ¥(A) > 0, and A, T AN A¢, there must

*

exist some 7 such that 1(A,) > 0, and by Proposition 8.3.1 (i) we have for all y,
Uy, Ar) <1+ (8.39)

Consider now A,(M) = {y: >M_, P™(y, A,) > M~'}. For any z, from (8.39)

MQQ+7r)>MU(z,A) > % i P*(z, Ay)

m=1n=m
oo M

= > [ Pr@du) 3 Pr(w, 4
n=0 m=1

WV,
N
ST
N
S
&
5
NWE
N
3
B
=

> MY Pra A (M),

n=0

Since 9(A;) > 0 we have Uy, A.(m) = X, and so the {A,(m)} form a partition of X
into uniformly transient sets as required. O

The partition of X into uniformly transient sets given in Proposition 8.3.2 and in
Theorem 8.3.4 leads immediately to

Theorem 8.3.5 If @ is 1-irreducible and transient then every petite set is uniformly
transient.

Proor If C is petite then by Proposition 5.5.5 (iii) there exists a sampling distri-
bution @ such that C ~ B for any B € BT (X). If & is transient then there exists at
least one B € B*(X) which is uniformly transient, so that C' is uniformly transient
from Proposition 8.3.2. O

Thus petite sets are also “small” within the transience definitions. This gives us
a criterion for recurrence which we shall use in practice for many models; we combine
it with a criterion for transience in

Theorem 8.3.6 Suppose that P is P-irreducible. Then

(1) @ is recurrent if there exists some petite set C € B(X) such that L(z,C) =1 for
all z € C.

(ii) P is transient if and only if there exist two sets D, C in Bt (X) with L(z,C) < 1
forall xz € D.
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Proor (i) From Proposition 8.3.1 (ii) C is recurrent. Since C is petite Theo-
rem 8.3.5 shows @ is recurrent. Note that we do not assume that C is in B*(X), but
that this follows also.

(ii) Suppose the sets C,D exist in BT (X). There must exist D, C D such
that ¥(D,) > 0 and L(z,C) <1 —¢ for all z € D.. If also (D, N C) > 0 then since
L(z,C) > L(D.NC) we have that D.NC is uniformly transient from Proposition 8.3.1
and the chain is transient.

Otherwise we must have (D, N C¢) > 0. The maximal nature of 9 then implies
that for some > 0 and some n > 1 the set C5:={y € C: ¢ P"(y, DN C*) > 4} also
has positive 9-measure. Since, for z € Cy,

1= L(,Cs) 2 [ cP"(wdyll - Liy,Cy)] > b
D.NC*e

the set Cy is uniformly transient, and again the chain is transient.

To prove the converse, suppose that @ is transient. Then for some petite set
C € BT(X) the set D = {y € C¢: L(y,C) < 1} is non-empty; for otherwise by (i) the
chain is recurrent. Suppose that (D) = 0. Then by Proposition 4.2.3 there exists a
full absorbing set F' C D¢. By definition we have L(z,C) = 1 for x € F'\ C, and since
F is absorbing it then follows that L(x,C) = 1 for every x € F, and hence also that
L(z,Cy) =1 for z € F where Cy = C N F also lies in B*(X).

But now from Proposition 8.3.1 (ii), we see that Cy is recurrent, which is a
contradiction of Theorem 8.3.5; and we conclude that D € B (X) as required. O

We would hope that -null sets would also have some transience property, and
indeed they do.

Proposition 8.3.7 If & is y-irreducible then every w-null set is transient.

PROOF  Suppose that @ is i-irreducible, and D is -null. By Proposition 4.2.3, D¢
contains an absorbing set, whose complement can be covered by uniformly transient
sets as in Proposition 8.3.3: clearly, these uniformly transient sets cover D itself, and
we are finished. O

As a direct application of Proposition 8.3.7 we extend the description of the cyclic
decomposition for i-irreducible chains to give

Proposition 8.3.8 Suppose that ¥ is a p-irreducible Markov chain on (X, B(X)).
Then there exist sets Dy ... Dy € B(X) such that

(i) for x € D;, P(z,Dj41) =1,i=0,...,d—1 (mod d)

(ii) the set N = [U%, D;]° is y-null and transient.

PrOOF  The existence of the periodic sets D; is guaranteed by Theorem 5.4.4, and
the fact that the set N is transient is then a consequence of Proposition 8.3.3, since
ngl D; is itself absorbing. O

In the main, transient sets and chains are ones we wish to exclude in practice.
The results of this section have formalized the situation we would hope would hold:
sets which appear to be irrelevant to the main dynamics of the chain are indeed so, in
many different ways. But one cannot exclude them all, and for all of the statements
where -null (and hence transient) exceptional sets occur, one can construct examples
to show that the “bad” sets need not be empty.
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8.4 Classification using drift criteria

Identifying whether any particular model is recurrent or transient is not trivial from
what we have done so far, and indeed, the calculation of the matrix U or the hitting
time probabilities L involves in principle the calculation and analysis of all of the
P", a daunting task in all but the most simple cases such as those addressed in
Section 8.1.2.

Fortunately, it is possible to give practical criteria for both recurrence and tran-
sience, couched purely in terms of the drift of the one-step transition matrix P towards
individual sets, based on Theorem 8.3.6.

8.4.1 A drift criterion for transience

We first give a criterion for transience of chains on general spaces, which rests on
finding the minimal solution to a class of inequalities.

Recall that o¢, the hitting time on a set C, is identical to 7¢ on C° and o¢ =0
on C.

Proposition 8.4.1 For any C € B(X), the pointwise minimal non-negative solution
to the set of inequalities

/ P(z,dy)h(y) < h(z),  z€C®
(8.41)

h(z) > 1, z € C,
is given by the function
h*(z) = Py(oc < 00), z €X;
and h* satisfies (8.41) with equality.
PROOF  Since for x € C¢
P.(cc < o0) = P(z,C) + /(Jc P(z,dy)Py(oc < 00) = Ph™ (z)

it is clear that h* satisfies (8.41) with equality.
Now let h be any solution to (8.41). By iterating (8.41) we have

he) > [ Pa.dph) + [ P.dyhe)
> [ Pladphty) + [ Padyl| Py.doh() + [ Plo,d2)h(z)]
C Ce C Ce
N .
> jz::l/CCPJ(z,dy)h(y) +/CC cP" (z,dy)h(y).

(8.42)
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Letting N — oo shows that h(z) > h*(x) for all z. O

This gives the required drift criterion for transience. Recall the definition of the
drift operator as AV (z) = [ P(z,dy)V (y) — V(z); obviously A is well-defined if V is
bounded. We define the sublevel set Cy (r) of any function V' for r > 0 by

Cy(r)=={z:V(z) <r}.

Theorem 8.4.2 Suppose D is a -irreducible chain. Then P is transient if and only
if there exists a bounded function V : X — IRy and r > 0 such that

(i) both Cy(r) and Cy(r)¢ lie in BT (X);

(ii) whenever z € Cy(r)°,
AV (z) > 0. (8.43)

PROOF  Suppose that V' is an arbitrary bounded solution of (i) and (ii), and let M
be a bound for V over X. Clearly M > r. Set C' = Cy(r), D = C¢, and

hy (z) = { [1M = V(@)]/[M —r] i E g

so that hy is a solution of (8.41). Then from the minimality of A* in Proposition 8.4.1,
hy is an upper bound on h*, and since for € D, hy (z) < 1 we must have L(z,C) < 1
also for x € D.

Hence @ is transient as claimed, from Theorem 8.3.6.

Conversely, if @ is transient, there exists a bounded function V satisfying (i) and
(ii). For from Theorem 8.3.6 we can always find ¢ < 1 and a petite set C € B*(X)
such that {y € C°: L(y,C) < €} is also in BT (X). Thus from Proposition 8.4.1, the
function V(z) =1 — Py(0¢ < o0) has the required properties. O

8.4.2 A drift criterion for recurrence

Theorem 8.4.2 essentially asserts that if @ “drifts away” in expectation from a set in
B*(X), as indicated in (8.43), then @ is transient. Of even more value in assessing
stability are conditions which show that “drift toward” a set implies recurrence, and
we provide the first of these now. The condition we will use is

Drift criterion for recurrence

(V1) There exists a positive function V and a set C € B(X)
satisfying
AV(z) <0, zeC” (8.44)
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We will find frequently that, in order to test such drift for the process @, we need to
consider functions V' : X — IR such that the set Cy(M) = {y € X: V(y) < M} is
“finite” for each M. Such a function on a countable space or topological space is easy
to define: in this abstract setting we first need to define a class of functions with this
property, and we will find that they recur frequently, giving further meaning to the
intuitive meaning of petite sets.

Functions unbounded off petite sets

We will call a measurable function V : X — R4 unbounded off petite sets
for @ if for any n < oo, the sublevel set

Cv(n)={y:V(y) <n}

is petite.

Note that since, for an irreducible chain, a finite union of petite sets is petite, and since
any subset of a petite set is itself petite, a function V' : X — IR, will be unbounded
off petite sets for @ if there merely exists a sequence {C;} of petite sets such that,

for any n < o0
N

ovin) C |J G (8.45)

=1

for some N < oo. In practice this may be easier to verify directly.
We now have a drift condition which provides a test for recurrence.

Theorem 8.4.3 Suppose P is Y-irreducible. If there exists a petite set C C X, and a
function V' which is unbounded off petite sets such that (V1) holds then L(z,C) =1
and D is recurrent.

Proor  We will show that L(z,C) = 1 which will give recurrence from Theo-
rem 8.3.6. Note that by replacing the set C by CUCy (n) for n suitably large, we can
assume without loss of generality that C € BT (X).

Suppose by way of contradiction that the chain is transient, and thus that there
exists some z* € C°¢ with L(z*,C) < 1.

Set Cy(n) = {y € X: V(y) < n}: we know this is petite, by definition of V', and
hence it follows from Theorem 8.3.5 that Cy(n) is uniformly transient for any n. Now
fix M large enough that

M > V(z")/[1 - L(z*, 0)]. (8.46)
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Let us modify P to define a kernel P with entries P(z,A) = P(z, A) for z € C¢ and
P(z,z) = 1,z € C. This defines a chain & with C as an absorbing set, and with the
property that for all z € X

/P 5, dy)V (y) < V(z). (8.47)
Since P is unmodified outside C, but & is absorbed in C, we also have
P"(z,C) = Po(rc <m) 1 L(z,C), @ €C", (8.48)
whilst for A C C° R
P*(z,A) < P*(z,A), z € C". (8.49)

By iterating (8.47) we thus get, for fixed z € C°
V(z) > [Pz,dy)V(y)

> / P (z,dy)V (y .
- (z, dy)V (y) (8.50)

> M|[1-P"(z,Cv(M)uC)|.
Since Cy (M) is uniformly transient, from (8.49) we have
P™(z*,Cy(M) N C°) < PMz*,Cy(M)NCY) -0, n—oo. (8.51)
Combining this with (8.48) gives
[1 - P"(z*,Cy(M)UC)] = [1 — L(z*,O)), n — oo. (8.52)

Letting n — oo in (8.50) for z = z* provides a contradiction with (8.52) and our
choice of M. Hence we must have L(z,C) = 1, and @ is recurrent, as required. O

8.4.3 Random walks with bounded range

The drift condition on the function V in Theorem 8.4.3 basically says that, whenever
the chain is outside C, it “moves down” towards that part of the space described by
the petite sets outside which V tends to infinity.

This condition implies that we know where the petite sets for @ lie, and can
identify those functions which are unbounded off the petite sets. This provides very
substantial motivation for the identification of petite sets in a manner independent
of @; and for many chains we can use the results in Chapter 6 to give such form to
the results.

On a countable space, of course, finite sets are petite. Qur problem is then to
identify the correct test function to use in the criteria.

In order to illustrate the use of the drift criteria we will first consider the simplest
case of a random walk on Z with finite range r. Thus we assume the increment
distribution I' is concentrated on the integers and is such that I'(z) = 0 for |z| > r.
We then have a relatively simple proof of the result in Theorem 8.1.5.

Proposition 8.4.4 Suppose that P is an irreducible random walk on the integers. If
the increment distribution I' has a bounded range and the mean of I' is zero, then &
s recurrent.
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PrOOF  In Theorem 8.4.3 choose the test function V(z) = |z|. Then for z > r we
have that

> P(z,y)[V(y) — V()] =) I'w)w,
Y Y
whilst for z < —r we have that

Y P,y)[V(y) — V(@)= - I'wuw.
Y

w

Suppose the “mean drift”

B = Zf(w)w = 0.

Then the conditions of Theorem 8.4.3 are satisfied with C = {—r,...,r} and with
(8.44) holding for z € C°, and so the chain is recurrent. O

Proposition 8.4.5 Suppose that @ is an irreducible random walk on the integers.
If the increment distribution I' has a bounded range and the mean of I' is non-zero,
then @ is transient.

PROOF  Suppose I' has non-zero mean 8 > 0. We will establish for some bounded
monotone increasing V' that

> Pz,y)V(y) =V(z) (8.53)
Y

for x > r.

This time choose the test function V(z) = 1 — p® for £ > 0, and V(z) = 0
elsewhere. The sublevel sets of V are of the form (—oo,r] with 7 > 0. This function
satisfies (8.53) if and only if for z > r

> Plz,y)p?/p") =1 (8.54)
Yy

so that this V' can be constructed as a valid test function if (and only if) there is a
p < 1 with

> I(w)p” =1. (8.55)

Therefore the existence of a solution to (8.55) will imply that the chain is transient,
since return to the whole half line (—oo,r| is less than sure from Proposition 8.4.2.
Write 8(s) = >, I'(w)s™: then g is well defined for s € (0, 1] by the bounded range
assumption. By irreducibility, we must have I'(w) > 0 for some w < 0, so that
B(s) = oo as s — 0. Since f(1) =1, and p'(1) = 3, wI'(w) = B > 0 it follows that
such a p exists, and hence the chain is transient.

Similarly, if the mean of I" is negative, we can by symmetry prove transience
because the chain fails to return to the half line [—r, 00). a

For random walk on the half line Z, with bounded range, as defined by (RWHL1)
we find

Proposition 8.4.6 If the random walk increment distribution I' on the integers has
mean [ and a bounded range, then the random walk on Z. is recurrent if and only

if <0.
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Proor If 8 is positive, then the probability of return of the unrestricted random
walk to (—oo,r] is less than one, for starting points above r, and since the probability
of return of the random walk on a half line to [0, r] is identical to the return to (—oo, 7]
for the unrestricted random walk, the chain is transient.

If B8 < 0, then we have as for the unrestricted random walk that, for the test
function V(z) =z and all z > r

Y P ylV(y) - V(@) =) T'ww<0;

but since, in this case, the set {z < r} is finite, we have (8.44) holding and the chain
is recurrent. O

The first part of this proof involves a so-called “stochastic comparison” argument:
we use the return time probabilities for one chain to bound the same probabilities for
another chain. This is simple but extremely effective, and we shall use it a number
of times in classifying random walk. A more general formulation will be given in
Section 9.5.1.

Varying the condition that the range of the increment is bounded requires a much
more delicate argument, and indeed the known result of Theorem 8.1.5 for a general
random walk on Z, that recurrence is equivalent to the mean 8 = 0, appears difficult
if not impossible to prove by drift methods without some bounds on the spread of I'.

8.5 Classifying random walk on IR

In order to give further exposure to the use of drift conditions, we will conclude this
chapter with a detailed examination of random walk on IR .

The analysis here is obviously immediately applicable to the various queueing and
storage models introduced in Chapter 2 and Chapter 3, although we do not fill in the
details explicitly. The interested reader will find, for example, that the conditions on
the increment do translate easily into intuitively appealing statements on the mean
input rate to such systems being no larger than the mean service or output rate if
recurrence is to hold.

These results are intended to illustrate a variety of approaches to the use of the
stability criteria above. Different test functions are utilized, and a number of different
methods of ensuring they are applicable are developed. Many of these are used in the
sequel where we classify more general models.

As in (RW1) and (RWHL1) we let @ denote a chain with

Py, = [énfl + Wn]+

where as usual W, is a noise variable with distribution I" and mean 8 which we shall
assume in this section is well-defined and finite.

Clearly we would expect from the bounded increments results above that § < 0
is the appropriate necessary and sufficient condition for recurrence of @. We now
address the three separate cases in different ways.

8.5.1 Recurrence when 3 is negative

When the inequality is strict it is not hard to show that the chain is recurrent.
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Proposition 8.5.1 If & is random walk on a half line and if

8= /wF(dw) <0
then @ 1is recurrent.

ProoOF  Clearly the chain is ¢-irreducible when 8 < 0 with ¢ = dy, and all compact
sets are small as in Chapter 5. To prove recurrence we use Theorem 8.4.3, and show
that we can in fact find a suitably unbounded function V and a compact set C
satisfying

[PV v -e  wec, (8.56)

for some ¢ > (. As in the countable case we note that since 8 < 0 there exists zy < oo
such that

/°° w M(dw) < B2 <0,

—xT0

and thus if V(z) = z, for £ > zg

o
| Pa V) - V@) < [ wrdw). (857
—1o
Hence taking ¢ = /2 and C = [0, zo] we have the required result. O

8.5.2 Recurrence when 3 is zero

When the mean increment 8 = 0 the situation is much less simple, and in general
the drift conditions can be verified simply only under somewhat stronger conditions
on the increment distribution I', such as an assumption of a finite variance of the
increments.

We will find it convenient to develop prior to our calculations some detailed
bounds on the moments of I', which will become relevant when we consider test
functions of the form V(z) = log(1 + |z|).

Lemma 8.5.2 Let W be a random variable with law I', s a positive number and t
any real number. Then for any A C {w € R : s+ tw > 0},

Ellog(s + tW)I{W € A}] < TI'(A)log(s)+ (t/s)E[WI{W € A}]
—(#2/(25%))E[W2I{W € A,tW < 0}]
PrROOF  For all > —1, log(1 + z) <z — (2/2)1{z < 0}. Thus
log(s +tW)I{W € A} = [log(s) + log(1 + tW/s)|I{W € A}
< [log(s) +tW/s]l{W € A}

—((tW)?/(2s)I{tW < 0,W € A}]

and taking expectations gives the result. O
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Lemma 8.5.3 Let W be a random variable with law I' and finite variance. Let s be
a positive number and t a real number. Then

zll)rgo —zE[WI{W <t —sz}] = wll)rgo cEWI{W >t + sz}] = 0. (8.58)
Furthermore, if E[W] = 0, then
Jim_ —zE[WI{W >t — sz}] = Jim cEWI{W < t+ sz}] = 0. (8.59)

ProOOF  This is a consequence of

o0 o
0 < lim (¢t+ sx)/ wl'(dw) < lim w?T'(dw) = 0,
T—r00

t+sc =0 Jitsx

and
t+sz t+sT
0< lim (t+ sx)/ wl'(dw) < lim w?I'(dw) = 0.

T—r—00 —00 T—r—00 —00
If E[W] = 0, then EWI{W > t + sz}] = —E[WI{W < ¢ + sz}], giving the second
result. O
We now prove

Proposition 8.5.4 If W is an increment variable on R with 8 =0 and
0 < E[W?] = /wQI’(dw) <
then the random walk on IR with increment W is recurrent.

PROOF  We use the test function

V(z) = {loog(l +2) g;fg ” (8.60)

where R is a positive constant to be chosen. Since 8 = 0 and 0 < E[W?] the chain
is dp-irreducible, and we have seen that all compact sets are small as in Chapter 5.
Hence V is unbounded off petite sets.

For z > R,1+ z > 0, and thus by Lemma 8.5.2,

E.[V(X1)] Eflog(1 + = + W)1{z + W > R}]

; (1 - F(—OO,R — ;E)) log(l + ;1;) + U1(.’E) _ U2(.’I,‘), (861)

where in order to bound the terms in the expansion of the logarithms in V', we consider

separately
Ui(z) = (1/1+2z)ElWI{W > R — z}]

Usw) = (1/2(1 +2)2)EW2{R -z < W < 0}] (8.62)
Since E[W?] < o0
Uz(z) = (1/(2(1 +2)*) EW*{W < 0}] - o(z),
and by Lemma 8.5.3, U; is also o(z~2).
Thus by choosing R large enough
EIVIG)] < Vi) - 0/Q0 +aDEWHW <0l +oa?) o

< Viax), z > R.

Hence the conditions of Theorem 8.4.3 hold, and chain is recurrent. O
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8.5.3 Transience of skip-free random walk when S is positive

It is possible to verify transience when 8 > 0, without any restrictions on the range
of the increments of the distribution I', thus extending Proposition 8.4.5; but the
argument (in Proposition 9.1.2) is a somewhat different one which is based on the
Strong Law of Large Numbers and must wait some stronger results on the meaning
of recurrence in the next chapter.

Proving transience for random walk without bounded range using drift conditions
is difficult in general. There is however one model for which some exact calculations
can be made: this is the random walk which is “skip-free to the right” and which
models the GI/M/1 queue as in Theorem 3.3.1.

Proposition 8.5.5 If & denotes random walk on a half line Z which is skip-free
to the right (so I'(x) =0 for > 1), and if

B=> wl(w)>0

then @ is transient.

PrOOF  We can assume without loss of generality that I'(—oo,0) > 0: for clearly, if
I'l0,00) =1 then Py(79 < oc) =0,z > 0 and the chain moves inexorably to infinity;
hence it is not irreducible, and it is transient in every meaning of the word.

We will show that for a chain which is skip-free to the right the condition 8 > 0
is sufficient for transience, by examining the solutions of the equations

Y Plmy)Viy) =V(z), x>1 (8.64)

and actually constructing a bounded non-constant positive solution if 8 is positive.
The result will then follow from Theorem 8.4.2.

First note that we can assume V(0) = 0 by linearity, and write out the equation
(8.64) in this case as

V(z) = (2 + D)V(1) + T(~z+ 2V(2) +...+ TV (1 + z). (8.65)

Once the first value in the V(z) sequence is chosen, we therefore have the remaining

values given by an iterative process. Our goal is to show that we can define the

sequence in a way that gives us a non-constant positive bounded solution to (8.65).
In order to do this we first write

= Z V(z)z", I'(z) = Z I'(z)z"
0 —0oo

where V*(z) has yet to be shown to be defined for any z and I'*(z) is clearly defined
at least for |z| > 1. Multiplying by 2% in (8.65) and summing we have that

V*(z) = T*(z"YV*(2) - T(1)V(1) (8.66)

Now suppose that we can show (as we do below) that there is an analytic expansion
of the function

1= 2)/[T*(=7) = 1] anz (8.67)
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in the region 0 < z < 1 with b, > 0. Then we will have the identity
Vi(z) = 2lMV(L)z /[I*(z1) —1]
= 2PV 1) (EF 221 = 2)/[T(271) - 1] (8.68)

= 2PV )25 2") (25 bmz™)-

From this, we will be able to identify the form of the solution V. Explicitly, from
(8.68) we have
Vi(z) = 2I'(HYV(1) X5Zo 2" Xz bm (8.69)

so that equating coefficients of z" in (8.69) gives

Clearly then the solution V is bounded and non-constant if
D b < o0, (8.70)

Thus we have reduced the question of transience to identifying conditions under which
the expansion in (8.67) holds with the coefficients b; positive and summable.
Let us write aj = I'(1 — j) so that

A(z) = iajzj =2 (z7Y)
0
and for 0 < z < 1 we have
B(z):=2[I"(z"") ~ 1/l - 2] = [A(2) —2]/[1 - 4]
= 1—[1-A(2)]/[1 2] (8.71)

Now if we have a positive mean for the increment distribution,

o0 ) oo
|Zz3 Z an|§Znan<1
0 n=j+1 n

and so B(z)~! is well defined for |z| < 1; moreover, by the expansion in (8.71)

B(z)™! = Z bjzj

with all with all b; > 0, and hence by Abel’s Theorem,
ij = [1 — Znan]_l = ﬁ_l
n

which is finite as required. O
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8.6 Commentary

On countable spaces the solidarity results we generalize here are classical, and thor-
ough expositions are in Feller [76], Chung [49], Cinlar [40] and many more places.
Recurrence is called persistence by Feller, but the terminology we use here seems to
have become the more standard. The first entrance, and particularly the last exit,
decomposition are vital tools introduced and exploited in a number of ways by Chung
[49].

There are several approaches to the transience/recurrence dichotomy. A common
one which can be shown to be virtually identical with that we present here uses the
concept of inessential sets (sets for which 74 is almost surely finite). These play the
role of transient parts of the space, with recurrent parts of the space being sets which
are not inessential. This is the approach in Orey [208], based on the original methods
of Doeblin [67] and Doob [68].

Our presentation of transience, stressing the role of uniformly transient sets, is
new, although it is implicit in many places. Most of the individual calculations are in
Nummelin [202], and a number are based on the more general approach in Tweedie
[272]. Equivalences between properties of the kernel U(z, A), which we have called
recurrence and transience properties, and the properties of essential and inessential
sets are studied in Tuominen [268].

The uniform transience property is inherently stronger than the inessential prop-
erty, and it certainly aids in showing that the skeletons and the original chain share
the dichotomy between recurrence and transience. For use of the properties of skeleton
chains in direct application, see Tjgstheim [265].

The drift conditions we give here are due in the countable case to Foster [82],
and the versions for more general spaces were introduced in Tweedie [275, 276] and
in Kalashnikov [117]. We shall revisit these drift conditions, and expand somewhat
on their implications in the next chapter. Stronger versions of (V1) will play a central
role in classifying chains as yet more stable in due course.

The test functions for classifying random walk in the bounded range case are
directly based on those introduced by Foster [82]. The evaluation of the transience
condition for skip-free walks, given in Proposition 8.5.5, is also due to Foster. The
approximations in the case of zero drift are taken from Guo and Petrucelli [92] and
are reused in analyzing SETAR models in Section 9.5.2.

The proof of recurrence of random walk in Theorem 8.1.5, using the weak law of
large numbers, is due to Chung and Ornstein [51]. It appears difficult to prove this
using the elementary drift methods.

The drift condition in the case of negative mean gives, as is well known, a stronger
form of recurrence: the concerned reader will find that this is taken up in detail in
Chapter 11, where it is a central part of our analysis.



