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The Nonlinear State Space Model

In applying the results and concepts of Part I in the domains of times series or sys-
tems theory, we have so far analyzed only linear models in any detail, albeit rather
general and multidimensional ones. This chapter is intended as a relatively complete
description of the way in which nonlinear models may be analyzed within the Marko-
vian context developed thus far. We will consider both the general nonlinear state
space model, and some specific applications which take on this particular form.

The pattern of this analysis is to consider first some particular structural or
stability aspect of the associated deterministic control, or CM(F'), model and then
under appropriate choice of conditions on the disturbance or noise process (typically a
density condition as in the linear models of Section 6.3.2) to verify a related structural
or stability aspect of the stochastic nonlinear state space NSS(F') model.

Highlights of this duality are

(i) if the associated CM(F') model is forward accessible (a form of controllability),
and the noise has an appropriate density, then the NSS(F') model is a T-chain
(Section 7.1);

(ii) a form of irreducibility (the existence of a globally attracting state for the CM(F')
model) is then equivalent to the associated NSS(F') model being a 1)-irreducible
T-chain (Section 7.2);

(iii) the existence of periodic classes for the forward accessible CM(F') model is fur-
ther equivalent to the associated NSS(F') model being a periodic Markov chain,
with the periodic classes coinciding for the deterministic and the stochastic
model (Section 7.3).

Thus we can reinterpret some of the concepts which we have introduced for Markov
chains in this deterministic setting; and conversely, by studying the deterministic
model we obtain criteria for our basic assumptions to be valid in the stochastic case.

In Section 7.4.3 the adaptive control model is considered to illustrate how these
results may be applied in specific applications: for this model we exploit the fact that
@ is generated by a NSS(F') model to give a simple proof that & is a 1-irreducible
and aperiodic T-chain.

We will end the chapter by considering the nonlinear state space model without
forward accessibility, and showing how e-chain properties may then be established in
lieu of the T-chain properties.
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7.1 Forward Accessibility and Continuous Components

The nonlinear state space model NSS(F') may be interpreted as a control system
driven by a noise sequence exactly as the linear model is interpreted. We will take
such a viewpoint in this section as we generalize the concepts used in the proof of
Proposition 6.3.3, where we constructed a continuous component for the linear state
space model.

7.1.1 Scalar models and forward accessibility

We first consider the scalar model SNSS(F') defined by
X, =F(Xp-1,Wp),

for some smooth (C'*°) function F': IR x R — IR and satisfying (SNSS1)-(SNSS2).
Recall that in (2.5) we defined the map Fj, inductively, for zy and w; arbitrary
real numbers, by

Fk+1(.’170, Wiy wk+1) = F(Fk(:z;o,wl, . wk), ’LUk_|_1),
so that for any initial condition Xy = ¢y and any k € Z,
Xi = Fk(:L'Oa Wi,... aWk)'

Now let {ur} be the associated scalar “control sequence” for CM(F') as in (CM1),
and use this to define the resulting state trajectory for CM(F) by

zr = F(zo,u1,...,ux), keZ,. (7.1)

Just as in the linear case, if from each initial condition zy € X a sufficiently large set
of states may be reached from x(, then we will find that a continuous component may
be constructed for the Markov chain X. It is not important that every state may be
reached from a given initial condition; the main idea in the proof of Proposition 6.3.3,
which carries over to the nonlinear case, is that the set of possible states reachable
from a given initial condition is not concentrated in some lower dimensional subset
of the state space.

Recall also that we have assumed in (CM1) that for the associated deterministic
control model CM(F) with trajectory (7.1), the control sequence {uy} is constrained
so that uy € Oy, k € Z, where the control set O,, is an open set in IR.

For z € X, k € Z, we define A¥ (z) to be the set of all states reachable from
at time k by CM(F): that is, A% (z) = {z}, and

A (2) == { F(w,ur, . un) sui € O, 1 < <k, k> (7.2)

We define A (x) to be the set of all states which are reachable from z at some time
in the future, given by

Ay(z) = U Ak (2) (7.3)
k=0

The analogue of controllability that we use for the nonlinear model is called forward
accessibility.
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Forward accessibility

The associated control model CM(F) is called forward accessible if for
each zy € X, the set A, (z9) C X has non-empty interior.

For general nonlinear models, forward accessibility depends critically on the particular
control set O, chosen. This is in contrast to the linear state space model, where
conditions on the driving matrix pair (F, G) sufficed for controllability.

Nonetheless, for the scalar nonlinear state space model we may show that forward
accessibility is equivalent to the following “rank condition”, similar to (LCM3):

Rank Condition for the Scalar CM(F') Model

(CM2)  For each initial condition z9 € IR there exists k € Z

and a sequence (ul,...,u?) € OF such that the derivative
0 0

is non-zero.

In the scalar linear case the control system (7.1) has the form

Ty = F.’I?kfl + Guk
with F and G scalars. In this special case the derivative in (CM2) becomes exactly
[F¥=1@|...|FG|G], which shows that the rank condition (CM2) is a generalization of

the controllability condition (LCM3) for the linear state space model. This connection
will be strengthened when we consider multidimensional nonlinear models below.

Theorem 7.1.1 The control model CM(F') is forward accessible if and only if the
rank condition (CM2) is satisfied.

A proof of this result would take us too far from the purpose of this book. It is
similar to that of Proposition 7.1.2, and details may be found in [173, 174].

7.1.2 Continuous components for the scalar nonlinear model

Using the characterization of forward accessibility given in Theorem 7.1.1 we now
show how this condition on CM(F') leads to the existence of a continuous component
for the associated SNSS(F') model.

To do this we need to increase the strength of our assumptions on the noise
process, as we did for the linear model or the random walk.
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Density for the SNSS(F') Model

(SNSS3)  The distribution I" of W' is absolutely continuous, with
a density 7, on IR which is lower semicontinuous.

The control set for the SNSS(F') model is the open set

Op :={z € R : y4(z) > 0}.

We know from the definitions that, with probability one, Wy € O,, for all k € Z,..
Commonly assumed noise distributions satisfying this assumption include those which
possess a continuous density, such as the Gaussian model, or uniform distributions
on bounded open intervals in IR.

We can now develop an explicit continuous component for such scalar nonlinear
state space models.

Proposition 7.1.2 Suppose that for the SNSS(F ) model, the noise distribution sat-
isfies (SNSS3), and that the associated control system CM(F') is forward accessible.
Then the SNSS(F) model is a T-chain.

PrROOF  Since CM(F) is forward accessible we have from Theorem 7.1.1 that the
rank condition (CM2) holds. For simplicity of notation, assume that the derivative
with respect to the kth disturbance variable is non-zero:

with (w?,...,w?) € OF. Define the function F¥*:IR x OF - R x OF~' x R as

.
Fk(.Io,’wl, .e. ,wk) = (ZE(),’wl, [ ,wk,1,$k)
where z = Fj(zo, w1, ..., wy). The total derivative of F* can be computed as
1 0 -+ 0
0o :
DFF = .
: 1 0
OF, OF, .,  OF
oxg w1 owy,
which is evidently full rank at (23, w?,...,w}). It follows from the Inverse Function

Theorem that there exists an open set

B:Bzg XBw(IJ X oo Xng
s 0 .0 0 : k. [k k+1
containing (zg, w7, ..., w}), and a smooth function G*: {F*{B}} — IR*"" such that

Gk(Fk(anwla"-;wk)) = (woawla"-awk)
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for all (zg, w1, ..., wy) € B.
Taking G}, to be the final component of G¥, we see that for all (zg, w1, ..., w;) €
B,
Gk(IE(),’wl, e ,wk_l,xk) = Gk(III(),’wl, . ,wk_l,Fk(xo,wl, e ,wk)) = Wg-

We now make a change of variables, similar to the linear case. For any xg € Bzg, and
any positive function f:IR — IRy,

Prf(z) = /---/f(Fk(xo,wl,...,wk))'yw(wk)---'yw(wl)dwl...dwk (7.6)

> /B o /Bwo f(Fk(iL'(),wl, v ,’U}k))")’w(UJk) ot "Yw(wl) dws .. dwk

k
We will first integrate over wy, keeping the remaining variables fixed. By making the
change of variables

wg

zg = F(zo, w1, ..., wg), wy, = G(zo, w1,y ..., Wg_1,Tk)
so that 5
k
dwy = |—3$k (To, W1y« s Wg_1, Tk)| dzg,
we obtain for (zg,w1,...,wg_1) € Bgo X ... % ng_l,

/ F(F(0, w1, - wg) )y (w) durg = / Flaw)ap(@o, wr, ... wp—r, zx) day, (7.7)

where we define, with & := (zg, w1, ..., w1, Zk),

0(6) = HGHE) € Brvu(Gr©)I 52 €)]

Since g, is positive and lower semicontinuous on the open set F*¥{B}, and zero on
F*{B}¢, it follows that g is lower semi-continuous on IRF*1,
Define the kernel T for an arbitrary bounded function f as

Tof (zo) 1=/---/f($k) 0k (&) Yo (w1) - - - Yo (wg—1) dwy .. . dwy_1dzy. (7.8)

The kernel Ty is non-trivial at z{ since

0G|,
0k (€”) v (w)) - - Y (wR_y) = Tu(éo)lvw(wg)%(ﬁ) s yw(wh_y) > 0,
where 0 = (29, w9, ... ,wg_l, wg) We will show that Ty f is lower semicontinuous on
IR whenever f is positive and bounded.
Since gk (zo, w1, ..., Wg—1, Tk)Yw(wi) - - - yw(wg—1) is a lower semicontinuous func-

tion of its arguments in IR¥*1, there exists a sequence of positive, continuous functions
ri:IR¥*1 - R, i € Z, such that for each i, the function r; has bounded support
and, as 1 1T oo,

Ti($0>w1> cee ,wk—hxk) ) Qk(xﬂawla cee awk—laivk)')'w(wl) : "’Yw(wk—1)
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for each (zg,wn,..., wg_1,Tk) € IR**1. Define the kernel T; using r; as

T f (zo) == /]Rkf(xk)Ti(wo,wla---,Wk—hwk)dwl---dwk—1 dxy,.

It follows from the dominated convergence theorem that T;f is continuous for any
bounded function f. If f is also positive, then as i 1 oo,

T; f (zo) T Tof (o), zo € R

which implies that Ty f is lower semicontinuous when f is positive.
Using (7.6) and (7.7) we see that Ty is a continuous component of P¥ which is
non-zero at z). From Theorem 6.2.4, the model is a T-chain as claimed. O

7.1.3 Simple bilinear model

The forward accessibility of the SNSS(F') model is usually immediate since the rank
condition (CM2) is easily checked.

To illustrate the use of Proposition 7.1.2, and in particular the computation of
the “controllability vector” (7.4) in (CM2), we consider the scalar example where &
is the bilinear state space model on X = IR defined in (SBL1) by

Xpr1 = 0Xp, + Wy 1 Xp + Wiy

where W is a disturbance process. To place this bilinear model into the framework
of this chapter we assume

Density for the Simple Bilinear Model

(SBL2)  The sequence W is a disturbance process on IR, whose
marginal distribution I' possesses a finite second moment,
and a density 7y, which is lower semicontinuous.

Under (SBL1) and (SBL2), the bilinear model X is an SNSS(F’) model with F' defined
in (2.7).

First observe that the one-step transition kernel P for this model cannot possess
an everywhere non-trivial continuous component. This may be seen from the fact
that P(—1/b,{—0/b}) = 1, yet P(z,{—0/b}) = 0 for all z # —1/b. It follows that
the only positive lower semicontinuous function which is majorized by P(-,{—60/b})
is zero, and thus any continuous component 7' of P must be trivial at —1/b: that is,

T(-1/b,R) = 0.
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This could be anticipated by looking at the controllability vector (7.4). The first
order controllability vector is

oF
By (@o,u1) = bzo +1,
which is zero at £y = —1/b, and thus the first order test for forward accessibility fails.

Hence we must take £ > 2 in (7.4) if we hope to construct a continuous component.
When k = 2 the vector (7.4) can be computed using the chain rule to give

OF OF OF
[ (o1, u2) 5 (w0, w) | 5 (a1, 2)]
= [(0 + bug)(bzo + 1) | bz + 1]

= [(6 + bug)(bzy + 1) | Obzg + b*uizo + bug + 1]
which is non-zero for almost every (Z;) € IR?. Hence the associated control model is
forward accessible, and this together with Proposition 7.1.2 gives

Proposition 7.1.3 If (SBL1) and (SBL2) hold then the bilinear model is a T-chain.

7.1.4 Multidimensional models

Most nonlinear processes that are encountered in applications cannot be modeled by
a scalar Markovian model such as the SNSS(F') model. The more general NSS(F')
model is defined by (NSS1), and we now analyze this in a similar way to the scalar
model.

We again call the associated control system CM(F') with trajectories

xk:Fk(IOaula--'auk)a kEZ-I—a (79)

forward accessible if the set of attainable states A (z), defined as

o
A(@) = U {Felm o w) u € 0,1 <i <k}, k21, (7.10)
k=0

has non-empty interior for every initial condition z € X.

To verify forward accessibility we define a further generalization of the controlla-
bility matrix introduced in (LCM3).

For 2y € X and a sequence {uy : uy € Oy, k € Z1} let {Ek, Ag : k € Z} denote
the matrices

S = S ) = 5]
Sk+1 = Ek+1\Z0, ULy - - Uk+1) = |
e (Th Uk+1)
oF
Apy1 = Apg1 (w0, ut, - .5 Up41) [8—] ;
U (Th,up41)
where z, = Fy(zo,u1 -+~ ug). Let CE = Ck (uq,...,uy) denote the generalized con-
trollability matriz (along the sequence u,...,ux)
C;TCO = [Ek"'EQAl | Ek"'EgAQ | | EkAkfl | Ak] (711)

If F' takes the linear form
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F(z,u) = Fx + Gu (7.12)
then the generalized controllability matrix again becomes
Cr, = [F71G |- | G,
which is the controllability matrix introduced in (LCM3).

Rank Condition for the Multidimensional CM(F') Model

(CM3)  For each initial condition zy € IR", there exists k € Z

and a sequence @° = (u?,...,u}) € Ok such that
rank C’go (@) = n. (7.13)
The controllability matrix Cg is the derivative of the state zx = F(y,uq,...,ux)
at time k with respect to the input sequence (u,l—, ...,u{ ). The following result is

a consequence of this fact together with the Implicit Function Theorem and Sard’s
Theorem (see [107, 174] and the proof of Proposition 7.1.2 for details).

Proposition 7.1.4 The nonlinear control model CM(F') satisfying (7.9) is forward
accessible if and only the rank condition (CM3) holds. |

To connect forward accessibility to the stochastic model (NSS1) we again assume that
the distribution of W possesses a density.

Density for the NSS(F') Model

(NSS3)  The distribution I" of W possesses a density -y, on IRP
which is lower semicontinuous, and the control set for the
NSS(F') model is the open set

Oy :={z € R : y(z) > 0}.

Using an argument which is similar to, but more complicated than the proof of Propo-
sition 7.1.2, we may obtain the following consequence of forward accessibility.

Proposition 7.1.5 If the NSS(F) model satisfies the density assumption (NSS3),

and the associated control model is forward accessible, then the state space X may be

written as the union of open small sets, and hence the NSS(F) model is a T-chain.
O
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Note that this only guarantees the T-chain property: we now move on to consider the
equally needed irreducibility properties of the NNS(F') models.

7.2 Minimal Sets and Irreducibility

We now develop a more detailed description of reachable states and topological irre-
ducibility for the nonlinear state space NSS(F') model, and exhibit more of the in-
terplay between the stochastic and topological communication structures for NSS(F')
models.

Since one of the major goals here is to exhibit further the links between the
behavior of the associated deterministic control model and the NSS(F') model, it is
first helpful to study the structure of the accessible sets for the control system CM(F')
with trajectories (7.9).

A large part of this analysis deals with a class of sets called minimal sets for the
control system CM(F'). In this section we will develop criteria for their existence and
properties of their topological structure. This will allow us to decompose the state
space of the corresponding NSS(F') model into disjoint, closed, absorbing sets which
are both %-irreducible and topologically irreducible.

7.2.1 Minimality for the Deterministic Control Model

We define A, (F) to be the set of all states attainable by CM(F) from the set E at
some time k£ > 0, and we let E? denote those states which cannot reach the set E:

A(E):= U Ay (x) E’:={zeX: A, (z)NE =0}.
zeE

Because the functions Fj(-,u1,...,u;) have the semi-group property

Froy (w0, uty -« o Upyg) = Fj(F (@0, Uty -« v Uk )y Ukg1s - -+ 5 Uktj)s

for 2y € X, u; € Oy, k,j € Z., the set maps {AX : k € Z} also have this property:
that is,
AM(E) = AR (AL(B), EcCX, kjeZ,.
If E C X has the property that
AL (E)CE

then E is called invariant. For example, for all C C X, the sets A, (C) and C° are
invariant, and since the closure, union, and intersection of invariant sets is invariant,
the set

2,.(C) := ﬁ { @N Ak ()} (7.14)

is also invariant.
The following result summarizes these observations:

Proposition 7.2.1 For the control system (7.9) we have for any C C X,

(i) A+(C) and A, (C) are invariant;
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(ii) £24(C) is invariant;
(iii) C° is invariant, and C° is also closed if the set C is open. O

As a consequence of the assumption that the map F' is smooth, and hence continuous,
we then have immediately

Proposition 7.2.2 If the associated CM(F') model is forward accessible then for the
NSS(F) model:

(i) A closed subset A C X is absorbing for NSS(F) if and only if it is invariant for
CM(F);

(ii) If U C X is open then for each k > 1 and = € X,

AR () U # 0 <= P*(z,U) > 0;

(iii) If U C X is open then for each x € X,

Ap(z)NU # 0 <= K, (z,U) > 0.

We now introduce minimal sets for the general CM(F') model.

Minimal sets

We call a set minimal for the deterministic control model CM(F) if
it is (topologically) closed, invariant, and does not contain any closed
invariant set as a proper subset.

For example, consider the LCM(F,G) model introduced in (1.4). The assumption
(LCM2) simply states that the control set O,, is equal to IRP.

In this case the system possesses a unique minimal set M which is equal to Xg,
the range space of the controllability matrix, as described after Proposition 4.4.3.
If the eigenvalue condition (LSS5) holds then this is the only minimal set for the
LCM(F,G) model.

The following characterizations of minimality follow directly from the definitions,

and the fact that both A, (z) and 2, (z) are closed and invariant.
Proposition 7.2.3 The following are equivalent for a nonempty set M C X:
(i) M is minimal for CM(F);

(ii) Ay(z) =M for all x € M;

(iii) 24(z) =M for allz € M. O
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7.2.2 M-Irreducibility and -irreducibility

Proposition 7.2.3 asserts that any state in a minimal set can be “almost reached”
from any other state. This property is similar in flavor to topological irreducibility
for a Markov chain. The link between these concepts is given in the following central
result for the NSS(F') model.

Theorem 7.2.4 Let M C X be a minimal set for CM(F). If CM(F) is forward
accessible and the disturbance process of the associated NSS(F) model satisfies the
density condition (NSS3), then

(i) the set M is absorbing for NSS(F);

(ii) the NSS(F) model restricted to M is an open set irreducible (and so -irreducible)
T-chain.

Proor  That M is absorbing follows directly from Proposition 7.2.3, proving M =
A (z) for some z; Proposition 7.2.1, proving A (z) is invariant; and Proposition 7.2.2,
proving any closed invariant set is absorbing for the NSS(F') model.

To see that the process restricted to M is topologically irreducible, let o € M,
and let U C X be an open set for which U N M # (). By Proposition 7.2.3 we have
A4 (zo) NU # 0. Hence by Proposition 7.2.2 K,_(z,U) > 0, which establishes open
set irreducibility. The process is then 1-irreducible from Proposition 6.2.2 since we
know it is a T-chain from Proposition 7.1.5. O

Clearly, under the conditions of Theorem 7.2.4, if X itself is minimal then the
NSS(F) model is both t-irreducible and open set irreducible. The condition that X
be minimal is a strong requirement which we now weaken by introducing a different
form of “controllability” for the control system CM(F).

We say that the deterministic control system CM(F) is indecomposable if its
state space X does not contain two disjoint closed invariant sets. This condition is
clearly necessary for CM(F) to possess a unique minimal set. Indecomposability is
not sufficient to ensure the existence of a minimal set: take X = R, O,, = (0,1), and

Tpp1 = F(Tg, Ups1) = Tp + U1,

so that all proper closed invariant sets are of the form [¢,00) for some ¢ € IR. This
system is indecomposable, yet no minimal sets exist.

Irreducible control models

If CM(F) is indecomposable and also possesses a minimal set M, then
CM(F') will be called M -irreducible.

If CM(F) is M-irreducible it follows that M? = (): otherwise M and M° would be
disjoint nonempty closed invariant sets, contradicting indecomposability. To establish
necessary and sufficient conditions for M-irreducibility we introduce a concept from
dynamical systems theory. A state * € X is called globally attracting if for all y € X,
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z* € 24 (y).
The following result easily follows from the definitions.

Proposition 7.2.5 (i) The nonlinear control system (7.9) is M-irreducible if and
only if a globally attracting state exists.

(ii) If a globally attracting state x* exists then the unique minimal set is equal to
Ay (%) = 024 (2%). 0

We can now provide the desired connection between irreducibility of the nonlinear
control system and )-irreducibility for the corresponding Markov chain.

Theorem 7.2.6 Suppose that CM(F) is forward accessible and the disturbance pro-
cess of the associated NSS(F ) model satisfies the density condition (NSS3).
Then the NSS(F ) model is v-irreducible if and only if CM(F ) is M -irreducible.

PrOOF  If the NSS(F) model is t)-irreducible, let z* be any state in supp, and
let U be any open set containing z*. By definition we have 4 (U) > 0, which implies
that K,_(z,U) > 0 for all z € X. By Proposition 7.2.2 it follows that z* is globally
attracting, and hence CM(F') is M-irreducible by Proposition 7.2.5.

Conversely, suppose that CM(F) possesses a globally attracting state, and let
U be an open petite set containing z*. Then A, (z) NU # ( for all z € X, which
by Proposition 7.2.2 and Proposition 5.5.4 implies that the NSS(F) model is -
irreducible for some 1. O

7.3 Periodicity for nonlinear state space models

We now look at the periodic structure of the nonlinear NSS(F') model to see how the
cycles of Section 5.4.3 can be further described, and in particular their topological
structure elucidated.

We first demonstrate that minimal sets for the deterministic control model
CM(F) exhibit periodic behavior. This periodicity extends to the stochastic frame-
work in a natural way, and under mild conditions on the deterministic control system,
we will see that the period is in fact trivial, so that the chain is aperiodic.

7.3.1 Periodicity for control models

To develop a periodic structure for CM(F') we mimic the construction of a cycle for
an irreducible Markov chain. To do this we first require a deterministic analogue of
small sets: we say that the set C' is k-accessible from the set B, for any k € Z ., if for
each y € B,
k
C c Al (y).

This will be denoted B — C. From the Implicit Function Theorem, in a manner
similar to the proof of Proposition 7.1.2, we can immediately connect k-accessibility
with forward accessibility.
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Proposition 7.3.1 Suppose that the CM(F') model is forward accessible. Then for
each © € X, there exist open sets By, Cy C X, with x € By and an integer k, € Z

such that By LEN Cy. O

In order to construct a cycle for an irreducible Markov chain, we first constructed
a vp-small set A with v,(A) > 0. A similar construction is necessary for CM(F).

Lemma 7.3.2 Suppose that the CM(F ) model is forward accessible. If M is minimal
for CM(F) then there exists an open set E C M, and an integer n € Z, such that
E-SE.

Proor  Using Proposition 7.3.1 we find that there exist open sets B and C, and
an integer k with B K, C, such that BN M # (). Since M is invariant, it follows that

CCA{(BNM)CM, (7.15)
and by Proposition 7.2.1, minimality, and the hypothesis that the set B is open,
Ai(z)NB#0 (7.16)

for every x € M.

Combining (7.15) and (7.16) it follows that A’(c) N B # 0 for some m € Z,
and ¢ € C. By continuity of the function F' we conclude that there exists an open set
E C C such that

AT ()N B #0 forall z € E.

The set E satisfies the conditions of the lemma with n = m+k since by the semi-group
property,
AT (z) = A (AT () > AL (AT(x)NB) > C D B

forallz ¢ £ a
Call a finite ordered collection of disjoint closed sets G :={G; : 1 < i < d} a
periodic orbit if for each 1,

A}F(Gi) C Giy1 i=1,...,d (mod d)

The integer d is called the period of G.
The cyclic result for CM(F') is given in

Theorem 7.3.3 Suppose that the function F: X x O, — X is smooth, and that the
system CM(F ) is forward accessible.

If M is a minimal set, then there exists an integer d > 1, and disjoint closed sets
G = {G;: 1 <i < d} such that M = U, G;, and G is a periodic orbit. Tt is unique
in the sense that if H is another periodic orbit whose union is equal to M with period
d', then d' divides d, and for each i the set H; may be written as a union of sets from

G.
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ProorF  Using Lemma 7.3.2 we can fix an open set F with £ C M, and an integer
k such that E —=5 E. Define I C Z, by

I'={n>1:E-" E} (7.17)

The semi-group property implies that the set I is closed under addition: for if ¢, j € I,
then for all x € E, o o .
A (@) = AL (4 (@) D AL(B) D B.

Let d denote g.c.d.(I). The integer d will be called the period of M, and M will be
called aperiodic when d = 1.
For 1 < i < d we define

Gi:={zecM: fj Ak () N B # 0. (7.18)
k=1

By Proposition 7.2.1 it follows that M = ngl G;.

Since F is an open subset of M, it follows that for each 7 € Z, the set G; is open
in the relative topology on M. Once we have shown that the sets {G;} are disjoint,
it will follow that they are closed in the relative topology on M. Since M itself is
closed, this will imply that for each %, the set G; is closed.

We now show that the sets {G;} are disjoint. Suppose that on the contrary
z € G; N Gj for some i # j. Then there exists k;, k; € Z such that

Ak N E£9  and AN NE£0 (7.19)

when y = z. Since F is open, we may find an open set O C X containing z such that
(7.19) holds for all y € O.
By Proposition 7.2.1, there exists v € F and n € Z such that

A" (1) N O £ 0. (7.20)

By (7.20), (7.19), and since E %9, E we have for § = i,7, and all z € E,
A{c'—o—kk(;dfts-k’n—i-ko (Z) S Aﬁ—o—l—k,;dfts—l—n (E)

> A4t (0) N O)
o AR (AR (AT (W) NO)NE) D E.

This shows that
2ky + ksd—d+nel

for § =1, j, and this contradicts the definition of d. We conclude that the sets {G;}
are disjoint.

We now show that G is a periodic orbit. Let z € G;, and u € O,,. Since the
sets {G;} form a disjoint cover of M and since M is invariant, there exists a unique
1 < j < d such that F(z,u) € G;. It follows from the semi-group property that
z € Gj_1, and hence ¢ = j — 1.

The uniqueness of this construction follows from the definition given in equation
(7.18). a

The following consequence of Theorem 7.3.3 further illustrates the topological
structure of minimal sets.



7.3 Periodicity for nonlinear state space models 167

Proposition 7.3.4 Under the conditions of Theorem 7.5.3, if the control set O, is
connected, then the periodic orbit G constructed in Theorem 7.3.3 is precisely equal
to the connected components of the minimal set M.

In particular, in this case M is aperiodic if and only if it is connected.

PROOF  First suppose that M is aperiodic. Let E — E, and consider a fixed state
v € E.
By aperiodicity and Lemma D.7.4 there exists an integer Ny with the property
that
k
e € A (v) (7.21)

for all k > Np. Since A% (v) is the continuous image of the connected set v x OF, the
set
o0
N
A (AP W) = | 4k () (7.22)
k=No

is connected. Its closure is therefore also connected, and by Proposition 7.2.1 the
closure of the set (7.22) is equal to M.

The periodic case is treated similarly. First we show that for some Ny € Z we

have
oo

Gd = U Alj_d (’U),
k=No
where d is the period of M, and each of the sets A¥%(v), k > Ny, contains v.
This shows that G4 is connected. Next, observe that

Gl = A-li-(Gd)a

and since the control set O, and Gy are both connected, it follows that G; is also
connected. By induction, each of the sets {G; : 1 <14 < d} is connected. O

7.3.2 Periodicity

All of the results described above dealing with periodicity of minimal sets were posed
in a purely deterministic framework. We now return to the stochastic model described
by (NSS1)-(NSS3) to see how the deterministic formulation of periodicity relates to
the stochastic definition which was introduced for Markov chains in Section 5.4.

As one might hope, the connections are very strong.

Theorem 7.3.5 If the NSS(F) model satisfies Conditions (NSS1)-(NSS3) and the
associated control model CM(F') is forward accessible then:

(1) If M is a minimal set, then the restriction of the NSS(F) model to M is a -
irreducible T-chain, and the periodic orbit {G; : 1 < i < d} C M whose ezistence
is guaranteed by Theorem 7.3.8 is -a.e. equal to the d-cycle constructed in
Theorem 5.4.4;

(ii) If CM(F) is M-irreducible, and if its unique minimal set M is aperiodic, then
the NSS(F) model is a v-irreducible aperiodic T-chain.
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PrOOF  The proof of (i) follows directly from the definitions, and the observation
that by reducing F if necessary, we may assume that the set £ which is used in
the proof of Theorem 7.3.3 is small. Hence the set E plays the same role as the
small set used in the proof of Theorem 5.2.1. The proof of (ii) follows from (i) and
Theorem 7.2.4. O

7.4 Forward Accessible Examples

We now see how specific models may be viewed in this general context. It will become
apparent that without making any unnatural assumptions, both simple models such
as the dependent parameter bilinear model, and relatively more complex nonlinear
models such as the gumleaf attractor with noise and adaptive control models can be
handled within this framework.

7.4.1 The dependent parameter bilinear model

The dependent parameter bilinear model is a simple NSS(F') model where the function
F is given in (2.14) by

Y VA - a9 + Z
F((), (7)) = <9Y+W> (7.23)
Using Proposition 7.1.4 it is easy to see that the associated control model is forward
accessible, and then the model is easily analyzed. We have

Proposition 7.4.1 The dependent parameter bilinear model @ satisfying Assump-
tions (DBL1)-(DBL2) is a T-chain. If further there exists some one z* € O, such
that

Z*

then @ is -irreducible and aperiodic .

<1 (7.24)

PROOF ~ With the noise () considered a “control”, the first order controllability
matrix may be computed to give

01
YT a@)  \o

The control model is thus forward accessible, and hence ¢ = (g) is a T-chain.
Suppose now that the bound (7.24) holds for z* and let w* denote any element
of O, C R. If Z; and Wy, are set equal to z* and w* respectively in (7.23) then as

k — o0 .
0y . z*(1—a)”
(Yk> T (w*(l —a)l-—a- z*)_1>

The state z* is globally attracting, and it immediately follows from Proposition 7.2.5
and Theorem 7.2.6 that the chain is -irreducible. Aperiodicity then follows from the
fact that any cycle must contain the state z*. O
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7.4.2 The gumleaf attractor

Consider the NSS(F') model whose sample paths evolve to create the version of the
“gumleaf attractor” illustrated in Figure 2.5. This model is given in (2.11) by

X, = (Xg) _ (‘1/Xg—1 + 1/Xrbz—1> n <Wn>
Xt Xo_, 0

which is of the form (NSS1), with the associated CM(F') model defined as

F((%),u) = (—1/33‘; l/xb> + (g) (7.25)

From the formulae

OF  ((1/z%)* —(1/ab)? oF (1
%‘( 1 0 ) du  \0

we see that the second order controllability matrix is given by

C2, (ur, uz) = [(1/:16‘1‘)2 H

where 7y = (zé) and z{ = —1/z§ + 1/xf + u1. Hence, since CZ  is full rank for
0

all zg, u1 and wug, it follows that the control system is forward accessible. Applying

Proposition 7.2.6 gives

Proposition 7.4.2 The NSS(F) model (2.11) is a T-chain if the disturbance se-
quence W satisfies Condition (NSS3).

7.4.3 The adaptive control model

The adaptive control model described by (2.21)-(2.23) is of the general form of the
NSS(F) model and the results of the previous section are well suited to the analysis
of this specific example

An apparent difficulty with this model is that the state space X is not an open
subset of Euclidean space, so that the general results obtained for the NSS(F') model
may not seem to apply directly. However, given our assumptions on the model, the
interior of the state space, (0, 1%%7) xIR?, is absorbing, and is reached in one step with
probability one from each initial condition. Hence to obtain a continuous component,
and to address periodicity for the adaptive model, we can apply the general results
obtained for the nonlinear state space models by first restricting @ to the interior of
X.

Proposition 7.4.3 If (SAC1) and (SAC2) hold for the adaptive control model de-
fined by (2.21-2.23), and if 02 < 1, then & is a -irreducible and aperiodic T-chain.
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PROOF  To prove the result we show that the associated deterministic control model

for the nonlinear state space model defined by (2.21-2.23) is forward accessible, and

that for the associated deterministic control system, a globally attracting point exists.
The second-order controllability matrix has the form

5 - 0 —2a%02 X2Y; 0 0

0(X9,02,Y5 (Z1Y7+02)?
C%O(ZZ,WLZl,Wl) = B(Zg( fog 2Z1 QIZVl)T = e o 1 e
) ) ) o ° 0 1

where “e” denotes a variable which does not affect the rank of the controllability
matrix. It is evident that C(%O is full rank whenever Y; = 5OY0 + Wi is non-zero.
This shows that for each initial condition @y € X, the matrix 04250 is full rank for a.e.
{(Z1,W1), (Z2,W2)} € IR*, and so the associated control model is forward accessible,
and hence the stochastic model is a T-chain by Proposition 7.1.5.

It is easily checked that if (VZV) is set equal to zero in (2.21)-(2.22) then, since
a<1ando? <1,

:
1—a?’
This shows that the control model associated with the Markov chain @ is M-
irreducible, and hence by Proposition 7.2.6 the chain itself is 9-irreducible. The limit
above also shows that every element of a cycle {G;} for the unique minimal set must

D — ( 0,007  ask — oo.

contain the point (1—(_7%—2, 0,0). From Proposition 7.3.4 it follows that the chain is ape-

riodic. O

7.5 Equicontinuity and the nonlinear state space model

7.5.1 e-Chain properties of nonlinear state space models

We have seen in this chapter that the NSS(F') model is a T-chain if the noise variable,
viewed as a control, can “steer the state process @” to a sufficiently large set of states.

If the forward accessibility property does not hold then the chain must be ana-
lyzed using different methods. The process is always a Feller Markov chain, because
of the continuity of F, as shown in Proposition 6.1.2. In this section we search for
conditions under which the process @ is also an e-chain.

To do this we consider the derivative process associated with the NSS(F') model,
defined by Ag = I and

Apy1 = [DF (Pp, wr+1)] Ak, kK EZ4 (7.26)

where A takes values in the set of n X n-matrices, and DF' denotes the derivative of
F with respect to its first variable.

Since Ay = I it follows from the chain rule and induction that the derivative
process is in fact the derivative of the present state with respect to the initial state:

that is,
d
Ay =—9 forall k € Z,.
k= ap, Ok +
The main result in this section connects stability of the derivative process with

equicontinuity of the transition function for . Since the system (7.26) is closely
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related to the system (NSS1), linearized about the sample path (®g,®Pq,...), it is
reasonable to expect that the stability of @ will be closely related to the stability of
A.

Theorem 7.5.1 Suppose that (NSS1)-(NSS3) hold for the NSS(F') model. Then let-
ting Ay denote the derivative of @ with respect to @y, k € Z,, we have

(i) if for some open convex set N C X,

E[ sup [ A]] < oo (7.27)
¢0€N

then for all x € N,
d
L EI,] = .
(ii) suppose that (7.27) holds for all sufficiently small neighborhoods N of each yy €

X, and further that for any compact set C C X,

sup sup E, [|| Ag||] < oo.
yeC k>0
Then @ is an e-chain.

PROOF  The first result is a consequence of the Dominated Convergence Theorem.
To prove the second result, let f € C.(X) N C*(X). Then

L ()] = | Bl f @] < 17l Al

which by the assumptions of (ii), implies that the sequence of functions {P*f : k €
Z .} is equicontinuous on compact subsets of X. Since C*° N C, is dense in C,, this
completes the proof. O

It may seem that the technical assumption (7.27) will be difficult to verify in
practice. However, we can immediately identify one large class of examples by con-
sidering the case where the i.i.d. process W is uniformly bounded. It follows from the
smoothness condition on F' that supg, ¢y || Ax|| is almost surely finite for any compact
subset N C X, which shows that in this case (7.27) is trivially satisfied.

The following result provides another large class of models for which (7.27) is
satisfied. Observe that the conditions imposed on W in Proposition 7.5.2 are satisfied
for any i.i.d. Gaussian process. The proof is straightforward.

Proposition 7.5.2 For the Markov chain defined by (NSS1)-(NSS3), suppose that
F is a rational function of its arguments, and that for some g > 0,

Elexp(eo|W1])] < o0.

Then letting Ay denote the derivative of @ with respect to @y, we have for any
compact set C C X, and any k > 0,

E[sup [|Ag]l] < oo
PoeC

Hence under these conditions,

%Em[ék] _EA
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7.5.2 Linear state space models

We can easily specialize Theorem 7.5.1 to give conditions under which a linear model
is an e-chain.

Proposition 7.5.3 Suppose the LSS(F,G) model X satisfies (LSS1) and (LSS2),
and that the eigenvalue condition (LSS5) also holds. Then @ is an e-chain.

ProorF  Using the identity X,, = F™ Xy + Zg’;_ol F'GW,,_; we see that
A, =F™,

which tends to zero exponentially fast, by Lemma 6.3.4. The conditions of Theo-
rem 7.5.1 are thus satisfied, which completes the proof. ad

Observe that Proposition 7.5.3 uses the eigenvalue condition (LSS5), the same
assumption which was used in Proposition 4.4.3 to obtain %)-irreducibility for the
Gaussian model, and the same condition that will be used to obtain stability in later
chapters.

The analogous Proposition 6.3.3 uses controllability to give conditions under
which the linear state space model is a T-chain. Note that controllability is not re-
quired here.

Other specific nonlinear models, such as bilinear models, can be analyzed similarly
using this approach.

7.6 Commentary

We have already noted that in the degenerate case where the control set O,, consists
of a single point, the NSS(F') model defines a semi-dynamical system with state space
X, and in fact many of the concepts introduced in this chapter are generalizations of
standard concepts from dynamical systems theory.

Three standard approaches to the qualitative theory of dynamical systems are
topologial dynamics whose principal tool is point set topology; ergodic theory, where
one assumes (or proves, frequently using a compactness argument) the existence of an
ergodic invariant measure; and finally, the direct method of Lyapunov, which concerns
criteria for stability.

The latter two approaches will be developed in a stochastic setting in Parts I and
IT1. This chapter essentially focused on generalizations of the first approach, which
is also based upon, to a large extent, the structure and existence of minimal sets.
Two excellent expositions in a purely deterministic and control-free setting are the
books by Bhatia and Szegd [22] and Brown [37]. Saperstone [234] considers infinite
dimensional spaces so that, in particular, the methods may be applied directly to
the dynamical system on the space of probability measures which is generated by a
Markov processes.

The connections between control theory and irreducibility described here are
taken from Meyn [169] and Meyn and Caines [174, 173]. The dissertations of Chan
[41] and Mokkadem [187], and also Diebolt and Guégan [64], treat discrete time
nonlinear state space models and their associated control models. Diebolt in [63]
considers nonlinear models with additive noise of the form &y = F(P;) + W1
using an approach which is very different to that described here.
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Jakubsczyk and Sontag in [107] present a survey of the results obtainable for
forward accessible discrete time control systems in a purely deterministic setting.
They give a different characterization of forward accessibility, based upon the rank
of an associated Lie algebra, rather than a controllability matrix.

The origin of the approach taken in this chapter lies in the often cited paper by
Stroock and Varadahn [260]. There it is shown that the support of the distribution of
a diffusion process may be characterized by considering an associated control model.
Ichihara and Kunita in [101] and Kliemann in [138] use this approach to develop an
ergodic theory for diffusions. The invariant control sets of [138] may be compared to
minimal sets as defined here.

At this stage, introduction of the e-chain class of models is not well-motivated.
The reader who wishes to explore them immediately should move to Chapter 12.

In Duflo [69], a condition closely related to the stability condition which we impose
on A is used to obtain the Central Limit Theorem for a nonlinear state space model.
Duflo assumes that the function F' satisfies

|F (2, w) = F(y,w)| < afw)|z —y|
where « is a function on O,, satisfying, for some sufficiently large m,
Ela(W)™] < 1.

It is easy to see that any process @ generated by a nonlinear state space model
satisfying this bound is an e-chain.

For models more complex than the linear model of Section 7.5.2 it will not be
as easy to prove that A converges to zero, so a lengthier stability analysis of this
derivative process may be necessary. Since A is essentially generated by a random
linear system it is therefore likely to either converge to zero or evanesce.

It seems probable that the stochastic Lyapunov function approach of Kushner
[149] or Khas’minskii [134], or a more direct analysis based upon limit theorems for
products of random matrices as developed in, for instance, Furstenberg and Kesten
[84] will be well suited for assessing the stability of A.



