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Topology and Continuity

The structure of Markov chains is essentially probabilistic, as we have described it
so far. In examining the stability properties of Markov chains, the context we shall
most frequently use is also a probabilistic one: in Part II, stability properties such as
recurrence or regularity will be defined as certain return to sets of positive ¢-measure,
or as finite mean return times to petite sets, and so forth.

Yet for many chains, there is more structure than simply a o-field and a probabil-
ity kernel available, and the expectation is that any topological structure of the space
will play a strong role in defining the behavior of the chain. In particular, we are used
thinking of specific classes of sets in IR" as having intuitively reasonable properties.

When there is a topology, compact sets are thought of in some sense as manage-
able sets, having the same sort of properties as a finite set on a countable space; and
so we could well expect “stable” chains to spend the bulk of their time in compact
sets. Indeed, we would expect compact sets to have the sort of characteristics we have
identified, and will identify, for small or petite sets.

Conversely, open sets are “non-negligible” in some sense, and if the chain is
irreducible we might expect it at least to visit all open sets with positive probability.
This indeed forms one alternative definition of “irreducibility”.

In this, the first chapter in which we explicitly introduce topological considera-
tions, we will have, as our two main motivations, the desire to link the concept of
1p-irreducibility with that of open set irreducibility and the desire to identify compact
sets as petite.

The major achievement of the chapter lies in identifying a topological condition on
the transition probabilities which achieves both of these goals, utilizing the sampled
chain construction we have just considered in Section 5.5.1.

Assume then that X is equipped with a locally compact, separable, metrizable
topology with B(X) as the Borel o-field. Recall that a function A from X to IR is lower
semicontinuous if

lim inf h(y) > h(z), z € X:

Y-z
a typical, and frequently used, lower semicontinuous function is the indicator function
T1o(z) of an open set O in B(X).
We will use the following continuity properties of the transition kernel, couched

in terms of lower semicontinuous functions, to define classes of chains with suitable
topological properties.
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Feller chains, continuous components and T-chains
(i) If P(-,0) is a lower semicontinuous function for any open set O €
B(X), then P is called a (weak) Feller chain.

(ii) If a is a sampling distribution and there exists a substochastic tran-
sition kernel 7" satisfying

Ka(w,A) > T(x,4), w€X, A€BX),

where T'( -, A) is a lower semicontinuous function for any A € B(X),
then T is called a continuous component of K,.

(iii) If @ is a Markov chain for which there exists a sampling distri-
bution a such that K, possesses a continuous component 7', with
T(z,X) > 0 for all z, then @ is called a T-chain.

We will prove as one highlight of this section

Theorem 6.0.1 (i) If & is a T-chain and L(z,0) > 0 for all z and all open sets
O € B(X) then P is 1-irreducible.

(ii) If every compact set is petite then @ is a T-chain; and conversely, if P is a
Pp-irreducible T-chain then every compact set is petite.

(iii) If @ is a p-irreducible Feller chain such that suppv has non-empty interior,
then @ is a Y-irreducible T-chain.

PROOF  Proposition 6.2.2 proves (i); (ii) is in Theorem 6.2.5; (iii) is in Theo-
rem 6.2.9. O
In order to have any such links as those in Theorem 6.0.1 between the measure-
theoretic and topological properties of a chain, it is vital that there be at least a
minimal adaptation of the dynamics of the chain to the topology of the space on
which it lives.
For consider the chain on [0, 1] with transition law for z € [0, 1] given by

Pn h(n+1)"Y) =1-ay, P(n™10) =an, n € Zy; (6.1)

P(z,1)=1, z#n' n>1 (6.2)

This chain fails to visit most open sets, although it is definitely irreducible provided
an > 0 for all n: and although it never leaves a compact set, it is clearly unstable in
an obvious way if >, o, < 0o, since then it moves monotonically down the sequence
{n~1} with positive probability.

Of course, the dynamics of this chain are quite wrong for the space on which we
have embedded it: its structure is adapted to the normal topology on the integers, not
to that on the unit interval or the set {n"!,n € Z,}. The Feller property obviously
fails at {0}, as does any continuous component property if a;,, — 0.
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This is a trivial and pathological example, but one which proves valuable in
exhibiting the need for the various conditions we now consider, which do link the
dynamics to the structure of the space.

6.1 Feller Properties and Forms of Stability

6.1.1 Weak and strong Feller chains

Recall that the transition probability kernel P acts on bounded functions through
the mapping

Ph () = / P(z,dy)hly), = €X. (6.3)

Suppose that X is a (locally compact separable metric) topological space, and let us
denote the class of bounded continuous functions from X to IR by C(X).

The (weak) Feller property is frequently defined by requiring that the transition
probability kernel P maps C(X) to C(X). If the transition probability kernel P maps
all bounded measurable functions to C(X) then P (and also P) is called strong Feller.

That this is consistent with the definition above follows from

Proposition 6.1.1 (i) The transition kernel Pl is lower semicontinuous for every
open set O € B(X) (that is, ® is weak Feller) if and only if P maps C(X) to
C(X); and P maps all bounded measurable functions to C(X) (that is, P is strong
Feller) if and only if the function Ply is lower semicontinuous for every set

A € B(X).

(ii) If the chain is weak Feller then for any closed set C C X and any non-decreasing
function m: Z, — Z the function Ezlm(7¢c)] is lower semicontinuous in x.
Hence for any closed set C C X, r > 1 and n € Z the functions

Pe{rc > n} Ez[7c] and Ez[r™@]
are lower semicontinuous.

(iii) If the chain is weak Feller then for any open set O C X, the function Py{to0 < n}
and hence also the functions Kq(z,O) and L(z,0) are lower semicontinuous.

PrOOF  To prove (i), suppose that @ is Feller, so that Pl is lower semicontinuous
for any open set O. Choose f € C(X), and assume initially that 0 < f(z) <1 for all
z. For N > 1 define the Nth approximation to f as

fx@)= 1 Y To,()
k=1

where Oy, = {z : f(z) > k/N}. It is easy to see that fy 1 f as N 1 oo, and by assump-
tion Pfy is lower semicontinuous for each N. By monotone convergence, Pfy 1 Pf
as N 1 oo, and hence by Theorem D.4.1 the function Pf is lower semicontinuous.
Identical reasoning shows that the function P(1— f) =1 — Pf, and hence also —Pf,
is lower semicontinuous. Applying Theorem D.4.1 once more we see that the function
Pf is continuous whenever f is continuous with 0 < f < 1.
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By scaling and translation it follows that Pf is continuous whenever f is bounded
and continuous.

Conversely, if P maps C(X) to itself, and O is an open set then by Theorem D.4.1
there exist continuous positive functions fx such that fy(z) T lo(z) for each z as
N 1 00. By monotone convergence Plp = lim P fx, which by Theorem D.4.1 implies
that Pl is lower semicontinuous.

A similar argument shows that P is strong Feller if and only if the function P14
is lower semicontinuous for every set A € B(X).

We next prove (ii). By definition of 7¢ we have Py{7¢ = 0} = 0, and hence
without loss of generality we may assume that m(0) = 0. For each i > 1 define
A (i) := m(i) — m(i — 1), which is non-negative since m is non-increasing. By a
change of summation,

Elm(rc)] = > m(k)Pe{rc =k}
k=1
oo k
= > 3 An(i)Pe{rc =k}
k=11:=1

Ap(8)Pp{mc > i}

Il
.Mg

i
I

Since by assumption A,,(k) > 0 for each k > 0, the proof of (ii) will be complete
once we have shown that P,{7¢ > k} is lower semicontinuous in z for all k.

Since C is closed and hence l¢e(x) is lower semicontinuous, by Theorem D.4.1
there exist positive continuous functions f;, ¢ > 1, such that f;(z) 1 Lge(z) for each
zeX

Extend the definition of the kernel 14, given by

I4(z,B) = lznp(z),
by writing for any positive function g

Iy(x, B) := g(z)1p(z).
Then for all k € Z,

P.{rc > k} = (PIge)* Yz, X) = Z,l_iglo(PIfi)k_l(ac,X).
It follows from the Feller property that {(PI,)*~!(z,X) : i > 1} is an increas-
ing sequence of continuous functions and, again by Theorem D.4.1, this shows that
P.{7c > k} is lower semicontinuous in z, completing the proof of (ii).
Result (iii) is similar, and we omit the proof.
O
Many chains satisfy these continuity properties, and we next give some important
examples.

Weak Feller chains: the nonlinear state space models One of the simplest
examples of a weak Feller chain is the quite general nonlinear state space model
NSS(F).

Suppose conditions (NSS1) and (NSS2) are satisfied, so that X = {X,,}, where
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Xy = F(Xp—1,Wy),

for some smooth (C*°) function F:X x IRP — X, where X is an open subset of IR";
and the random variables {W}} are a disturbance sequence on IR”.

Proposition 6.1.2 The NSS(F) model is always weak Feller.

PrOOF  We have by definition that the mapping z — F(z,w) is continuous for
each fixed w € IR. Thus whenever h: X — IR is bounded and continuous, h o F(z,w)
is also bounded and continuous for each fixed w € IR. It follows from the Dominated
Convergence Theorem that

Ph (z) E[h(F (z,W))]

= /F(dw)h o F(z,w) (6.4)

is a continuous function of x € X. O

This simple proof of weak continuity can be emulated for many models. It implies
that this aspect of the topological analysis of many models is almost independent of
the random nature of the inputs. Indeed, we could rephrase Proposition 6.1.2 as saying
that since the associated control model CM(F') is a continuous function of the state
for each fixed control sequence, the stochastic nonlinear state space model NSS(F') is
weak Feller.

We shall see in Chapter 7 that this reflection of deterministic properties of CM(F')
by NSS(F') is, under appropriate conditions, a powerful and exploitable feature of the
nonlinear state space model structure.

Weak and strong Feller chains: the random walk The difference between the
weak and strong Feller properties is graphically illustrated in

Proposition 6.1.3 The unrestricted random walk is always weak Feller, and is
strong Feller if and only if the increment distribution I' is absolutely continuous with
respect to Lebesgue measure > on RR.

PROOF  Suppose that h € C(X): the structure (3.35) of the transition kernel for the
random walk shows that

Phie) = [ h)ridy—a)
~ [ hy+o)ry (6.5)
R

and since h is bounded and continuous, Ph is also bounded and continuous, again
from the Dominated Convergence Theorem. Hence @ is always weak Feller, as we also
know from Proposition 6.1.2.

Suppose next that I" possesses a density v with respect to x4 on IR. Taking h
in (6.5) to be any bounded function, we have

Phiz) = [ by —)dy (6.6
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but now from Lemma D.4.3 it follows that the convolution Ph (z) = y*h is continuous,
and the chain is strong Feller.

Conversely, suppose the random walk is strong Feller. Then for any B such that
I'(B) =6 > 0, by the lower semicontinuity of P(z, B) there exists a neighborhood O
of {0} such that

P(z,B) > P(0,B)/2=TI'(B)/2=4/2, z € 0. (6.7)
By Fubini’s Theorem and the translation invariance of u™** we have for any A € B(X)

Jrut(dy)I(A—y) = [ru™"(dy) [g Ma—y(z)(dz)
Ir F( %ﬂv) Jr Da—e(y) " (dy) (6.8)
— MLeb

since I'(IR) = 1. Thus we have in particular from (6.7) and (6.8)

ptt(B) = [gu""(dy)I'(B —y)
> Jou"(dy)I'(B —y) (6.9)
> 6put"(0)/2
and hence p"* > I" as required. |

6.1.2 Strong Feller chains and open set irreducibility

Our first interest in chains on a topological space lies in identifying their accessible
sets.

Open set irreducibility

(i) A point x € X is called reachable if for every open set O € B(X)
containing z (i.e. for every neighborhood of )

> P™y,0) >0, y € X.

(ii) The chain @ is called open set irreducible if every point is reachable.

We will use often the following result, which is a simple consequence of the definition
of support.

Lemma 6.1.4 If & is 1-irreducible then x* is reachable if and only if * € supp (¢).
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PrOOF  If * € supp (9) then, for any open set O containing x*, we have (0O) > 0
by the definition of the support. By ¢-irreducibility it follows that L(z,O) > 0 for all
z, and hence z* is reachable.

Conversely, suppose that z* ¢ supp (), and let O = supp (9)¢. The set O is open
by the definition of the support, and contains the state z*. By Proposition 4.2.3 there
exists an absorbing, full set A C supp (¢). Since L(x,0) = 0 for x € A it follows that

z* 1s not reachable. O

It is easily checked that open set irreducibility is equivalent to irreducibility when
the state space of the chain is countable and is equipped with the discrete topology.

The open set irreducibility definition is conceptually similar to the 1-irreducibility
definition: they both imply that “large” sets can be reached from every point in the
space. In the i-irreducible case large sets are those of positive ¥-measure, whilst in
the open set irreducible case, large sets are open non-empty sets.

In this book our focus is on the property of i-irreducibility as a fundamental
structural property. The next result, despite its simplicity, begins to link that property
to the properties of open-set irreducible chains.

Proposition 6.1.5 If & is a strong Feller chain, and X contains one reachable point
x*, then @ is p-irreducible, with ¢ = P(z*, -).

PROOF  Suppose A is such that P(z*, A) > 0. By lower semicontinuity of P(-, A),
there is a neighborhood O of z* such that P(z,A) > 0,z € O. Now, since z* is
reachable, for any y € X, we have for some n

Prtl(y, A) > / P"(y,d2)P(z, A) > 0 (6.10)
(0]

which is the result. O
This gives trivially

Proposition 6.1.6 If @ is an open set irreducible strong Feller chain, then & is a
p-irreducible chain. O

We will see below in Proposition 6.2.2 that this strong Feller condition, which (as
is clear from Proposition 6.1.3) may be unsatisfied for many models, is not needed
in full to get this result, and that Proposition 6.1.5 and Proposition 6.1.6 hold for
T-chains also.

There are now two different approaches we can take in connecting the topological
and continuity properties of Feller chains with the stochastic or measure-theoretic
properties of the chain. We can either weaken the strong Feller property by requiring
in essence that it only hold partially; or we could strengthen the weak Feller condition
whilst retaining its essential flavor.

It will become apparent that the former, T-chain, route is usually far more pro-
ductive, and we move on to this next. A strengthening of the Feller property to give
e-chains will then be developed in Section 6.4.
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6.2 T-chains

6.2.1 T-chains and open set irreducibility

The calculations for NSS(F') models and random walks show that the majority of the
chains we have considered to date have the weak Feller property.

However, we clearly need more than just the weak Feller property to connect
measure-theoretic and topological irreducibility concepts: every random walk is weak
Feller, and we know from Section 4.3.3 that any chain with increment measure con-
centrated on the rationals enters every open set but is not t-irreducible.

Moving from the weak to the strong Feller property is however excessive. Using
the ideas of sampled chains introduced in Section 5.5.1 we now develop properties of
the class of T-chains, which we shall find includes virtually all models we will inves-
tigate, and which appears almost ideally suited to link the general space attributes
of the chain with the topological structure of the space.

The T-chain definition describes a class of chains which are not totally adapted
to the topology of the space, in that the strongly continuous kernel T', being only a
“component” of P, may ignore many discontinuous aspects of the motion of @: but it
does ensure that the chain is not completely singular in its motion, with respect to the
normal topology on the space, and the strong continuity of 7" links set-properties such
as -irreducibility to the topology in a way that is not natural for weak continuity.

We illustrate precisely this point now, with the analogue of Proposition 6.1.5.

Proposition 6.2.1 If @ is a T-chain, and X contains one reachable point z*, then
@ is -irreducible, with ¢ = T(z*, -).

PROOF Let T be a continuous component for K,: since T' is everywhere non-trivial,
we must have in particular that 7'(z*, X) > 0. Suppose A is such that T'(z*, A) > 0. By
lower semicontinuity of T'( -, A), there is a neighborhood O of z* such that T'(w, A) >
0,w € O. Now, since z* is reachable, for any y € X, we have from Proposition 5.5.2

Kas*a(yaA) > /OKas(y,dw)Ka(w,A)

> [ Kuly,do)T(w, 4)
o
> 0 (6.11)

which is the result. O
This result has, as a direct but important corollary

Proposition 6.2.2 If @ is an open set irreducible T-chain, then D is a -irreducible
T-chain. O

6.2.2 T-chains and petite sets

When the Markov chain @ is 1-irreducible, we know that there always exists at least
one petite set. When X is topological, it turns out that there is a perhaps surprisingly
direct connection between the existence of petite sets and the existence of continuous
components.
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In the next two results we show that the existence of sufficient open petite sets
implies that @ is a T-chain.

Proposition 6.2.3 If an open v,-petite set A exists, then K, possesses a continuous
component non-trivial on all of A.

PROOF  Since A is v,-petite, by definition we have
Ka('a ) > ]lA()V{}

Now set T'(z, B) := 14(z)v(B): this is certainly a component of K,, non-trivial on
A. Since A is an open set its indicator function is lower semicontinuous; hence T is a
continuous component of K. O
Using such a construction we can build up a component which is non-trivial
everywhere, if the space X is sufficiently rich in petite sets. We need first

Proposition 6.2.4 Suppose that for each x € X there exists a probability distribution
agy on Z4 such that K, possesses a continuous component Ty which is non-trivial at
x. Then @ is a T-chain.

PrOOF  For each z € X, let O, denote the set
Oy = {y € X: Ty(y,X) > 0}.

which is open since T, (-, X) is lower semicontinuous. Observe that by assumption,
z € Oy for each z € X.

By Lindel6f’s Theorem D.3.1 there exists a countable subcollection of sets {O; :
i € Z1} and corresponding kernels T; and K,, such that |J O; = X. Letting

o o0
T=> 2", and a=) 27Fq,

it follows that K, > T, and hence satisfies the conclusions of the proposition. a
We now get a virtual equivalence between the T-chain property and the existence
of compact petite sets.

Theorem 6.2.5 (i) If every compact set is petite, then @ is a T-chain.

(ii) Conversely, if ® is a p-irreducible T-chain then every compact set is petite, and
consequently if @ is an open set irreducible T-chain then every compact set is
petite.

PROOF  Since X is o-compact, there is a countable covering of open petite sets, and
the result (i) follows from Proposition 6.2.3 and Proposition 6.2.4.

Now suppose that @ is 1-irreducible, so that there exists some petite A € BT (X),
and let K, have an everywhere non-trivial continuous component 7.

By irreducibility K,_(z,A) > 0, and hence from (5.46)

Koo, (2, A) = KoK, (2, A) > TK,, (z,A) >0

for all z € X.
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The function TK,_(-,A) is lower semicontinuous and positive everywhere on
X. Hence Kguq, (2, A) is uniformly bounded from below on compact subsets of X.
Proposition 5.2.4 completes the proof that each compact set is petite.

The fact that we can weaken the irreducibility condition to open-set irreducibility
follows from Proposition 6.2.2. O

The following factorization, which generalizes Proposition 5.5.5, further links the
continuity and petiteness properties of T-chains.

Proposition 6.2.6 If D is a ¥-irreducible T-chain, then there is a sampling distribu-
tion b, an everywhere strictly positive, continuous function s': X — IR, and a mazimal
irreducibility measure 1y such that

Ky(z, B) > s'(x)s(B), z € X, B € B(X).

Proor If T is a continuous component of K,, then we have from Proposi-
tion 5.5.5 (iii),

Kuel@.B) > [ Ku(a,dy)s(s) ve(B)
> T(z,8)¢c(B)

\%

The function T'( -, s) is positive everywhere and lower semicontinuous, and therefore
it dominates an everywhere positive continuous function s’; and we can take b = a*c
to get the required properties. O

6.2.3 Feller chains, petite sets, and T-chains

We now investigate the existence of compact petite sets when the chain satisfies only
the (weak) Feller continuity condition. Ultimately this leads to an auxiliary condition,
satisfied by very many models in practice, under which a weak Feller chain is also a
T-chain.

We first require the following lemma for petite sets for Feller chains.

Lemma 6.2.7 If @ is a -irreducible Feller chain, then the closure of every petite
set is petite.

Proor By Proposition 5.2.4 and Proposition 5.5.4 and regularity of probability
measures on B(X) (i.e. a set A € B(X) may be approximated from within by compact
sets), the set A is petite if and only if there exists a probability a on Z,, § > 0, and
a compact petite set C' C X such that

K,(z,C) >6, =z¢€A.

By Proposition 6.1.1 the function K,(z,C) is upper semicontinuous when C is com-
pact. Thus we have
inf K,(z,C) = inf K, C
1o Kol 0) = Jof K[, C)
and this shows that the closure of a petite set is petite. O
It is now possible to define auxiliary conditions under which all compact sets are
petite for a Feller chain.
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Proposition 6.2.8 Suppose that @ is Y-irreducible. Then all compact subsets of X
are petite if either:

(1) @ has the Feller property and an open 1-positive petite set exists; or

(ii) @ has the Feller property and supp has non-empty interior.

PrROOF  Tosee (i), let A be an open petite set of positive ¢-measure. Then K,_( -, A)
is lower semicontinuous and positive everywhere, and hence bounded from below on
compact sets. Proposition 5.5.4 again completes the proof.

To see (ii), let A be a 1-positive petite set, and define

Ay := closure {z : K,_(z,A) > 1/k} N supp.

By Proposition 5.2.4 and Lemma 6.2.7, each Ay, is petite. Since supp ¥ has non-empty
interior it is of the second category, and hence there exists k € Z and an open set
O C A C supp®. The set O is an open 1-positive petite set, and hence we may
apply (i) to conclude (ii). a

A surprising, and particularly useful, conclusion from this cycle of results concern-
ing petite sets and continuity properties of the transition probabilities is the following
result, showing that Feller chains are in many circumstances also T-chains. We have
as a corollary of Proposition 6.2.8 (ii) and Proposition 6.2.5 (ii) that

Theorem 6.2.9 If a v-irreducible chain P is weak Feller and if supp 1 has nonempty
interior then @ is a T-chain. O

These results indicate that the Feller property, which is a relatively simple con-
dition to verify in many applications, provides some strong consequences for /-
irreducible chains.

Since we may cover the state space of a ¥-irreducible Markov chain by a countable
collection of petite sets, and since by Lemma 6.2.7 the closure of a petite set is itself
petite, it might seem that Theorem 6.2.9 could be strengthened to provide an open
covering of X by petite sets without additional hypotheses on the chain. It would then
follow by Theorem 6.2.5 that any t-irreducible Feller chain is a T-chain.

Unfortunately, this is not the case, as is shown by the following counterexample.
Let X = [0,1] with the usual topology, let 0 < |a| < 1, and define the Markov
transition function P for z > 0 by

P(z,{0}) =1— P(z,{az}) ==

We set P(0,{0}) = 1. The transition function P is Feller and dop-irreducible. But for
any n € Z we have

lim Py (70} > m) = 1,

from which it follows that there does not exist an open petite set containing the point

{0}
Thus we have constructed a 1-irreducible Feller chain on a compact state space
which is not a T-chain.
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6.3 Continuous Components For Specific Models

For a very wide range of the irreducible examples we consider, the support of the
irreducibility measure does indeed have non-empty interior under some “spread-out”
type of assumption. Hence weak Feller chains, such as the entire class of nonlinear
models, will have all of the properties of the seemingly much stronger T-chain models
provided they have an appropriate irreducibility structure.

We now identify a number of other examples of T-chains more explicitly.

6.3.1 Random walks

Suppose @ is random walk on a half-line. We have already shown that provided the
increment distribution I' provides some probability of negative increments then the
chain is dp-irreducible, and moreover all of the sets [0, c| are small sets.

Thus all compact sets are small and we have immediately from Theorem 6.2.5

Proposition 6.3.1 The random walk on a half line with increment measure I is
always a -irreducible T-chain provided that I'(—oo,0) > 0. ad

Exactly the same argument for a storage model with general state-dependent
release rule r(z), as discussed in Section 2.4.4, shows these models to be dp-irreducible
T-chains when the integral R(z) of (2.33) is finite for all z.

Thus the virtual equivalence of the petite compact set condition and the T-chain
condition provides an easy path to showing the existence of continuous components
for many models with a real atom in the space.

Assessing conditions for non-atomic chains to be T-chains is not quite as simple in
general. However, we can describe exactly what the continuous component condition
defining T-chains means in the case of the random walk. Recall that the random walk
is called spread-out if some convolution power I"™* is non-singular with respect to
p=* on RR.

Proposition 6.3.2 The unrestricted random walk is a T-chain if and only if it is
spread out.

Proor If I' is spread out then for some M, and some positive function vy, we have
PM(5, ) =T (A= 2) > [ y)dy=T(a, 4)
A—z

and exactly as in the proof of Proposition 6.1.3, it follows that T is strong Feller:
the spread-out assumption ensures that 7'(z, X) > 0 for all z, and so by choosing the
sampling distribution as a = dj; we find that & is a T-chain.

The converse is somewhat harder, since we do not know a priori that when @ is a
T-chain, the component 7' can be chosen to be translation invariant. So let us assume
that the result is false, and choose A such that p“*(A) = 0 but I'"*(A) = 1 for every
n. Then I'"*(A¢) = 0 for all n and so for the sampling distribution a associated with
the component 7',

T(0,A%) < K,(0,A°) =) I'"™*(A%a(n) = 0.
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The non-triviality of the component 7" thus ensures 7'(0, A) > 0, and since T'(z, A)
is lower semicontinuous, there exists a neighborhood O of {0} and a § > 0 such that
T(z,A) >d>0,z€O.

Since T is a component of K, this ensures

Ku(z,A) >8>0, z€O.

But as in (6.8) by Fubini’s Theorem and the translation invariance of x™* we have
perd) = [ ) a-y)
_ / L (dy) P (y, A). (6.12)
R
Multiplying both sides of (6.12) by a(n) and summing gives
pt(A) = Jru""(dy)Ka(y, A)
> Jou""(dy)Ka(y, A) (6.13)
> opt(0)
and since p**(0) > 0, we have a contradiction. O

This example illustrates clearly the advantage of requiring only a continuous
component, rather than the Feller property for the chain itself.

6.3.2 Linear models as T-chains

Proposition 6.3.2 implies that the random walk model is a T-chain whenever the
distribution of the increment variable W is sufficiently rich that, from each starting
point, the chain does not remain in a set of zero Lebesgue measure.

This property, that when the set of reachable states is appropriately large the
model is a T-chain, carries over to a much larger class of processes, including the
linear and nonlinear state space models.

Suppose that X is a LSS(F,G)model, defined as usual by X; 1 = F X+ GWyy .
By repeated substitution in (LSS1) we obtain for any m € Z,

m—1
Xp=F"Xo+ Y F'GWp_; (6.14)
=0

To obtain a continuous component for the LSS(F,G) model, our approach is
similar to that in deriving its irreducibility properties in Section 4.4. We require that
the set of possible reachable states be large for the associated deterministic linear
control system, and we also require that the set of reachable states remain large when
the control sequence u is replaced by the random disturbance W. One condition
sufficient to ensure this is
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Non-singularity Condition for the LSS(F,G) Model

(LSS4) The distribution I" of the random variable W is non-
singular with respect to Lebesgue measure, with non-trivial
density 7,y.

Using (6.14) we now show that the n-step transition kernel itself possesses a continu-
ous component provided, firstly, I" is non-singular with respect to Lebesgue measure
and secondly, the chain X can be driven to a sufficiently large set of states in IR"
through the action of the disturbance process W = {Wj} as described in the last
term of (6.14). This second property is a consequence of the controllability of the
associated model LCM(F,QG).

In Chapter 7 we will show that this construction extends further to more complex
nonlinear models.

Proposition 6.3.3 Suppose the deterministic control model LCM(F,G) on IR" sat-
isfies the controllability condition (LCMS3), and the associated LSS(F,G) model X
satisfies the nonsingularity condition(LSS/).

Then the n-skeleton possesses a continuous component which is everywhere non-
trivial, so that X is a T-chain.

Proor We will prove this result in the special case where W is a scalar. The
general case with W € IR? is proved using the same methods as in the case where
p = 1, but much more notation is needed for the required change of variables [174].

Let f denote an arbitrary positive function on X = IR". From (6.14) together
with non-singularity of the disturbance process W we may bound the conditional
mean of f(®,) as follows:

n—1

P'f(z0) = E[f(F'zo+ > F'GWny)] (6.15)
=0

n—1
/ o / f(anO + Z FiGw"—i) 'Y’w('wl) T 'Yw(wn) dwy ... dwp.
=0

v

Letting C,, denote the controllability matrix in (4.13) and defining the vector valued
random variable W,, = (W1y,...,W,) T, we define the kernel T as

Tf (@)= [ F(F" + Cutln) () i

We have T'(z,X) = {J 7y (z) dz}™ > 0, which shows that 7" is everywhere non-trivial;
and T is a component of P" since (6.15) may be written in terms of T as

PP (w0) 2 [ £ 0+ Cun) (i) dify = T (z0). (6.16)
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Let |Cyp| denote the determinant of C,, which is non-zero since the pair (F,G) is
controllable. Making the change of variables

Ty = Coily  dity = |Cp|dib,

in (6.16) allows us to write
71 (o) = [ F(F"0 +5)3(C5 1 50) [Cal ! .

By Lemma D.4.3 and the Dominated Convergence Theorem, the right hand side of
this identity is a continuous function of zy whenever f is bounded. This combined
with (6.16) shows that 7' is a continuous component of P". O

In particular this shows that the ARMA process (ARMA1) and any of its vari-
ations may be modeled as a T-chain if the noise process W is sufficiently rich with
respect to Lebesgue measure, since they possess a controllable realization from Propo-
sition 4.4.2.

In general, we can also obtain a T-chain by restricting the process to a control-
lable subspace of the state space in the manner indicated after Proposition 4.4.3.

6.3.3 Linear models as i-irreducible T-chains

We saw in Proposition 4.4.3 that a controllable LSS(F,G) model is ¢-irreducible (with
1 equivalent to Lebesgue measure) if the distribution I" of W is Gaussian. In fact,
under the conditions of that result, the process is also strong Feller, as we can see
from the exact form of (4.18). Thus the controllable Gaussian model is a 1p-irreducible
T-chain, with 1 specifically identified and the “component” T" given by P itself.

In Proposition 6.3.3 we weakened the Gaussian assumption and still found con-
ditions for the LSS(F,G) model to be a T-chain. We need extra conditions to retain
9-irreducibility.

Now that we have developed the general theory further we can also use substan-
tially weaker conditions on W to prove the chain possesses a reachable state, and
this will give us the required result from Section 6.2.1. We introduce the following
condition on the matrix F' used in (LSS1):

Eigenvalue condition for the LSS(F,G) model

(LSS5) The eigenvalues of F' fall within the open unit disk in
C.

We will use the following lemma, to control the growth of the models below.

Lemma 6.3.4 Let p(F) denote the modulus of the eigenvalue of F of mazimum
modulus, where F' is an n X n matriz. Then for any matriz norm || - || we have the
limat 1
— i _ n
log(p(F)) = lim_— log([|F™])- (6.17)
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PrOOF  The existence of the limit (6.17) follows from the Jordan Decomposition
and is a standard result from linear systems theory: see [39] or Exercises 2.1.2 and
2.1.5 of [69] for details. O

A consequence of Lemma 6.3.4 is that for any constants p, p satisfying p < p(F) <
P, there exists ¢ > 1 such that

c_lgn < |IF™|| < ¢p™. (6.18)

Hence for the linear state space model, under the eigenvalue condition (LSS5), the
convergence F" — (0 takes place at a geometric rate. This property is used in the

following result to give conditions under which the linear state space model is irre-
ducible.

Proposition 6.3.5 Suppose that the LSS(F,G) model X satisfies the density con-
dition (LSS4) and the eigenvalue condition (LSS5), and that the associated control
system LCM(F,G) is controllable.

Then X is a Y-irreducible T-chain and every compact subset of X is small.

PrROOF We have seen in Proposition 6.3.3 that the linear state space model is a
T-chain under these conditions. To obtain irreducibility we will construct a reachable
state and use Proposition 6.2.1.

Let w* denote any element of the support of the distribution I" of W, and let

o
T* = Z FfGuw*.
k=0

If in (1.4), the control uy = w* for all k, then the system zj, converges to z* uniformly
for initial conditions in compact subsets of X.

By (pointwise) continuity of the model, it follows that for any bounded set A C X
and open set O containing z*, there exists ¢ > 0 sufficiently small and N € Z,
sufficiently large such that zy € O whenever zg € A, and u; € w*+eB,for1 <i < N,
where B denotes the open unit ball centered at the origin in X. Since w* lies in the
support of the distribution of W}, we can conclude that PV (zg, 0) > I'(w*+eB)N > 0
for zy € A.

Hence z* is reachable, which by Proposition 6.2.1 and Proposition 6.3.3 implies
that @ is 1-irreducible for some .

We now show that all bounded sets are small, rather than merely petite. Propo-
sition 6.3.3 shows that P™ possesses a strong Feller component T'. By Theorem 5.2.2
there exists a small set C for which T'(z*,C) > 0 and hence, by the Feller property,
an open set O containing z* exists for which

inf T(z,C) > 0.
€0
By Proposition 5.2.4 O is also a small set. If A is a bounded set, then we have already

) . -
shown that A ~% O for some N, so applying Proposition 5.2.4 once more we have the
desired conclusion that A is small. O
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6.3.4 The first-order SETAR model

Results for nonlinear models are not always as easy to establish. However, for simple
models similar conditions on the noise variables establish similar results. Here we
consider the first-order SETAR. models, which are defined as piecewise linear models
satisfying

Xn = ¢(4) +0(5) Xn—1 + Wn(4), Xn-1 € R;

where —oo =19 <71 < :++ < ry = oo and R;j = (rj_1,7;]; for each j, the noise
variables {W,,(j)} form an i.i.d. zero-mean sequence independent of {W, (i)} for i # j.
Throughout, W (j) denotes a generic variable with distribution I’;.

In order to ensure that these models can be analyzed as T-chains we make the
following additional assumption, analogous to those above.

(SETAR2) For each j = 1,---, M, the noise variable W(3j) has
a density positive on the whole real line.

Even though this model is not Feller, due to the possible presence of discontinuities
at the boundary points {r;}, we can establish

Proposition 6.3.6 Under (SETAR1) and (SETAR2), the SETAR model is a ¢-
irreducible T-process with ¢ taken as Lebesgue measure u™* on IR.

PrROOF  The p**-irreducibility is immediate from the assumption of positive den-
sities for each of the W (j). The existence of a continuous component is less simple.

It is obvious from the existence of the densities that at any point in the interior
of any of the regions R; the transition function is strongly continuous. We do not
necessarily have this continuity at the boundaries r; themselves. However, as x 1 r;
we have strong continuity of P(z, -) to P(r;, - ), whilst the limits as = | r; of P(z, A)
always exist giving a limit measure P'(r;, -) which may differ from P(r;, - ).

If we take T;(z, - ) = min(P'(ry, - ), P(rs, ), P(z, -)) then T; is a continuous com-
ponent of P at least in some neighborhood of r;; and the assumption that the densities
of both W (%), W (i + 1) are positive everywhere guarantees that 7; is non-trivial.

But now we may put these components together using Proposition 6.2.4 and we
have shown that the SETAR model is a T-chain. O

Clearly one can weaken the positive density assumption. For example, it is enough
for the T-chain result that for each j the supports of W(j) — ¢(j) — 0(j)r; and
W(ji+1)—¢(j +1) —0(j + 1)r; should not be distinct, whilst for the irreducibility
one can similarly require only that the densities of W (j) — ¢(j) —6(j)z exist in a fixed
neighborhood of zero, for € (r;_1,;]. For chains which do not for some structural
reason obey (SETAR2) one would need to check the conditions on the support of the
noise variables with care to ensure that the conclusions of Proposition 6.3.6 hold.
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6.4 e-Chains

Now that we have developed some of the structural properties of T-chains that we
will require, we move on to a class of Feller chains which also have desirable structural
properties, namely e-chains.

6.4.1 e-Chains and dynamical systems

The stability of weak Feller chains is naturally approached in the context of dynamical
systems theory as introduced in the heuristic discussion in Chapter 1. Recall from
Section 1.3.2 that the Markov transition function P gives rise to a deterministic map
from M, the space of probabilities on B(X), to itself, and we can construct on this
basis a dynamical system (P, M, d), provided we specify a metric d, and hence also a
topology, on M.

To do this we now introduce the topology of weak convergence.

Weak Convergence

A sequence of probabilities {uy : k € Z,} C M converges weakly to
fhoo € M (denoted gy — poo) if

lml/fdMﬁ=/fdmm
k—o0

for every f € C(X).

Due to our restrictions on the state space X, the topology of weak convergence is
induced by a number of metrics on M; see Section D.5. One such metric may be
expressed

() = S| [ fodu— [ foavi ™, pvem (619
z/ [ #

where {f;} is an appropriate set of functions in C.(X), the set of continuous functions
on X with compact support.

For (P, M,d,,) to be a dynamical system we require that P be a continuous
map on M. If P is continuous, then we must have in particular that if a sequence of
point masses {05, : k € Z,.} C M converge to some point mass d,. € M, then

(5$kPL(5%OP as k — o0

or equivalently, limy_,, Pf (zx) = Pf (z) for all f € C(X). That is, if the Markov
transition function induces a continuous map on M, then Pf must be continuous
for any bounded continuous function f.

This is exactly the weak Feller property. Conversely, it is obvious that for any weak
Feller Markov transition function P, the associated operator P on M is continuous.
We have thus shown
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Proposition 6.4.1 The triple (P, M,dy,) is a dynamical system if and only if the
Markov transition function P has the weak Feller property. O

Although we do not get further immediate value from this result, since there do
not exist a great number of results in the dynamical systems theory literature to be
exploited in this context, these observations guide us to stronger and more useful
continuity conditions.

Equicontinuity and e-Chains

The Markov transition function P is called equicontinuous if for each
f € C.(X) the sequence of functions {P*f : k € Z.} is equicontinuous
on compact sets.

A Markov chain which possesses an equicontinuous Markov transition
function will be called an e-chain.

There is one striking result which very largely justifies our focus on e-chains, especially
in the context of more stable chains.

Proposition 6.4.2 Suppose that the Markov chain @ has the Feller property, and
that there exists a unique probability measure w such that for every x

P"(z, ) — m. (6.20)

Then @ is an e-chain.

PROOF  Since the limit in (6.20) is continuous (and in fact constant) it follows
from Ascoli’s Theorem D.4.2 that the sequence of functions {P*f : k € Z.} is
equicontinuous on compact subsets of X whenever f € C(X). Thus the chain & is an
e-chain. ad

Thus chains with good limiting behavior, such as those in Part III in particular,
are forced to be e-chains, and in this sense the e-chain assumption is for many purposes
a minor extra step after the original Feller property is assumed.

Recall from Chapter 1 that the dynamical system (P, M,d,,) is called stable in
the sense of Lyapunov if for each measure y € M,

li d,(vP*. nPF) = 0.
S, sup m (v P", pP")

The following result creates a further link between classical dynamical systems theory,
and the theory of Markov chains on topological state spaces. The proof is routine and
we omit it.

Proposition 6.4.3 The Markov chain is an e-chain if and only if the dynamical
system (P, M,dy,) is stable in the sense of Lyapunov.
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6.4.2 e-Chains and tightness

Stability in the sense of Lyapunov is a useful concept when a stationary point for
the dynamical system exists. If £* is a stationary point and the dynamical system is
stable in the sense of Lyapunov, then trajectories which start near z* will stay near
z*, and this turns out to be a useful notion of stability.

For the dynamical system (P, M,d,,), a stationary point is an invariant proba-
bility: that is, a probability satisfying

(A) = / w(dz)P(z, 4), A€ B(X). (6.21)

Conditions for such an invariant measure 7 to exist are the subject of considerable
study for t-irreducible chains in Chapter 10, and in Chapter 12 we return to this
question for weak Feller chains and e-chains.

A more immediately useful concept is that of Lagrange stability. Recall from
Section 1.3.2 that (P, M,d,,) is Lagrange stable if, for every u € M, the orbit of
measures uP* is a precompact subset of M. One way to investigate Lagrange stability
for weak Feller chains is to utilize the following concept, which will have much wider
applicability in due course.

Chains Bounded in Probability

The Markov chain @ is called bounded in probability if for each initial
condition z € X and each ¢ > 0, there exists a compact subset C' C X
such that
lim inf P, {® € C} > 1 —¢.
k—o0

Boundedness in probability is simply tightness for the collection of probabilities
{P*(z,-) : k > 1}. Since it is well known [24] that a set of probabilities A C M
is tight if and only if A is precompact in the metric space (M, d,,) this proves

Proposition 6.4.4 The chain @ is bounded in probability if and only if the dynamical
system (P, M,d,,) is Lagrange stable. O

For e-chains, the concepts of boundedness in probability and Lagrange stabil-
ity also interact to give a useful stability result for a somewhat different dynamical
system.

The space C(X) can be considered as a normed linear space, where we take the
norm | - |, to be defined for f € C(X) as

\f\c-—z2 (sup |f()])

z€eCy,

where {C}} is a sequence of open precompact sets whose union is equal to X. The as-
sociated metric d, generates the topology of uniform convergence on compact subsets
of X.
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If P is a weak Feller kernel, then the mapping P on C(X) is continuous with
respect to this norm, and in this case the triple (P,C(X),d,) is a dynamical system.

By Ascoli’s Theorem D.4.2, (P,C(X),d.) will be Lagrange stable if and only if for
each initial condition f € C(X), the orbit {P¥f : k € Z,} is uniformly bounded, and
equicontinuous on compact subsets of X. This fact easily implies

Proposition 6.4.5 Suppose that @ is bounded in probability. Then P is an e-chain
if and only if the dynamical system (P,C(X),d.) is Lagrange stable. O

To summarize, for weak Feller chains boundedness in probability and the equicon-
tinuity assumption are, respectively, exactly the same as Lagrange stability and sta-
bility in the sense of Lyapunov for the dynamical system (P, M,d,,); and these sta-
bility conditions are both simultaneously satisfied if and only if the dynamical system
(P, M,d,,) and its dual (P,C(X),d.) are simultaneously Lagrange stable.

These connections suggest that equicontinuity will be a useful tool for studying
the limiting behavior of the distributions governing the Markov chain @, a belief
which will be justified in the results in Chapter 12 and Chapter 18.

6.4.3 Examples of e-chains

The easiest example of an e-chain is the simple linear model described by (SLM1)
and (SLM2).

If £ and y are two initial conditions for this model, and the resulting sample
paths are denoted {X,(z)} and {X,(y)} respectively for the same noise path, then
by (SLM1) we have

Xn+1(z) = Xn41(y) = a(Xn(2) = Xn(y)) = a" (2 —y). (6.22)

If || < 1, then this indicates that the sample paths should remain close together if
their initial conditions are also close.

From this observation we now show that the simple linear model is an e-chain
under the stability condition that |a| < 1. Since the random walk on IR is a special
case of the simple linear model with a = 1, this also implies that the random walk is
also an e-chain.

Proposition 6.4.6 The simple linear model defined by (SLM1) and (SLM2) is an
e-chain provided that |a| < 1.

ProorF Let f € C.(X). By uniform continuity of f, for any ¢ > 0 we can find § > 0
so that |f(z) — f(y)| < e whenever |z — y| < 4. It follows from (6.22) that for any
n € Z,,and any z, y € R with |z —y| < 4,

|PPHf (@) = PP ()] = JE[f (Xnta(2) = f(Xnra(®)]
< E[lf(Xns1(2) — f(Xnta(y))]]
< &,
which shows that X is an e-chain. O

Equicontinuity is rather difficult to verify or rule out directly in general, especially
before some form of stability has been established for the process. Although the
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equicontinuity condition may seem strong, it is surprisingly difficult to construct a
natural example of a Feller chain which is not an e-chain. Indeed, our concentration
on them is justified by Proposition 6.4.2 and this does provide an indirect way to
verify that many Feller examples are indeed e-chains.

One example of a “non-e” chain is, however, provided by a “multiplicative random
walk” on IR, defined by

Xk+1 = VXeWgt1, ke Z_|_, (623)

where W is a disturbance sequence on IR, whose marginal distribution possesses a
finite first moment. The chain is Feller since the right hand side of (6.23) is continuous
in Xj. However, X is not an e-chain when IR is equipped with the usual topology.

A complete proof of this fact requires more theory than we have so far developed,
but we can give a sketch to illustrate what can go wrong.

When X # 0, the process log X, k € Z, is a version of the simple linear model
described in Chapter 2, with a = % We will see in Section 10.5.4 that this implies
that for any Xy = zg # 0 and any bounded continuous function f,

PEf(z0) = foo, k= o0

where fo, is a constant. When zy = 0 we have that P*f (z¢) = f(z¢) = f(0) for all
k.

From these observations it is easy to see that X is not an e-chain. Take f € C.(X)
with f(0) =0 and f(z) > 0 for all x > 0: we may assume without loss of generality
that f, > 0. Since the one-point set {0} is absorbing we have P*(0,{0}) = 1 for
all k, and it immediately follows that P¥f converges to a discontinuous function. By
Ascoli’s Theorem the sequence of functions {P¥f : k € Z} cannot be equicontinuous
on compact subsets of IR, which shows that X is not an e-chain.

However by modifying the topology on X = IR, we do obtain an e-chain as follows.
Define the topology on the strictly positive real line (0, c0) in the usual way, and define
{0} to be open, so that X becomes a disconnected set with two open components.
Then, in this topology, P*¥f converges to a uniformly continuous function which is
constant on each component of X. From this and Ascoli’s Theorem it follows that X
is an e-chain.

It appears in general that such pathologies are typical of “non-e” Feller chains,
and this again reinforces the value of our results for e-chains, which constitute the
more typical behavior of Feller chains.

6.5 Commentary

The weak Feller chain has been a basic starting point in certain approaches to Markov
chain theory for many years. The work of Foguel [78, 80], Jamison [108, 109, 110],
Lin [154], Rosenblatt [229] and Sine [241, 242, 243] have established a relatively rich
theory based on this approach, and the seminal book of Dynkin [70] uses the Feller
property extensively.

We will revisit this in much greater detail in Chapter 12, where we will also take
up the consequences of the e-chain assumption: this will be shown to have useful
attributes in the study of limiting behavior of chains.
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The equicontinuity results here, which relate this condition to the dynamical
systems viewpoint, are developed by Meyn [170]. Equicontinuity may be compared to
uniform stability [108] or regularity [77]. Whilst e-chains have also been developed in
detail, particularly by Rosenblatt [227], Jamison [108, 109] and Sine [241, 242] they
do not have particularly useful connections with the 1-irreducible chains we are about
to explore, which explains their relatively brief appearance at this stage.

The concept of continuous components appears first in Pollard and Tweedie
[216, 217], and some practical applications are given in Laslett et al [153]. The real
exploitation of this concept really begins in Tuominen and Tweedie [269], from which
we take Proposition 6.2.2. The connections between T-chains and the existence of
compact petite sets is a recent result of Meyn and Tweedie [178].

In practice the identification of -irreducible Feller chains as T-chains provided
only that supp® has non-empty interior is likely to make the application of the
results for such chains very much more common. This identification is new. The
condition that supp ¥ have non-empty interior has however proved useful in a number
of associated areas in [217] and in Cogburn [53].

We note in advance here the results of Chapter 9 and Chapter 18, where we will
show that a number of stability criteria for general space chains have “topological”
analogues which, for T-chains, are exact equivalences. Thus T-chains will prove of
on-going interest.

Finding criteria for chains to have continuity properties is a model-by-model
exercise, but the results on linear and nonlinear systems here are intended to guide
this process in some detail.

The assumption of a spread-out increment process, made in previous chapters for
chains such as the unrestricted random walk, may have seemed somewhat arbitrary.
It is striking therefore that this condition is both necessary and sufficient for random
walk to be a T-chain, as in Proposition 6.3.2 which is taken from Tuominen and
Tweedie [269]; they also show that this result extends to random walks on locally
compact Haussdorff groups, which are T-chains if and only if the increment measure
has some convolution power non-singular with respect to (right) Haar measure. These
results have been extended to random walks on semi-groups by Hognas in [98].

In a similar fashion, the analysis carried out in Athreya and Pantula [14] shows
that the simple linear model satisfying the eigenvalue condition (LSS5) is a T-chain if
and only if the disturbance process is spread out. Chan et al [43] show in effect that
for the SETAR model compact sets are petite under positive density assumptions,
but the proof here is somewhat more transparent.

These results all reinforce the impression that even for the simplest possible
models it is not possible to dispense with an assumption of positive densities, and we
adopt it extensively in the models we consider from here on.



