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Pseudo-atoms

Much Markov chain theory on a general state space can be developed in complete
analogy with the countable state situation when X contains an atom for the chain @.

Atoms

A set a € B(X) is called an atom for @ if there exists a measure v on
B(X) such that
P(z,A)=v(A4), z€a.

If & is 1)-irreducible and () > 0 then « is called an accessible atom.

A single point « is always an atom. Clearly, when X is countable and the chain is
irreducible then every point is an accessible atom.

On a general state space, accessible atoms are less frequent. For the random walk
on a half line as in (RWHL1), the set {0} is an accessible atom when I'(—oc,0) > 0:
as we have seen in Proposition 4.3.1, this chain has 1 ({0}) > 0. But for the random
walk on IR when I' has a density, accessible atoms do not exist.

It is not too strong to say that the single result which makes general state space
Markov chain theory as powerful as countable space theory is that there exists an
“artificial atom” for @p-irreducible chains, even in cases such as the random walk with
absolutely continuous increments. The highlight of this chapter is the development of
this result, and some of its immediate consequences.

Atoms are found for “strongly aperiodic” chains by constructing a “split chain”
b evolving on a split state space X = XoU X1, where Xy and X; are copies of the state
space X, in such a way that

(i) the chain @ is the marginal chain of &, in the sense that P(®, € A) = P(®;, €
Ap U Ay) for appropriate initial distributions, and
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(ii) the “bottom level” X; is an accessible atom for .

The existence of a splitting of the state space in such a way that the bottom level is
an atom is proved in the next section. The proof requires the existence of so-called
“small sets” C, which have the property that there exists an m > 0, and a minorizing
measure v on B(X) such that for any z € C,

P™(z, B) > v(B). (5.1)

In Section 5.2, we show that, provided the chain is 1-irreducible
o
X=JC;
1

where each Cj is small: thus we have that the splitting is always possible for such
chains.

Another non-trivial consequence of the introduction of small sets is that on a
general space we have a finite cyclic decomposition for 1-irreducible chains: there is
a cycle of sets D;,i =0,1,...,d — 1 such that

where ¢(N) = 0 and P(z,D;) =1 for z € D;_; (mod d). A more general and more
tractable class of sets called petite sets are introduced in Section 5.5: these are used
extensively in the sequel, and in Theorem 5.5.7 we show that every petite set is small
if the chain is aperiodic.

5.1 Splitting ¢-Irreducible Chains

Before we get to these results let us first consider some simpler consequences of the
existence of atoms.

As an elementary first step, it is clear from the proof of the existence of a maximal
irreducibility measure in Proposition 4.2.2 that we have an easy construction of 7
when X contains an atom.

Proposition 5.1.1 Suppose there is an atom o in X such that Y, P"(z,a) > 0 for
all z € X. Then o is an accessible atom and D is v-irreducible with v = P (e, -).

ProOOF  We have, by the Chapman-Kolmogorov equations, that for any n > 1

Pz, 4) > / P"(z,dy) Py, A)
= P"z,a)v(A)

which gives the result by summing over n. O
The uniform communication relation “~ A” introduced in Section 4.2.3 is also

simplified if we have an atom in the space: it is no more than the requirement that

there is a set of paths to A of positive probability, and the uniformity is automatic.
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Proposition 5.1.2 If L(z, A) > 0 for some state z € o, where o is an atom, then
a~ A O

In many cases the “atoms” in a state space will be real atoms: that is, single
points which are reached with positive probability.

Consider the level in a dam in any of the storage models analyzed in Section 4.3.2.
It follows from Proposition 4.3.1 that the single point {0} forms an accessible atom
satisfying the hypotheses of Proposition 5.1.1, even when the input and output pro-
cesses are continuous.

However, our reason for featuring atoms is not because some models have single-
tons which can be reached with probability one: it is because even in the completely
general 1-irreducible case, by suitably extending the probabilistic structure of the
chain, we are able to artificially construct sets which have an atomic structure and
this allows much of the critical analysis to follow the form of the countable chain
theory.

This unexpected result is perhaps the major innovation in the analysis of general
Markov chains in the last two decades. It was discovered in slightly different forms,
independently and virtually simultaneously, by Nummelin [200] and by Athreya and
Ney [12].

Although the two methods are almost identical in a formal sense, in what follows
we will concentrate on the Nummelin Splitting, touching only briefly on the Athreya-

Ney random renewal time method as it fits less well into the techniques of the rest of
this book.

5.1.1 Minorization and splitting

To construct the artificial atom or regeneration point involves a probabilistic “split-
ting” of the state space in such a way that atoms for a “split chain” become natural
objects.

In order to carry out this construction we need to consider sets satisfying the
following

Minorization Condition

For some ¢ > 0, some C € B(X) and some probability measure v with

v(C% =0and v(C) =1
P(z,A) > 61c(z)v(A), A € B(X), z € X. (5.2)
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The form (5.2) ensures that the chain has probabilities uniformly bounded below
by multiples of v for every z € C. The crucial question is, of course, whether any
chains ever satisfy the Minorization Condition. This is answered in the positive in
Theorem 5.2.2 below: for g-irreducible chains “small sets” for which the Minorization
Condition holds exist, at least for the m-skeleton. The existence of such small sets is a
deep and difficult result: by indicating first how the Minorization Condition provides
the promised atomic structure to a split chain, we motivate rather more strongly the
development of Theorem 5.2.2.

In order to construct a split chain, we split both the space and all measures that
are defined on B(X).

We first split the space X itself by writing X = X x {0,1}, where X := X x {0}
and X; := X x {1} are thought of as copies of X equipped with copies B(Xp), B(X1)
of the o-field B(X)

We let B(X) be the o-field of subsets of X generated by B(Xq), B(X1): that is,
B(X) is the smallest o-field containing sets of the form Ag:= A x {0}, A; := A x {1},
A € B(X).

We will write z;,7 = 0,1 for elements of X, with zy denoting members of the
upper level Xy and z1 denoting members of the lower level X;. In order to describe
more eagsily the calculations associated with moving between the original and the split
chain, we will also sometimes call Xg the copy of X, and we will say that A € B(X) is
a copy of the corresponding set Ay C Xp.

If A is any measure on B(X), then the next step in the construction is to split the
measure A into two measures on each of Xy and X; by defining the measure A\* on
B(X) through

A (Ag) = AMANC)1 =48]+ AANCY), } (53)

A*(A41) = AMANCQC)S, '
where ¢ and C are the constant and the set in (5.2). Note that in this sense the
splitting is dependent on the choice of the set C, and although in general the set
chosen is not relevant, we will on occasion need to make explicit the set in (5.2) when
we use the split chain.

It is critical to note that X is the marginal measure induced by A*, in the sense

that for any A in B(X) we have
A (Ag U A1) = A(A). (5.4)

In the case when A C C¢, we have A\*(Ap) = A(A); only subsets of C are really
effectively split by this construction.

Now the third, and most subtle, step in the construction is to split the chain &
to form a chain & which lives on (X, B(X)). Define the split kernel P(z;, A) for z; € X

and A € B(X) by

P(zo, -) = P(z, )", o € Xo\Co; (5.5)
P(zo, -) = [1 = 6] [P(x, -)* = dv*(-)], o € Co; (5.6)

P(zq, ) =v*(-), z1 € Xy. (5.7)
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where C,§ and v are the set, the constant and the measure in the Minorization
Condition.

Outside C the chain {®,} behaves just like {®,}, moving on the “top” half X,
of the split space. Each time it arrives in C, it is “split”; with probability 1 — § it
remains in Cy, with probability ¢ it drops to C7. We can think of this splitting of the
chain as tossing a d-weighted coin to decide which level to choose on each arrival in
the set C' where the split takes place.

When the chain remains on the top level its next step has the modified law
(5.6). That (5.6) is always non-negative follows from (5.2). This is the sole use of the
Minorization Condition, although without it this chain cannot be defined.

Note here the whole point of the construction: the bottom level X; is an atom,
with ¢*(X1) = dp(C) > 0 whenever the chain @ is g-irreducible. By (5.3) we have
P (z;,X;\C1) =0 for all n > 1 and all z; € X, so that the atom C; C X is the only
part of the bottom level which is reached with positive probability. We will use the
notation

&:=Cy (5.8)

when we wish to emphasize the fact that all transitions out of C; are identical, so
that C; is an atom in X.

5.1.2 Connecting the split and original chains

The splitting construction is valuable because of the various properties that & inherits
from, or passes on to, @. We give the first of these in the next result.

Theorem 5.1.3 (i)  The chain ® is the marginal chain of {®,}: that is, for any
initial distribution X on B(X) and any A € B(X),

/ Mdz) P*(z, A) = / N (dyi) P* (i, Ao U A1), (5.9)
X X

(ii)  The chain & is p-irreducible if S is p*-irreducible; and if Y is p-irreducible
with p(C) > 0 then D is v*-irreducible, and & is an accessible atom for the split chain.

ProorF (i) From the linearity of the splitting operation we only need to check
the equivalence in the special case of A = §,, and & = 1. This follows by direct
computation. We analyze two cases separately.

Suppose first that z € C¢. Then

[ 82w P(ui, A0 U Ar) = Plao, Ao U A1) = P(a, A)
by (5.5) and (5.4). On the other hand suppose z € C. Then
/ 65 (dyi) P yza Ag U Ay)
= (1- 5)15(:c0, AO U A1) 4 6P(z1, Ag U Ay)

(1-4) TP (2, Ag U A1) — 00" (Ao U A1)]] + 0 (49 U Ay)
= ('T,A)

from (5.6), (5.7) and (5.4) again.
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(ii)  If the split chain is @*-irreducible it is straightforward that the original
chain is g-irreducible from (i). The converse follows from the fact that ¢& is an acces-
sible atom if ¢(C) > 0, which is easy to check, and Proposition 5.1.1. O

The following identity will prove crucial in later development. For any measure
u on B(X) we have

[ )P, ) = ([ wide)Pla, )’ (510

or, using operator notation, u*P = (uP)*. This follows from the definition of the
* operation and the transition function P, and is in effect a restatement of Theo-
rem 5.1.3 (i).

Since it is only the marginal chain @ which is really of interest, we will usually
consider only sets of the form A = Ag U Ay, where A € B(X), and we will largely
restrict ourselves to functions on X of the form f(z;) = f(z;), where f is some function
on X; that is, f is identical on the two copies of X. By (5.9) we have for any k, any
initial distribution ), and any function f identical on Xy and X;

Ex[f (k)] = Ex-[f(Dx)]-

To emphasize this identity we will henceforth denote f by f, and A by A in these
special instances. The context should make clear whether A is a subset of X or X, and
whether the domain of f is X or X.

The Minorization Condition ensures that the construction in (5.6) gives a prob-
ability law on X. A similar construction can also be carried out under the seem-
ingly more general minorization requirement that there exists a function h(z) with
J h(z)p(dz) > 0, and a measure v(-) on B(X) such that

P(z,A) > h(z)v(4), z€X, A€ B(X). (5.11)

The details are, however, slightly less easy than for the approach we give above al-
though there are some other advantages to the approach through (5.11): the interested
reader should consult Nummelin [202] for more details.

The construction of a split chain is of some value in the next several chapters,
although much of the analysis will be done directly using the small sets of the next
section. The Nummelin Splitting technique will, however, be central in our approach
to the asymptotic results of Part III.

5.1.3 A random renewal time approach

There is a second construction of a “pseudo-atom” which is formally very similar to
that above. This approach, due to Athreya and Ney [12], concentrates, however, not
on a “physical” splitting of the space but on a random renewal time.

If we take the existence of the minorization (5.2) as an assumption, and if we also
assume

L(z,C)=1, zeX (5.12)

we can then construct an almost surely finite random time 7 > 1 on an enlarged
probability space such that Py(7 < co) = 1 and for every A

P(®Pp, € A, 7 =n) =v(CNAP(T =n). (5.13)
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To construct 7, let @ run until it hits C; from (5.12) this happens eventually with
probability one. The time and place of first hitting C' will be, say, k and z. Then
with probability ¢ distribute @1 over C according to v; with probability (1 — §)
distribute @1 over the whole space with law Q(z,-), where

Q(z, A) = [P(z,4) — w(ANC)]/(1 = 9);

from (5.2) @ is a probability measure, as in (5.6). Repeat this procedure each time
@ enters C; since this happens infinitely often from (5.12) (a fact yet to be proven in
Chapter 9), and each time there is an independent probability § of choosing v, it is
intuitively clear that sooner or later this version of @, is chosen. Let the time when
it occurs be 7. Then Py(7 < 00) = 1 and (5.13) clearly holds; and (5.13) says that 7
is a regeneration time for the chain.

The two constructions are very close in spirit: if we consider the split chain
construction then we can take the random time 7 as 74, which is identical to the
hitting time on the bottom level of the split space.

There are advantages to both approaches, but the Nummelin Splitting does not
require the recurrence assumption (5.12), and more pertinently, it exploits the rather
deep fact that some m-skeleton always obeys the Minorization Condition when -
irreducibility holds, as we now see.

5.2 Small Sets

In this section we develop the theory of small sets. These are sets for which the
Minorization Condition holds, at least for the m-skeleton chain. From the splitting
construction of Section 5.1.1, then, it is obvious that the existence of small sets is of
considerable importance, since they ensure the splitting method is not vacuous.

Small sets themselves behave, in many ways, analogously to atoms, and in partic-
ular the conclusions of Proposition 5.1.1 and Proposition 5.1.2 hold. We will find also
many cases where we exploit the “pseudo-atomic” properties of small sets without
directly using the split chain.

Small Sets

A set C € B(X) is called a small set if there exists an m > 0, and a
non-trivial measure v, on B(X), such that for all z € C, B € B(X),

P™(z,B) > vm(B). (5.14)

When (5.14) holds we say that C is v,-small.
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The central result (Theorem 5.2.2 below), on which a great deal of the subsequent
development rests, is that for a t-irreducible chain, every set A € B*(X) contains
a small set in B*(X). As a consequence, every 9-irreducible chain admits some m-
skeleton which can be split, and for which the atomic structure of the split chain can
be exploited.

In order to prove this result, we need for the first time to consider the densities of
the transition probability kernels. Being a probability measure on (X, B(X)) for each
individual z and each n, the transition probability kernel P"(zx,-) admits a Lebesgue
decomposition into its absolutely continuous and singular parts, with respect to any
finite non-trivial measure ¢ on B(X) : we have for any fixed z and B € B(X)

P(e,B) = [ p"(z,y)¢(dy) + PL(. B). (515)

where p"(z,y) is the density of P"(z, -) with respect to ¢ and P, is orthogonal to ¢.

Theorem 5.2.1 Suppose ¢ is a o-finite measure on (X, B(X)). Suppose A is any set
in B(X) with ¢(A) > 0 such that

o0
¢(B)>0, BCA = > P¥z,B)>0, z€A
k=1

Then, for every n, the function p™ defined in (5.15) can be chosen to be a measurable
function on X2, and there exists C C A, m > 1, and § > 0 such that $(C) > 0 and

p"(z,y) >0, z,y€C. (5.16)

PrROOF  We include a detailed proof because of the central place small sets hold
in the development of the theory of ¥-irreducible Markov chains. However, the proof
is somewhat complex, and may be omitted without interrupting the flow of under-
standing at this point.

It is a standard result that the densities p™(z,y) of P"(z, -) with respect to ¢
exist for each x € X, and are unique except for definition on ¢-null sets. We first need
to verify that

(i) the densities p™(x,y) can be chosen jointly measurable in z and y, for each n;

(ii) the densities p™(z,y) can be chosen to satisfy an appropriate form of the
Chapman-Kolmogorov property, namely for n, m € Z,, and all z, z

P w,2) > [ (o)™ v, 2)gldy). (517
X

To see (i), we appeal to the fact that B(X) is assumed countably generated. This
means that there exists a sequence {B;;i > 1} of finite partitions of X, such that
B; 1 is a refinement of B;, and which generate B(X). Fix z € X, and let B;(z) denote
the element in B; with z € B;(z).

For each i, the functions

ph(z,y) = { 0 (1) =0
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are non-negative, and are clearly jointly measurable in z and y. The Basic Differen-
tiation Theorem for measures (cf. Doob [68], Chapter 7, Section 8) now assures us
that for y outside a ¢-null set NV,

pLo(z,y) = lim p}(z,y) (5.18)
71— 00

exists as a jointly measurable version of the density of P(z,-) with respect to ¢.
The same construction gives the densities p (z,y) for each n, and so jointly
measurable versions of the densities exist as required.
We now define inductively a version p"(z,y) of the densities satisfying (5.17),
starting from p? (z,y). Set p'(z,y) = pl,(x,v) for all z, y; and set, for n > 2 and any
"'C’ y’

P(oy) = play) V| max [ P, dw)p " w,g).
<m<n—1

One can now check (see Orey [208] p 6) that the collection {p"(z,y),z,y € X,n € Z}
satisfies both (i) and (ii).

We next verify (5.16). The constraints on ¢ in the statement of Theorem 5.2.1
imply that

o0

> pMwy) >0, z€A,  aeye Al

n=1

and thus we can find integers n, m such that

/A /A /A p" (=, 9)p™ (y, 2) $(dz) $(dy) $(dz) > 0.

Now choose 1 > 0 sufficiently small that, writing

An(n) = {(z,y) € Ax A:p"(z,y) > n}

and ¢? for the product measure ¢ x ¢ x ¢ on X x X x X, we have

¢ ({(z,,2) € Ax Ax A (z,y) € An(n), (y,2) € Am(n)}) > 0.

We suppress the notational dependence on 7 from now on, since 7 is fixed for the
remainder of the proof.

For any z,y, set Bi(z,y) = Bj(z) x B;(y), where B;(x) is again the element
containing z of the finite partition B; above. By the Basic Differentiation Theorem as
in (5.18), this time for measures on B(X) x B(X), there are ¢?-null sets N C X x X
such that for any k and (z,y) € Ag\ Nk,

lim ¢°(Ay N Bi(z,y))/¢*(Bi(z,y)) = 1. (5.19)

1— 00

Now choose a fixed triplet (u,v,w) from the set

{(x,y,z) : ($ay) € An\NTL’ (y7z) € Am\Nm}
From (5.19) we can find j large enough that

¢2 (An n Bj(ua U))

>
¢*(Am N Bj(v,w)) >

(3/4)¢* (Bj (v, w))- (5.20)
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Let us write Ap(z) = {y € A: (z,y) € Ap}, A5 (2) ={y € A: (y,2) € A} for the
sections of A, and A,, in the different directions. If we define

E, = {z € Ay N B;(u) : $(An(z) N B;j(v)) > (3/4)B;(v)} (5.21)

D = {2 € An N By(w) s $(A35(2) 0 B(0)) 2 G/DB;0)}, (522
then from (5.20) we have that ¢(E,) > 0, ¢(D,,) > 0. This then implies, for any pair
(x,2) € Ep, X Dy,

$(An(z) N A7, (2)) > (1/2)¢(Bj(v)) > 0 (5.23)
from (5.21) and (5.22).

Our pieces now almost fit together. We have, from (5.17), that for (z,z) € E, x
Dy,

Pz, 2) > /A ™M@, )™ (y, 2) p(dy)
n(z)NA}, (2)
> 12h(An() N AL (2))
> [n?/2(B;(v))
> 01, say . (5.24)

To finish the proof, note that since ¢(E;,,) > 0, there is an integer k and a set C C D,
with P*(z, E,) > 0, > 0, for all z € C. It then follows from the construction of the
densities above that for all z,z € C

PP (3, 2) > /E PF(z,dy)p" T (y, 2)

51525

\Y

and the result follows with § = §;60 and M =k +n + m. O

The key fact proven in this theorem is that we can define a version of the densities
of the transition probability kernel such that (5.16) holds uniformly over z € C. This
gives us

Theorem 5.2.2 If & is i-irreducible, then for every A € BT (X), there exists m > 1
and a vpy,-small set C C A such that C € BT(X) and v, {C} > 0.

PROOF When & is ¢-irreducible, every set in BT (X) satisfies the conditions of

Theorem 5.2.1, with the measure ¢ = 1. The result then follows immediately from

(5.16). O
As a direct corollary of this result we have

Theorem 5.2.3 If & is -irreducible, then the Minorization Condition holds for
some m-skeleton, and for every K, -chain, 0 <& < 1. O

Any @ which is -irreducible is well-endowed with small sets from Theorem 5.2.1,
even though it is far from clear from the initial definition that this should be the case.
Given the existence of just one small set from Theorem 5.2.2, we now show that it is
further possible to cover the whole of X with small sets in the %-irreducible case.

Proposition 5.2.4 (i) If C € B(X) is vp-small, and for any x € D we have
P™(z,C) > 4, then D is vpim-small, where vy i, is a multiple of vy,.
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(ii) Suppose D is 1p-irreducible. Then there exists a countable collection C; of small
sets in B(X) such that

X=JC (5.25)

(iii) Suppose @ is p-irreducible. If C € BT (X) is vp-small, then we may find M € Z
and a measure vy such that C is vyr-small, and vy {C} > 0.

Proor (i) By the Chapman-Kolmogorov equations, for any = € D,

Pt (g, B) = /X P"(z,dy) P™(y, B)

A%

/C P"(z,dy)P™(y, B) (5.26)
> ovp(B).

(ii) Since @ is 7-irreducible, there exists a vy,-small set C € BT (X) from
Theorem 5.2.2. Moreover from the definition of -irreducibility the sets

C(n,m):={y: P"(y,C) >m™'} (5.27)

cover X and each C(n,m) is small from (i).
(iii) Since C € BT (X), we have K,, (z,C) > 0 for all z € X. Hence vK,, (C) >
0, and it follows that for some m € Z,

v (C) :=vP™(C) > 0.

To complete the proof observe that, for all z € C,
P (s, B) = [ P(a,dy)P"(y, B) > vP"(B) = vy (B),
X

which shows that C' is vj;-small, where M = n + m. O

5.3 Small Sets for Specific Models

5.3.1 Random walk on a half line

Random walks on a half line provide a simple example of small sets, regardless of the
structure of the increment distribution.

It follows as in the proof of Proposition 4.3.1 that every set [0,c],c € IRy is
small, provided only that I'(—00,0) > 0: in other words, whenever the chain is 1)-
irreducible, every compact set is small. Alternatively, we could derive this result by
use of Proposition 5.2.4 (i) since {0} is, by definition, small.

This makes the analysis of queueing and storage models very much easier than
more general models for which there is no atom in the space. We now move on to
identify conditions under which these have identifiable small sets.



114 5. Pseudo-atoms

5.3.2 “Spread-out” random walks

Let us again consider a random walk & of the form
b =Dy 1+ Wna

satisfying (RW1). We showed in Section 4.3 that, if I" has a density vy with respect
to Lebesgue measure p'* on IR with

y(z) > 6 >0, lz| < B,

then @ is ®-irreducible: re-examining the proof shows that in fact we have demon-
strated that C' = {z : |z| < 8/2} is a small set.

Random walks with nonsingular distributions with respect to p"*", of which the
above are special cases, are particularly well adapted to the #-irreducible context. To
study them we introduce so-called “spread-out” distributions.

Spread-Out Random Walks

(RW2)  We call the random walk spread-out (or equivalently, we
call I" spread out) if some convolution power I'"™* is non-
singular with respect to p"".

For spread out random walks, we find that small sets are in general relatively easy to
find.

Proposition 5.3.1 If & is a spread-out random walk, with I'™* non-singular with
respect to p"°® then there is a neighborhood Cg = {x : |z| < B} of the origin which is
von-small, where vop = ep™ i, 4 for some interval [s,t], and some € > 0.

PROOF  Since I is spread out, we have for some bounded non-negative function y
with [ (z)dz > 0, and some n > 0,

P"(0, A) 2/7(;1:) dr,  Ac B(R).
A
Iterating this we have
Pr0,4) 2 [ [ e -yydydo = [ vt da: (5.28)
AJR A

but since from Lemma D.4.3 the convolution y*-y(z) is continuous and not identically
zero, there exists an interval [a,b] and a § with v % y(z) > d on [a,b]. Choose § =
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[b—a]/4, and [s,t] = [a+ B,b — B], to prove the result using the translation invariant
properties of the random walk. O

For spread out random walks, a far stronger irreducibility result will be provided
in Chapter 6 : there we will show that if @ is a random walk with spread-out increment
distribution I, with I'(—o0, 0) > 0,1'(0,00) > 0, then @ is u~"-irreducible, and every
compact set is a small set.

5.3.3 Ladder chains and the GI/G/I queue

Recall from Section 3.5 the Markov chain constructed on Z; x IR to analyze the
GI/G/1 queue, defined by

b, = (NnaRn)a n>1

where N,, is the number of customers at 7}, — and R, is the residual service time at
T +.
This has the transition kernel

Pli,z;§ x A) = 0, i>it1

P(’L,LL‘,jXA) = Ai—j+1(w7A)’ ]:1,,’L+1

Pliz;0x 4) = Ai(z, A),

where

Ao, 09]) = [ Phay)Gld), (529)
0

A, 0.9) = [ Ay, [0,00)] HIO, . (5.30)
n+1

Pi(z,y) = P(S, <t<S,,,R<y|Ro=u1); (5.31)

here, Ry = Sﬁv(t) 41 — t, where N(t) is the number of renewals in [0,] of a renewal

process with inter-renewal time H, and if Ry = z then S| = z.
At least one collection of small sets for this chain can be described in some detail.

Proposition 5.3.2 Let & = {N,, R,} be the Markov chain at arrival times of a
GI/G/1 queue described above. Suppose G(B) < 1 for all B < oo. Then the set
{0 x [0, 8]} is vi-small for ®, with v1(-) given by G(B,00)H(-).

ProOF  We consider the bottom “rung” {0 x IR}. By construction

45(, [0, 1) = H[0, -][1 = Ao(, [0, d])];

and since
Ao(z,[0,00)] = /G(dt)P(O <t<o|Ry=1)
— / G(d)1{t < z}
= G(—OO,.’L‘],
we have

The result follows immediately, since for z < 8, A§(z, [0, -]) > HJ[0, - |G(B, c0). O
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5.3.4 The forward recurrence time chain

Consider the forward recurrence time é-skeleton VI = V*(né),n € Z,, which was
defined in Section 3.5.3: recall that

VT(t):=inf(Z, —t: Z, > 1), t>0

where Z,, ;=37 Y; for {Y1,Ys,...} a sequence of independent and identical random
variables with distribution I', and Yy a further independent random variable with
distribution Iy.

We shall prove

Proposition 5.3.3 When I' is spread out then for ¢ sufficiently small the set [0, ]
is a small set for V(}".

PrROOF  As in (5.28), since I" is spread out there exists n € Z, an interval [a, ]
and a constant 8 > 0 such that

I'*(du) > Bu""(du), du C [a,b].
Hence if we choose small enough ¢ then we can find k£ € Z such that
™ (du) > Bl orayy (Wi (), du C [a,B] (5.32)

Now choose m > 1 such that I'[md, (m + 1)) = v > 0; and set M = k+m + 2. Then
for z € [0,), by considering the occurrence of the n'® renewal where n is the index
so that (5.32) holds we find

P(V (M) € dun|o,d))
> P()(.T + Zpt1 — M§ €dun [0, 6)>Yn+1 > (5)

_ / I(dy)Po(z + y — M6 + Zy, € dun [0,5)) (5.33)
y€[d,00)

> I'(dy)Py(Z, € dun{[0,0) —z —y + Md}).

~/y€[m6,(m+1)6)
Now when y € [md, (m + 1)6) and z € [0, ), we must have

{[0,0) —xz —y+ M} C [ké, (k + 3)d) (5.34)
and therefore from (5.33)

P(VH(MS) € dun[0,5) > Bl g (w)p™"(du) I (md, (m + 1)3)

>
> Byl s (u)p (du). (5.35)

Hence [0, d) is a small set, and the measure v can be chosen as a multiple of Lebesgue
measure over [0, 6). ]

In this proof we have demanded that (5.32) holds for v € [kd, (k + 4)d] and in
(5.34) we only used the fact that the equation holds for u € [ké, (k + 3)d]. This is not
an oversight: we will use the larger range in showing in Proposition 5.4.5 that the
chain is also aperiodic.
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5.3.5 Linear state space models

For the linear state space LSS(F,G) model we showed in Proposition 4.4.3 that in
the Gaussian case when (LSS3) holds, for every initial condition zy € X = R",

k—1
P¥(zg, ) = N(FFzo,) F'GGTF'"); (5.36)
=0

and if (F,G) is controllable then from (4.18) the n-step transition function possesses
a smooth density p,(z,y) which is continuous and everywhere positive on IR?". It
follows from continuity that for any pair of bounded open balls B; and By C IR",
there exists ¢ > 0 such that

pn(way) Z g, (‘Tay) € Bl X B2-

Letting v, denote the normalized uniform distribution on By we see that By is v,-
small.

This shows that for the controllable, Gaussian LSS(F,G) model, all compact
subsets of the state space are small.

5.4 Cyclic Behavior

5.4.1 The cycle phenomenon

In the previous sections of this chapter we concentrated on the communication struc-
ture between states. Here we consider the set of time-points at which such communi-
cation is possible; for even within a communicating class, it is possible that the chain
returns to given states only at specific time points, and this certainly governs the
detailed behavior of the chain in any longer term analysis.

A highly artificial example of cyclic behavior on the finite set X = {1,2,3,...,d}
is given by the transition probability matrix

Pz,z+1)=1, z€{1,23,...,d—1}, P(d,1) = 1.

Here, if we start in z then we have P"(z,z) > 0 if and only if n = 0,d,2d, ..., and
the chain @ is said to cycle through the states of X.

On a continuous state space the same phenomenon can be constructed equally
easily: let X = [0,d), let U; denote the uniform distribution on [i,7 + 1), and define

P(z,-) =11 3(2)U;(+), i=0,1,...,d -1 (mod d).

In this example, the chain again cycles through a fixed finite number of sets. We now
prove a series of results which indicate that, no matter how complex the behavior
of a %)-irreducible chain, or a chain on an irreducible absorbing set, the finite cyclic
behavior of these examples is typical of the worst behavior to be found.

5.4.2 Cycles for a countable space chain

We discuss this structural question initially for a countable space X.
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Let a be a specific state in X, and write
dla) = g.cd{n>1: P"(a,a) > 0}. (5.37)

This does not guarantee that Pmd(a)(a,a) > 0 for all m, but it does imply
P"(a, ) = 0 unless n = md(a), for some m.

We call d(ex) the period of a. The result we now show is that the value of d()
is common to all states y in the class C(a) = {y : & <> y}, rather than taking a
separate value for each y.

Proposition 5.4.1 Suppose a has period d(a): then for any y € C(a), d(a) = d(y).

PROOF  Since e +» y, we can find m and n such that P™(e,y) > 0 and P"(y, o) >
0. By the Chapman-Kolmogorov equations, we have

P (o, 00) > P™ (e, y) P (y, &) > 0, (5.38)

and so by definition, (m + n) is a multiple of d(a). Choose k such that k is not a
multiple of d(a). Then (k + m + n) is not a multiple of d(a): hence, since

P™(c,y)P¥(y,y)P" (y, @) < P**™ (@, @) = 0,

we have P*(y,y) = 0, which proves d(y) > d(a). Reversing the role of o and y shows
d(a) > d(y), which gives the result. O

This result leads to a further decomposition of the transition probability matrix
for an irreducible chain; or, equivalently, within a communicating class.

Proposition 5.4.2 Let & be an irreducible Markov chain on a countable space, and
let d denote the common period of the states in X. Then there exist disjoint sets
Dq...Dg C X such that

d
X =] Dy,
=1

and
P(z,Dyyq1) =1, 2 €Dk, k=0,...,d—1 (mod d). (5.39)

PROOF  The proof is similar to that of the previous proposition. Choose a0 € X as
a distinguished state, and let y be another state, such that for some M

PM(y, a) > 0.

Let k be any other integer such that P*(a,y) > 0. Then P**M(a, ) > 0, and
thus k + M = jd for some j; equivalently, £k = jd — M. Now M is fixed, and so we
must have P*(a,y) > 0 only for k in the sequence {r,r + d,r + 2d, ...}, where the
integer r = r(y) € {1,...,d} is uniquely defined for y.

Call D, the set of states which are reached with positive probability from a only
at points in the sequence {r,r +d,r + 2d,...} for each r € {1,2...d}. By definition
a € Dy, and P(a, Df) = 0 so that P(a, D1) = 1. Similarly, for any y € D, we have
P(y, D¢, ) = 0, giving our result. O

The sets {D;} covering X and satisfying (5.39) are called cyclic classes, or a d-
cycle, of @. With probability one, each sample path of the process ¢ “cycles” through
values in the sets D1, Ds,... Dy, D1, Do, . ...
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Diagrammatically, we have shown that we can write an irreducible transition
probability matrix in “super-diagonal” form

o0 P -
0 0 P 0

S .0 )

_Pd T

where each block F; is a square matrix whose dimension may depend upon <.

Aperiodicity
An irreducible chain on a countable space X is called

(1) aperiodic, if d(x) =1, x € X;

(ii) strongly aperiodic, if P(x,x) > 0 for some z € X.

Whilst cyclic behavior can certainly occur, as illustrated in the examples at the begin-
ning of this section, and the periodic behavior of the control systems in Theorem 7.3.3
below, most of our results will be given for aperiodic chains. The justification for using
such chains is contained in the following, whose proof is obvious.

Proposition 5.4.3 Suppose @ is an irreducible chain on a countable space X, with
period d and cyclic classes {D1 ...Dg}. Then for the Markov chain @4 = { P4, P24, - - -}
with transition matriz P4, each D; is an irreducible absorbing set of aperiodic states.

5.4.3 Cycles for a general state space chain

The existence of small sets enables us to show that, even on a general space, we still
have a finite periodic breakup into cyclic sets for 1-irreducible chains.

Suppose that C is any vjs-small set, and assume that vy (C) > 0, as we may
without loss of generality by Proposition 5.2.4.

We will use the set C' and the corresponding measure v to define a cycle for a
general irreducible Markov chain. To simplify notation we will suppress the subscript
on v. Hence we have PM(z, -) > v(-), z € C, and v(C) > 0, so that, when the chain
starts in C, there is a positive probability that the chain will return to C' at time M.
Let

Ec={n>1: theset C is vp-small, with v, = d,v for some 6, > 0.} (5.40)
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be the set of timepoints for which C' is a small set with minorizing measure propor-
tional to v. Notice that for B C C, n, m € E¢ implies

P""(z,B) > / P™(z,dy)P"(y, B)
[0 I/(C)] (B), z € C;

Y

so that E¢ is closed under addition. Thus there is a natural “period” for the set C,
given by the greatest common divisor of E¢; and from Lemma D.7.4, C is v,4-small
for all large enough n.

We show that this value is in fact a property of the whole chain @, and is indepen-
dent of the particular small set chosen, in the following analogue of Proposition 5.4.2.

Theorem 5.4.4 Suppose that @ is a P-irreducible Markov chain on X. Let C €
B(X)" be a vpr-small set and let d be the greatest common divisor of the set Ec.
Then there exist disjoint sets Dy ... Dy € B(X) (a “d-cycle”) such that

(i) forz € D;, P(z,D;41)=1,i=0...d -1 (mod d);
(ii) the set N = [U%, D;]° is ¢-null.

The d-cycle {D;} is mazimal in the sense that for any other collection {d', D}, k =
1,...d'} satisfying (i)-(ii), we have d' dividing d; whilst if d = d', then, by reordering
the indices if necessary, Di = D; a.e. 1.

PrROOF Fori=0,1...d—1 set

D] = {y: iPnd*i(y, C) > 0} :

n=1

by irreducibility, X = UD}.

The D} are in general not disjoint, but we can show that their intersection is
p-null. For suppose there exists 7,k such that ¢(D; N Dj) > 0. Then for some fixed
m,n > 0, there is a subset A C D} N D} with 9(A) > 0 such that

Py C) > Gy >0, weE A
Pk C) > §,>0, weA (5.41)

and since % is the maximal irreducibility measure, we can also find r such that
/ v(dy)P" (y, A) = 6, > 0. (5.42)
C
Now we use the fact that C is a vps-small set: for z € C, B C C, from (5.41), (5.42),

P2M—|—md7i+r (.’E, B)

Vv

/C PM(z, dy) /A P (y, dw) /C P™ % (, dz) PM (2, B)

> [6c0m]v(B),

so that [2M +md+r]—i € E¢. By identical reasoning, we also have [2M +nd+r]—k €
E¢c. This contradicts the definition of d, and we have shown that (D} N D;) = 0,

i # k.
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Let N = U, ;(D} N Dj), so that 9(N) = 0. The sets {D;\N} form a disjoint class
of sets whose union is full. By Proposition 4.2.3, we can find an absorbing set D such
that D; = D N (D;\N) are disjoint and D = UD;. By the Chapman-Kolmogorov
equations again, if z € D is such that P(z,D;) > 0, then we have z € D;_1, by
definition, for j = 0,...,d — 1 (mod d). Thus {D;} is a d-cycle.

To prove the maximality and uniqueness result, suppose {D;} is another cycle
with period d', with N = [UDj]¢ such that 9(N) = 0. Let k£ be any index with
v(D;, N C) > 0: since ¢(N) = 0 and ¢ > v, such a k exists. We then have, since C is
a vyr-small set, PM(z, D}, N C) > v(D}, NC) > 0 for every z € C. Since (D}, N C) is
non-empty, this implies firstly that M is a multiple of d’; since this happens for any
n € E¢, by definition of d we have d’ divides d as required. Also, we must have C ﬂD;-
empty for any j # k: for if not we would have some z € C with PM(z,C n D)) =0,
which contradicts the properties of C.

Hence we have C C (Dj;, U N), for some particular k. It follows by the definition
of the original cycle that each D’ is a union up to ¢-null sets of (d/d;) elements of
D;. O

It is obvious from the above proof that the cycle does not depend, except perhaps
for t-null sets, on the small set initially chosen, and that any small set must be
essentially contained inside one specific member of the cyclic class {D;}.

Periodic and aperiodic chains

Suppose that @ is a @-irreducible Markov chain.
The largest d for which a d-cycle occurs for @ is called the period of ®.
When d = 1, the chain @ is called aperiodic.

When there exists a v;-small set A with v1(A) > 0, then the chain is
called strongly aperiodic.

As a direct consequence of these definitions and Theorem 5.2.3 we have
Proposition 5.4.5 Suppose that @ is a P-irreducible Markov chain.

(1) If @ is strongly aperiodic, then the Minorization Condition (5.2) holds.
(ii) The resolvent, or K,_-chain, is strongly aperiodic for all 0 < e < 1.

(iii) If @ is aperiodic then every skeleton is v-irreducible and aperiodic, and some
m-skeleton is strongly aperiodic.
O

This result shows that it is clearly desirable to work with strongly aperiodic chains.
Regrettably, this condition is not satisfied in general, even for simple chains; and we
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will often have to prove results for strongly aperiodic chains and then use special
methods to extend them to general chains through the m-skeleton or the K,_-chain.

We will however concentrate almost exclusively on aperiodic chains. In practice
this is not greatly restrictive, since we have as in the countable case

Proposition 5.4.6 Suppose @ is a W-irreducible chain with period d and d-cycle
{D;,i = 1...d}. Then each of the sets D; is an absorbing -irreducible set for the
chain 4 corresponding to the transition probability kernel P%, and ®4 on each D; is
aperiodic.

Proor That each D; is absorbing and irreducible for @, is obvious: that ¢4 on
each D; is aperiodic follows from the definition of d as the largest value for which a
cycle exists. O

5.4.4 Periodic and aperiodic examples: forward recurrence times

For the forward recurrence time chain on the integers it is easy to evaluate the period
of the chain. For let p be the distribution of the renewal variables, and let

d = g.cd{n :p(n) > 0}.

It is a simple exercise to check that d is also the g.c.d. of the set of times {n :
P™(0,0) > 0} and so d is the period of the chain.

Now consider the forward recurrence time d-skeleton Vi = V*(nd), n € Z,
defined in Section 3.5.3. Here, we can find explicit conditions for aperiodicity even
though the chain has no atom in the space. We have

Proposition 5.4.7 If F is spread out then V(}" is aperiodic for sufficiently small 6.

PrROOF  In Proposition 5.3.3 we showed that for sufficiently small 4, the set [0, )
is a vps-small set, where v is a multiple of Lebesgue measure restricted to [0, 6].

But since the bounds on the densities in (5.35) hold, not just for the range
[k, (k + 3)d) for which they were used, but by construction for the greater range
[kd, (k + 4)d), the same proof shows that [0,d) is a vpry1-small set also, and thus
aperiodicity follows from the definition of the period of Vi as the g.c.d. in (5.40). O

5.5 Petite Sets and Sampled Chains

5.5.1 Sampling a Markov chain

A convenient tool for the analysis of Markov chains is the sampled chain, which
extends substantially the idea of the m-skeleton or the resolvent chain.

Let a = {a(n)} be a distribution, or probability measure, on Z ., and consider
the Markov chain ¢, with probability transition kernel

K, (z, A) == f: P(z,A)a(n), =z €X,A€B(X). (5.43)
n=0
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It is obvious that K, is indeed a transition kernel, so that @, is well-defined by
Theorem 3.4.1.

We will call ¢, the K,-chain, with sampling distribution a. Probabilistically, @,
has the interpretation of being the chain @ “sampled” at time-points drawn suc-
cessively according to the distribution a, or more accurately, at time-points of an
independent renewal process with increment distribution a as defined in Section 2.4.1.

There are two specific sampled chains which we have already invoked, and which
will be used frequently in the sequel. If @ = ¢, is the Dirac measure with d,,(m) = 1,
then the K, -chain is the m-skeleton with transition kernel P™. If a. is the geometric
distribution with

as(n) =[1 —¢le”, neZ;
then the kernel K,_ is the resolvent K, which was defined in Chapter 3. The concept
of sampled chains immediately enables us to develop useful conditions under which

one set is uniformly accessible from another. We say that a set B € B(X) is uniformly
accessible using a from another set A € B(X) if there exists a § > 0 such that

;ggKa(x,B) > 0; (5.44)
and when (5.44) holds we write A ~ B.

Lemma 5.5.1 If A~5 B for some distribution a then A~ B.

PrOOF  Since L(z,B) = Py(tp < o0) = Py(®, € B forsome n € Z.) and
Kq(z,B) = Py(®, € B) where 7 has the distribution a, it follows that

L(z, B) > Ku(z, B) (5.45)

for any distribution a, and the result follows. O
The following relationships will be used frequently.

Lemma 5.5.2 (i) If a and b are distributions on Z then the sampled chains with
transition laws K, and Ky satisfy the generalized Chapman-Kolmogorov equa-
tions

Kaw(,4) = [ Kalo, dy)Koly, 4) (5.46)
where a *x b denotes the convolution of a and b.
(i) If A% B and B~ C, then A% C.

(iii) If a is a distribution on Z. then the sampled chain with transition law K,
satisfies the relation

Uz, A) > / U, dy) Ko (y, A) (5.47)
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PrROOF  To see (i), observe that by definition and the Chapman-Kolmogorov equa-
tion

NE

Kop(z, A) = P*(z,A)axb(n)

S
Il
)

n

P (z,A) Z a(m)b(n —m)

I
NE

- vy / P™(z, dy) P"™ (y, A)a(m)b(n — m)
n=0m=0
_ / S P™a,dy)a(m) Y P*"™(y, A)b(n —m)
m=0 n=m
- / Ka(z, dy) Ky (yA), (5.48)

as required.
The result (ii) follows directly from (5.46) and the definitions.
For (iii), note that for fixed m, n,

PPz, Aa(n) = [ P, dy)P"(y, A)aln)
so that summing over m gives

Ula, Aa(n) > 3 P, A)a(n) = [ Ulw, dy)P"(y, A)a(n);
m>n
a second summation over n gives the result since >, a(n) = 1. a
The probabilistic interpretation of Lemma 5.5.2 (i) is simple: if the chain is sam-
pled at a random time n = 11 + 19, where 7; has distribution a and 72 has indepen-
dent distribution b, then since n has distribution a * b, it follows that (5.46) is just a
Chapman-Kolmogorov decomposition at the intermediate random time.

5.5.2 The property of petiteness

Small sets always exist in the i-irreducible case, and provide most of the properties
we need. We now introduce a generalization of small sets, petite sets, which have even
more tractable properties, especially in topological analyses.

Petite Sets

We will call a set C' € B(X) v,-petite if the sampled chain satisfies the
bound
Ka(xaB) > Va(B),

for all z € C, B € B(X), where v, is a non-trivial measure on B(X).
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From the definitions we see that a small set is petite, with the sampling distribution a
taken as d,, for some m. Hence the property of being a small set is in general stronger
than the property of being petite. We state this formally as

Proposition 5.5.3 If C € B(X) is vy,-small then C is vs,, -petite. O
The operation “%” interacts usefully with the petiteness property. We have

Proposition 5.5.4 (i) If A € B(X) is v,-petite, and D L A then D is Upsa-petite,
where Vpeq can be chosen as a multiple of v,.

(ii) If @ is 1p-irreducible and if A € BT (X) is v,-petite, then v, is an irreducibility
measure for D.

PrOOF  To prove (i) choose § > 0 such that for z € D we have Ky(z,A) > §. By
Lemma 5.5.2 (i),

Kb*a(IaB) = AKb(mady)Ka(yaB)

/A Ky(z, dy) Ky (y, B) (5.49)
> dve(B).

v

To see (ii), suppose A is v,-petite and v,(B) > 0. For z € A(n,m) as in (5.27) we
have

P"Ko(@,B) > [ P"(a,dy)Ku(y, B) 2 m™'v,(B) > 0
A

which gives the result. ad
Proposition 5.5.4 provides us with a prescription for generating an irreducibility
measure from a petite set A, even if all we know for general = € X is that the single
petite set A is reached with positive probability. We see the value of this in the
examples later in this chapter
The following result illustrates further useful properties of petite sets, which dis-
tinguish them from small sets.

Proposition 5.5.5 Suppose P is p-irreducible.

(1) If A is vg-petite, then there exists a sampling distribution b such that A is also
Py-petite where by is a mazimal irreducibility measure.

(ii) The union of two petite sets is petite.

(iii) There exists a sampling distribution ¢, an everywhere strictly positive, measur-
able function s: X — IR, and a mazimal irreducibility measure . such that

K.(z,B) > s(x)¢.(B), x € X, B € B(X)

Thus there is an increasing sequence {C;} of 1.-petite sets, all with the same
sampling distribution ¢ and minorizing measure equivalent to v, with UC; = X.
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ProOOF  To prove (i) we first show that we can assume without loss of generality
that v, is an irreducibility measure, even if 9)(A) = 0.

From Proposition 5.2.4 there exists a v,-petite set C with C € BT (X). We have
K, (y,C) > 0 for any y € X and any ¢ > 0, and hence for z € A,

Kava, (2,C) > / Va(dy)Ka, (y,C) > 0.

This shows that A "3° C, and hence from Proposition 5.5.4 we see that A is Vgsa, xb-
petite, where Vg4« 1S a constant multiple of v,. Now, from Proposition 5.5.4 (ii),
the measure v,4.4_« is an irreducibility measure, as claimed.

We now assume that v, is an irreducibility measure, which is justified by the
discussion above, and use Proposition 5.5.2 (i) to obtain the bound, valid for any
0<e<l,

I{(pmE (,QJ,B) = KaKaE(-TaB) > VaKae(B)a T € A, B e B(X)

Hence A is p-petite with b = a. * a and 9, = v, K,_. Proposition 4.2.2 (iv) asserts
that, since v, is an irreducibility measure, the measure v, is a maximal irreducibility
measure.

To see (ii), suppose that A; is 1), -petite, and that Ag is 1,,-petite. Let Ay €
BT (X) be a fixed petite set and define the sampling measure a on Z, as a(i) =
$la1(i) + az(i)], i € Z4.

Since both 1,, and %,, can be chosen as maximal irreducibility measures, it
follows that for z € A1 U Ay

Ka(.’l,‘,Ao) > %min(¢a1 (AO)aqpaz (AO)) >0

so that A; U Ay ~5 Ay. From Proposition 5.5.4 we see that A; U Ay is petite.

For (iii), first apply Theorem 5.2.2 to construct a v,-small set C' € BT (X). By (i)
above we may assume that C is 1-petite with 1, a maximal irreducibility measure.
Hence Ky(y, -) > Ao (y)s(-) for all y € X.

By irreducibility and the definitions we also have K,_(z,C) > 0forall0 < e < 1,
and all z € X. Combining these bounds gives for any =z € X, B € B(X),

Kiua, (z,B) > /C Ko, (y,d2)Ky(z, B) > Ko, (2, C)ihy(B)

which shows that (iii) holds with ¢ = b* a, s(z) = K,_(z,C) and ¢, = ;.

The petite sets forming the countable cover can be taken as Cp,:={z € X : s(z) >
m~}, m > 1. O

Clearly the result in (ii) is best possible, since the whole space is a countable
union of small (and hence petite) sets from Proposition 5.2.4, yet is not necessarily
petite itself.

Our next result is interesting of itself, but is more than useful as a tool in the use
of petite sets.

Proposition 5.5.6 Suppose that @ is ¥-irreducible and that C is v,-petite.

(i) Without loss of generality we can take a to be either a uniform sampling distri-
bution ap, (i) = 1/m, 1 <i <m, or a to be the geometric sampling distribution
ac. In either case, there is a finite mean sampling time

Mg = Z ia(i).
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(ii) If & is strongly aperiodic then the set CoUC, C X corresponding to C is vy -petite
for the split chain P.

ProOF  To see (i), let A € BT(X) be v,-small. By Proposition 5.5.5 (i) we have
Ky, 4) 2 %(4) >0, z€C

where 1), is a maximal irreducibility measure. Hence S35, P*(z, A) > sPp(A),z € C,
for some N sufficiently large.
Since A is v,-small, it follows that for any B € B(X),

N+n

N
" Po(z,B) > 3" PH7(, B) > Spy(A)va(B)
k=1 k=1

for € C. This shows that C is v,-petite with a(k) = (N +n)"! for 1 <k < N +n.
Since for all € and m there exists some constant ¢ such that a.(j) > cam(j), 7 € Z+,
this proves (i).

To see (ii), suppose that the chain is split with the small set A € BT (X). Then
Ag U X is also petite: for X7 is small, and Ag is also small since P(x,Xl) > ¢ for
o € Ap, and we know that the union of petite sets is petite, by Proposition 5.5.5.

Since when zy € Af we have for n > 1, P”(:vo,Ao UXp) = P”(:vo,Ao U4 =
P"(z,A) it follows that

Ka(wo, Ao UX1) =Y a(j) P! (z, Ag U X1)
=0

is uniformly bounded from below for 2y € Cy\ Ag, which shows that Cj\ Ay is petite.
Since the union of petite sets is petite, Cy U X is also petite. O

5.5.3 Petite sets and aperiodicity

If A is a petite set for a 9-irreducible Markov chain then the corresponding minorizing
measure can always be taken to be equal to a maximal irreducibility measure, although
the measure v, appropriate to a small set is not as large as this.

We now prove that in the t-irreducible aperiodic case, every petite set is also
small for an appropriate choice of m and vy,.

Theorem 5.5.7 If @ is irreducible and aperiodic then every petite set is small.

PROOF Let A be a petite set. From Proposition 5.5.5 we may assume that A is
1,-petite, where 1, is a maximal irreducibility measure.

Let C denote the small set used in (5.40). Since the chain is aperiodic, it follows
from Theorem 5.4.4 and Lemma D.7.4 that for some ng € Z, the set C is vi-small,
with v, = év for some § > 0, for all ng/2 — 1 < k < ny.

Since C € BT (X), we may also assume that ng is so large that
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With ng so fixed, we have for all z € A and B € B(X),

[no/2]
Po@B) > Y { [ PP . B) et
k=0

[n0/2]

> (2 P’“(x,C)a(k)) (51/(3))
k=0

> (39a(0)) (0v(B))

which shows that A is v;,o-small, with v,y = (359,(C))v. O

This somewhat surprising result, together with Proposition 5.5.5, indicates that
the class of small sets can be used for different purposes, depending on the choice
of sampling distribution we make: if we sample at a fixed finite time we may get
small sets with their useful fixed time-point properties; and if we extend the sampling
as in Proposition 5.5.5, we develop a petite structure with a maximal irreducibility
measure. We shall use this duality frequently.

5.6 Commentary

We have already noted that the split chain and the random renewal time approaches
to regeneration were independently discovered by Nummelin [200] and Athreya and
Ney [12]. The opportunities opened up by this approach are exploited with growing
frequency in later chapters.

However, the split chain only works in the generality of y-irreducible chains be-
cause of the existence of small sets, and the ideas for the proof of their existence go
back to Doeblin [67], although the actual existence as we have it here is from Jain and
Jamison [106]. Our proof is based on that in Orey [208], where small sets are called
C-sets. Nummelin [202] Chapter 2 has a thorough discussion of conditions equivalent
to that we use here for small sets; Bonsdorff [26] also provides connections between
the various small set concepts.

Our discussion of cycles follows that in Nummelin [202] closely. A thorough study
of cyclic behavior, expanding on the original approach of Doeblin [67], is given also
in Chung [48].

Petite sets as defined here were introduced in Meyn and Tweedie [178]. The
“small sets” defined in Nummelin and Tuominen [204] as well as the petits ensembles
developed in Duflo [69] are also special instances of petite sets, where the sampling
distribution @ is chosen as a(i) = 1/N for 1 < i < N, and a(i) = (1—a)a’ respectively.
To a French speaker, the term “petite set” might be disturbing since the gender of
ensemble is masculine: however, the nomenclature does fit normal English usage since
[21] the word “petit” is likened to “puny”, while “petite” is more closely akin to
“small”.

It might seem from Theorem 5.5.7 that there is little reason to consider both
petite sets and small sets. However, we will see that the two classes of sets are useful in
distinct ways. Petite sets are easy to work with for several reasons: most particularly,
they span periodic classes so that we do not have to assume aperiodicity, they are
always closed under unions for irreducible chains (Nummelin [202] also finds that
unions of small sets are small under aperiodicity), and by Proposition 5.5.5 we may
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assume that the petite measure is a maximal irreducibility measure whenever the
chain is irreducible.

Perhaps most importantly, when in the next chapter we introduce a class of
Markov chains with desirable topological properties, we will see that the structure of
these chains is closely linked to petiteness properties of compact sets.



