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Generalized Classification Criteria

We have now developed a number of simple criteria, solely involving the one step
transition function, which enable us to classify quite general Markov chains. We have
seen, for example, that the equivalences in Theorem 11.0.1, Theorem 13.0.1, or The-
orem 15.0.1 give an effective approach to the analysis of many systems.

For more complex models, however, the analysis of the simple one step drift

AV(@) = [ P, dylV(y) - V(a)]

towards petite sets may not be straightforward, or indeed may even be impractica-
ble. Even though we know from the powerful converse theory in the theorems just
mentioned that for most forms of stability, there must be at least one V' with the one
step drift AV suitably negative, finding such a function may well be non-trivial.

In this chapter we conclude our approach to stochastic stability by giving a num-
ber of more general drift criteria which enable the classification of chains where the
one-step criteria are not always straightforward to construct. All of these variations
are within the general framework described previously. The steps to be used in prac-
tice are, we hope, clear from the preceding chapters, and follow the route reiterated
in Appendix A.

There are three generalizations of the drift criteria which we consider here.

(a) State dependent drift conditions, which allow for negative drifts after a number
of steps n(z) depending on the state x from which the chain starts;

(b) Path or history dependent drift conditions, which allow for functions of the whole
past of the process to show a negative drift;

(¢) Mized or “average” drift conditions, which allow for functions whose drift varies
in direction, but which is negative in a suitably “averaged” way.

For each of these we also indicate the application of the method by example. The
state-dependent drift technique is used to analyze random walk on ]Rﬁ_ and a model
of invasion/defense, where simple one-step drift conditions seem almost impossible
to construct; the history-dependent methods are shown to be suited to bilinear mod-
els with random coefficients, where again one-step drift conditions seem to fail; and,
finally, the mixed drift analysis gives us a criterion for ladder processes, and in par-
ticular the Markovian representation of the full GI/G/1 queue, to be ergodic.
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19.1 State-dependent drifts

19.1.1 The state-dependent drift criteria

In this section we consider consequences of state-dependent drift conditions of the
form

[PrO@ave) < gV@ne),  wecs (19.1)

where n(z) is a function from X to Z, g is a function depending on which type of
stability we seek to establish, and C is an appropriate petite set.

The function n(z) here provides the state-dependence of the drift conditions,
since from any x we must wait n(z) steps for the drift to be negative.

In order to develop results in this framework we work with an “embedded” chain
&. Using n(z) we define the new transition law {P(x, 4)} by

P(z, A) = P"(®) (g, A), zeX, AeB(X), (19.2)
and let @ be the corresponding Markov chain. This Markov chain may be constructed

explicitly as follows. The time n(z) is a (trivial) stopping time. Let s(k) denote its
iterates: that is, along any sample path, s(0) =0, s(1) = n(x) and

s(k+1) =s(k)+ n(@s(k)).
Then it follows from the strong Markov property that
by =By, k>0 (19.3)

is a Markov chain with transition law P.
Let Fj = Fyx) be the o-field generated by the events “before s(k)”: that is,

Fr:={A: AN {s(k) <n} € Fp,n >0}
We let 74,54 denote the first return and first entry index to A respectively for the
chain &. Clearly s(k) and the events {64 > k}, {#4 > k} are Fj_;-measurable for
any A € B(X).
Note that s(7¢) denotes the time of first return to C by the original chain &
along an embedded path, defined by

2o—1
s(7e) == Z n(Pp). (19.4)
0
From (19.3) we have
s(7e¢) > ¢, s(6¢) > oc, a.s. [Py (19.5)

These relations will enable us to use the drift equations (19.1), with which we
will bound the index at which & reaches C, to bound the hitting times on C by the
original chain.

We first give a state-dependent criterion for Harris recurrence.

Theorem 19.1.1 Suppose that @ is a P-irreducible chain on X, and let n(x) be a
function from X to Z,. The chain is Harris recurrent if there ezists a non-negative
function V unbounded off petite sets, and some petite set C satisfying

/P”(m)(w,dy)v(’y) < V(z), z € C°. (19.6)
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PROOF  The proof is an adaptation of the proof of Theorem 9.4.1.

Let Cy = C, and let C,, = {z € X : V(z) < n}. By assumption, the sets C,,
n € Z,, are petite.

Now suppose by way of contradiction that & is not Harris recurrent. By The-
orem 8.0.1 the chain is either recurrent, but not Harris recurrent, or the chain is
transient. In either case, we show that there exists an initial condition z( such that

Peo {(® € C 1.0.)° N (V(Pf) — o0)} > 0. (19.7)

Firstly, if the chain is transient, then by Theorem 8.3.5 each C,, is uniformly transient,
and hence V(&) — oo as k — oo a.s. [P.], and so (19.7) holds.
Secondly, if @ is recurrent, then the state space may be written as

X=HUN (19.8)

where H = N°is a maximal Harris set and 1(N) = 0; this follows from Theorem 9.0.1.
Since for each n the set C,, is petite we have C;, ~» H, and hence by Theorem 9.1.3,

{#ecCyio}Cc{PecHio} a.s. [Ps].

It follows that the inclusion {lim inf V(®,,) < co} C {® € H i.0.} holds with proba-
bility one. Thus (19.7) holds for any o € N, and if the chain is not Harris, we know
N is non-empty.

Now from (19.7) there exists M € Z, with

Pmo{(@k €C%k > M) N (V(@k) — OO)} >0:
letting = PM(xg, - ), we have by conditioning at time M,
Pu{(cc = o0) N (V(Pg) — o0)} > 0. (19.9)

We now show that (19.9) leads to a contradiction when (19.6) holds.
Define the chain @ as in (19.3). We can write (19.6), for every k, as

EV(®ri1) | Ful <V(Pr)  aws. [P

when 6¢c >k, k€ Z,.
Let M; =V (®;)1{6¢ > i}. Using the fact that {6¢c > k} € Fi_1, we have that

E[My, | Fr1] = M{éc > KYEV (D) | Froi1] < b0 > b}V (Pr—1) < M.

Hence (M, .7:"k) is a positive supermartingale, so that from Theorem D.6.2 there exists
an almost surely finite random variable My, such that My — My a.s. as k — oo.
From the construction of M;, either 6¢ < oo in which case My, = 0, or ¢ = o0 in
which case lim supy_, o, V($%) = My < 00 a.s.

Since o¢ < oo whenever 6o < 00, this shows that for any initial distribution u,

P.{{oc < oo} U {lim inf V(®,) < 00}} = 1.

This contradicts (19.9), and hence the chain is Harris recurrent. O
We next prove a state-dependent criterion for positive recurrence.
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Theorem 19.1.2 Suppose that @ is a P-irreducible chain on X, and let n(x) be a
function from X to Z,. The chain is positive Harris recurrent if there exists some
petite set C, a non-negative function V bounded on C, and a positive constant b
satisfying

/ PO (g, dy)V(y) < V(z)—n@)+blo(z), zeX  (19.10)

in which case for all
E.[rc] <V (z) + 0. (19.11)

PROOF  The state-dependent drift criterion for positive recurrence is a direct con-
sequence of the f-ergodicity results of Theorem 14.2.2, which tell us that without any
irreducibility or other conditions on @, if f is a non-negative function and

[P@dpViy) < V(@) -f@) +ble@),  sex (1919

for some set C then for all z € X

Tc—1

Em[ Y f(@k)] < V(z)+b. (19.13)

k=0

Again define the chain @ as in (19.3). From (19.10) we can use (19.13) for &,
with f(z) taken as n(x), to deduce that

To—1

Ez[kz;; n(@)| < V(z) +b. (19.14)

But we have by adding the lengths of the embedded times n(z) along any sample
path that from (19.4)

To—1 )
3" n(@) = s(fc) > 7c.
k=0

Thus from (19.14) and the fact that V' is bounded on the petite set C, we have that
@ is positive Harris using the one-step criterion in Theorem 13.0.1, and the bound
(19.11) follows also from (19.14). ]

We conclude the section with a state-dependent criterion for geometric ergodicity.

Theorem 19.1.3 Suppose that @ is a -irreducible chain on X, and let n(z) be a
function from X to Z.. The chain is geometrically ergodic if it is aperiodic and there
exists some petite set C, a non-negative function V. > 1 and bounded on C, and
positive constants A < 1 and b < o satisfying

[ PO, dyvi) < NV E)+ o) (19.15)
When (19.15) holds,

> r|PM(, -) — 7| < RV (), T € X (19.16)

for some constants R < co and r > 1.
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PROOF  Suppose that (19.15) holds, and define
Vi(z) =2(V(z) —1/2) > 1.
Then we can write (19.15) as

[ P(z,dy)V'(y) < X"ORV(2) +2ble(2)] - 1
(19.17)
= X@[V(z) + 1+ 2bLc(z)] — 1
Without loss of generality we will therefore assume that V itself satisfies the inequality

/m%@W@)s NV (2) + 1 4 blo(z)] - 1. (19.18)

We now adapt the proof of Theorem 15.2.5. Define the random variables

for k € Z,. Tt follows from (19.18) that for k = A7, since x**+1) is F;-measurable,

EZki1 | Fi] = w&*FTVEV(Sp11) | Fi]
< wEED POV (B) + 1+ bl (Py)] — 1}

— Zk _ K:S(k-f-l) 4+ K)S(k) 4+ lﬁs(k)b]lc(ék).

Using Proposition 11.3.2 we have

To—1 To—1

E, [ kz [K;s(k-l-l) _ Hs(k)]] < Z0(~T) + Em[kz: I‘és(k)b]lc(ék)].
=0 0

Collapsing the sum on the left and using the fact that only the first term in the sum
on the right is non-zero, we get

E.[s°7¢) — 1] < V(z) + bl (). (19.19)

Since V' < 0o and V is assumed bounded on C, and again using the fact that s(7¢) >
Tc, we have from Theorem 15.0.1 (ii) that the chain is geometrically ergodic.

The final bound in (19.16) comes from the fact that for some r, an upper bound
on the state-dependent constant term in (19.16) is shown in Theorem 15.4.1 to be
given by

R(z) = E4[5™] < E;[x*(9)] < (2+ D)V ()

since V > 1. a
19.1.2 Models on IRi_
State dependent criteria appear to be of most use in analyzing multidimensional

models, especially those on the positive orthant of Euclidean space. This is because,
although the normal one-step drift conditions may work in the interior of such spaces,
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the constraints on the faces of the orthant can imply that drift is not negative in this
part of the space.
We illustrate this in a simple case when the space is R2 = {(z,y),z > 0,y > 0}.
Consider the case of random walk restricted to the positive orthant. Let Z; =
(Zk(1), Zk(2)) be a sequence of i.i.d. random variables in IR? and define the chain &
by
(@0(1), Bn(2)) = (Bn_1(1) + Za(L)]*,[B0_1(2) + Zu(@)]*). (19.20)

Let us assume that for each coordinate we have negative increments: that is,
E[Z(1)] <0,  E[Z(2)] <.

This assumption ensures that the chain is a §(g g)-irreducible chain with all compact
sets petite. To see this note that there exists h > 0 such that

P(Zy(1) < —h) > h, P(Zy(2) < —h) > h,
and so for any square S, = {z < w,y < w} we have that, choosing m > w/h
P™((2,9),(0,0)) > k"™ >0, (,y) € Su.

This provides d(g )-irreducibility, and moreover shows that Sy, is small, with v = dg
in (5.14).
We will also assume that the second moments of the increments are finite:

E[Z2(1)] < oo, E[Z2(2)] < oo.

Thus it follows from Proposition 14.4.1 that each of the marginal random walks on
[0,00) is positive Harris with stationary measures 7y, o satisfying

B1:= /zm(dz) < 00, B2 == /zm(dz) < 0. (19.21)

Of course, from this we could establish positivity merely by noting that «# = w1 X 79
is invariant for the bivariate chain. However, in order to illustrate the methods of this
section we will establish that @ is positive Harris by considering the test function
V(z,y) = x + y: this also gives us a bound on the hitting times of rectangles that the
more indirect result does not provide.

By choosing M large enough we can ensure that the truncated versions of the
increments are also negative, so that for some ¢ > 0

E[Ze(D{Zx(1) > —M}] < —e,  E[Zx(2)1{Zx(2) > —~M}] < —e.

This ensures that on the set A(M) = {z > M,y > M}, we have that (19.10) holds
with n(z,y) =1 in the usual manner.
Now consider the strip A;(M,m) = {z < M,y > m}, and fix (z,y) € A1(M,m).
Let us choose a given fixed number of steps n, and choose m > (M +1)n. At each
step in the time period {0, ..., n} the expected value of &,,(2) decreases in expectation
by at least . Moreover, from (19.21) and the f-norm ergodic result (14.5) we have
that by convergence there is a constant ¢y such that for all n

E0.9)[@n(1)] < co (19.22)
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independent of y. From stochastic monotonicity we also have that for all x < M, if
7o denotes the first hitting time on {0} for the marginal chain &,(1)

E(e,y) [Pn (1) 1{10 > n}] Eary) [Pn(1)1{m0 > n}]
Cm(n)

which is finite and tends to zero as n — oo, from Theorem 14.2.7, independent of .
Let us choose n large enough that (ys(n) < eg.
We thus have from the Markov property

Ewy)[@n(1) + Pn(2)] = E(2)[@n(2)] + E(zy)[@n(1)1{70 > n}]

(19.23)

i IA

+E () [@n (1) 1{rp < n}] (19.24)

< y—mne+ey+ co-

Thus for z < M, we have uniform negative n-step drift in the region A;(M,m)
provided
ne>M +ep+c

as required.
A similar construction enables us to find that for fixed large n the n-step drift in
the region Ag(m, M) is negative also. Thus we have shown

Theorem 19.1.4 If the bivariate random walk on IREL has negative mean increments
and finite second moments in both coordinates then it is positive Harris recurrent, and
for sets A(m) = {z > m,y > m} with m large, and some constant c,

Ewy)[ragm] < clz + ). (19.25)

In this example, we do not use the full power of the results of Section 19.1. Only
three values of n(z,y) are used, and indeed it is apparent from the construction in
(19.24) that we could have treated the whole chain on the region

{t>M+n}U{y>M+n}

for the same n. In this case the n-skeleton {®,;} would be shown to be positive
recurrent, and it follows from the fact that the invariant measure for {&;} is also
invariant for {®,;} that the original chain is positive Harris: see Chapter 10. This
example does, however, indicate the steps that we could go through to analyze less
homogeneous models, and also indicates that it is easier to analyze the boundaries
or non-standard regions independently of the interior or standard region of the space
without the need to put the results together for a single fixed skeleton.

19.1.3 An invasion/antibody model

We conclude this section with the analysis of an invasion/antibody model on a count-
able space, illustrating another type of model where control of state-dependent drift
is useful.

Models for competition between two groups can be modeled as bivariate processes
on the integer-valued quadrant Zi = {i,j € Z}. Consider such a process in discrete
time with the first coordinate process @,(1) denoting the numbers of invaders and
the second coordinate process @,(2) denoting the numbers of defenders.
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(A1) Suppose first that the defenders and invaders mutually tend to reduce the op-
position numbers when both groups are present, even though “reinforcements”
may join either side. Thus on the interior of the space, denoted I = {i,j > 1},
we assume that for some €;,e; > ¢ > 1/2

Eij[01(1) +01(2)] < (i —e)+(i—ej) <i+j—2,  di,5>1. (19.26)

Such behavior might model, for example, antibody action against invasive bod-
ies where there is physical attachment of at least one antibody to each invader
and then both die: in such a context we would have ¢; = ¢; = 1.

(A2) On one boundary, when the defender numbers reach the level 0, if the invaders
are above a threshold level d the body dies in which case the invaders also die
and the chain drops to (0,0), so that

P((3,0),(0,0) =1,  i>d; (19.27)

otherwise a new population of antibodies or defenders of finite mean size is
generated. These assumptions are of course somewhat unrealistic and clearly
with more delicate arguments can be made much more general if required.

(A3) Much more critically, on the other boundary, when the invader numbers fall
to level 0, and the defenders are of size 7 > 0, a new “invading army” is raised
to bring the invaders to size IV, where NNV is a random variable concentrated on
{j+1,74+2,...,7+ d} for the same threshold d, so that

d

> P((0,),(j + k,j) =1: (19.28)
k=1

this distribution being concentrated above j represents the physically realistic
concept that a new invasion will fail instantly if the invading population is not
at least the size of the defending population. The bounded size of the increment
is purely for convenience of exposition.

Note that the chain is §(g,0)-irreducible under the assumptions A1-A3, regardless of
the behavior at zero. Thus the model can be formulated to allow for a stationary
distribution at (0,0) (i.e extinction) or for rebirth and a more generally distributed
stationary distribution over the whole of Z; . The only restriction we place in general
is that the increments from (0,0) have finite mean: here we will not make this more
explicit as it does not affect our analysis.

Let us, to avoid unrewarding complexities, add to (19.26) the additional condition
that the model is “left-continuous”: that is, has bounded negative increments defined
by

P((i,5),i -1, —k)=0, i,7 >0, k,0>1: (19.29)

this would be appropriate if the chain were embedded at the jumps of a continuous
time process, for example.

To evaluate positive recurrence of the model, we use the test function V (i,5) =
[i + j]/B, where § < ¢ is to be chosen.

Analysis of this model in the interior of the space is not difficult: by using (V2)
with V(4,7) on I = {i,j > 1}, we have that E; j[77¢] < (¢4 j)/8 from the assumption
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(A1). The difficulty with such multidimensional models is that even though they
reach I¢ in a finite mean time, they may then “escape” along one or both of the
boundaries. It is in this region that the tools of Section 19.1 are useful in assisting
with the classification of the model.

Starting at Bi(c) = {(¢,0),% > c}, the infinite boundary edge above ¢, we have
that the value of V(&) is zero if ¢ > d, so that (19.10) also holds with n = 1 provided
we choose ¢ > max(d,571).

On the other infinite boundary edge, denoted Bs(c) = {(0,7),7 > ¢}, however,
we have positive one step drift of the function V. Now from the starting point (0, ),
let us consider the (5 + 1)-step drift. This is bounded above by [j + d — 2j¢]/8 and
so we have (19.10) also holds with n(j) = j + 1 provided

[ +d—2je]/p < —j—1,

which will hold provided 8 < 2¢ — 1 and we then choose ¢ > (d + 8)/(2¢ — 1 — j3).
Consequently we can assert that, writing C = I U By(c) U B1(c) with ¢ satisfying
both these constraints, the mean time

Eu,jlrel < i +31/8

regardless of the threshold level d, and so the invading strategy is successful in over-
coming the antibody defense.

Note that in this model there is no fixed time at which the drift from all points
on the boundary Bs(c) is uniformly negative, no matter what the value of ¢ chosen.
Thus, state-dependent drift conditions appear needed to analyze this model.

To test for geometric ergodicity we use the function V (4, j) = exp(ai) + exp(«j)
and adopt the approach in Section 16.3.

We assume that the increments in the model have uniformly geometrically de-
creasing tails and bounded second moments: specifically, we assume each coordinate
process satisfies, for some vy > 0,

0:(7) = Xisi-1exp(YK)Pj(@1(1) =i+ k) <oo, j21
(19.30)
0:(7) = Yisj_1exp(vk)Pij(@1(2) =j+k) <oo,  i>1
and
Yrsic1 K°Pj(®1(1) =i+ k) < Dy, j=>1
(19.31)
szjfl k‘QPZ',j(Ql(Q) =3 —|—]§) < Do, 1 > 1.
Then on the interior set I we have, for o < 7y
i P(r ), (1,5)V (i,5) < exp(ar)[fi(e) — 1]
+exp(as)[0)(a) — 1]
(19.32)

< aexplar)(—¢/2)

+aexp(as)(—es/2)

for small enough «, using a Taylor series expansion and the uniform conditions (19.30)
and (19.31). Thus (19.15) holds with n =1 and A =1 — ag/2.
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Starting at Bi(c), (19.15) also obviously holds provided we choose ¢ large enough.
On the other infinite boundary edge Ba(c) = {(0,7),j > ¢} we have a similar con-
struction for the j + 1-step drift. We have, using the uniform bounds (19.31) assumed
on the variances

> PTH(0,8), (4, 9))V (i,5) < exp(a(j +d))[1 —e/2)
(19.33)
+ exp(as)[l —/2)7

and so for « suitably small, we have (19.15) holding again as required. O

19.2 History-dependent drift criteria

The approach through Dynkin’s Formula to obtaining bounds on hitting times of
appropriate sets allows a straightforward generalization to more complex, history-
dependent, test functions with very little extra effort above that expended already.

Rather than considering a fixed function V' of the state @, we will now let
{Vj : k € Z} denote a family of non-negative Borel measurable functions Vj: X+ —
IR+. By imposing the appropriate “drift condition” on the stochastic process {V}, =
Vie(Po,-..,Pk)}, we will obtain generalized criteria for stability and non-stability.
The value of this generalization will be illustrated below in an application to an
autoregressive model with random coefficients.

19.2.1 Generalized criteria for positivity and nullity

We first consider, in the time-varying context, drift conditions on such a family {Vj :
k € Z} for chains to be positive or to be null. We call a sequence {V;, FZ} adapted
if V}, is measurable with respect to .7-",? for each k.

The following condition generalizes (V2).

Generalized Negative Drift Condition

There exists a set C € B(X), and an adapted sequence {V, F{} such
that, for some € > 0,

EVie1 | FR1<Vi—e  as. [R] (19.34)

whenoc >k, k€ Z,.

As usual the condition that o¢ > k means that &; € C¢ for each i between 0 and k.
Since C will usually be assumed “small” in some sense (either petite, or compact),
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(19.34) implies that there is a drift towards the “center” of the state space when @
is “large” in exactly the same way that (V2) does.
From these generalized drift conditions and Dynkin’s Formula we find

Theorem 19.2.1 If {Vj} satisfies (19.34) then

e Wo(x) z € C°
Bolre] < { 1+ 'PVy(z) z€C

Hence if C is petite and sup,cc Ex[Vo(P1)] < oo then @ is regular.

PrROOF  The proof follows immediately from Proposition 11.3.3 by letting Z; = Vj,
€r = €, exactly as in Theorem 11.3.4. O

There is a similar generalization of the drift criterion for determining whether a
given chain is null.

Generalized Positive Drift Condition

There exists a set C € B(X), and an adapted sequence {V;, FZ} with
EVir1 | FE1> Vi as. [P, (19.35)

whenoc >k, k€ Z,.

Clearly the process Vi, = 1 satisfies (19.35), so we will need some auxiliary conditions
to prove anything specific when (19.35) holds.

Theorem 19.2.2 Suppose that {Vi} satisfies (19.35), and let xg € C° be such that
VQ(JIQ) > Vk(.’L‘o, R ,:Ck), z, €C, ke Z,. (19.36)

Suppose moreover the conditional absolute increments have bounded means: that is,
for some constant B < o0,

E[[Ve — Vil | 1] < B. (19.37)

Then Eg,[1¢] = oc.

PrROOF  The proof of Theorem 11.5.1 goes through without change, although in
this case the functions Vi in that proof are not taken simply as V(®y) but as
Vie(Do, - .-, Pg). O
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19.2.2 Generalized criteria for geometric ergodicity

We can extend the results of Chapter 15 in a similar way when the space admits
a topology. In order to derive such criteria we need to adapt the sequence {Vj}
appropriately to the topology. Let us call the whole sequence {V}} norm-like if there
exists a norm-like function V:X — IR with the property

Vk(Io, . ,:L‘k) Z V(.Z‘k) Z 0 (1938)

forall k € Z, and all z; € X.
The criterion for such a family {V}} generalizes (15.35), which we showed in
Lemma 15.2.8 to be equivalent to (V4).

Generalized Geometric Drift Condition

There exists A < 1, L < oo and an adapted norm-like sequence {V, FZ}
such that

Eo[Vig1 | FE] <AV + L as. [P], ke€Z,. (19.39)

Theorem 19.2.3 Suppose that P is an irreducible aperiodic T-chain. If the gen-
eralized geometric drift condition (19.39) holds, and if Vy is uniformly bounded on
compact subsets of X, then there exists R < oo and r > 1 such that

Y rMPMz, ) —wlf <R(Vo(z)+1), neZy, zeX
n=1

where f = V + 1 and V is as defined in (19.38). In particular, & is then f-
geometrically ergodic.

PrOOF Let A < p < 1, and define the precompact set C' and the constant € > 0 by

2L p—A
= : < —— = —.
C={zeX V(x)_p_)\—i-l}, 3 5

Then for all k € Z,,

- — A
EVerr | 21 < Vi + {[D+ (o= V)] - 252 0V@0) + D} - 2@ + 1
Hence E[V}41 | .7:,?] < pVi—ef(Py) when &, € C°. Letting Z;, = r*V}, where r = p~1,
we then have E[Zy | F2_ |] — Zx_1 < —erff(Pg_1), when &;_; € C°. We now use
Dynkin’s formula to deduce that for all z € X,
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0<Eslzrg] = EolZi]+ Ew[(TzC: E[Zk | FL_i) = Zi1)1(rc > 2)]
k=2

< EZi] - Ew[z erk f(&y,_1)1(rc > 2)]
k=2

This and the Monotone Convergence Theorem shows that for all z € X,
C
Eo[ Y r* f(@r1)] < e B [VA] + 1V (@).
k=1

This completes the proof, since E;[Vi] + V(z) < AVy(z) + L + Vo(z) by (19.39) and
(19.38). a

19.2.3 Generalized criteria for non-evanescence and transience

A general criterion for Harris recurrence on a topological space can be obtained from
the following history dependent drift condition, which generalizes (V1).

Generalized Non-positive Drift Condition

There exists a compact set C' C X, and an adapted norm-like sequence
{Vi, FL} such that

EVie1 | FR1< Vi as. [P, (19.40)

whenoc >k, ke Z,.

Theorem 19.2.4 If (19.40) holds then @ is non-evanescent. Hence if ® is a 1-
irreducible T-chain and (19.40) holds for a norm-like sequence and a compact C,
then @ is Harris recurrent.

PrOOF  The proof is almost identical to that of Theorem 9.4.1. If P,{® — oo} > 0
for some z € X, then (9.30) holds, so that for some M

P.{{oc = 00} N {® — co}} >0, (19.41)

where p = PM(z, -).
This time let M; = V;1l{oc > i}. Again we have that (M, F}) is a positive
supermartingale, since

E[My, | FE ) = Moo > kYEVi | FE ) < W{oc > k}Vie 1 < My 4.

Hence there exists an almost surely finite random variable M, such that My — M,
as k — oo.

But as in Theorem 9.4.1, either o¢ < oo in which case My, = 0, or ¢ = o©
which contradicts (19.41). Hence @ is again non-evanescent.

The Harris recurrence when @ is a T-chain follows as usual by Theorem 9.2.2. 0O

Finally, we give a criterion for transience using a time-varying test function.
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Generalized Non-negative Drift Condition

There exists a set A € B(X), and a uniformly bounded, adapted sequence
{Vk, F2} such that

EVis1 | FE1> Vi as. [P, (19.42)

whenoyg >k, ke Z,.

Theorem 19.2.5 Suppose that the process Vi, satisfies (19.42) for a set A, and sup-
pose that for deterministic constants L > M,

Vi < L, ]I{JA = k}Vk <M, ke Z+

Then for all z € X
Vo(z) - M
L-M

Hence if both A and {x : Vo(z) > M} lie in BT (X) then & is transient.

Pro{oa =00} >

PROOF  Define the sequence { My} by
Mii1 =V l{oa >k} + M1{os < k}.
Then, since {04 < k} € f,f, we have

E[Mj1 | .7:,?] Vil{oa >k} + M1{o4 <k}

Vk]l{O'A >k‘}+Vk]l{0'A:k’}+M]l{O'A§k—1}
My,

v iIv

and the adapted process (My, F{) is thus a submartingale. Hence (L — My, F?) is
a positive supermartingale. By Kolmogorov’s Inequality (Theorem D.6.3) it follows
that for any T' > 0

L — M,
Py {sup(L — M) > T} < L= Mo(@)
k>0 T

Letting T'= L — M, and noting that My(x) > Vy(x), gives

. L —Vo(z)
< < ——-,
Pm{ég%Mk <M} < T M
Finally, since My = M for all k sufficiently large whenever o4 < o0, it follows that

Wl(z) - M

which is the desired bound. O
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19.2.4 The dependent parameter bilinear model

To illustrate the general results described above we will analyze the dependent pa-
rameter bilinear model defined as in (7.23) by the pair of equations

Hk:—f—l = ab,+ Zk—f—l; |Oé| <1
Yiti = Y+ Wi

This model is just the simple adaptive control model with the control set to zero; but
while the model is somewhat simpler to define than the adaptive control model, we
will see that the lack of control makes it much more difficult to show that the model
is geometrically ergodic. One of the difficulties with this model is that to date a test
function of the form (V4) has not been explicitly computed, though we will show here
that a time varying test function of the form (19.39) can be constructed.

The proof will require a substantially more stringent bound on the parameter
process than that which was used in the proof of Proposition 17.3.5. We will assume

that
2

1o

2= E[exp{ |Zy| — 2}] <1 (19.43)

Using a history dependent test function of the form (19.39) we will prove the following

Theorem 19.2.6 Suppose that conditions (DBL1)-(DBL2) hold, and (19.43) is sat-
isfied. Then @ is geometrically ergodic, and hence possesses a unique invariant prob-
ability w. The CLT and LIL hold for the processes Y and 0, and for each initial
condition x € X,

N—ox

1 N
lim N Z YZ = /y2 dm < 00 a.s. [Py]
k=1
B[]~ [ydnl < M@, k20
where M is a continuous function on X and 0 < p < 1. O

Proor It follows as in the proof of Proposition 17.3.5 that the joint process @ =
(2’,’;c ), k >0, is an aperiodic, 1-irreducible T-chain.

In view of Theorem 19.2.3 it is enough to show that the history dependent drift
(19.39) holds for an adapted process {V}}. We now indicate how to construct such a
process now.

First use the estimate z < e~ 1e® to show

k k k
TL01 < e & ([Lexploil) = e * 9 exp (3 161)- (19.44)

i=j i=J i=j

But since by (2.13),

k k k
D16l < lal Y 10:] + |all6j—1] + D1 Zil,
i=j i=j i=j

we have
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1 k
ZI9| <7 ||<9g o T 31z, (19.45)
=7

and (19.44) and (19.45) 1mply the bound, for j7 > 1,

TT60 < et exp{L%L g,y wexp(- z\ Zl).  (19.46)

= — o]
Squaring both sides of (17.28) and applying (19.46), we obtain the bound
Y2, < 3Ag + 3By +3W2,, (19.47)

Ia\

for all k € Z,, where

4 = {Z\W|exp{ o |‘ 16;- 1|}Hexp{ 1] -

By = 6575 exp{ ||9o|}HeXp{ ||Z| 2}.

If we define
2|e

1—|af
we have the three bounds, valid for any ¢ > 0,

Eldp1 | FR] < C{O+e) Ak + (1 + e HEW?]Cr}

E[Br1 | FF] < By

2|«

ECkin | 7] < lalCk -+ (1= o) Elexp{; 27 21 1) ™
This is shown in [177] and we omit the details which are too lengthy for this exposition.
The constant ¢ will be assumed small, but we will keep it free until we have performed
one more calculation. For k¥ > 0 we make the definition

Vi = €3Yk2 + EzAk + By + Cy.

Ck = exp{ ‘0k|}

We have for any k£ > 0,

2|
63Yk2 +exp{1 _| | 10k|} < Vi,

|al
and since V (y, 0) = £3y? + exp{ 12‘a| |#]} is a norm-like function on X, it follows that

the sequence {Vj, : k € Z,} is norm—hke
Using the bounds above we have for some R < oo,

EVii | FF] < 36347 + 3By + (2e®(1 + ) Ay, + C2e2(1 + e HE[W?|Cy
+(2By, + |a|Ck + R.
Rearranging terms gives
EVit1 | FE] < {3e+ (1 +e)}e? Ay + {33 + (2} By,
Ha| + (1 + e HEW? A Cy + R.

Hence (19.39) holds with
A =max(|a| + 2e?(1 + e H)E[W?],¢2 + 363, C2(1 + €) + 3¢),

and for ¢ sufficiently small, we have A < 1 as required. O
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19.3 Mixed drift conditions

One of the themes of this book has been the interplay between the various stability
concepts, and the existence of test functions which give appropriate and consistent
drift towards the center of the space.

We conclude with a section which considers chains where the drift is mixed: that
is, inward in some parts of the space, and outward in other parts. Of course, it again
follows from all we have done to date that for some functions (and in particular the
expected hitting time functions V) the one step drift will always be towards the set
C from initial conditions outside of C'. However, it is of considerable intuitive interest
to consider the drift when the function V is relatively arbitrary, in which case there
is no reason a priori to expect that the drift will be consistent in any useful way.

We will find in this section that for a large class of functions, an appropriately
averaged drift over the state space is indeed “inwards” when the chain is positive, and
“outwards” when the chain is null. This accounts in yet another way for the success
of the seemingly simple drift criteria as tools for classifying general chains.

19.3.1 The limiting-average drift

Suppose that V is an everywhere finite non-negative function satisfying
/P(m,dy)|V(y) V@) <d<oo, zEX (19.48)
Then we have, for alln € Z, z € X,
[ Pria,dy)|AV () < d

and thus the functions

nl ;;1 /C PH(z,dy) AV (y) (19.49)

are all well-defined and finite everywhere. Obviously we need a little less than (19.48)
to guarantee this, but (19.48) will also be a convenient condition elsewhere.

Theorem 19.3.1 Suppose that @ is ip-irreducible, and that V' > 0 satisfies (19.48).
A sufficient condition for the chain to be positive is that for some one x € X and
some petite set C

lim infn~ 12/ P¥(z,dy) AV (y) < 0. (19.50)

PROOF By definition we have

J P (z,dy)V(y) = [P"z,dw) [ P(w,dy)V(y)
(19.51)
= [ P"(z,dy)AV (y) + [ P"(z,dy)V (y)

where all the terms in (19.51) are finite by induction and (19.48). By iteration, we
then get
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w [P V() =Y [ Prad) AV () + 0 (AV () 4 V(@)
=1

so that as n — oo i
lim infn ™' )" / P"(z,dy)AV (y) > 0. (19.52)

Now suppose by way of contradiction that @ is null; then from Theorem 18.2.2 we
have that the petite set C' is null, and so for every z we have by the bound in (19.48)

lim / P"(z,dy) AV (y) = 0.

n—oo C

This, together with (19.52), cannot be true when we have assumed (19.50); so the
chain is indeed positive. O

There is a converse to this result. We first show that for positive chains and
suitable functions V', the drift AV, m-averaged over the whole space, is in fact zero.

Theorem 19.3.2 Suppose that @ is p-irreducible, positive with invariant probability
measure w, and that V' > 0 satisfies (19.48). Then

/ (dy) AV (y) = 0. (19.53)
X
PrOOF  Consider the function M,(z) defined for z € (0,1) by

5) = [ Pla,dy)e"@ — 2V 011 - 2

We first show that |M,(z)| is uniformly bounded for z € X and z € (3,1) under the
bound (19.48).
By the Mean Value Theorem and non-negativity of V' we have for any 0 < z < 1,

|2V@ V0| < |V(z)-V(y) Sup\;i '

= |[V(z) - V(y)l[log(2)| (19.54)

Hence under (19.48), for all z € X and z € (0, 1),

log(z d
M) < BB [ o, ay) v ) - Vi) < 4 (19.55)
which establishes the claimed boundedness of |M,(x)|.
Moreover, by (19.54) and dominated convergence,
2V(@) _ V()
lim M, /P (w,dy){ hm — }=av (). (19.56)

Since [m(dz)zV® < oo for fixed z € (0,1), we can interchange the order of integra-
tion and find

/ (dz) M, (z) = / (dx) / Pz, dy)[2"® — 2V = 2] = 0.
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Hence by the Dominated Convergence Theorem once more we have

0 = limyy [ w(dz)M,(x)
= [n(dz) [limzﬂ Mz(x)] (19.57)

= [7(dz)AV (z)

as required. O

Intuitively, one might expect from stationarity that the balance equation (19.53)
will hold in complete generality. But we know that this is not the case without some
auxiliary conditions such as (19.48): we saw this in Section 11.5.1, where we showed
an example of a positive chain with everywhere strictly positive drift.

We now see that the balanced drift of (19.53) occurs, as one might expect from
(19.50), from the inward drift towards suitable sets C, combined with an outward
drift from such sets. This gives us the converse to Theorem 19.3.1.

Theorem 19.3.3 Suppose that @ is 1p-irreducible, and that V > 0 satisfies (19.48).
If C is a sublevel set of V with C¢,C € B*(X), then a necessary condition for the
chain to be positive is that

/ (dw) AV (w) < 0 (19.58)
in which case for almost all x € X
lim n—lkz_:l /C ) P¥(z, dy) AV (y) < 0. (19.59)

Thus, under these conditions, (19.50) is necessary and sufficient for positivity.

PROOF  Suppose the chain is positive, and that C = {z : V(z) < b} € BT(X) is a
sublevel set of the function V', so that obviously

V(y) > sup V(z), y € C. (19.60)
zeC
From (19.48) we certainly have that drift off C' is bounded, so that
|AV(z)| < B' <00, z€C, (19.61)

and in particular [, w(dw)AV (w) < B'.
Using the invariance of ,

Jom(dw)AV (w) = [,7(dz) [ P(z,dw)V(w) — [ 7(dw)V (w)
= Jom(dz)[[ce Pz, dw)V (w) + [¢ Pz, dw)V (w)]
— Jellx m(dz) P(z, dw)]V (w)

= Jom(dz) [ce Pz, dw)V (w)

(19.62)

+ [om(dz) [ Pz, dw)V (w)

= Jxm(dz) ¢ P(z, dw)V (w).
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Now provided the set C¢ is in B+ (X), we show the right hand side of (19.62) is strictly
positive. To see this requires two steps.

First observe that [ m(dz)P(z,C¢) > 0 since C,C°¢ € BT (X). Since V(y) >
sup,cc V(w) for y € C° we have

/C w(do) [ Pla.dw)V(w) > (sup V(w)) /C (dz) P(z, C°) (19.63)

weC

showing from (19.62) that

/C n(dw) AV (w) > (sup V(w))] /C (dz)P(z, C°) — / n(dn)P(z,C)].  (19.64)

wel

Secondly, we have the balanced-flow equation

Jom(dz)P(z,C¢) = [om(dz)[l - P(z,C)]
= w(C) - [o7(dz)P(z,C)

(19.65)
= [yn(dz)P(z,C) — [, m(dz)P(z,C)
= Joem(dz)P(z,C).
Putting this into the strict inequality in (19.64), we have that
/C x(dw) AV (w) > 0 (19.66)

provided that V' does not vanish on C. If V' does vanish on C then (19.66) holds
automatically.

But now, under (19.48) we have [ w(dz)AV (z) = 0 from (19.53), and so (19.58)
is a consequence of this and (19.66). Since AV (y) is bounded under (19.48), (19.59)
is actually identical to (19.58) and the theorem is proved. O

These results show that for a wide class of functions, our criteria for positivity
and nullity, given respectively in Section 11.3 and Section 11.5.1, are essentially the
two extreme cases of this mixed-drift result. We conclude with an example where
similar mixed behavior may be exhibited quite explicitly.

19.3.2 A mixed drift criterion for stability of the ladder chain

We return to the ladder chain defined by (10.38). Recall that the structure of the
stationary measure, when it exists, is known to have an operator-geometric form as
in Section 10.5.3. Here we consider conditions under which such a stationary measure
exists.

If we assume that the zero-level transitions have the form

Al (z,A) = P(i,z;0, A) Z Aj(z, A) (19.67)
j=k+1

so that there is a greater degree of homogeneity than in the general model, then the
operator
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o0

Az, A) = Z Aj(z, A)
j=0

is stochastic.
Thus A(z, A) defines a Markov chain &, which is the marginal position of &
ignoring the actual rung: by direct calculation we can check that for any B

P™i,z;Z4 x B) = A™(z, B). (19.68)

Moreover, (19.68) immediately gives that if & is ¢-irreducible, then &4 is 3*
irreducible, where ¢*(B) = ¢(Z+ x B).
Now define, for any w € X, the expected change in ladder height by

Bw) = f:jAj(x,X) : (19.69)
§=0

if B(w) > 1+ 6 for all w then, exactly as in our analysis of the random walk on a half
line, we have that
Ei,w)lTc] < o0

for all i > M,w € X, where C = U} {j x X} is the “bottom end” of the ladder.
But one might not have such downwards drift uniform across the rungs. The
result we prove is thus an average drift criterion.

Theorem 19.3.4 Suppose that the chain P is P-irreducible, and has the structure
(19.67). If the marginal chain &4 admits an invariant probability measure v such that

/ v(dw)Bw) > 1 (19.70)
then @ admits an invariant probability measure .
PrROOF  The proof is similar to that of Theorem 19.3.1, but we do not assume

boundedness of the drifts so we must be a little more delicate. Choosing V (i, w) = 1,
we have first that

% 00
AV (i, w) =1 =3 jAj(@,X) = (i +1) Y Aj(z,X);
j=0 j=i+1
note that in particular for ¢ > d this gives
AV (i,w) < AV (d,w), w e X. (19.71)

Now even though (19.48) is not assumed, because |AV (i, w)| < d+ 1 for i < d, and
because starting at level ¢, after k steps the chain cannot be above level i + k, we see
exactly as in proving (19.52) that

n
lim infn~? z /ZPk(i,x;j x dy)AV (j,y) > 0. (19.72)
=’

We now show that this average non-negative drift is not possible under (19.70), unless
the chain is positive.
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From (19.70) we have
0> k]i)nolo v(dw)AV (k,w). (19.73)
Choose d sufficiently large that
0> / v(dw) AV (d, w). (19.74)

Further truncate by choosing v > 1 large enough that if D, = {y : AV(d,y) > —v}
then, using (19.74)

0> / v(dw) AV (d, w). (19.75)

Now decompose the left hand side of (19.72) as
n
n Y [ PG x dy) AV (Giy)
k=17%X";
n d—1
= n Y [ PG x dy) AV ()
=17"%X =0

n

#nt Y [ ST PG x dy) AV ()

k=1"%j>d
n d—1

n 'y dd) Pri, 35 x X)

k=1 j=0

+n ! Xn:/ > PF(i 355 x dy) AV (j,y) (19.76)
k=1

vj=d

IN

since on DS we have AV (d,y) < —1.

Assume the chain is not positive: we now show that (19.76) is strictly negative,
and this provides the required contradiction of (19.72).

We know from Theorem 18.2.2 that there exists a sequence C;, of null sets with
Cn1TZs x X

In fact, in this model we now show that every rung is such a null set. Fix a rung
jx X, and let Cp,(j) = C,Nj x X. Since P is assumed 1p*-irreducible with an invariant
probability measure v, we have from the ergodic theorem (13.63) that for ¢*-a.e x,
and any M,

n
limn~" Y A%z, Cur(4)) = v(Cu(5))-
k=1

Choose M so large that v(Car(5)) > 1 — € for a given € > 0. Then we have

limn ™' S0 PR(i, 255 x X) = limn~' R ) PR(i, ;5 x Cu(j))
+limn~t YR PR, 255 x [Cum(5)])
< limn~tYF_, PE(i,2;Cur)

+limn~! 5 A (z, [Cu (5))°)

(19.77)
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which shows the rung 7 x X to be null as claimed.
Using (19.77) we have in particular that for any B, and d as above,

v(B) = limn 'Y}, A¥(z, B)

= limn ' YR Y55 P¥(i 255 x B)

(19.78)
+ limn_l Zz:l Z;x;d Pk(ia "If'7.7 X B)
= limn ' Y5, 35°, PF(i,z;j x B).
We now use (19.77) and (19.78) in (19.76). This gives, successively,
& k

.. 1 . .

lim infn g/}(;P (i, 2;5 x dy) AV (4, 9)
(19.79)

< lim inf, n~t k=1 va EjZd Pk(ia z;j x dy) AV (4,y)

= Jp,v(dy)AV(j,y) <0

from the construction in (19.75).
This is the required contradiction of (19.72) and we are finished. O
It is obviously of interest to know whether the same average drift condition suffices
for positivity when (19.67) does not hold.
In general, this is a subtle question. Writing as before [0] = 0 x X, we obviously
have that under (19.70)
EO,y[T[O]] < o0 (1980)

for v-a.e. y, since this quantity does not depend on the detailed hitting distribution
on [0]. But although this ensures that the process on [0] is well-defined, it does not
even ensure that it is recurrent.

As an example of the range of behaviors possible, let us take X = Z also, and
consider a chain that can move only up one rung or down one rung: specifically, choose
0 <p,g<1and

Ao(z,z—1) = py, r > 1
Ao(z,z+1) = (1-pg, z >0
Ay(z,x—1) = p(l—gq), z > 1 (19.81)
Ay(z,z+1) = (I-p)(l1-q), =z > 0
with the transitions on the boundary given by

42(0,0) = p(1—q).

The marginal chain ¢ is a random walk on the half line {0, 1, ...} with an invariant
measure v if and only if p > 1/2. On the other hand, f(z) > 1 if and only if ¢ < 1/2.
Thus (19.70) holds if ¢ < 1/2 < p.

This chain falls into the class that we have considered in Theorem 19.3.4; but
other behaviors follow if we vary the structure at the bottom rung.
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Let us then specify the boundary conditions in a manner other than (19.67): put
Aj(z,z —1) = p(1 — q) and Aj(z,z +1) = (1 —p)(1 — g) but

Ay(z,z—1) = r(1-g),
Ay(z,z+1) = (1—r)

(AVARAV
— =

x
- (19.83)
where 0 <7 < 1.

Consider now the expected increments in the chain #% on [0]. By considering
whether the chain leaves [0] or not we have for all z > 1

E@l 8 =z]—z>1-2r)1-q)+(1- 2p)(11—_;q +1)g:  (19.84)
here the second term follows since, on an excursion from [0], the expected drift to
the left at every step is no more than (1 — 2p) independent of level change, and the
expected number of steps to return to [0] from 1 x X is (1 —¢q)/(1 — 2g).

From (19.84) we therefore have that the chain ®[% is transient if  and ¢ are small
enough, and p — 1/2 is not too large.

This example shows the critical need to identify petite sets and the return times
to them in classifying any chain: here we have an example where the set [0] is not
petite, although it has many of the properties of a petite set. Yet even though we
have (19.80) proven, we do not even have enough to guarantee the chain is recurrent.

19.3.3 Stability of the GI/G/1 queue

We saw in Section 3.5 that with appropriate choice of kernels the ladder chain serves
as a model for the GI/G/1 queue. We will use the average drift condition of Theo-
rem 19.3.4 to derive criteria for stability of this model.

Of course, in this case we do not have (19.67), and the example at the end of the
last section shows that we cannot necessarily deduce anything from (19.70).

In this case, however, we have as in Section 10.5.3 that [0] is petite, and that
the process on [0], if honest, has invariant measure H where H is the service time
distribution. If we can satisfy (19.70), then, it follows from (19.80) that the process
on [0] is indeed honest, and we only have to check further that

/ H(dy)Eo,y[rq]] < 00 (19.85)

to derive positivity.
We conclude by proving through this approach a result complementing the result
found in quite another way in Proposition 11.4.4.

Theorem 19.3.5 The GI/G/1 queue with mean inter-arrival time A and mean ser-
vice time p satisfies (19.70) if and only if A > p, and in this case the chain has an
invariant measure given by (10.53).

PRrROOF  From the representations (3.43) and (3.44), we have that the kernel

A, [0.9]) = [ Gld)Pi(a,)
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where P'(z,y) = P(R; <y | Ry < y) is the forward recurrence time process in a
renewal process N (t) generated by increments with distribution H.

Since H has finite mean u, we know from (10.37) that P°(z,y) has invariant
measure

V[0,a] = /0 11— H(x)]dx

for every d: thus v is also invariant for A.
On the other hand, from (3.43),

o0

B(z) = Z ndn(z, [07 00))

n=0

— Sn [ Gl Piw,00)
_ /G(dt)E[N(t) | Ry = zl.

The stationarity of v for the renewal process N () shows that

| BN | By = a] = 1/
and so by Fubini’s Theorem, we therefore have
Jrdn)B) = [ vde)EIN (L) | Ro = )] G(dt)
= [o°It/p]G(dt) (19.86)

= AMu

which proves the first part of the theorem.

To conclude, we note that in this particular case, we know more about the struc-
ture of Eq y[7]0]], and this enables us to move from the case where (19.67) holds. Given
the starting configuration (0,y), let n, denote the number of customers arriving in
the first service time y: if 7(< oo) denotes the expected number of customers in a
busy period of the queue, then by using the trick of rearranging the order of service
to deal with each of the identical n, “busy periods” generated by these customers
separately, we have the linear structure

Eoy[Tio)] = 1+ Eoylnygn] =141 G™[0,y]. (19.87)

n=0

As in (19.80), we at least know that since (19.70) holds, the left hand side of this
equation is finite, so that n < co. Moreover, from the Blackwell Renewal Theorem
(Theorem 14.5.1) we have for any € and large y

i G™0,y] <y[A'+¢ (19.88)

n=0

so that, finally, (19.85) follows from (19.87), (19.88), and the fact that the mean of
H is finite. o
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19.4 Commentary

Despite the success of the simple drift, or Foster-Lyapunov, approach there is a grow-
ing need for more subtle variations such as those we present here.

There are several cases in the literature where the analysis of state-dependent
(or at least not simple one-step) drift appears unavoidable: see Tjgstheim [265] or
Chen and Tsay [46], where m-step skeletons {®,,;} are analyzed. Analysis of this
kind is simplified if the various parts of the space can be considered separately as in
Section 19.1.2.

In the countable space context, Theorem 19.1.1 was first shown as Theorem 1.3
and Theorem 19.1.2 as Theorem 1.4 of MalyShev and Men’sikov [159]. Their proofs,
especially of Theorem 19.1.2, are more complex than those based on sample path
arguments, which were developed along with Theorem 19.1.3 in [184]. As noted there,
the result can be extended by choosing n(z) as a random variable, conditionally
independent of the process, on Z,. In the special case where n(z) has a uniform
distribution on [1,n] independent of z, we get a time averaged result used by Meyn
and Down [175] in analyzing stability of queueing networks. If the variable has a point
mass at n(x) we get the results given here.

Models of random walk on the orthant in Section 19.1.2 have been analyzed in
numerous different ways on the integer quadrant Zi by, for example, [160, 167, 159,
230, 72]. Much of their work pertains to more general models which assume different
drifts on the boundary, thus leading to more complex conditions. In [160, 167, 159]
it is assumed that the increments are bounded (although they also analyze higher
dimensional models), whilst in [230, 72] it is shown that one can actually choose
n = 1 if a quadratic function is used for a test function, whilst weakening the bounded
increments assumption to a second moment condition: this method appears to go back
to Kingman [135].

As we have noted, positive recurrence in the simple case illustrated here could
be established more easily given the independence of the two components. However,
the bound using linear functions in (19.25) seems to be new, as does the continuous
space methodology we use here.

The antibody model here is based on that in [184]. The attack pattern of the
“invaders” is modeled to a large extent on the rabies model developed in Bar-
toszyniski [16], although the need to be the same order of magnitude as the antibody
group is a weaker assumption than that implicit in the continuous time continuous
space model there.

The results in Section 19.2 are largely taken from Meyn and Tweedie [178]: they
appear to give a fruitful approach to more complex models, and the seeming simplicity
of the presentation here is largely a function of the development of the methods based
on Dynkin’s formula for the non-time varying case. An application to adaptive control
is given in Meyn and Guo [176], where drift functions which depend on the whole
history of the chain are used systematically. Regrettably, examples using this approach
are typically too complex to present here.

The dependent parameter bilinear time series model is analyzed in [177], from
which we adopt the proof of Theorem 19.2.6. In Karlsen [123] a decoupling inequality
of [137] is used to obtain a second order stationary solution in the Gaussian pa-
rameter case, and Brandt [28] provides a simple argument, similar to the proof of
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Proposition 17.3.4, to obtain boundedness in probability for general bilinear time
series models with stationary coefficients.

Results on mixed drifts, such as those in Section 19.3.1, have been discovered
independently several times.

Although Neuts [193] analyzed a two-drift chain in detail, on a countable space
the first approach to classifying chains with different drifts appears to be due to
Marlin [163]. He considered the special case of V(z) = z and assumed a fixed finite
number of different drifts. The form given here was developed for countable spaces by
Tweedie [274] (although the proof there is incomplete) and Rosberg [226], who gives
a slightly different converse statement. A general state space form is in Tweedie [276].

The condition (19.55) for the converse result to hold, and which also suffices to
ensure that AV (w) > 0 on C° implies non-positivity, is known as Kaplan’s condi-
tion [121]: the general state space version sketched here is adapted from a countable
space version in [235]. Related results are in [261].

The average mean drift criterion for the ladder process in Section 19.3.2 is due
to Neuts [194] when the rungs are finite, and is proved there by matrix methods: the
general result is in [277], and (19.70) is also shown there to be necessary for positivity
under reasonable assumptions.

The final criterion for stability of the GI/G/1 queue produced by this analysis is
of course totally standard [10]: that the very indirect Markovian approach reproduces
this result exactly brings us to a remarkably reassuring conclusion.

Added in Second Printing In the past year, Dai has shown in [57] that the state-
dependent drift criterion Theorem 19.1.2 leads to a new approach to the stability of
stochastic queueing network models via the analysis of a simpler deterministic fluid
model. Related work has been developed by Chen [45] and Stolyar [257], and these
results have been strengthened in Dai and Weiss [59] and Dai and Meyn [58].



