18

Positivity

Turning from the sample path and classical limit theorems for normalized sums of the
previous chapter, we now return to considering limits of the transition probabilities
P™(z, A).

Our first goal in this chapter is to derive limit theorems for chains which are not
positive Harris recurrent. Although some results in this spirit have been derived as
ratio limit theorems such as Theorem 17.2.1 and Theorem 17.3.2, we have not to this
point considered in any detail the difference between limiting behavior of positive and
null recurrent chains.

The last five chapters have amply illustrated the power of i-irreducibility in the
positive case: that is, in conjunction with the existence of an invariant probability
measure. However, even in the non-positive case, powerful and elegant results can be
achieved. For Harris recurrent chains we prove a generalized version of the Aperiodic
Ergodicity Theorem of Chapter 13, which covers the null recurrent case and actually
subsumes the ergodic case also, since it applies to any Harris recurrent chain. We will
show

Theorem 18.0.1 Suppose @ is an aperiodic Harris recurrent chain. Then for any
initial probability distributions \, u,

[ [ M) |P @, ) - Py, 0, 0 co. (18.1)

If @ is a null recurrent chain with invariant measure 7, then for any constant € > 0,
and any initial distribution A

nlgiolo sup /)\(d:c)Pn(a:,A)/[w(A) +¢] =0. (18.2)
AEB(X)

PROOF  The first result is shown in Theorem 18.1.2 after developing some extended
coupling arguments and then applying the splitting technique. The consequence (18.2)
is proved in Theorem 18.1.3. O

Our second goal in this chapter is to use these limit results to complete the
characterizations of positivity through a positive/null dichotomy of the local behavior
of P™ on suitable sets: not surprisingly, the sets of relevance are petite or compact
sets in the general or topological settings respectively.

In the classical countable state space analysis, as in say Chung [49] or Feller
[76] or Cinlar [40], it is standard to first approach positivity as an asymptotic “P"-
property” of individual states. It is not hard to show that when @ is irreducible, either
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lim sup,,_,, P"(z,y) > 0 for all z,y € X or lim,_,o P"(z,y) = 0 for all z,y € X.
These classifications then provide different but ultimately equivent characterizations
of positive and null chains in the sense we have defined them, which is through the
finiteness or otherwise of 7(X). In Theorem 18.2.2 we show that for t-irreducible
chains the positive/null dichotomy as defined in, say, Theorem 13.0.1 is equivalent to
similar dichotomous behavior of

lim sup P"(z, C) (18.3)

n—oo

for petite sets, exactly as it is in the countable case.

Hence for irreducible T-chains, positivity of the chain is characterized by posi-
tivity of (18.3) for compact sets C. For T-chains we also show in this chapter that
positivity is characterized by the behavior of (18.3) for the open neighborhoods of
z, and that similar characterizations exist for e-chains. Thus there are, for these two
classes of topologically well-behaved chains, descriptions in topological terms of the
various concepts embodied in the concept of positivity.

These results are summarized in the following theorem:

Theorem 18.0.2 Suppose that P is a chain on a topological space for which a reach-
able state x* € X exists.

(i) If the chain is a T-chain then the following are equivalent:

(a) P is positive Harris;
(b) @ is bounded in probability;

(c) @ is non-evanescent and x* is “positive”;

If any of these equivalent conditions hold and if the chain is aperiodic, then for
each initial state ¢ € X,

|P*(z, -) — x| = 0 as k — oo. (18.4)

(ii) If the chain is an e-chain then the following are equivalent:

(a) There exists a unique invariant probability © and for every initial condition
z € X and each bounded continuous function f € C(X),

Jim Py(a, ) = (/)
lim lzn:f(QSZ) = 7(f) in probability;

n—oon 4
=1

(b) @ is bounded in probability on average;

(c) @ is non-evanescent and z* is “positive”;

If any of these equivalent conditions hold and if the reachable state is “aperiodic”
then for each initial state ¢ € X,

Prz, ) Don as k — oo. (18.5)
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PrROOF (i) The equivalence of Harris positivity and boundedness in probability
for T-chains is given in Theorem 18.3.2, and the equivalence of (a) and (c) follows
from Proposition 18.3.3.

(ii) The equivalences of (a)-(c) follow from Proposition 18.4.2, and the limit
result (18.5) is given in Theorem 18.4.4. 0

Thus we have global convergence properties following from local properties,
whether the local properties are with respect to petite sets as in Theorem 18.0.1
or neighborhoods of points as in Theorem 18.0.2.

Finally, we revisit the LLN for e-chains in the light of these characterizations and
show that a slight strengthening of the hypotheses of Theorem 18.0.2 are precisely
those needed for such chains to obey such a law.

18.1 Null recurrent chains

Our initial step in examining positivity is to develop, somewhat paradoxically, a limit
result whose main novelty is for null recurrent chains. Orey’s Theorem 18.1.2 actually
subsumes some aspects of the ergodic theorem in the positive case, but for us its virtue
lies in ensuring that limits can be also be defined for null chains.

The method of proof is again via a coupling argument and the Regenerative
Decomposition.

The coupling in Section 13.2 was made somewhat easier because of the existence of
a finite invariant measure in product form to give positivity of the forward recurrence
time chain. If the mean time between renewals is not finite, then such a coupling of
independent copies of the renewal process may not actually occur with probability one.
To see this, consider the recurrence and transience classification of simple symmetric
random walks in two and four dimensions (see Spitzer [255], Section 8). The former
is known to be recurrent, so the return times to zero form a proper renewal sequence.
Now consider two independent copies of this random walk: this is a four-dimensional
random walk which is equally well known to be transient, so the return time to zero
is infinite with positive probability.

Since this is the coupling time of the two independent renewal processes, we
cannot couple them as we did in the positive recurrent case. It is therefore perhaps
surprising that we can achieve our aims by the following rather different and less
obvious coupling method.

18.1.1 Coupling renewal processes for null chains

As in Section 13.2 we again define two sets of random variables {Sp, S1,S2,...} and
{84, 51,5%, ...}, where {51, S2,...} are independent and identically distributed with
distribution {p(j)}, and the distributions of the independent variables Sy, Sj are a, b.

This time, however we define the second sequence {S7,S5%,...} in a dependent
way. Let M be a (typically large, and yet to be chosen) integer. For each j define S;'
as being either exactly S; if S; > M, or, if §; < M, define S;- as being an independent
variable with the same conditional distribution as S;, namely

P(Sj=k|S; < M)=pk)/(1-p(M)), k<M,

where p(M) = 37,5 1 p(4)-
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This construction ensures that for § > 1 the increments S; and S} are identical
in distribution even though they are not independent. By construction, also, the

quantities
117 !

have the properties that they are identically distributed, they are bounded above by
M and below by —M, and they are symmetric around zero and in particular have
Zero mean.

Let &; = ;-L:O W; denote the random walk generated by this sequence of vari-
ables, and let T}, denote the first time that the random walk @* returns to zero,
when the initial step Wy = Sy — S}, has the distribution induced by choosing a,b as
the distributions of Sy, Sj respectively.

As in Section 13.2 the coupling time of the two renewal processes is defined as

Top = min{j : Zo(j) = Zp(j) = 1}

where Z,, 7, are the indicator sequences of each renewal process, and since
n n
*x L I_
=2 525
j=0 7=0

we have immediately that
Tab == T;b

But we have shown in Proposition 8.4.4 that such a random walk, with its bounded
increments, is recurrent on Z, provided of course that it is 7-irreducible; and if the
random walk is recurrent, T);; < oo with probability one from all initial distributions
and we have a successful coupling of the two sequences.

Oddly enough, it is now the irreducibility that causes the problems. Obviously a
random walk need not be irreducible if the increment distribution I" is concentrated
on sublattices of Z, and as yet we have no guarantee that #* does not have increments
concentrated on such a sublattice: it is clear that it may actually do so without further
assumptions.

We now proceed with the proof of the result we require, which is the same con-
clusion as in Theorem 13.2.2 without the assumption that m, < oo; and the issues
just raised are addressed in that proof.

Theorem 18.1.1 Suppose that a,b,p are proper distributions on Z, and that u is
the renewal function corresponding to p. Then provided p is aperiodic

la xu—b*ul|(n) =0, n— oo, (18.6)

and
la*xu —b*xu|*xp(n) -0, n— oo. (18.7)

ProOF  We will first assume a stronger form of aperiodicity, namely
g.cd{n—m:m <n, p(m) >0, p(n) >0} =1.
With this assumption we can choose M sufficiently large that

ged{n—m:m <n <M, p(m)>0, p(n) >0} =1. (18.8)
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Let us use this M in the construction of the random walk @* above. It is straightfor-
ward to check that now @* really is irreducible, and so

P(Tab < OO) =1

for any a,b. In particular, then, (18.6) is true for a, b.

We now move on to prove (18.7), and to do this we will now use the backward
recurrence chain rather than the forward recurrence chain.

Let V7, V,~ be the backward recurrence chains defined for the renewal indicators
Zy , Zy : note that the subscripts a,b denote conditional random variables with the
initial distributions indicated. It is obvious that the chains V", V," couple at the same
time T, that Z;, Z,~ couple.

Now let A be an arbitrary set in Z . Since the distributions of V,~ and V;~ are
identical after the time T, we have for any n > 1 by decomposing over the values of
Tap and using the Markov or renewal property

PV, (n) € 4) = 3" P(Tuy = m)P(V, (n—m) € A) + P(V, (n) € A, Ty > n)

m=1

PV (n) € A) = S P(Tuy = m)P(Vi-(n — m) € A) + P(Vy(n) € A, Tup > ).

m=1

Using this and the inequality |z — y| < max(z,y), z,y > 0, we get

sup [P(V, (n) € A) = P(V, (n) € A)| < P(Tuwp > n). (18.9)
ACZ,

We already know that the right hand side of (18.9) tends to zero. But the left hand
side can be written as

sup |P(V, (n) € A) —P(V, (n) € A)|

ACZ,
= 3 IP(V; (n) =m)—P(V, (n) =m)
m=0
- %Z a*u(n —m)p(m) — b*u(n —m)p(m)|
= %\a *u — b*ul *xp(n) (18.10)

and so the result (18.7) holds.

It remains to remove the extraneous aperiodicity assumption (18.8).

To do this we use a rather nice trick. Let us modify the distribution p(j) to form
another distribution p°(4) on {0, 1,...} defined by setting

p°(0) =p > 0;

() =QA-pp), J>1L

Let us now carry out all of the above analysis using p°, noting that even though this
is not a standard renewal sequence since p°(0) > 0, all of the operations used above
remain valid.
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Provided of course that p(j) is aperiodic in the usual way, we certainly have that
(18.8) holds for p® and we can conclude that as n — oo,

la*u® — b*ud|(n) =0, (18.11)
la*u® —bxu®| xp°(n) = 0. (18.12)

Finally, by construction of p° we have the two identities

pP’(n) =1 -p)p(n),  u’(n)=(1-p) " u(n)

and consequently, from (18.11) and (18.12) we have exactly (18.6) and (18.7) as
required. ad

Note that in the null recurrent case, since we do not have Y p(n) < oo, we cannot
prove this result from Lemma D.7.1 even though it is a identical conclusion to that
reached there in the positive recurrent case.

18.1.2 Orey’s convergence theorem

In the positive recurrent case, the asymptotic properties of the chain are interesting
largely because of the proper distribution 7 occurring as the limit of the sequence
P

In the null recurrent case we know that no such limiting distribution can exist,
since there is no finite invariant measure.

It is therefore remarkable that we can give a strong result on the closeness of the
n-step distributions from different initial laws, even for chains which may be null.

Theorem 18.1.2 Suppose @ is an aperiodic Harris recurrent chain. Then for any
initial probability distributions \, u,

//)\(d:v)u(dy)HP"(z, NPy, )| =0, n— . (18.13)

Proor  Yet again we begin with the assumption that there is an atom a in the
space. Then for any = we have from the Regenerative Decomposition (13.47)

|P™(z, -) — P™ (e, -)|| < Pp(1q > 1) +|ag xu—u|l(n) + |ag *u —ul*p(n) (18.14)

where now p(n) = Py (7o > n). From Theorem 18.1.1 we know the last two terms in
(18.14) tend to zero, whilst the first tends to zero from Harris recurrence.

The result (18.13) then follows for any two specific initial starting points z,y
from the triangle inequality; it extends immediately to general initial distributions
A, p from dominated convergence.

As previously, the extension to strongly aperiodic chains is straightforward, whilst
the extension to general aperiodic chains follows from the contraction property of the
total variation norm. ad

We conclude with a consequence of this theorem which gives a uniform version
of the fact that, in the null recurrent case, we have convergence of the transition
probabilities to zero.

Theorem 18.1.3 Suppose that P is aperiodic and null recurrent, with invariant mea-
sure w. Then for any initial distribution X\ and any constant € > 0

Jim  sup /)\(dw)P”(x,A)/[n(A) +el=0. (18.15)
AEB(X)
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PROOF  Suppose by way of contradiction that we have a sequence of integers {ny}
with ny — oo and a sequence of sets By € B(X) such that, for some A, and some
d,e >0,

/ Adz)P"™ (2, By) > 8[x(By) + ¢, keZ,. (18.16)
Now from (18.13), we know that for every y
| / Adz)P™ (2, By) — P™ (3, B)| = 0, k= o0 (18.17)

and by Egorov’s Theorem and the fact that 7(X) = oo this convergence is uniform
on a set with m-measure arbitrarily large.
In particular we can take k and D such that 7(D) > §~! and

| / Mdz) P (2, By) — P™ (y, By)| < £6/2,  y € D. (18.18)
Combining (18.16) and (18.18) gives

7B = [Py By)

> /D w(dy) P™ (y, By)

> w(D)[[ Ado)P"(w, By) ~ 6/2
> w(D)[d(m(Bg) +¢) —ed/2] (18.19)
which gives
n(D) <671,
thus contradicting the definition of D. O

The two results in Theorem 18.1.2 and Theorem 18.1.3 combine to tell us that,
on the one hand, the distributions of the chain are getting closer as n gets large;
and that they are getting closer on sets increasingly remote from the “center” of the
space, as described by sets of finite m-measure.

18.2 Characterizing positivity using P"

We have chosen to formulate positive recurrence initially, in Chapter 10, in terms of
the finiteness of the invariant measure 7. The ergodic properties of such chains are
demonstrated in Chapters 13-16 as a consequence of this simple definition.

In contrast to this definition, the classical approach to the classification of ir-
reducible chains as positive or null recurrent uses the transition probabilities rather
than the invariant measure: typically, the invariant measure is demonstrated to exist
only after a null/positive dichotomy is established in terms of the convergence prop-
erties of P"(z, A) for appropriate sets A. Null chains in this approach are those for
which P"(z, A) — 0 for, say, all z and all small sets A, and almost by default, positive
recurrent chains are those which are not null; that is, for which lim sup P"(z, A) > 0.

We now develop a classification of states or of sets as positive recurrent or null
using transition probabilities, and show that this approach is consistent with the
definitions involving invariant measures in the case of 1-irreducible chains.
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18.2.1 Countable spaces

We will first consider the classical classification of null and positive chains based on
P" in the countable state space case.

When X is countable, recall that recurrence of individual states z,y € X involves
consideration of the finiteness or otherwise of E;(ny) = U(z,y) = > or; P"(z,y). The
stronger condition

lim sup P"(z,y) > 0 (18.20)
n—oo
obviously implies that
Es(ny) = o0; (18.21)

and since in general, because of the cyclic behavior in Section 5.4, we may have
. n _
llTILIl)g)lfP (z,y) =0, (18.22)

the condition (18.20) is often adopted as the next strongest stability condition after
(18.21).
This motivates the following definitions.

Null and positive states

(i) The state e is called null if lim,_,oo P™ (e, ) = 0.

(ii) The state « is called positive if lim sup,,_, ., P" (e, ) > 0.

When @ is irreducible, either all states are positive or all states are null, since for any
w, z there exist r, s such that P"(w,z) > 0 and P*(y,z) > 0 and

lim sup P" " (w, z) > P"(w, z)[lim sup P"(z,y)]P*(y, 2). (18.23)
n—oo n—oo
We need to show that these solidarity properties characterize positive and null chains
in the sense we have defined them. One direction of this is easy, for if the chain is
positive recurrent, with invariant probability 7, then we have for any n

m(y) = Y_m(z)P"(,y);

T

hence if lim,,_,o, P™(w,w) = 0 for some w then by (18.23) and dominated convergence
m(y) = 0, which is impossible. The other direction is easy only if one knows, not merely
that lim sup,,_, ., P"(z,y) > 0 but that (at least through an aperiodic class) this is
actually a limit. Theorem 18.1.3 now gives this to us.

Theorem 18.2.1 If & is irreducible on a countable space then the chain is positive
recurrent if and only if some one state is positive. When P is positive recurrent, for
some d>1
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: nd+r _
Jim P" (2, y) = dr(y) >0
for all z,y € X, and some 0 < r(z,y) < d— 1; and when ¥ is null
. n _
nlggoP (z,y) =0
for all z,y € X.

PrROOF  If the chain is transient then since U(z,y) < oo for all z,y from Proposi-
tion 8.1.1 we have that every state is null; whilst if the chain is null recurrent then
since 7(y) < oo for all y, Theorem 18.1.3 shows that every state is null.

Suppose that the chain is positive recurrent, with period d: then the Aperiodic
Ergodic Theorem for the chain on the cyclic class D; shows that for z,y € D; we
have

: nr
Jim P (z,y) = dr(y) >0

whilst for 2 € Dj_, (mod 4y We have Pi="(z,D;) = 1, showing that every state is
positive. O

The simple equivalences in this result are in fact surprisingly hard to prove until
we have established, not just the properties of the sequences lim sup P”, but the
actual existence of the limits of the sequences P™ through the periodic classes. This
is why this somewhat elementary result has been reserved until now to establish.

18.2.2 General spaces

We now move on to the equivalent concepts for general chains: here, we must consider
properties of sets rather than individual states, but we will see that the results above
have completely general analogues.

When X is general, the definitions for sets which we shall use are

Null and positive sets

(i) The set A is called null if lim,,_,o, P"(z, A) =0 for all z € A.

(ii) The set A is called positive if lim sup,,_,,, P"(z,A) > 0 for all
z € A.

We now prove that these definitions are consistent with the definitions of null and
positive recurrence for general 1-irreducible chains.

Theorem 18.2.2 Suppose that P is yP-irreducible. Then
(i) the chain & is positive recurrent if and only if every set B € BT (X) is positive;

(ii) if @ is null then every petite set is null and hence there is a sequence of null sets
Bj with U; Bj = X.
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PROOF  If the chain is null then either it is transient, in which case each petite set
is strongly transient and thus null by Theorem 8.3.5; or it is null and recurrent in
which case, since 7 exists and is finite on petite sets by Proposition 10.1.2, we have
that every petite set is again null from Theorem 18.1.3.

Suppose the chain is positive recurrent and we have A € B (X). For z € DyN H,
where H is the maximal Harris set, and Dy is an arbitrary cyclic set, we have for each
T

lim P""(z, A) = dn(AN D,)

n—oo

which is positive for some r. Since for every z we have L(z, DyNH) > 0 we have that
the set A is positive. O

18.3 Positivity and T-chains

18.3.1 T-chains bounded in probability

In Chapter 12 we showed that chains on a topological space which are bounded
in probability admit finite subinvariant measures under a wide range of continuity
conditions.

It is thus reasonable to hope that i-irreducible chains on a topological space which
are bounded in probability will be positive recurrent. Not surprisingly, we will see in
this section that such a result is true for T-chains, and indeed we can say considerably
more: boundedness in probability is actually equivalent to positive Harris recurrence
in this case. Moreover, for T-chains positive or null sets also govern the behavior of
the whole chain.

It is easy to see that on a countable space, where the continuous component prop-
erties are always satisfied, irreducible chains admit the following connection between
boundedness in probability and positive recurrence.

Proposition 18.3.1 For an irreducible chain on a countable space, positive Harris
recurrence is equivalent to boundedness in probability.

PROOF  In the null case we do not have boundedness in probability since P"(z,y) —
0 for all z,y from Theorem 18.2.1.
In the positive case we have on each periodic set D, a finite probability measure
7 such that if z € Dy
lim P (z,C) = 7, (C) (18.24)

n—0o0
so by choosing a finite C such that 7,(C) > 1—¢ for all 1 < r < d we have boundedness
in probability as required. O
The identical conclusion holds for T-chains. To get the broadest presentation,
recall that a state z* € X is reachable if

U(y,0) >0
for every state y € X, and every open set O containing x*.

Theorem 18.3.2 Suppose that D is a T-chain and admits a reachable state *. Then
@ is a positive Harris chain if and only if it is bounded in probability.
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PrROOF  First note from Proposition 6.2.1 that for a T-chain the existence of just
one reachable state z* gives 1)-irreducibility, and thus & is either positive or null.

Suppose that @ is bounded in probability. Then ¢ is non-evanescent from Propo-
sition 12.1.1, and hence Harris recurrent from Theorem 9.2.2.

Moreover, boundedness in probability implies by definition that some compact
set is non-null, and hence from Theorem 18.2.2 the chain is positive Harris, since
compact sets are petite for T-chains.

Conversely, assume that the chain is positive Harris, with periodic sets D; each
supporting a finite probability measure 7; satisfying (18.24). Choose ¢ > 0, and
compact sets C; C D, such that 7,.(C,) > 1 — ¢ for each r.

If z € D; then with C':=UC;,

: nd+r—j _ .
nll)IgoP (z,C) =7 (Cr) >1—¢. (18.25)
If z is in the non-cyclic set N = X\ U D; then P"(z,UD;) — 1 by Harris recurrence,
and thus from (18.25) we also have lim inf, P"(z,C) > 1 — ¢, and this establishes
boundedness in probability as required. O

18.3.2 Positive and null states for T-chains

The ideas encapsulated in the definitions of positive and null states in the countable
case and positive and null sets in the general state space case find their counterparts
in the local behavior of chains on spaces with a topology.

Analogously to the definition of topological recurrence at a point we have

Topological positive and null recurrence of states
We shall call a state z*

(i) null if lim,_, o P™(z*,0) = 0 for some neighborhood O of z*;
(ii) positive if lim sup,,_,., P"(z*,O) > 0 for all neighborhoods O of

z*.

We now show that these topological properties for points can be linked to their
counterparts for the whole chain when the T-chain condition holds. This completes
the series of results begun in Theorem 9.3.3 connecting global properties of T-chains
with those at individual points.

Proposition 18.3.3 Suppose that @ is a T-chain, and suppose that x* is a reachable
state. Then the chain P is positive recurrent if and only if ©* is positive.

Proor  From Proposition 6.2.1 the existence of a reachable state ensures the chain
is y-irreducible. Assume that x* is positive. Since @ is a T-chain, there exists an open
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petite set C containing z* (take any precompact open neighborhood) and hence by
Theorem 18.2.2 the chain is also positive.

Conversely, suppose that @ has an invariant probability 7 so that @ is positive
recurrent. Since z* is reachable it also lies in the support of 7, and consequently any
neighborhood of z* is in B*(X). Hence z* is positive as required, from Theorem 18.2.2.

O

18.4 Positivity and e-Chains

For T-chains we have a great degree of coherence in the concepts of positivity. Al-
though there is not quite the same consistency for weak Feller chains, within the
context of chains bounded in probability we can develop several valuable approaches,
as we saw in Chapter 12.

In particular, for e-chains we now prove several further positivity results to in-
dicate the level of work needed in the absence of 1-irreducibility. It is interesting to
note that it is the existence of a reachable state that essentially takes over the role of
y-irreducibility, and that such states then interact well with the e-chain assumption.

18.4.1 Reachability and positivity

To begin we show that for an e-chain which is non-evanescent, the topological irre-
ducibility condition that a reachable state exists is equivalent to the measure-theoretic
irreducibility condition that the limiting measure I (x, X) is independent of the start-
ing state z. Boundedness in probability on average is then equivalent to positivity of
the reachable state.

We first give a general result for Feller chains:

Lemma 18.4.1 If & is a Feller chain and if a reachable state x* exists, then for any
pre-compact neighborhood O containing x*,

{D > 00} ={P€0io}° a.s. [Py

PROOF  Since L(z,O) is a lower semicontinuous function of z by Proposition 6.1.1,
and since by reachability it is strictly positive everywhere, it follows that L(z,O) is
bounded from below on compact subsets of X.

Letting {O, } denote a sequence of pre-compact open subsets of X with O,, 1T X,
it follows that O,, ~» O for each n, and hence by Theorem 9.1.3 we have

{B€0,io0}C{PecOio} a.s. [Py
This immediately implies that

{P — 0} = U {#€0,io0}C{PcOio} a.s. [Py,

n>1
and since it is obvious that {# — oo} C {® € O i.0.}, this proves the lemma. O

Proposition 18.4.2 Suppose that D is an e-chain which is non-evanescent, and sup-
pose that a reachable state x* € X exists. Then the following are equivalent:
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(1) There exists a unique invariant probability m such that

DY w

Pz, ) — as k — oo;

(ii) D is bounded in probability on average;
(iii) z* is positive.

PrROOF  The identity PII = IT which is proved in Theorem 12.4.1 implies that for
any f € C.(X), the adapted process (II(Py, f), F7) is a bounded martingale. Hence
by the Martingale Convergence Theorem D.6.1 there exists a random variable 7(f)
for which

Jm (@, f) =a(f)  as. [P,

with Ey[7(f)] = I (y, f) for all y € X.
Since I (y, f) is a continuous function of y, it follows from Lemma 18.4.1 that

lim inf | (@, f) ~ D" /)| =0 as. [P.],

which gives 7(f) = II(z*, f) a.s. [P]. Taking expectations gives IT(y, f) = Ey[7(f)] =
II(z*, f) for all y.

Since a finite measure on B(X) is determined by its values on continuous functions
with compact support, this shows that the measures II(y, - ), y € X, are identical.
Let m denote their common value.

To prove Proposition 18.4.2 we first show that (i) and (iii) are equivalent. To
see that (iii) implies (i), observe that under positivity of z* we have IT(z*,X) > 0,
and since IT(y, X) = w(X) does not depend on y it follows from Theorem 12.4.3 that
II(y,X) =1 for all y. Hence 7 is an invariant probability, which shows that (i) does
hold.

Conversely, if (i) holds then by reachability of * we have z* € suppm and hence
every neighborhood of z* is positive. This shows that (iii) also holds.

We now show that (i) is equivalent to (ii).

It is obvious that (i) implies (ii). To see the converse, observe that if (ii) holds
then by Theorem 12.4.1 we have that 7 is an invariant probability. Moreover, since
x* is reachable we must have that mw(O) > 0 for any neighborhood of z*. Since
II(y,0) = w(O) for every y, this shows that z* is positive.

Hence (iii) holds, which implies that (i) also holds. a

18.4.2 Aperiodicity and convergence

The existence of a limit for P, in Proposition 18.4.2 rather than for the individual
terms P" seems to follow naturally in the topology we are using here.

We can strengthen such convergence results using a topological notion of aperiod-
icity and we turn to such concepts in the this section. It appears to be a particularly
difficult problem to find such limits for the terms P™ in the weak Feller situation
without an e-chain condition.

In the topological case we use a definition justified by the result in Lemma D.7.4,
which is one of the crucial consequences of the definitions in Chapter 5.
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Topological aperiodicity of states

A recurrent state z is called aperiodic if P*(x, Q) > 0 for each open set
O containing z, and all k € Z sufficiently large.

The following result justifies this definition of aperiodicity and strengthens Theo-
rem 12.4.1.

Proposition 18.4.3 Suppose that @ is an e-chain which is bounded in probability on
average. Let z* € X be reachable and aperiodic, and let m = II(z*, -). Then for each
initial condition y lying in suppm,

Pr(y, ) Son as k — oo (18.26)

PrOOF  For any f € C.(X) we have by stationarity,

[ 1Psldn = [1f PPEpilan > [ P4,

and hence v := limy_, o, [ |P¥ f|dr exists.

Since {P*f} is equicontinuous on compact subsets of X, there exists a continuous
function g, and a subsequence {k;} C Z, for which P* f — g as i — oo uniformly
on compact subsets of X. Hence we also have P**¢f — Plg as i — oo uniformly on
compact subsets of X.

By the Dominated Convergence Theorem we have for all £ € Z_,

/Pzgdw = /fd7r and /|P£g|d7r =v. (18.27)

We will now show that this implies that the function g cannot change signs on supp .
Suppose otherwise, so that the open sets

O; :={z € X: g(x) > 0}, O_:={z e X:g(r) <0}

both have positive m measure.
Because z* € supp, it follows by Proposition 18.4.2 that there exists k4, k_ €
Z . such that
Pr+(y,04,) >0 and P* (y,0_) >0 (18.28)

when y = z*, and since P"(-,0) is lower semicontinuous for any open set O C X,
equation (18.28) holds for all y in an open neighborhood N containing z*.

We may now use aperiodicity. Since P¥(z*, N) > 0 for all k sufficiently large, we
deduce from (18.28) that there exists £ € Z . for which

PYy,04)>0 and P%y,0_-)>0

when y = z*, and hence for all ¥ in an open neighborhood N’ of z*. This implies that
|Ptg| < P%g| on N', and since 7{N'} > 0, that [ |P‘g|dn < [ |g|dr, in contradiction
to the second equality in (18.27).
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Hence g does not change signs in supp . But by (18.27) it follows that if [ f dr =

0 then
0=/ gdr| = [Iglar,

so that g = 0 on supp w. This shows that the limit (18.26) holds for all initial condi-
tions in supp 7. O

We now show that if a reachable state exists for an e-chain then the limit in
Proposition 18.4.3 holds for each initial condition. A sample path version of Theo-
rem 18.4.4 will be presented below.

Theorem 18.4.4 Suppose that @ is an e-chain which is bounded in probability on
average. Then

(1) A wunique invariant probability m exists if and only if a reachable state z* € X
exists;

(ii) If an aperiodic reachable state z* € X exists, then for each initial state x € X,
Prz, ) Sor as k — oo, (18.29)

where 7 is the unique invariant probability for ®. Conversely, if (18.29) holds
for all x € X then every state in supp 7 is reachable and aperiodic.

PrOOF  The proof of (i) follows immediately from Proposition 18.4.2, and the con-
verse of (ii) is straightforward.

To prove the remainder, we assume that the state £* € X is reachable and aperi-
odic, and show that equation (18.29) holds for all initial conditions.

Suppose that [ fdr =0, |f(z)| <1 for all z, and for fixed € > 0 define the set

O, :={z € X : lim sup |P*f| < €}.

k—o00

Because the Markov transition function P is equicontinuous, and because Proposi-
tion 18.4.3 implies that (18.29) holds for all initial conditions in supp 7, the set O is
an open neighborhood of supp .

Hence 7{O} = 1, and since O, is open, it follows from Theorem 18.4.4 (i) that

lim Py(z,0.) = 1.

N—oo

Fix € X, and choose Ny € Z, such that PNo(z,0,) > 1 — . We then have by the
definition of O, and Fatou’s Lemma,

lim sup |[PY°*Ff (z)] < PM(z,0%) +limsup [ P™(z,dy)|P*f (y)|
k—o00 k—o0 O¢

< 2.

Since ¢ is arbitrary, this completes the proof. ad
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18.5 The LLN for e-Chains

As a final result, illustrating both these methods and the sample path methods de-
veloped in Chapter 17, we now give a sample path version of Proposition 18.4.2 for
e-chains.

Define the occupation probabilities as

fin{ A} i= Sp(1l) = % S Uo,c A} nez,, AcBX). (18.30)
k=1

Observe that {fix} are not probabilities in the usual sense, but are probability-valued
random variables.

The Law of Large Numbers (Theorem 17.1.2) states that if an invariant proba-
bility measure 7 exists, then the occupation probabilities converge with probability
one for each initial condition lying in a set of full 7-measure. We now present two
versions of the law of large numbers for e-chains where the null set appearing in The-
orem 17.1.2 is removed by restricting consideration to continuous, bounded functions.
The first is a Weak Law of Large Numbers, since the convergence is only in prob-
ability, while the second is a Strong Law with convergence occurring almost surely.

Theorem 18.5.1 Suppose that @ is an e-chain bounded in probability on average,
and suppose that a reachable state exists. Then a unique invariant probability © exists
and the following limits hold.

(i) For any f € C(X), as k — o0

[ rdm— [ rar

in probability for each initial condition;

(ii) If for each initial condition of the Markov chain the occupation probabilities are
almost surely tight, then as k — oo

fr — 1 as. [P (18.31)

ProorF Let f € C(X) with 0 < f(z) < 1 for all z, let C C X be compact and
choose ¢ > 0. Since Pyf — [ fdr as k — oo, uniformly on compact subsets of X,
there exists M sufficiently large for which

1 & 1 &
‘WI;PMf(@k)—/fdw‘Ss—}—ﬁ;]l{@iEC} (18.32)
Now for any M € Z ., we will show
N N
|%Zf(¢k) —/fdﬂ\ = |%Z?Mf(¢k)—/fd7r|+o(l) (18.33)
k=1 k=1

where the term o(1) converges to zero as n — oo with probability one.
For each N, n € Z, we have
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1 N n—1]> N ) -

S @)~ [fdr = Y Y (P@) - P (@
N @)= [fan = 35 3P (Bri))
1,

ty P [ fan

N
5 S (P @) - PRA(@))
k=1

where we adopt the convention that @, = &y for k£ < 0. For each M € Z, we may
average the right hand side of this equality from n = 1 to M to obtain

1N | M -1y N .
nglf(@k) - /de A (; N};(sz@k—i) _PH—lf(dsk—i—l)))

1L Y
+22 2 (5 2 P (@in) — PP (@)

n=1 k=1

The fourth term is a telescoping series, and hence recalling our definition of the
transition function Pj; we have

1 N N
5 S s@) - [ran] < Z 1 > (P (@) — P @)
k=1 e
+‘N g( /fd”)‘
+% (18.34)

For each fixed 0 <7 < M — 1 the sequence
(PF(@ri) = P (Bpoin), FE) k>

is a bounded martingale difference process. Hence by Theorem 5.2 of Chapter 4 of
[68], the first summand converges to zero almost surely for every M € Z ., and thus
(18.33) is proved.

Hence for any vy > ¢, it follows from (18.33) and (18.32) that

%éf@k)—/fdw\zw}

lim sup Pw{

N—oo

N
< lim supPz{%Z]l{@i €C > 7—6}
=1

N—oo

<

N
lim sup E; [% > 1o € CC}}
=1

Y—€ Nooo

Since @ is bounded in probability on average, the right hand side decreases to zero
as C' 1 X, which completes the proof of (i).
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To prove (ii), suppose that the occupation probabilities {fix } are tight along some
sample path. Then we may choose the compact set C' in (18.32) so that along this
sample path

N
lim sup % Z?Mf (Pr) — /fdw‘ < 2e.
k=1

N—oo

Since € > 0 is arbitrary, (18.33) shows that

.1
Jim N}; f(®)) = / fdr  as. [P

N—o©

so that the Strong Law of Large Numbers holds for all f € C(X) and all initial
conditions = € X.

Let {fn} be a sequence of continuous functions with compact support which is
dense in C.(X) in the uniform norm. Such a sequence exists by Proposition D.5.1.
Then by the preceding result,

Po{ lim / Fudiip = / fadr  foreachneZ,} =1,
k—00

which implies that fiy — 7 as k — co. Since 7 is a probability, this shows that in
fact jiy — m a.s. [P,], and this completes the proof. 0

We conclude by stating a result which, combined with Theorem 18.5.1, provides
a test function approach to establishing the Law of Large Numbers for é. For a proof
see [169].

Theorem 18.5.2 If a norm-like function V and a compact set C satisfy condi-
tion (V4) then @ is bounded in probability, and the occupation probabilities are almost
surely tight for each initial condition. Hence, if @ is an e-chain, and if a reachable
state exists,

fik — 7 ask — oo a.s. [P]. (18.35)

18.6 Commentary

Theorem 18.1.2 for positive recurrent chains is first proved in Orey [207], and the null
recurrent version we give here is in Jamison and Orey [111]. The dependent coupling
which we use to prove this result for null recurrent chains is due to Ornstein [209],
[210], and is also developed in Berbee [20]. Our presentation of this material has relied
heavily on Nummelin [202], and further related results can be found in his Chapter 6.

Theorem 18.1.3 is due to Jain [105], and our proof is taken from Orey [208].

The links between positivity of states, boundedness in probability, and positive
Harris recurrence for T-chains are taken from Meyn [169], Meyn and Tweedie [178]
and Tuominen and Tweedie [269]. In [178] analogues of Theorem 18.3.2 and Proposi-
tion 18.3.3 are obtained for non-irreducible chains.

The convergence result Theorem 18.4.4 for chains possessing an aperiodic reach-
able state is based upon Theorem 8.7.2 of Feller [77].

The use of the martingale property of IT(®y, f) to obtain uniqueness of the invari-
ant probability in Proposition 18.4.2 is originally in [109]. This is a powerful technique
which is perhaps even more interesting in the absence of a reachable state.
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For suppose that the chain is bounded in probability but a reachable state does
not exist, and define an equivalence relation on X as follows: z <> y if and only if
II(z,-) = Iy, -). It follows from the same techniques which were used in the proof
of Proposition 18.4.2, that if z is recurrent then the set of all states E, for which
y ¢ z is closed. Since z € E,, for every recurrent point z € R, F = X —Y_ E,, consists
entirely of non-recurrent points. It then follows from Proposition 3.3 of Tuominen
and Tweedie [270] that F is transient.

From this decomposition and Proposition 18.4.3 it is straightforward to generalize
Theorem 18.4.4 to chains which do not possess a reachable state. The details of this
decomposition are spelled out in Meyn and Tweedie [182].

Such decompositions have a large literature for Feller chains and e-chains: see
for example Jamison [109] and also Rosenblatt [227] for e-chains, and Jamison and
Sine [112], Sine [243, 242, 241] and Foguel [78, 80] for Feller chains and the detailed
connections between the Feller property and the stronger e-chain property. All of
these papers consider exclusively compact state spaces. The results for non-compact
state spaces appear here for the first time.

The LLN for e-chains is originally due to Breiman [29] who considered Feller
chains on a compact state space. Also on a compact state space is Jamison’s extension
of Breiman’s result [108] where the LLN is obtained without the assumption that a
unique invariant probability exists.

One of the apparent difficulties in establishing this result is finding a candidate
limit 7(f) of the sample path averages %Sn( f). Jamison resolved this by considering
the transition function I7, and the associated convergent martingale (II (P, A), F7).
If the chain is bounded in probability on average then we define the random probability
T as

#{A} = lim I1(®, 4), A€ B(X). (18.36)

It is then easy to show by modifying (18.34) that Theorem 18.5.1 continues to hold
with [ f dr replaced by [ f d7, even when no reachable state exists for the chain. The
proof of Theorem 18.5.1 can be adopted after it is appropriately modified using the
limit (18.36).



