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Sample Paths and Limit Theorems

Most of this chapter is devoted to the analysis of the series S, (g), where we define
for any function g on X,

Sule) = 3" 0(@) ar1)
k=1

We are concerned primarily with four types of limit theorems for positive recurrent
chains possessing an invariant probability =:

(i) those which are based upon the existence of martingales associated with the chain;

(ii) the Strong Law of Large Numbers (LLN), which states that n=1S,,(g) converges
to m(g) = Ex[g(Po)], the steady state expectation of g(Py);

(iii) the Central Limit Theorem (CLT), which states that the sum S,(¢g — 7(g)),
when properly normalized, is asymptotically normally distributed;

(iv) the Law of the Iterated Logarithm (LIL) which gives precise upper and lower
bounds on the limit supremum of the sequence S, (g—7(g)), again when properly
normalized.

The martingale results (i) provide insight into the structure of irreducible chains, and
make the proofs of more elementary ergodic theorems such as the LLN almost trivial.
Martingale methods will also prove to be very powerful when we come to the CLT
for appropriately stable chains.

The trilogy of the LLN, CLT and LIL provide measures of centrality and vari-
ability for @, as n becomes large: these complement and strengthen the distributional
limit theorems of previous chapters. The magnitude of variability is measured by the
variance given in the CLT, and one of the major contributions of this chapter is to
identify the way in which this variance is defined through the autocovariance sequence
for the stationary version of the process {g(®y)}-

The three key limit theorems which we develop in this chapter using sample path
properties for chains which possess a unique invariant probability 7 are

LLN We say that the Law of Large Numbers holds for a function g if

lim lS'n(g) = m(g) a.s. [Py (17.2)

n—oo n
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CLT We say that the Central Limit Theorem holds for g if there exists a constant
0< ’yg < oo such that for each initial condition z € X,

: 1/2 —.1'2 /2
nlggo P. { (n'yg )2 Sn( / \/ﬂ dx

where g = g — 7(g): that is, as n — oo,
(n77)7280(3) = N(0,1),

LIL When the CLT holds, we say that the Law of the Iterated Logarithm holds for
g if the limit infimum and limit supremum of the sequence

(275 loglog(n))~'/2S,(9)
are respectively —1 and +1 with probability one for each initial condition z € X.

Strictly speaking, of course, the CLT is not a sample path limit theorem, although
it does describe the behavior of the sample path averages and these three “classical”
limit theorems obviously belong together.

Proofs of all of these results will be based upon martingale techniques involving
the path behavior of the chain, and detailed sample path analysis of the process
between visits to a recurrent atom.

Much of this chapter is devoted to proving that these limits hold under vari-
ous conditions. The following set of limit theorems summarizes a large part of this
development.

Theorem 17.0.1 Suppose that @ is a positive Harris chain with invariant probability
.

(i) The LLN holds for any g satisfying (|g|) < oo.

(i) Suppose that & is V-uniformly ergodic. Let g be a function on X satisfying g> <
V', and let § denote the centered function g = g — [ gdmw. Then the constant

2= B[ (0)] + 23 B [5(@0)7 (@) (17.3)
k=1

is well defined, non-negative and finite, and

lim E [(S’ (g))Q] :'yg. (17.4)

n—oon,
(iii) If the conditions of (ii) hold and if 'yg = 0 then

Jim TS n(g) =0  as. [P].

(iv) If the conditions of (ii) hold and if 'yg > 0 then the CLT and LIL hold for the
function g.
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ProoOF  The LLN is proved in Theorem 17.1.7, and the CLT and LIL are proved
in Theorem 17.3.6 under conditions somewhat weaker than those assumed here.

It is shown in Lemma 17.5.2 and Theorem 17.5.3 that the asymptotic variance
73 is given by (17.3) under the conditions of Theorem 17.0.1, and the alternate rep-
resentation (17.4) of v, is given in Theorem 17.5.3. The a.s. convergence in (iii) when
'yg = ( is proved in Theorem 17.5.4. O

While Theorem 17.0.1 summarizes the main results, the reader will find that
there is much more to be found in this chapter. We also provide here techniques for
proving the LLN and CLT in contexts far more general than given in Theorem 17.0.1.
In particular, these techniques lead to a functional CLT for f-regular chains in Sec-
tion 17.4.

We begin with a discussion of invariant o-fields, which form the basis of classical
ergodic theory.

17.1 Invariant o-Fields and the LLN

Here we introduce the concepts of invariant random variables and o-fields, and show
how these concepts are related to Harris recurrence on the one hand, and the LLN
on the other.

17.1.1 Invariant random variables and events

For a fixed initial distribution u, a random variable Y on the sample space ({2, F)
will be called P,-invariant if 0¥Y =Y a.s. [P,] for each k € Z, where 0 is the shift
operator. Hence Y is P,-invariant if there exists a function f on the sample space
such that

Y = f(dsk, Drt1,-- ) a.s. [P,LL]’ keZ,. (175)

When Y = 14 for some A € F then the set A is called a P,-invariant event. The set
of all P,-invariant events is a o-field, which we denote X,.

Suppose that an invariant probability measure 7 exists, and for now restrict at-
tention to the special case where y = 7. In this case, X is equal to the family of
invariant events which is commonly used in ergodic theory (see for example Kren-
gel [141]), and is often denoted X7.

For a bounded, P;-invariant random variable Y we let hy denote the function

hy (z) := E,[Y], z €X. (17.6)
By the Markov property and invariance of the random variable Y,
hy(®y) = E[0FY | FE1=E[Y | FF]  as. [P (17.7)
This will be used to prove:

Lemma 17.1.1 If w is an invariant probability measure and Y is a Pr-invariant
random variable satisfying E[|Y|] < oo, then

Y = hy((po) a.S. [Pﬁ]
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ProoF It follows from (17.7) that the adapted process (hy (®x), FY) is a convergent
martingale for which

lim hy (P) =Y a.s. [Pr].

k—o0

When &) ~ 7 the process hy (Py) is also stationary, since @ is stationary, and hence
the limit above shows that its sample paths are almost surely constant. That is,
Y = hy(@k) = hy(@o) a.s. [P,r] forallke Z,. O

It follows from Lemma 17.1.1 that if X € Lq(£2,F,P;) then the P;-invariant
random variable E[X | 2] is a function of @ alone, which we shall denote X, (®Py),
or just X.

The function X is significant because it describes the limit of the sample path
averages of {#%X}, as we show in the next result.

Theorem 17.1.2 If & is a Markov chain with invariant probability measure w, and
X € L1(02,F,P;), then there exists a set Fx € B(X) of full m-measure such that for
each initial condition x € Fyx,

N A
A}l_r)nooﬁkglﬁ X = Xoo(x) a.s. [Py

PROOF  Since & is a stationary stochastic process when @y ~ 7, the process {#¥ X :
k € Z, } is also stationary, and hence the Strong Law of Large Numbers for stationary
sequences [68] can be applied:

]. k
im — E "X =E[X | X, = Xo(P a.s. [P,
I\}l Nk ‘ [ | 71'] oo( 0) S [ 71']

Hence, using the definition of P, we may calculate

N

[ Ped i 7 0 = st} i) 1

Since the integrand is always positive and less than or equal to one, this proves the
result. O

This is an extremely powerful result, as it only requires the existence of an invari-
ant probability without any further regularity or even irreducibility assumptions on
the chain. As a product of its generality, it has a number of drawbacks. In particular,
the set F’x may be very small, may be difficult to identify, and will typically depend
upon the particular random variable X.

We now turn to a more restrictive notion of invariance which allows us to deal
more easily with null sets such as F§. In particular we will see that the difficulties
associated with the general nature of Theorem 17.1.2 are resolved for Harris processes.

17.1.2 Harmonic functions

To obtain ergodic theorems for arbitrary initial conditions, it is helpful to restrict
somewhat our definition of invariance.

The concepts introduced in this section will necessitate some care in our definition
of a random variable. In this section, a random variable Y must “live on” several
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different probability spaces at the same time. For this reason we will now stress that
Y has the form Y = f(®Pq,...,Py,...) where f is a function which is measurable with
respect to B(X*) = F. We call a random variable Y of this form invariant if it is
P,-invariant for every initial distribution p. The class of invariant events is defined
analogously, and is a o-field which we denote J..

Two examples of invariant random variables in this sense are

~ 1 N
Q{A} =limsup{Py € A}  #{A} =limsup— > I{P, € A}
k—00 N—o0 N k=1

with A € B(X).
A function h: X — IR is called harmonic if, for all z € X,

/ Pz, dy)h(y) = h(z). (17.8)

This is equivalent to the adapted sequence (h(®y),Fy) possessing the martingale
property for each initial condition: that is,

E[h(Pri1) | FEl = h(®r) keZ, as. [Pl

For any measurable set A the function h o1 A}(m) = @(z, A) is a measurable function of
z € X which is easily shown to be harmonic. This correspondence is just one instance
of the following general result which shows that harmonic functions and invariant
random variables are in one to one correspondence in a well defined way.

Theorem 17.1.3 (i) If Y is bounded and invariant then the function hy is har-
monic, and
Y = lim hy(Py) a.s. [P];
k—o0

(ii) If h is bounded and harmonic then the random variable

H :=lim sup h(Px)

k—00

is invariant, with hg(z) = h(z).

Proor  For (i), first observe that by the Markov property and invariance we may
deduce as in the proof of Lemma 17.1.1 that

hy(®x) = E[Y | FE]  as. [R].

Since Y is bounded, this shows that (hy (®), F7) is a martingale which converges to
Y. To see that hy is harmonic, we use invariance of Y to calculate

Phy (z) = Eg[hy (€1)] = E,[E[Y | F{]] = hy (2).

To prove (ii), recall that the adapted process (h(®y),F?) is a martingale if h is
harmonic, and since h is assumed bounded, it is convergent. The conclusions of (ii)
follow. O

Theorem 17.1.3 shows that there is a one to one correspondence between invari-
ant random variables and harmonic functions. From this observation we have as an
immediate consequence
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Proposition 17.1.4 The following two conditions are equivalent:
(1) All bounded harmonic functions are constant;

(ii) X, and hence X' is Py-trivial for each initial distribution p.

Finally, we show that when @ is Harris recurrent, all bounded harmonic functions
are trivial.

Theorem 17.1.5 If @ is Harris recurrent then the constants are the only bounded
harmonic functions.

PrROOF  We suppose that & is Harris, let A be a bounded harmonic function, and
fix a real constant a. If the set {z : h(z) > a} lies in BT(X) then we will show that
h(z) > a for all z € X. Similarly, if {z : h(z) < a} lies in BT (X) then we will show
that h(z) < a for all z € X. These two bounds easily imply that A is constant, which
is the desired conclusion.

If {z : h(z) > a} € B*(X) then & enters this set i.o. from each initial condition,
and consequently

lim sup h(Py) > a a.s. [Pl
k—o0
Applying Theorem 17.1.3 we see that h(z) = E,[H] > a for all z € X. Identical
reasoning shows that h(z) < a for all z when {z : h(z) < a} € B*(X), and this
completes the proof. O

It is of considerable interest to note that in quite another way we have already
proved this result: it is indeed a rephrasing of our criterion for transience in Theo-
rem 8.4.2.

In the proof of Theorem 17.1.5 we are not in fact using the full power of the Mar-
tingale Convergence Theorem, and consequently the proposition can be extended to
include larger classes of functions, extending those which are bounded and harmonic,
if this is required.

As an easy consequence we have

Proposition 17.1.6 Suppose that @ is positive Harris and that any of the LLN, the
CLT, or the LIL hold for some g and some one initial distribution. Then this same
limit holds for every initial distribution.

Proor  We will give the proof for the LLN, since the proof of the result for the
CLT and LIL is identical.

Suppose that the LLN holds for the initial distribution g, and let goo(z) =
P.{15,(g) — [ gdr}. We have by assumption that

/goodNO =1

We will now show that goo is harmonic, which together with Theorem 17.1.5 will imply
that g is equal to the constant value 1, and thereby complete the proof. We have
by the Markov property and the smoothing property of the conditional expectation,
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Pgo (z) = E; [qul{lggogi (Pk) /gdﬂ}]
= [ {nlggo;i ¢k+1)=/gdﬂlff}]

= i () 2 e - 250 = [ gan)

+
=

e
Il

= gool(®).

From these results we may now provide a simple proof of the LLN for Harris
chains.

17.1.3 The LLN for positive Harris chains

We present here the LLN for positive Harris chains. In subsequent sections we will
prove more general results which are based upon the existence of an atom for the
process, or an atom ¢& for the split version of a general Harris chain.

In the next result we see that when @ is positive Harris, the null set F'§ defined
in Theorem 17.1.2 is empty:

Theorem 17.1.7 The following are equivalent when an invariant probability © exists
for &:

(i) @ is positive Harris.
(ii) For each f € L1(X, B(X),n),

1 _
Jim ;Sn(f) = /fdﬂ' a.s. [P]
(iii) The invariant o-field X' is Py-trivial for all z.

Proor (i) = (ii) If @ is positive Harris with unique invariant probability 7 then
by Theorem 17.1.2, for each fixed f, there exists a set G € B(X) of full m-measure
such that the conclusions of (ii) hold whenever the distribution of @ is supported on
G. By Proposition 17.1.6 the LLN holds for every initial condition.

(i) = (iii) Let Y be a bounded invariant random variable, and let hy be the
associated bounded harmonic function defined in (17.6). By the hypotheses of (ii)
and Theorem 17.1.3 we have

Y = lim hy(@) = lim —Zhy ) / hydr  as. [P,
k—o0

which shows that every set in ' has P,-measure zero or one.

(iii) = (i) If (iii) holds, then for any measurable set A the function Q(-,A) is
constant. It follows from Theorem 9.1.3 (ii) that Q(-,4) =0 or Q(-,A) = 1. When
w{A} > 0, Theorem 17.1.2 rules out the case Q(-, A) = 0, which establishes Harris
recurrence. O
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17.2 Ergodic Theorems for Chains Possessing an Atom

In this section we consider chains which possess a Harris recurrent atom «. Under
this assumption we can state a self contained and more transparent proof of the Law
of Large Numbers and related ergodic theorems, and the methods extend to general
9p-irreducible chains without much difficulty.

The main step in the proofs of the ergodic theorems considered here is to divide
the sample paths of the process into i.i.d. blocks corresponding to pieces of a sam-
ple path between consecutive visits to the atom «. This makes it possible to infer
most ergodic theorems of interest for the Markov chain from relatively simple ergodic
theorems for i.i.d. random variables.

Let 04(0) = 04, and let {o4(j) : j > 1} denote the times of consecutive visits to
a so that

ook +1) =0®r, 4 oo (k),  k>0.

For a function f:X — IR we let s;(f) denote the sum of f(®;) over the jth piece of
the sample path of @ between consecutive visits to a:

silf)="2. f(@) (17.9)

By the strong Markov property the random variables {s;(f) : j > 0} are i.i.d. with
common mean

Eals1(f)] = Ea Zf )| = [ # (17.10)

where the definition of u is self evident. The measure p on B(X) is invariant by
Theorem 10.0.1.

By writing the sum of {f(®;)} as a sum of {s;(f)} we may prove the LLN, CLT
and LIL for @ by citing the corresponding ergodic theorem for the i.i.d. sequence
{si(f)}- We illustrate this technique first with the LLN.

17.2.1 Ratio form of the law of large numbers
We first present a version of Theorem 17.1.7 for arbitrary recurrent chains.

Theorem 17.2.1 Suppose that @ is Harris recurrent with invariant measure m, and
suppose that there exists an atom o € BT(X). Then for any f, g € L'(X,B(X), )
with [gdm # 0,

S
% Su() (o) s [P

PrROOF  For the proof we assume that each of the functions f and g are positive.
The general case follows by decomposing f and g into their positive and negative
parts.

We also assume that 7 is equal to the measure y defined implicitly in (17.10).
This is without loss of generality as any invariant measure is a constant multiple of
by Theorem 10.0.1.

For n > o, we define
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Ly :=max(k :04(k) <n)=-1+ i P € a} (17.11)

so that from (17.9) we obtain the pair of bounds

ln—1 n Ta
> sif) <D f(@0) < Zs] +_ (@) (17.12)
j=0 i=1 i=1

Since the same relation holds with f replaced by g we have

L @) b [m(Em )+ T (@)
1 9(Pi) T Ly —1 [Zn 1Ef"_013g( )]

Because {s;(f):j > 1} is i.i.d. and £, — oo,

12
77 ) = Ela (] - [ £an

and similarly for g. This yields
n .
L1 f(2i) < [ fdp

lim sup
n—00 ”19() [gdu

and by interchanging the roles of f and g we obtain

= S Jfdp
lim inf
n—00 Zz 19( ) fgdu

which completes the proof. O

17.2.2 The CLT and the LIL for chains possessing an atom

Here we show how the CLT and LIL may be proved under the assumption that an
atom a € BT (X) exists.
The Central Limit Theorem (CLT) states that the normalized sum

(n73)™'/%5u(9)

converges in distribution to a standard Gaussian random variable, while the Law of
the Iterated Logarithm (LIL) provides sharp bounds on the sequence

(272nloglog(n)) /%S, (9)

where g is the centered function g:=g — m(g), 7 is an invariant probability, and 73 is
a normalizing constant.

These results do not hold unless some restrictions are imposed on both the func-
tion and the Markov chain: for counterexamples on countable state spaces, the reader
is referred to Chung [49]. The purpose of this section is to provide general sufficient
conditions for chains which possess an atom.

One might expect that, as in the i.i.d. case, the asymptotic variance fyg is equal to
the variance of the random variable g(®}) under the invariant probability. Somewhat
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surprisingly, therefore, we will see below that this is not the case. When an atom o
exists we will demonstrate that in fact

75 = {a}Eq [(Tza ?(%))2] (17.13)
k=1

The actual variance of g(®y) in the stationary case is given by Theorem 10.0.1 as

Ta

[ 9 dn = m{eiEa[Y (s(00)

k=1

thus when @ is i.i.d., these expressions do coincide, but differ otherwise.
We will need a moment condition to prove the CLT in the case where there is an
atom.

CLT Moment Condition for o

An atom a € Bt (X) exists with

Ealso(lg))?] < 00, and Eg[s0(1)?] < oo. (17.14)

This condition will be generalized to obtain the CLT and LIL for general positive
Harris chains in Sections 17.3-17.5. We state here the results in the special case
where an atom is assumed to exist.

Theorem 17.2.2 Suppose that @ is Harris recurrent, g: X — IR is a function, and
that (17.14) holds so that @ is in fact positive Harris. Then 'yg < 00, and if ’yﬁ >0
then the CLT and LIL hold for g.

PrROOF  The proof is a surprisingly straightforward extension of the second proof
of the LLN. Using the notation introduced in the proof of Theorem 17.2.1 we obtain
the bound

n ln—1
12_9(@) = > 5i(@)| < se,([3l) (17.15)
i=1 j=0
By the law of large numbers for the i.i.d. random variables {(s;(|g]))? : 7 > 1},
N V)2 =1))2
% 20 () = Ealso)) <

and hence
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1 N 1 N-1
Lo L (1=\2 _ (71))2 —
]\}Lr)réo N;(SJ(LQD) N _1 = (SJ(|9|)) 0.

From these two limits it follows that (s, (|g|))?/n — 0 as n — oo, and hence that
(

se,(19]) _ . se, (191)

li <1 = 8. [P 17.1
e sy o0 e B o)
This and (17.15) show that
1 > ln—1
—> 73 8. [P 17.17
77 L) - Z% )| =0 as [P (17.17)

We now need a more delicate argument to replace the random upper limit in the sum
ZZ“ o 5j(9) appearing in (17.17) with a deterministic upper bound.
First of all, note that
67” < e_” < Ein
n - - ln—1
Yitosi(l) o T 3Ry s(1)

Since so(1) is almost surely finite, so(1)/¢, — 0, and as in (17.16), sy, (1)/4, — 0.
Hence by the LLN for i.i.d. random variables,

. en . 1 en -1 -1
lim o= (hm A E s]-(l)) = Ea[s0(1)] = m{a}. (17.18)
noj=1

Let ¢ >0, n = [(1 —e)r{a}n], n = [(1+¢)n{a}n], and n* = [r{a}n], where [z]
(Lz]) denote the smallest integer greater than (greatest integer smaller than) the real
number z. Then by the result above, for some ng

Po{n <4, —1<m}>1-—g¢, n > ng. (17.19)

Hence for these n we have by Kolmogorov’s Inequality (Theorem D.6.3),

1 ln—1 B 1 n* B n* 3
Pz{ Tn j;o si(g) — %§5j(g)| > ﬂ} < e+ Pm{ﬂgygﬂ ;31'(9)‘ > 5\/5}
oo s |35 o] > 5]
L )

Bn

Since ¢ > 0 is arbitrary, this shows that
‘ LS ‘
Z si(g Z sj(g)| — 0

in probability. This together with (17.17) implies that also

|ﬁ 2_9(®i) — % > si(g)| =0 (17.20)
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in probability. By the CLT for i.i.d. sequences, we may let 02 = E4[(s0(7))?] giving

*

Jim P { (o)) V2Su(@) <t} = Tim Pu{(nrg) V2 Y si(@) <t

=0

= lim P{ [nr{aj] 1 Qisj(g)gt}

n—00 nﬂ-{a} n*o

t 1
—1/2 22
—€ dx
~/foo V2
which proves (i).
To prove (ii), observe that (17.17) implies that, as in the proof of the CLT, the

analysis can be shifted to the sequence of i.i.d. random variables {s;(g) : j > 1}. By
the LIL for this sequence,

1 bn

a.s. [Py

lim sup

=1
n—oo /2024, loglog(4y,) ]2: 5i(9) =

and the corresponding lim inf is —1. Equation (17.18) shows that ¢,/n — 7{a} >0
and hence by a simple calculation loglog £,/ loglogn — 1 as n — oo. These relations
together with (17.17) imply

n
lim sup Z 9(Px)
n—00 1/2*)'gnlog log(n) =1
L
1 1 n
= lim su si(g
nosoct Vm{a} \/20%nloglog(n) kgl i@
) 1 £y, loglog(4, ) 1 b
=lim s (7
nsoo” w{a}\ nloglog(n) /202¢,loglog(¢,) 2218](9)
=1
and the corresponding lim inf is equal to —1 by the same chain of equalities. O

17.3 General Harris Chains

We have seen in the previous section that when & possesses an atom, the sample
paths of the process may be divided into i.i.d. blocks to obtain for the Markov chain
almost any ergodic theorem that holds for an i.i.d. process.

If & is strongly aperiodic, such ergodic theorems may be established by consid-
ering the split chain, which possesses the atom X x {1}. For a general aperiodic chain
such a splitting is not possible in such a “clean” form. However, since an m-step
skeleton chain is always strongly aperiodic we may split this embedded chain as in
Chapter 5 to construct an atom for the split chain. In this section we will show how
we can then embed the split chain onto the same probability space as the entire chain
@. This will again allow us to divide the sample paths of the chain into i.i.d. blocks,
and the proofs will be only slightly more complicated than when a genuine atom is
assumed to exist.
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17.3.1 Splitting general Harris chains

When & is aperiodic, we have seen in Proposition 5.4.5 that every skeleton is -
irreducible, and that the Minorization Condition holds for some skeleton chain. That
is, we can find a set C' € BT (X), a probability v, § > 0, and an integer m such that
v(C) =1, v(C°) =0 and

P™(z,B) > 6v(B), =z€C, BeBX).

The m-step chain {@Py,, : kK € Z} is strongly aperiodic and hence may be split to
form a chain which possesses a Harris recurrent atom.

We will now show how the split chain may be put on the same probability space
as the entire chain @. It will be helpful to introduce some new notation so that we
can distinguish between the split skeleton chain, and the original process ¢. We will
let {Y,,} denote the level of the split m-skeleton at time nm; for each n the random
variable Y, may take on the value zero or one. The split chain ¢ will become the
bivariate process {@n = (Pmn, Yyn) : n € Z }, where the equality &, = z; means that
Ppm =x and Y, = 1.

The split chain is constructed by defining the conditional probabilities

P{Yn =1, Bnms1 € dz1, ..., Bni1ym-1 € dTm—1,P(ni1)m € dy
| B5™, Yy P = )
P{Yo=1,0, €dzy,...,Pp_1 € dzp_1, P € dy | Dy = z}
= or(z,y)P(z,dr1) - P(zpm—1,dy) (17.21)

where 7 € B(X?) is the Radon-Nykodym derivative

v(dy)

r(z,y) = Yz € C}m

Integrating over zi,...z,—1 we see that

P{Y, =1, 8 1ym € dy | D4, Y3 B, = x}
v(dy)
P (x,dy)

= 0(z € C)v(dy).

= dl(z € O) P™(z,dy)

From Bayes rule, it follows that

P{Y,=1|8p™, Y0 @ = z} 61{z € C}
P{®(ni1ym € dy | O™, Y5 P = 2, Yy, = 1} = v(dy)

and hence, given that Y,, = 1, the pre-nm process and post-(n + 1)m process are
independent: that is

{Pk,Yi : k <mm,i <n} isindependent of {P;,Y;: k> (n+1)m,i >n+1}.

Moreover, the distribution of the post (n + 1)m process is the same as the P,. distri-
bution of {(®;,Y;) : ¢« > 0}, with the interpretation that v is “split” to form v* as in
(5.3) so that

P {Yy = 1,8 € dz} := 61l(z € C)v(dx).
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For example, for any positive function f on X, we have

E[f (@ns1ymrk) | PG, Y5 Yy = 1] = E,[f(P4)]-

Hence the set & := C; := C x {1} behaves very much like an atom for the chain.

We let 04(0) denote the first entrance time of the split m-step chain to the set &,
and o4 (k) the k' entrance time to ¢ subsequent to 04(0). These random variables
are defined inductively as

05(0) = min(k>0:Y,=1)
oa(n) = min(k > os(n—1):Y, =1), n > 1.

The hitting times {75(k)} are defined in a similar manner:

76(1) = min(k>1:Y,=1)
7a(n) = min(k > 15(n—1) : Y, =1), n > 1.

For each n define

mog (i+1)+m—1
si(f) = > f(2))
j=m(oa(i)+1)
os(i+1)
= > Z)
Jj=0a(i)+1

where

]m+k

HMS

From the remarks above and the strong Markov property we obtain the following
result:

Theorem 17.3.1 The two collections of random variables

{s:(£):0<j<m=2},  {si(f):5 > m}

are independent for any m > 2. The distribution of s;(f) is, for any i, equal to the
Ps-distribution of the random wvariable S pamEme Lf(®1), which is equal to the P,
distribution of
oam+m—1 O&
S (@) =D Zi(f)- (17.22)
k=0

k=0

The common mean of {s;(f)} may be expressed

Elsi(f)] = 6~m(C)"'m / fdr. (17.23)
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PrROOF  From the definition of {o4(k)} we have that the distribution of s, ;(f)
given so(f),---,sn(f) is equal to the distribution of s;(f) for all m € Z, 7 > 1. This
follows from the construction of {o4(k)} which makes the distribution of @, (n+j)m+m
given F2. o VFY

From this we see that {s,(f) : n > 1} is a stationary sequence, and moreover,
that {s;(f)} is a one-dependent process: that is, {so(f),...,sn—1(f)} is independent
of {sp+1(f),...,} foralln > 1.

From (17.22) we can express the common mean of {s;(f)} in terms of the invariant
mean of f as follows

E[si(f)] =

equal to v.

& [T Ze(f)]
s[5 2k < 7]

Ea [z“ [Z0 (k< 7}
= (C) )y 1)

6~ in(C)™I'm [ fdr

where the fourth equality follows from the representation of 7 given in Theorem 10.0.1
applied to the split m-skeleton chain. O
Define now, for each n € Z, £, := max{i > 0: mos(i) < n}, and write

ITi< m<

Yr o f(@) = SpeEOtmelop(gy)
zf“ i(f) (17.24)
+ Ek:m (0a(ln)+1) f(ék)

All of the ergodic theorems presented in the remainder of this section are based upon
Theorem 17.3.1 and the decomposition (17.24), valid for all n > 1.
We now apply this construction to give an extension of the Law of Large Numbers.

17.3.2 The LLN for general Harris chains

The following general version of the LLN for Harris chains follows easily by considering
the split chain .

Theorem 17.3.2 The following are equivalent when a o-finite invariant measure m
exists for P:

(i) for every f, g € L*(x) with [ gdmr # 0,
i S0 T

11m =
n=o0 Sp(g)  (g)

(ii) The invariant o-field X' is Py-trivial for all x;

(iii) @ is Harris recurrent.

PrROOF  We just prove the equivalence between (i) and (iii). The equivalence of (i)
and (ii) follows from the Chacon-Ornstein Theorem (see Theorem 3.2 of Revuz [223]),
and the same argument that was used in the proof of Theorem 17.1.7.

The “if” part is trivial: If [ fdm > 0 then by the ratio limit result which is
assumed to hold,
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PAf(®;) >0 io0}=1

for all initial conditions, which is seen to be a characterization of Harris recurrence
by taking f to be an indicator function.

To prove that (iii) implies (i) we will make use of the decomposition (17.24)
and essentially the same proof that was used when an atom was assumed to exist in
Theorem 17.2.1.

From (17.24) we have

@)t [E (s + SO p@))
n L19(Pi) Tl —1 [m an—olsj(f)]

Since by Theorem 17.3.1 the two sequences {sox(f) : k € Z,} and {s9x11(f) : k €
Z .} are both i.i.d., we have from (17.23) and the LLN for i.i.d. sequences that

1 X R 1 X
lim — 3" = lim — Y s lim — Y
Nl—IgoNk:lsk(f) Nooo N 2~ f(f)+ Jim 2 s (f)
k odd k even

_ %((5—17r(C)_1m [ fan+57w eyt | fdvr)

— 5 'n(C)"'m / fdr.

Since £,, — oo a.s. it follows that

lim sup i1/ f fdr

n—00 Zz 1 g f gdﬂ-
Interchanging the roles of f and g gives an identical lower bound on the limit infimum,
and this completes the proof. O

Observe that this result holds for both positive and null recurrent chains. In the
positive case, substituting g = 1 gives Theorem 17.2.1.

17.3.3 Applications of the LLN

In this section we will describe two applications of the LLN. The first is a technical
result which is generally useful, and will be needed when we prove the functional
central limit theorem for Markov chains in Section 17.4.

As a second application of the LLN we will give a proof that the dependent
parameter bilinear model is positive recurrent under a weak moment condition on
the parameter process.

The running maximum As a simple application of the Theorem 17.3.2 we will
establish here a bound on the running maximum of g(Py).

Theorem 17.3.3 Suppose that @ is positive Harris, and suppose that w(|g|) < oo
Then the following limit holds:

1
nli}rgog 1I£l?<xn lg(@x)| =0 a.s. [Py].
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PROOF  We may suppose without loss of generality that g > 0.
It is easy to verify that the desired limit holds if and only if

lim 2g(@,) =0  as. [P (17.25)

It follows from Theorem 17.3.2 and positive Harris recurrence that

) 1 n 1 n—1
Jim {ﬁ kz;lg(@k) o1 kz_:lg(@k)} =m(g) —m(g) =0.
The left hand side of this equation is equal to

1
lim —g(®,)

Zg@c

Since by Theorem 17.3.2 we have %ﬁ "1 g(®r) — 0, it follows that (17.25) does
hold, and the proof is complete. ad
To illustrate the application of the LLN to the stability of stochastic models we

will now consider a linear system with random coefficients.

The dependent parameter bilinear model Here we revisit the dependent pa-
rameter bilinear defined by (DBL1)-(DBL2).

We saw in Proposition 7.4.1 that this model is a Feller T-chain. Since Z is i.i.d.,
the parameter process @ is itself a Feller T-chain, which is positive Harris by Propo-
sition 11.4.2. Hence the LLN holds for 8, and this fact is the basis of our subsequent
analysis of this bilinear model.

Proposition 17.3.4 If (DBL1) and (DBL2) hold then 0 is positive Harris recurrent
with invariant probability my. For any f:IR — IR satisfying

/ {f(z) V 0} mp(dz) < o0
R
we have
1 Y
Jim 300 = /IR f@)mo(dz)  as. [P

When 6y ~ my the process is strictly stationary, and may be defined on the positive
and negative time set Z. For this stationary process, the backwards LLN holds:

lim —Z (6 /IR f(z)mo(dz)  as. [Pr,] (17.26)

N—oo N

PROOF  The positivity of 8 has already been noted prior to the proposition. The
first limit then follows from Theorem 17.1.7 when [ f(z) mp(dz) > —o0. Otherwise,
we have from Theorem 17.1.7 and integrability of f V 0, for any M > 0,

lim supﬁ Zf 0r) < lim sup— Zf 0r) V / {f(z) V (=M)} mp(dx),

N—oo N—ox



432 17. Sample Paths and Limit Theorems

and the right hand side converges to —oo = my(f) as M — oo.

The limit (17.26) holds by stationarity, as in the proof of Theorem 17.1.2 (see
[68]). ]

We now apply the LLN for 6 to obtain stability for the joint process. The bound
(17.27) used in Proposition 17.3.5 is analogous to the condition that || < 1 in the
simple linear model. Indeed, suppose that we have the condition that || is less than
one only in the mean: E;,[|0x|] < 1. Then by Jensen’s inequality it follows that the
bound (17.27) is also satisfied.

Proposition 17.3.5 Suppose that (DBL1) and (DBL2) hold, and that
/ log || 79 (dz) < 0. (17.27)
R

Then the joint process ® = (g) is positive recurrent and aperiodic.

PROOF  To begin, recall from Theorem 7.4.1 that the joint process ¢ = (g) is a

9p-irreducible and aperiodic T-chain.

For y € R fixed, let p, = mg x &, denote the initial distribution which makes 6
a stationary process, and Yy = y a.s.. We will show that the distributions of Y, and
hence of @ are tight whenever @y ~ p,. From the Feller property and Theorem 12.1.2,
this is sufficient to prove the theorem.

The following equality is obtained by iterating equation (2.12):

k k k

Yir1 = > ([T 0)W; + (T] 6:)Yo + Wi1. (17.28)
j=1 i=j i=0

Establishing stability is then largely a matter of showing that the product Héc:j 0;
converges to zero sufficiently fast. To obtain such convergence we will apply the LLN
Proposition 17.3.4 and (17.27), which imply that as n — oo,

1 - 1 &
. 10g<H 032) = 2; Zlog |0_i| — Z/IR log |z| mp(dz) < 0. (17.29)
1=0 =0

We will see that this limit, together with stationarity of the parameter process, implies
exponential convergence of the product Hf:j 0; to zero. This will give us the desired
bounds on Y.

To apply (17.29), fix constants L < 0o, 0 < p < 1, let II;; = Hf:j 0;, and use
(17.28) and the inequality ab < 5(a? + b) to obtain the bound

Puy {Yat1| 2 L}

k
< R {32 HklIW] + [Honllyl + Wil > L}
j=1

k k
< B DI + 3 pEIWE > 2L - (v + 1)}
=0 =0
k 2 k 2
—(k—7] 1+y s 1+y
< Puy{zp 3y > 1 - 2 }"'Pﬂy{_ PEIWE > L - }

7=0 7=0
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We now use stationarity of @ and independence of W to move the time indices within
the probabilities on the right hand side of this bound:

Puy {Yea| = L}

k o 1+ 2
< Puy{Zp D2 o> L— =27 }
§=0

2
k ' 1+y2
P (D P IWE > L - J
§=0
_ + 92
< Puy{;p 2,0 > L- 2y }
=0
00 2
B {0 Y (17.30)
=0

From Fubini’s Theorem we have, for any 0 < p < 1, that the sum } 72, pve con-
verges a.s. to a random variable with finite mean o2 (1 — p)~!.

We now show that the sum Y3°, p~¢IT% ¢0 converges a.s. For this we apply the
root test. The logarithm of the nth root of the nth term a, in this series is equal to

1 B 1 1 n
log(ast ) :=log(p "IT” ) = —log(p) + 2 3 log [6].
=0

By (17.29) it follows that

1

lim log(an) = —log(p) + 2/ log |z| mg(dx),
R

n—oo

which is negative for sufficiently large p < 1. Fixing such a p, we have that
1

lim, ,00 at < 1, and thus the root test is positive. Thus the sum Y92, p‘zﬂze’o
converges to a finite limit with probability one.
By (17.30) and finiteness of the sums on the right hand side we conclude that

supP, {|Yx| > L} — 0 as L — oo,
k>0

which is the desired tightness property for the process Y. O

This stability result may be surprising given the very weak conditions imposed,
and it may be even more surprising to find that these conditions can be substantially
relaxed. It is really only the bound (17.27) together with stationarity of the parameter
process which was needed in the proof of tightness for the output process Y. The use
of the linear model @ was merely a matter of convenience.

This result illustrates the strengths and weaknesses of adopting boundedness in
probability, or even positive Harris recurrence as a stability condition. Although the
dependent parameter bilinear model is positive recurrent under (17.27), the behavior
of the sample paths of Y can appear quite explosive. To illustrate this, recall the
simulation given in Chapter 16 where we took the simple adaptive control model
illustrated in Figure 2.8, but set the control equal to zero for illustrative purposes.
This gives the model described in (DBL1)-(DBL2) with Z and W Gaussian N (0, 02)
and N (0,02) respectively, where o, = 0.2 and o, = 0.1. The parameter « is taken
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as 0.99. These parameter values are identical to those of the simulation given for the
simple adaptive control model in Figure 2.8. The stability condition (17.27) holds in
this example since [ log|z| mg(dz) = —0.3 < 0.

A sample path of log;,(|Yx|) is given in Figure 16.1. Note the gross difference in
behavior between this model and the simple adaptive control model with the control
intact: In less than 700 time points the output of the dependent parameter bilinear
model exceeds 1019 while in the controlled case we see in Figures 2.8 and 2.7 that
the output is barely distinguishable from the disturbance W.

17.3.4 The CLT and LIL for Harris chains

We now give versions of the CLT and LIL without the assumption that a true atom
a € Bt(X) exists.

We will require the following bounds on the split chain constructed in this section.
These conditions will be translated back to a condition on a petite set in Section 17.5.

CLT Moment Condition for the Split Chain

For the split chain constructed in this section, Ismi {05 < 0} =1 for all
xz; € X, and the function g and the atom ¢& jointly satisfy the bounds

E, - [(i Zn(|g|))2] <oo and E, [ag] < o0. (17.31)
n=0

When these conditions are satisfied we will show that the CLT variance may be
written

7y = m i (&)Eal(s1(9))%] + 2m ™ i (&) Eals1 (9)52(9)] (17.32)

where 7 is the invariant probability measure for the split chain and #(&) = d7(C).
We may now present

Theorem 17.3.6 Suppose that @ is ergodic and that (17.31) holds. Then 0 < 'yg <
oo, and if 'yg > 0 then the CLT and LIL hold for g.

PROOF  The proof is only a minor modification of the previous proof: we recall that
£, :=max(k : mos(k) < n) and observe that in a manner similar to the derivation of
(17.17) we may show that

1
n

3

n ln—1
% D 9(P) - —= D 5@ 20 as (17.33)
Jj=0 =0
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From the LLN we have

R B )
dim % = lim — k; 1{(Pri, Vi) € &} = = as. [P (17.34)

This can be used to replace the upper limit of the second sum in (17.33) by a de-
terministic bound, just as in the proof of Theorem 17.2.2. Indeed, stationarity and
one-dependence of {s;(g) : j > 1} allow us to apply Kolmogorov’s inequality Theo-
rem D.6.3 to obtain the following analogue of (17.20): letting n* := [m~!#(&)n], we
have from (17.34) and (17.33) that

1 n B . _L n* s
ﬁgg(@) \/ﬁj; i@ =0 (17.35)

in probability.

To complete the proof we will obtain a version of the CLT for one-dependent,
stationary stochastic processes.

Fix an integer m > 2 and define 1; = sjm+1(g) + -+ + 8(j41)m—1(g)- For all
n € Z4 we may write

[n/m]—1 1 [n/m]—1 1

1 & . .
ﬁjZ_lsj(g) jZ n; + \/— ; 8mj(g) + % Z sj(g). (17.36)

j=m[n/m]

The last term converges to zero in probability, so that it is sufficient to consider the
first and second terms on the RHS of (17.36). Since {s;(g) : ¢ > 1} is stationary
and one-dependent, it follows that {n;} is an independent and identically distributed
process, and also that {s,;(g) : 7 > 1} is i.i.d.

The common mean of the random variables {n;} is zero, and its variance is given
by the formula

m = E[;] = (m — 1)E[s1(9)*] + 2(m — 2)E[51(9)2(9)].
By the CLT for i.i.d. random variables, we have therefore

| Tn/ml-1

\/ﬁ ]ZO n]—>N(Om 152),

and
1 m/ml

_ d _
% Zo 5mj(g) — N(0,m 10?),
J:

where 02 = E[s1(g)?]. Letting m — oo we have
m”loy, = 67 :=E[s1(9)] + 2E[s1(9)s2(9)]
152 5 0,

S

from which it can be shown, using (17.36), that

1

n
ZSJ N(0,6%), asn — oco.
n]:1
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Returning to (17.35) we see that
— Zy(@i) — N(0,m ‘7 (a)a?) as n — 00

which establishes the CLT.
We can use Theorem 17.3.1 to prove the LIL, where the details are much simpler.
We first write, as in the proof of Theorem 17.2.2,

.
W(ZM -3 ())%0

j=1

Using an expression similar to (17.36) together with the LIL for i.i.d. sequences
we can easily show that the upper and lower limits of

V/2na? log logn § Z

are +1 and —1 respectively. Here the proof of Theorem 17.2.2 may be adopted to
prove the LIL, which completes the proof of Theorem 17.3.6. O

17.4 The Functional CLT

In this section we show that a sequence of continuous functions obtained by interpo-
lating the values of S, (f) converge to a standard Brownian motion. The machinery
which we develop to prove this result rests heavily on the stability theory developed
in Chapters 14 and 15. These techniques are extremely appealing as well as powerful,
and can lead to much further insight into asymptotic behavior of the chain. Here we
will focus on just one result: a functional central limit theorem, or invariance prin-
ciple for the chain. This will allow us to refine the CLT which was presented in the
previous chapter as well as allow us to obtain the expression (17.3) for the limiting
variance.

We may now drop the aperiodicity assumption which was required in the previous
section because of the very different approach taken.

17.4.1 The Poisson equation

Much of this development is based upon the following identity, known as the Poisson
equation:
G— Pg=g—m(9). (17.37)

Given a function g on X with 7(|g|) < oo we will require that a finite-valued solution
g to the Poisson equation (17.37) exist, and we will develop in this section sufficient
conditions under which this is the case. The assumption that § is finite-valued is
made without any real loss of generality. If § solves the Poisson equation for some
finite-valued function g, and if §(zo) is finite for just one zy € X, then the set S, of all
x such that |§(z)| < oo is full and absorbing, and hence the chain may be restricted
to the set S,.
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In the special case where g = 0, solutions to the Poisson equation are precisely
what we have called harmonic functions in Section 17.1.2. In general, if §; and §o are
two solutions to the Poisson equation then the difference §; — g2 is harmonic. This
observation is useful in answering questions regarding the uniqueness of solutions, as
we see in the following

Proposition 17.4.1 Suppose that @ is positive Harris, and suppose that § and ge
are two solutions to the Poisson equation with w(|g| + |ge|) < oo. Then for some
constant ¢, §(z) = ¢ + Go(z) for a.e. z € X [n].

PrOOF  We have already remarked that h:= g — g, is harmonic. To show that h is
a constant we will require a strengthening of Theorem 17.1.5.

By iteration of the harmonic equation (17.8) we have P¥h = h for all k, and
hence for all n,

1 &
h==> Ph

Since by assumption 7(|h|) < oo, it follows from Theorem 14.3.6 that h(z) = w(h)
for a.e. z. O

One approach to the question of existence of solutions to (17.37) when an atom
o exists is to let

§(z) = Ga(2,9) = B[} 5(®)]. (17.38)
k=0
The expectation is well defined if the chain is f-regular for some f > |g|. Since
0 = n(g) = n(@)Ea[Sf2, 5(®1)], we have

Pi(a) = E[>g(@)]1 ¢ a)

so that the Poisson equation is satisfied.

This approach can be extended to general ergodic chains by considering a split
chain. However we will find it more convenient to follow a slightly different approach
based upon the ergodic and regularity theorems developed in Chapter 14.

First note the formal similarity between the Poisson equation, which can be
written Ag = —g + 7(g), and the drift inequality (V3). The Poisson equation and
(V3) are closely related, and in fact the inequality implies fairly easily that a solution
to the Poisson equation exists. Assume that & is f-regular, so that (V3) holds for a
function V which is everywhere finite, and a set C' which is petite. If @ is aperiodic,
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and if m(V)) < oo, then from the f-Norm Ergodic Theorem 14.0.1 we know that there
exists a constant R < oo such that for any function g satisfying |g| < f,

o0

> 1PE(z,9) — m(g)| < R(V(z) +1).
k=0

Hence the function ¢ defined as
g(z) =Y _{P*(z,9) - (9)} (17.39)
k=0

also satisfies the bound |g§| < R(V +1), and clearly satisfies the Poisson equation. We
state a generalization of this important observation as

Theorem 17.4.2 Suppose that D is -irreducible, and that (V3) holds with V every-
where finite, f > 1, and C petite. If 7(V') < oo then for some R < oo and any |g| < f,
the Poisson equation (17.37) admits a solution § satisfying the bound |g| < R(V +1).

PrROOF  The aperiodic case follows from absolute convergence of the sum in (17.39).
In the general periodic case it is convenient to consider the K,_chain, which is always
strongly aperiodic when @ is 1-irreducible by Proposition 5.4.5.

To begin, we will show that the resolvent or K,_-chain satisfies a version of (V3)
with the same function f and a scaled version of the function V used in the theorem.
We will on two occasions apply the identity

K, =K, P+ (1—¢)l (17.40)

whose derivation is straightforward given the definition of the resolvent K, . Hence
by (V3) for the kernel P,

K,V <eKq. (V- f+blg)+(1—-¢)V.

Since f < (1 —¢) 'K,_f it follows that with V. equal to a suitable constant multiple
of V we have for some b,

Ko Ve <Ve— [+ VK, 1o

Since C' is petite for @ and hence also for the K,_-chain by Theorem 5.5.6, the set
Cn:={z: K, (z,C) > 1/n} is petite for the K,_-chain for all n. Note that C C C),
for n sufficiently large. Since C,, is petite we may adopt the proof of Theorem 14.2.9:
scaling V. as necessary, we may choose n and b, so large that

Kae‘/; S VE - f + ba]lC’n-

Thus the K,_-chain is f-regular. By aperiodicity there exists a constant R, < oo such
that for any |g| < f, we have a solution g. to the Poisson equation

Kasgs = gs —3g

satisfying |ge| < R:(V + 1).
To complete the proof let
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€ €

5 K 6 — L

g = 7 al 1_6(98 9)
Writing (17.40) in the form

1
* _PK, K, —1I
1-¢ © - °
we have by applying both sides to g,
Pj=c'g—g-=c'g—(c'-1)g-9=9-79

so that the Poisson equation is satisfied. O

The significance of the Poisson equation is that it enables us to apply martingale
theory to analyze the series Sy, (g). If § solves the Poisson equation then we may write
for any n > 1,

5.3) =3 7@ = S la(@) — Py ()]
k=1 k=1
S [ - Pa(Be)] + S [Pe@hr) — P (1)
k=1 k=1

The second sum on the right hand side is a telescoping series, which telescopes to
Pg(®9)— Pg (Py,). We will prove in Theorem 17.4.3 that the first sum is a martingale,
which shall be denoted

n

Mu(g) = Y _[§(Pr) — Pg (Pp—1)] (17.41)
k=1

Hence S, (g) is equal to a martingale, plus a term which can be easily bounded. We

summarize these observations in

Theorem 17.4.3 Suppose that P is positive Harris and that a solution to the Poisson
equation (17.87) exists with [|g|dm < oo. Then when $¢ ~ w, the series Sp(g) may
be written

Sn(9) = Mn(g) + Pg(Po) — P§(Py) (17.42)

where (My(g), FL) is the martingale defined in (17.41).

PROOF  The expression (17.42) was established prior to the theorem statement. To
see that (M, (g), F?) is a martingale, apply the identity

§(Pk) = PG (Pr-1) = §(®) — E[g(P) | Fi_y].
The integrability condition on ¢ is imposed so that
Ex[|g(Px) — E[9(Pr) | Fiall <o, k21,

and hence also E,[|M,]|] < oo for all n. O

Theorem 17.4.3 adds a great deal of structure to the problem of analyzing the
partial sums S, (g) which we may utilize by applying the results of Section D.6.2 for
square integrable martingales.
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17.4.2 The functional CLT for Markov chains

We now combine the functional CLT for martingales (Theorem D.6.4) and Theo-
rem 17.4.3 to give a functional CLT for Markov chains. In the following main result
of this section we consider the function s,(¢) which interpolates the values of the
partial sums of g(&y):

5n(t) = Sint) (@) + (nt — (7)) [S|ey41(9) — Siny (3)]- (17.43)

Theorem 17.4.4 Suppose that P is positive Harris, and suppose that g is a function
on X for which a solution § to the Poisson equation ezists with m(§?) < oo. If the
constant

v :==m(§” — {Pg}?) (17.44)

is strictly positive then as n — oo,
_ d
(n’ng) 125.(t) % B a.s. [P]

where B denotes a standard Brownian motion on [0, 1].

Proor  Using an obvious generalization of Proposition 17.1.6 we see that it is
enough to prove the theorem when @y ~ 7. From Theorem 17.4.3 we have

Sn(g) = Mn(g) + Pg (Po) — Pg(Py).

Defining the stochastic process m,,(t) for ¢ € [0,1] as in (D.7) by

Mn(t) = Mipg (9) + (0t — [nt]) [Mipi 1 (9) = My (9)],  (1745)
it follows that for all ¢ € [0, 1],

(7)™ 2 lsn(t) = ma(t)] < (n7) 7Y% Pg (o)
()™ max [Py (@) (17.46)

Since 7(§%) < oo, by Jensen’s inequality we also have 7({P§}?) < oco. Hence by

Theorem 17.3.3 it follows that

1 - 2
- lrélkaécn{Pg (@)} —0 a.s. [Pr]

as n — 00, and from (17.46) we have

sup (n7§)_1/2|sn(t) —mp(t)] =0 a.s. [Pr]
0<t<1

as n — oo. That is, |(n7§)*1/2(3n —my)|c = 0 in C[0, 1] with probability one. To

prove the theorem, it is therefore sufficient to show that (n’yg)_l/ Zmi (t) 4 B.

We complete the proof by showing that the conditions of Theorem D.6.4 hold for
the martingale M, (g).

To show that (D.8) holds note that
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Ex[(Mi(9) — My—1(9))* | Faa]l = Exl(§(Px) — P (Pr—1))" | Fp_i]
Py (D) — {P§ (Pp—1)}

Since we have assumed that §? is 7-integrable, it follows that the function P§? —{Pg}?
is also w-integrable. Hence the LLN holds:

N . .
dim = > Exl(My(g) = My-1(9))* | Fili] = n(Pg* — {Pg}*) =7} as.
k=1

We now establish (D.9). Again by the LLN we have for any b > 0,

n—0o0 N,

lim 5" EL[(Milg) — Meos(9)°1{(Milg) — My (9))” = b} | FP
k=1

= E:[(§(P1) — P (®0))’1{(3(P1) — P (Po))” > b}]

which tends to zero as b — oo. It immediately follows that (D.9) holds for any ¢ > 0,
and this completes the proof. O

As an illustration of the implications of Theorem 17.4.4 we state the following
corollary, which is an immediate consequence of the fact that both h(u) = u(1) and
h(u) = maxg<s<1 u(t) are continuous functionals on u € C[0, 1].

Theorem 17.4.5 Under the conditions of Theorem 17.4.4, the CLT holds for g with
'yg given by (17.44), and as n — oo,

2\—1/2 —y d
(n7g) max Sk(g) — Qax B (2).

17.4.3 The representations of >

It is apparent now that the limiting variance in the CLT can take on many different
forms depending on the context in which this limit theorem is proven. Here we will
briefly describe how the various forms may be identified and related.

The CLT variance given in (17.44) can be transformed by substituting in the
Poisson equation (17.37), and we thus obtain

75 =19 — {9 - 9}*) = 27(§g) — 7(3°) = Ex[23(L0)g(Po) —7°(P0)]  (17.47)

Substituting in the particular solution (17.39), which we may write as
(o]
g(z) =Y P¥(,7)
k=0
results in the expression

2 = n(g?) + 20(3 P(2,7) (17.48)
k=1

This immediately gives the representation (17.3) for ’)'3 whenever the expectation with
respect to 7, and the infinite sum may be interchanged. We will give such conditions
in the next section, under which the identity (17.3) does indeed hold.
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Note that if we substituted in a different formula for § we would arrive at an
entirely different formula. We now show that by taking the specific form (17.38) for
g we can connect the expression for the limiting variance given in Section 17.2 with
the formulas given here.

Recall that using the approach of Section 17.2 based upon the existence of an
atom we arrived at the identity

72 = n(eEa](Y (@)’] (17.49)
1

It may seem unlikely a priori that the two expressions (17.47) and (17.49) coincide.
However, as required by the theory, it is of course true that the identity

Ea [(é §(¢k))2] = Ex[29(®0)g(®0) — 5°(®0)] (17.50)

holds whenever an atom a € BT (X) exists. To see this we will take
j(z) = Eo Y 5(@))]
=0

which is the specific solution (17.38) to the Poisson equation. By the representation
of 7 using the atom a and the formula for the solution g to the Poisson equation we
then have

Toa

Ex[20(20)3(20) — 7%(00)] = m(@)Ea[3 (25(@0)3(@) — 72(@0) )]
k=1
= w(a)Eq [TZO‘ (2§(Q5k)Eq§k [i g((ﬁ])] - §2 (@k))]
k=1 j=0
= r(@E[ (0@ E[0* Y a0)) | 7] — g2 (0]
k=1 j=0

For any k > 1 we have on the event {k < 7,5},
To
6" Zg =2_9(®)
j=k

and hence the previous equation gives

Ta

Ex[23(80)3(®0) — 7(B0)] = m(a)Ea [ (29(2%) [z ) -5 @))]

k=1 j=k

= n(a)E, [i E[Z 29(%x)7(®;) — 7°(Px) | f}fH
k=1 ik

= (@B Y (3 200)3(0;) - (@)

k=1 j=k
- w(a)Ea[(zay@k))Z]
k=1

which gives (17.50).
We now apply the martingale and atom-based approaches simultaneously to ob-
tain criteria for the CLT and LIL.
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17.5 Criteria for the CLT and the LIL

In this section we give more easily verifiable conditions under which the CLT and
LIL hold for general Harris chains. Up to now, our assumptions on the chain involve
the statistics of the return time to the atom & for the split chain, or integrability
conditions on a solution to the Poisson equation. Neither of these assumptions is easy
to interpret, and therefore it is crucial to connect them to verifiable properties of the
one step transition function P. We do this now by proving that a drift property gives
a sufficient condition under which the CLT and LIL are valid. Under this condition
we will also show that the CLT variance may be written in the form (17.3).
The following conditions will be imposed throughout this section:

CLT Moment Condition on V, f

The chain @ is ergodic, and there exists a function f > 1, a finite-valued
function V' and a petite set C satisfying (V3).

Letting 7 denote the unique invariant probability measure for the chain,
we assume that 7(V?2) < oo.

The integrability condition on V2 can be obtained by applying Theorem 14.3.7, but
this condition may be difficult to verify in practice. For this reason we give in the fol-
lowing lemma a stronger condition under which this bound is satisfied automatically.

Lemma 17.5.1 If & is V'-uniformly ergodic then the CLT moment condition on V, f
are satisfied with V = (1 — /T = B) V' and f =V V'.

ProOF It follows from Lemma 15.2.9 that the chain is V-uniform, and hence (V3)
holds with this V. The finiteness of 7(V?2) follows from finiteness of 7(V"), which is a
consequence of the f-Norm Ergodic Theorem 14.0.1. O

The following result shows that (V3) provides a sufficient condition under which
the assumptions imposed in Section 17.4 and Section 17.3 are satisfied.

Lemma 17.5.2 Under the CLT moment condition on V, f above we have

(1) There ezists a constant R < oo such that for any function g which satisfies the
bound |g| < f, the Poisson equation (17.837) admits a solution § with |g| <
R(V +1);

(ii) The split chain satisfies the bound

Ta—1

Ea[( v Zg(f))z] < 00 (17.51)

£=0
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and hence the CLT moment condition (17.31) holds for any function g with
lgl < f.

PROOF  Result (i) is simply a restatement of Theorem 17.4.2, so it is enough to
prove (ii).

Under the CLT moment condition on V, f above, @ is f-regular, and hence the
m-skeleton is f(™)-regular by Theorem 14.2.10. Hence the split chain & for the m-
skeleton is f(™)-regular if the set C' used in the splitting is a sublevel set of V, and
from Theorem 14.2.3 applied to the m-skeleton we have for some Ry < oo and any
x; € )v(,

T
Ex [>° £ (S4)] < Ro(V(2) +1)
k=0

where we define f(™) (&) = f™)(B,p, Vi) := £ (D).
Since {75 > k} € Fr, = o{Yi 19 < k, &, : j < mk}, we have for all z;,

k=0

Z Ewi [Z1(f) Ura > K]

= Y E[EZ) | Pl > B
k=0

From (17.21) we may find R; < oo such that for ¢ = 0,1,
E[Zk(f) | Foks Bk = (B, V) = (,1)] < Ruf ™ (),

and hence

£ 2] < ROV 41, s ek

Under the assumption that 7(V?) < oo we see from the representation of 7 that

Ta—1

[Z( &, [Z Z(f ]) ] < (#(&r)) " (RoR1)*m([V + 1]%) < oo. (17.52)

£=0

Using (17.52) it is now relatively easy to show that the bound (17.51) holds. We may
calculate using the ordinary Markov property,

w > G5 @[5 20)]

Te—1

=[S (E[X A0 7))

=0
Ta—1

Ea[g Zy(f [Z Z(f |-7:mzH

v

{=0 k=¢

vV
N[
M«
Q¢
| |
~~
NN
N
—~
S~
N
—
W
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Theorem 17.5.3 Assume the CLT moment condition on V, f, and let g be a function
on X with |g| < f. Then the constant ’yg defined as

7y = m(g° — (Pg)?)

is well defined, non-negative, and finite, and may be written as
2 1 )2 _9 N
7o = Jim ~Ex[(Sn(9) | = Exlg*(@0)] +2 Y Ex[g(@0)g(@)] (17.53)
k=1

where the sum converges absolutely.
If 'yg > 0 then the CLT and LIL hold for g.

PROOF  To obtain the representation (17.53) for 'yg, apply the identity (17.42), from
which we obtain
E<[(Sn(@) — Ma(9))?] < 47(3%)

Since Ex[My(9)?] = X1 Ex[(My — My_1)%] = nv2, it follows that +E;[S,(g)?] — 72
as n — oQ.

We now show that %EW[Sn(g)Z] — 22 Ex[9(20)g(k)].

First we show that this sum converges absolutely. By the f-Norm Ergodic The-
orem 14.0.1 we have for some R < oo, and each z,

S EG@FE) < [5)]S 1PEw, <) 7l
k=0 k=0

9(@)|R(V (z) +1).

IA

Since |g| is bounded by f, which is bounded by a constant times V +1, it follows that
for some R',

S Eulg(@0)g(@)]| < B (V2(@) + 1)
k=0

and hence
> Ex[3(20)5(®k)]| < R'(m(V?) + 1) < o0.
k=0

We now compute 'ygz For each n we have by invariance,

E[5.0)7] = (@042, ) Y Ef5(@5(,)
k=1j=k+1
n—1 n—1-k

= Edfg@) 422 Y (Y E5(@0)a@)]),
k=0 =1

and the right hand side converges to Y. E;[g(®0)7(Pk)] as n — oo.

To prove that the CLT and LIL hold when 'yg > (, observe that by Lemma 17.5.2
under the conditions of this section the hypotheses of both Theorem 17.3.6 and The-
orem 17.4.5 are satisfied. Theorem 17.3.6 gives the CLT and LIL, and Theorem 17.4.5
shows that the limiting variance is equal to 7(§% — (Pg)?). O

So far we have left open the question of what happens when fyg = 0. Under the
conditions of Theorem 17.5.3 it may be shown that in this case
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1
—Sn(g) -2 0.

vn

We leave the proof of this general result to the reader. In the next result we give a
criterion for the CLT and LIL for V-uniformly ergodic chains, and show that for such
chains ﬁSn (g9) converges to zero with probability one when ’yg =0.

Theorem 17.5.4 Suppose that & is V-uniformly ergodic. If g> <V then the conclu-
sions of Theorem 17.5.8 hold, and if fyg =0 then

PrROOF  Inview of Lemma 17.5.1 and Theorem 17.5.3, the only result which requires
proof is that (ﬁSn () : n > 1) converges to zero when 73 =0.
Recalling (17.42) we have

Sn(9) = Mn(g) + Pg (Po) — P§ (Pn)

We have shown that ﬁpg (®,,) — 0 a.s. in the proof of Theorem 17.4.4. To prove

the theorem we will show that (M, (g)) is a convergent sequence.
We have for all n and =z,

E[(Ma(9)2] = 3" EalP(@11,8%) — P(@4_1,9)"
k=1

Letting G(z) = P(z,§%) — P(z,§)? we have 0 < G < RV for some R < oo, and
7(G) = = 0. Hence by Theorem 15.0.1,

n o0

Ex[(Mn(9)’] = D Ex[G(P-1)] < D |P*(2,G) = 7(G)| < 0
k=1 k=0

By the Martingale Convergence Theorem D.6.1 it follows that (M, (g)) converges to
a finite constant, and is hence bounded in n with probability one. O

17.6 Applications

From Theorem 17.0.1 we see that any of the V-uniform models which were studied
in the previous chapter satisfy the CLT and LIL as long as the limiting variance is
positive. We will consider here two models where moment conditions on the distur-
bance process may be given explicitly to ensure that the CLT holds. In the first we
avoid Theorem 17.0.1 since we can obtain a stronger result by using Theorem 17.5.3,
which is based upon the CLT moment condition of the previous section.

17.6.1 Random walks and storage models

Consider random walk on a half line given by &, = [#,—1 + W,]T, and assume that
the increment distribution I" is has negative first moment and a finite fifth moment.
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We have analyzed this model in Section 14.4 where it was shown in Proposi-
tion 14.4.1 that under these conditions the chain is (z* + 1)-regular.

Let f(z) = |z| + 1 and V(z) = cz?, with ¢ > 0. From (14.29) we have that (V3)
holds for some ¢, and we have just noted that the chain is V2-regular. Hence the
conditions imposed in Section 17.5 are satisfied, and applying Theorem 17.5.3 we see
that the CLT and LIL hold for any g satisfying |g| < f.

In particular, on setting g(z) = z we see that the CLT and LIL hold for & itself.

Proposition 17.6.1 If the increment distribution I' has mean 8 < 0 and finite fifth
moment, then the associated random walk on a half line is positive Harris and the
CLT and LIL hold for the process {®y : k > 0}.

The limiting variance may be written using (17.3) as ’yg = Y Eq[®xP0], or
using (17.13) with oo = {0} we have

2 = [ (3 2 - Enle])]
k=1

17.6.2 Linear state space models

Here we illustrate Theorem 17.0.1. We can easily obtain conditions under which the
CLT holds for the Linear State Space Model, and explicitly calculate the limiting
variance. To avoid unnecessary technicalities we will assume that E[W] = 0.

Let Yy = ¢ Xy, k € Z, where ¢ € R". If the eigenvalue condition (L.SS5) holds
then we have seen in Proposition 12.5.1 that a unique invariant probability 7 exists,
and hence a stationary version of the process Y} also exists, defined for k € Z. The
stationary process can be realized as

o
Y= hWis
=0

where hy = ¢! Ft‘G and (Wy : k € Z) are i.i.d. with mean zero and covariance
Yw = E[WW '], which is assumed to be finite in (LSS2).
Let R(k) denote the autocovariance sequence for the stationary process:

R(k) = E,[V}Y;] keZ

If the CLT holds for the process Y then we have seen that the limiting variance,
which we shall denote 2, is equal to

S f: R(k) (17.54)

k=—o00

The autocovariance sequence can be analyzed through its Fourier series, and this
approach gives a simple formula for the limiting variance 2.

The process Y has a spectral density D(w) which is obtained from the autoco-
variance sequence through the Fourier series
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and R(m) can be recovered from D(w) by the integral

R(m) ! /7r e D(w) dw

:E_ﬂ

It is a straightforward exercise (see [143], page 66) to show that the spectral density
has the form

D(w) = H(e") ZwH(e™)*
where

H(e™) = Zhge”‘" =c'(I-e“F)7'a.
=0

From these calculations we obtain the following CLT for the Linear State Space
Model:

Theorem 17.6.2 Consider the linear state space model defined by (LSS1) and
(LSS2). If the eigenvalue condition (LSS5), the nonsingularity condition (LSS4) and
the controllability condition (LCM3) are satisfied then the model is V -uniformly er-
godic with V(z) = |z|? + 1.

For any vector ¢ € R", the limiting variance is given by the formula

V=c"(I-F)'GuwG (I-F") e,

and the CLT and LIL hold for process Y when 2 > 0.

PrROOF  We have seen in the proof of Theorem 12.5.1 that (V4) holds for the linear
state space model with V(z) = 1+ " Mz, where M is a positive matrix (see (12.34)).
Under the conditions of Theorem 17.6.2 we also have that @ is a -irreducible and
aperiodic T-chain by Proposition 6.3.5. By Lemma 17.5.1 and Theorem 17.5.2 it
follows that the CLT and LIL hold for Y, and that the limiting variance is given by
(17.54).

The closed form expression for 7, follows from the chain of identities

V2 = i R(k)=D(0)=c' (I-F)'GuwG"(I - F") e

k=—o0

a

Had we proved the CLT for vector valued functions of the state, it would be

more natural in this example to prove directly that the CLT holds for X. In fact, an

extension of Theorem D.6.4 to vector-valued processes is possible, and from such a
generalization we have under the conditions of Theorem 17.6.2 that

1 & d
— ) XpX{ 5 N(0,%)
Vi

where ¥ = (I - F)"'GXwG'(I - F")~ L
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17.7 Commentary

The results of this chapter may appear considerably deeper than those of other chap-
ters, although in truth they are often straightforward from more global stochastic
process results, given the embedded regeneration structure of the split chain, or given
the existence of a stationary version (that is, of an invariant probability measure) for
the chain.

One of the achievements of this chapter is the identification of these links, and
in particular the development of a drift-condition approach to the sample path and
central limit laws.

These laws are of value for Markov chains exactly as they are for all stochastic
processes: the LLN and CLT, in particular, provide the theoretical basis for many
results in the statistical analysis of chains as they do in related fields. In particular,
the standard proofs of asymptotic efficiency and unbiasedness for maximum likeli-
hood estimators is largely based upon these ergodic theorems. For this and other
applications, the reader is referred to [93].

The Law of Large Numbers has a long history whose surface we can only skim
here. Theorem 17.1.2 is a result of Doob [68], and the ratio form for Harris chains
Theorem 17.3.2 is given in Athreya and Ney [13]. Chapter 3 of Orey [208] gives a
good overview of related ratio limit theorems.

The classic text of Chung [49] gives in Section 1.16 the CLT and LIL for chains
on a countable space from which we adopt many of the proofs of the results in
Section 17.2 and Section 17.3. Versions of the Central Limit Theorem for Harris
chains may be found in Cogburn [52] and in Nummelin and Niemi [202, 199]. The
paper [199] presents an excellent survey of what was the state of the art at that time,
and also an excellent development of CLTs in a context more general than we have
given.

Neveu remarks in [197] that “the relationship between the theory of martingales
and the theory of Markov chains is very deep”. At that time he referred mainly to the
connections between harmonic functions, martingales, and first hitting probabilities
for a Markov chain. In Section III-5 of [197] he develops fairly briefly a remarkably
strong classification of a Markov chain as either recurrent or transient, based mainly
on martingale limit theory and the existence of harmonic functions. Certainly the
connections between martingales and Markov chains are substantial. From the largely
martingale based proof of the functional CLT described in this chapter, and the more
general implications of the Poisson equation and its associated martingale to the
ergodic theory of Markov chains, it appears that the relationship between Markov
chains and martingales is even richer than was thought at the time of Neveu’s writing.

The martingale approach via solutions to the Poisson equation which is developed
in Section 17.4 is adopted from Duflo [69] and Maigret [158].

For further results on the potential theory of positive kernels we refer the reader
to the seminal work of Neveu [196], Revuz [223] and Constantinescu and Cornea [55],
and to Nummelin [203] for the most current development. Applications to Markov
processes evolving in continuous time are developed in Neveu [196], Kunita [146], and
Meyn and Tweedie [179].

For an excellent account of Central Limit Theorems and versions of the Law of
the Iterated Logarithm for a variety of processes the reader is referred to Hall and
Heyde [93]. Martingale limit theory as presented in, for example, Hall and Heyde [93]
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allows several obvious extensions of the results given in Section 17.4. For example,
a functional Law of the Iterated Logarithm for Markov chains can be proved in a
manner similar to the functional Central Limit Theorem given in Theorem 17.4.4.
Using the almost sure invariance principle given in Brosamler [36] and Lacey and
Philipp [150], it is likely that an almost sure Central Limit Theorem for Markov
chains may be obtained under an appropriate drift condition, such as (V4).

In work closely related to the development of Section 17.4, Kurtz [148] considers
chains arising in models found in polymer chemistry. These models evolve on the
surface of a three dimensional sphere X = S?, and satisfy a multidimensional version
of the Poisson equation:

/ P(z,dy)y = px
X

where |p| < 1. Bhattacharaya [23] also considers the CLT and LIL for Markov pro-
cesses, using an approach based upon the analogue of the Poisson equation in con-
tinuous time.

If a solution to the Poisson equation cannot be found directly as in [148], then a
more general approach is needed. This is the main motivation for the development of
the drift criteria (V3) and (V4) which is central to this chapter, and all of Part IIL
Most of these results are either new or very recent in this general state space con-
text. Meyn and Tweedie [178] use a variant of (V4) to obtain the CLT and LIL for
1p-irreducible Markov chains giving Theorem 17.0.1, and the use of (V3) to obtain
solutions to the Poisson equation is taken from Glynn and Meyn [86]. Applications
to random walks and linear models similar to those given in Section 17.6 are also
developed in [86].

Proposition 17.3.5, which establishes stability of the dependent parameter bilinear
model, is taken from Brandt et. al. [1] where further related results may be found.

The finiteness of the fifth moment of the increment process which is imposed in
Proposition 17.6.1 is close to the right condition for guaranteeing that the random
walk obey the CLT. Daley [60] shows that for the GI/G/1 queue a fourth moment
condition is necessary and sufficient for the absolute convergence of the sum

i Ex[®1Po)

where @, = &5, — E,[®;]. Recall that this sum is precisely the limiting variance used in
Proposition 17.6.1. This strongly suggests that the CLT does not hold for the random
walk on the half line when the increment process does not have a finite fourth moment,
and also suggests that the CLT may indeed hold when the fourth moment is finite.
These subtleties are described further in [86].



