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V-Uniform Ergodicity

In this chapter we introduce the culminating form of the geometric ergodicity the-
orem, and show that such convergence can be viewed as geometric convergence of
an operator norm; simultaneously, we show that the classical concept of uniform (or
strong) ergodicity, where the convergence in (13.4) is bounded independently of the
starting point, becomes a special case of this operator norm convergence.

We also take up a number of other consequences of the geometric ergodicity
properties proven in Chapter 15, and give a range of examples of this behavior. For
a number of models, including random walk, time series and state-space models of
many kinds, these examples have been held back to this point precisely because the
strong form of ergodicity we now make available is met as the norm, rather than
as the exception. This is apparent in many of the calculations where we verified the
ergodic drift conditions (V2) or (V3): often we showed in these verifications that the
stronger form (V4) actually held, so that unwittingly we had proved V-uniform or
geometric ergodicity when we merely looked for conditions for ergodicity.

To formalize V-uniform ergodicity, let P; and P, be Markov transition functions,
and for a positive function oo > V > 1, define the V-norm distance between P; and
Py as
|1Pi(z, -) — Po(z, -)|lv

V(z)
We will usually consider the distance || P* —|,,, which strictly speaking is not defined

by (16.1), since 7 is a probability measure, not a kernel. However, if we consider the
probability 7 as a kernel by making the definition

IPr — Pofly == sup (16.1)
x

m(z, A) :=7(A), A € B(X), z € X,

then [|P* — ||, is well-defined.

V-uniform ergodicity
An ergodic chain @ is called V-uniformly ergodic if

1P"* ==, — 0, n — o0o. (16.2)
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We develop three main consequences of Theorem 15.0.1 in this chapter.

Firstly, we interpret (15.4) in terms of convergence in the operator norm || P*—|,,
when V' satisfies (15.3), and consider in particular the uniformity of bounds on the
geometric convergence in terms of such solutions of (V4). Showing that the choice of
V in the term V-uniformly ergodic is not coincidental, we prove

Theorem 16.0.1 Suppose that D is Y-irreducible and aperiodic. Then the following
are equivalent for any V > 1:

(1) @ is V-uniformly ergodic.
(ii) There exists r > 1 and R < oo such that for alln € Z

IP" =l < Rr (16.3)

(iii) There exists some n > 0 such that |P! — ||, < 0o for i <n and

1P" ==y < 1. (16.4)

(iv) The drift condition (V4) holds for some petite set C and some Vi, where Vj is
equivalent to V in the sense that for some ¢ > 1,

V<V <eV. (16.5)

Proor  That (i), (ii) and (iii) are equivalent follows from Proposition 16.1.3. The
fact that (ii) follows from (iv) is proven in Theorem 16.1.2, and the converse, that
(ii) implies (iv), is Theorem 16.1.4. a

Secondly, we show that V-uniform ergodicity implies that the chain is strongly
mizing. In fact, it is shown in Theorem 16.1.5 that for a V-uniformly ergodic chain,
there exists R and p < 1 such that for any g2, h? <V and k,n € Z,

|Ex[g(Pr)P(Pri)] — Exlg(Pr)IEx[(Prik)]] < Ro"[L+ p*V (2)].

Finally in this chapter, using the form (16.3), we connect concepts of geometric
ergodicity with one of the oldest, and strongest, forms of convergence in the study of
Markov chains, namely uniform ergodicity (sometimes called strong ergodicity).

Uniform ergodicity

A chain @ is called uniformly ergodic if it is V-uniformly ergodic in the
special case where V = 1; that is, if

sup [|[P™(z, -) — «|| — 0, n — o0. (16.6)
reX

There are a large number of stability properties all of which hold uniformly over the
whole space when the chain is uniformly ergodic.
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Theorem 16.0.2 For any Markov chain @ the following are equivalent:
(i) @ is uniformly ergodic.
(ii) There ezists r > 1 and R < oo such that for all x
[P (@, -) —«ll < Rr™™; (16.7)
that is, the convergence in (16.6) takes place at a uniform geometric rate.
(iii) For somen € Z,
sup |[|P"(z, ) — «(-)| < 1. (16.8)
zeX
(iv) The chain is aperiodic and Doeblin’s Condition holds: that is, there is a prob-
ability measure ¢ on B(X) and e < 1, § > 0, m € Z, such that whenever
$(4) > ¢
inf P"(x, A) > 6. (16.9)
TEX

(v) The state space X is vy,-small for some m.

(vi) The chain is aperiodic and there is a petite set C with

sup Ez[1¢] < 00
zeX

in which case for every set A € BT(X), supgex Ez[74] < 0.

(vii) The chain is aperiodic and there is a petite set C and a k > 1 with

sup E;[k7¢] < o0,
reX

in which case for every A € B (X) we have for some k4 > 1,

sup E,[s{] < oo.
zeX

(viii) The chain is aperiodic and there is a bounded solution V > 1 to
AV (z) < =BV (z) + blc(z), zeX (16.10)
for some B > 0, b < 0o, and some petite set C.
Under (v), we have in particular that for any z,

1P (@, -) == < p"/™ (16.11)

where p =1 — vy (X).
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ProoOF  This cycle of results is proved in Theorem 16.2.1-Theorem 16.2.4. O

Thus we see that uniform convergence can be embedded as a special case of
V-geometric ergodicity, with V' bounded; and by identifying the minorization that
makes the whole space small we can explicitly bound the rate of convergence.

Clearly then, from these results geometric ergodicity is even richer, and the iden-
tification of test functions for geometric ergodicity even more valuable than the last
chapter indicated. This leads us to devote attention to providing a method of mov-
ing from ergodicity with a test function V to e®V-geometric convergence, which in
practice appears to be a natural tool for strengthening ergodicity to its geometric
counterpart.

Throughout this chapter, we provide examples of geometric or uniform conver-
gence for a variety of models. These should be seen as templates for the use of the
verification techniques we have given in the theorems of the past several chapters.

16.1 Operator norm convergence

16.1.1 The operator norm | - |,

We first verify that || - ||, is indeed an operator norm.

Lemma 16.1.1 Let L{? denote the vector space of all functions f: X — IR satisfying

@)
v :=sup )

If |P1 — Py, is finite then Py — Py is a bounded operator from LSS to itself, and
|1P1 — Polly, is its operator norm.

< 00

PrROOF  The definition of || - ||, may be restated as

supjg <y |P1(2,9) — P2(z,9)|
1P = Polly, = sup{—= ]

zeX V(‘T)
|P1(z,9) — Pa(z,9)|
= sup sup
lg|<V zeX V(:L‘)
= sup |Pi(-,9) — P(-,9)|v
lgI<V
= sup |Pi(-,9) — P(-,9)lv
lglv <1

which is by definition the operator norm of P; — P viewed as a mapping from L to
itself. O
We can put this concept together with the results of the last chapter to show

Theorem 16.1.2 Suppose that P is p-irreducible and aperiodic and (V}) is satisfied
with C petite and V' everywhere finite. Then for some r > 1,

S ort P — x|y, < oo, (16.12)

and hence P is V-uniformly ergodic.
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PrOOF  This is largely a restatement of the result in Theorem 15.4.1. From Theo-
rem 15.4.1 for some R < o0, p < 1,

|1P™(z, -) —=lly < RV(z)p",  neZy,

and the theorem follows from the definition of || - ||, a
Because || - ||, is a norm it is now easy to show that V-uniformly ergodic chains
are always geometrically ergodic, and in fact V-geometrically ergodic.

Proposition 16.1.3 Suppose that 7 is an invariant probability and that for some ny,
IP ==lly <00 and  [|P" =], <1

Then there exists v > 1 such that

o0

> P =l < o
n=1
ProoOF  Since || - ||;; is an operator norm we have for any m, n € Z, using the

invariance of 7,
| = ally, = (P = m)™(P — )™l < |P" =l }1P™ — =y,

For arbitrary n € Z, write n = kng + ¢ with 1 < ¢ < ngp. Then since we have
| P — x|, =~ < 1, and ||P — 7f|,, < M < oo this implies that (choosing M > 1
with no loss of generality),

j k
17" ==l < 1P ==l 1P -y
< Ml,yk:
< Mno’)’_l(’)’l/no)n
which gives the claimed geometric convergence result. O

Next we conclude the proof that V-uniform ergodicity is essentially equivalent to
V solving the drift condition (V4).

Theorem 16.1.4 Suppose that P is y-irreducible, and that for some V > 1 there
exists 1 > 1 and R < oo such that for allm € Z

1P — x|y, < Rr™. (16.13)

Then the drift condition (V) holds for some Vy, where Vy is equivalent to V in the
sense that for some ¢ > 1,
S A 4 (16.14)

ProoF Fix C € BT(X) as any petite set. Then we have from (16.13) the bound
P(z,C) 2 w(C) — Rp"V (z)

and hence the sublevel sets of V' are petite, so V is unbounded off petite sets.
From the bound
PV < Rp"V + 7(V) (16.15)
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we see that (15.35) holds for the n-skeleton whenever Rp™ < 1. Fix n with Rp" < e™1,
and set

n—1
Volz):==>_ expli/n]P"V.
i=0
We have that V) > V, and from (16.15),
Vo < e'nRV +nn(V),

which shows that V; is equivalent to V' in the required sense of (16.14).
From the drift (16.15) which holds for the n-skeleton we have

n
PV, = Zexp[z’/n—l/n]PiV
i=1

n—1
= exp[—1/n] Z expli/n]P'V + exp[l — 1/n]|P"V
=1
n—1
< exp[—1/n] Z expli/n]P'V + exp[—1/n]V + exp[l — 1/n]x(V)
=1
= exp[—1/n]Vy +exp[l — 1/n]7(V)

This shows that (15.35) also holds for @, and hence by Lemma 15.2.8 the drift con-
dition (V4) holds with this Vj, and some petite set C. O
Thus we have proved the equivalence of (ii) and (iv) in Theorem 16.0.1.

16.1.2 V-geometric mixing and V-uniform ergodicity

In addition to the very strong total variation norm convergence that V-uniformly
ergodic chains satisfy by definition, several other ergodic theorems and mixing results
may be obtained for these stochastic processes. Much of Chapter 17 will be devoted to
proving that the Central Limit Theorem, the Law of the Iterated Logorithm, and an
invariance principle holds for V-uniformly ergodic chains. These results are obtained
by applying the ergodic theorems developed in this chapter, and by exploiting the
V-geometric regularity of these chains. Here we will consider a relatively simple result
which is a direct consequence of the operator norm convergence (16.2).

A stochastic process X taking values in X is called strong mizing if there exists a
sequence of positive numbers {§(n) : n > 0} tending to zero for which

sup [E[g(Xy)h(Xn1x)] — Elg(Xi)[E[M(Xnii)ll < 6(n),  n€Zy,

where the supremum is taken over all £ € Z,, and all g and h such that |g(z)],
|h(z)| <1 for all z € X.

In the following result we show that V-uniformly ergodic chains satisfy a much
stronger property. We will call @ V -geometrically mizing if there exists R < o0, p < 1
such that

sup |Ez[g(Pr)M(@nik)] — Eolg(Pr)E2[M(Prin)ll < RV (2)p",  n € Zy,

where we now extend the supremum to include all £ € Z, and all g and h such that
g%(z), h?(z) < V(z) for all z € X.
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Theorem 16.1.5 If @ is V-uniformly ergodic then there exists R < oo and p < 1
such that for any g%, h> <V and k,n € Z,

|Ex[g(@1)R(Pri)] — Exlg(Pr)|Ex[(Prir)]| < Ro"[1 + p*V (2)],

and hence the chain @ is V-geometrically mizing.

PROOF For any h? <V, g2 < Vlet h = h—m(h), g = g — 7(g). We have by
v/V-uniform ergodicity as in Lemma 15.2.9 that for some R’ < oo, p < 1,

Es [E(fpk) Es, [?(QSn)]] ‘

E@k)‘ V/ V@k)] :

Since |h| < (1 + fV%dﬂ') V2 we can set R" = R/ (1 + fV%dw) and apply (15.35) to
obtain the bound

|Ex[A(Pk)F(Pr4n)]]

| = [E(qslc)g(ék-i—n)] | =

< RE, [

IN

R'p"Ey [V ()]
R {25+ V@)

IN

1-A

Assuming without loss of generality that p > A, and using the bounds

m(h) — Es[h(@)]] < R"p*\/V(2)
I7(9) = Ealg(Phrn)ll < R"pH7/V(2)

gives the result for some R < oc. O
It follows from Theorem 16.1.5 that if the chain is V-uniformly ergodic then for
some R; < oo,

|Es[A(Pr)g(Phn)l| < Rip"[1+p"V(2)],  kn€Zy (16.16)

where h = h — 7(h), g = g — 7(g)-

By integrating both sides of (16.16) over X, the initial condition  may be replaced
with a finite bound for any initial distribution g with p(V) < oo, and a mixing
condition will be satisfied for such initial conditions. In the particular case where
pu = m we have by stationarity and finiteness of w(V') (see Theorem 14.3.7),

Ex[h(2k)F(Prin)]| < Rep",  kyn € Zy. (16.17)

for some Ry < o0; and hence the stationary version of the process satisfies a geometric
mixing condition under (V4).

16.1.3 V-uniform ergodicity for regenerative models

In order to establish geometric ergodicity for specific models, we will obviously use
the drift criterion (V4) to establish the required convergence. We begin by illustrating
this for two regenerative models: we give many further examples later in the chapter.

For many models with some degree of spatial homogeneity, the crucial condition
leading to geometric convergence involves exponential bounds on the increments of
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the process. Let us say that the distribution function G of a random variable is in
GT () if G has a Laplace-Stieltjes transform convergent in [0,]: that is, if

[e.e]
/ e*'G(dt) < oo, 0<s<n, (16.18)
0

where v > 0.

Forward recurrence time chains Consider the forward recurrence time §-skeleton
chain V:;' defined by (RT3), based on increments with spread-out distribution I.

Suppose that I" € GT(y). By choosing V(z) = €’ we have immediately that
(V4) holds for z € C with C = [0, 6], and also

[V (z)] /P(:z:,dy)V(y) = @0 17 — ¢770 < 1, z >4

Thus (V4) also holds on C¢, and we conclude that the chain is €?*-uniformly ergodic.
Moreover, from Theorem 16.0.1 we also have that

/|P"(x,dy)e7y —m(dy)e™|[ < e’r ",

so that the moment-generating functions of the model, and moreover all polynomial
moments, converge geometrically quickly to their limits with known bounds on the
state-dependent constants.

This is the same result we showed in Section 15.1.4 for the forward recurrence
time chain on Z.; here we have used the drift conditions rather than the direct
calculation of hitting times to establish geometric ergodicity.

It is obvious from its construction that for this chain the condition I € G (v) is
also necessary for geometric ergodicity.

The condition for uniform ergodicity for the forward recurrence time chain is also
trivial to establish, from the criterion in Theorem 16.0.2 (vi). We will only have this
condition holding if I" is of bounded range so that I'[0, ¢] = 1 for some finite ¢; in this
case we may take the state space X equal to the compact absorbing set [0,c]. The
existence of such a compact absorbing subset is typical of many uniformly ergodic
chains in practice.

Random walk on IR} Consider now the random walk on [0,00), defined by
(RWHL1). Suppose that the model has an increment distribution I" such that

(a) the mean increment 8 = [z I'(dz) < 0;
(b) the distribution I" is in G* (), for some v > 0.
Let us choose V(z) = exp(sz), where 0 < s <  is to be selected. Then we have
J P(z,dy) AV (y)/V(z) = JZ, I'(dw)lexp(sw) —1]
+I'(—o0, —z|[exp(—sz) — 1]

(16.19)
< % I(dw)[exp(sw) — 1]

+ [ % I'(dw)[1 — exp(sw)].
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But now if we let s | O then
s_l/ I'(dw)[exp(sw) — 1] = B < 0.
—0o0

Thus choosing sg sufficiently small that [0 I'(dw)[exp(sow) — 1] = ¢ < 0, and then
choosing ¢ large enough that

I'(—o0,—z] < —=£/2, T>c

we have that (V4) holds with C' = [0, ¢]. Since C is petite for this chain, the random
walk is exp(spz)-uniformly ergodic when (a) and (b) hold.

It is then again a consequence of Theorem 16.0.1 that the moment generating
function, and indeed all moments, of the chain converge geometrically quickly.

Thus we see that the behavior of the Bernoulli walk in Section 15.5 is due, essen-
tially, to the bounded and hence exponential nature of its increment distribution.

We will show in Section 16.3 that one can generalize this result to general chains,
giving conditions for geometric ergodicity in terms of exponentially decreasing “tails”
of the increment distributions.

16.2 Uniform ergodicity

16.2.1 Equivalent conditions for uniform ergodicity

From the definition (16.6), a Markov chain is uniformly ergodic if |P" — 7||;, — 0 as
n — 0o when V = 1. This simple observation immediately enables us to establish the
first three equivalences in Theorem 16.0.2, which relate convergence properties of the
chain.

Theorem 16.2.1 The following are equivalent, without any a priori assumption of
P-irreducibility or aperiodicity:

(1) @ is uniformly ergodic.
(ii) there exists p < 1 and R < oo such that for all =

|1P"(z, ) — =l < Rp".

(iii) for somen € Z,

sup [|P"(z, -) —m(-)]| < 1.
T€X

PrROOF  Obviously (i) implies (iii); but from Proposition 16.1.3 we see that (iii)
implies (ii), which clearly implies (i) as required. O
Note that uniform ergodicity implies, trivially, that the chain actually is =-
irreducible and aperiodic, since for 7(A) > 0 there exists n with P"(z, A) > n(A)/2
for all z.
We next prove that (v)-(viii) of Theorem 16.0.2 are equivalent to uniform ergod-
icity.

Theorem 16.2.2 The following are equivalent for a 1-irreducible aperiodic chain:
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(i) @ is uniformly ergodic.
(ii) the state space X is petite.

(iii) there is a petite set C with sup,ex Ez[Tc] < o0, in which case for every A €
BT(X) we have supgex Ez[T4] < oo.

(iv) there is a petite set C and a k > 1 with supyex Ez[K7¢] < oo in which case for
every A € BT(X) we have sup,cx Ez[57{'] < oo for some ka > 1.

(v) there is an everywhere bounded solution V to (16.10) for some petite set C.

PrROOF  Observe that the drift inequality (11.17) given in (V2) and the drift in-
equality (16.10) are identical for bounded V. The equivalence of (iii) and (v) is thus a
consequence of Theorem 11.3.11, whilst (iv) implies (iii) trivially and Theorem 15.2.6
shows that (v) implies (iv): such connections between boundedness of 74 and solutions
of (16.10) are by now standard.

To see that (i) implies (ii), observe that if (i) holds then @ is w-irreducible and
hence there exists a small set A € BT (X). Then, by (i) again, for some ny € Z,
infyex P™(x, A) > 0 which shows that X is small from Theorem 5.2.4.

The implication that (ii) implies (v) is equally simple. Let V =1, 8 =b = %, and
C = X. We then have

AV = —BV +blg,

giving a bounded solution to (16.10) as required.
Finally, when (v) holds, we immediately have uniform geometric ergodicity by
Theorem 16.1.2. ad
Historically, one of the most significant conditions for ergodicity of Markov chains
is Doeblin’s Condition.

Doeblin’s Condition

Suppose there exists a probability measure ¢ with the property that for
some m, € < 1,5 >0

$(A) >e = P™(z,A) >0

for every x € X.

From the equivalences in Theorem 16.2.1 and Theorem 16.2.2, we are now in a position
to give a very simple proof of the equivalence of uniform ergodicity and this condition.

Theorem 16.2.3 An aperiodic 1-irreducible chain @ satisfies Doeblin’s Condition if
and only if @ is uniformly ergodic.
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PrROOF  Let C be any petite set with ¢(C) > ¢ and consider the test function
Then from Doeblin’s Condition

P™"V(z)—V(z) =P™(z,C% —lge(z) < 1—06—lge(x)
= —0+1c(z)
< —36V(z) + 1c(z).

Hence V is a bounded solution to (16.10) for the m-skeleton, and it is thus the case
that the m-skeleton and the original chain are uniformly ergodic by the contraction
property of the total variation norm.
Conversely, we have from uniform ergodicity in the form (16.7) that for any ¢ > 0,
if m(A) > ¢ then
P*(z,A) >e—Rp" >¢/2

for all n large enough that Rp™ < ¢/2, and Doeblin’s Condition holds with ¢ = 7. O
Thus we have proved the final equivalence in Theorem 16.0.2. We conclude by
exhibiting the one situation where the bounds on convergence are simply calculated.

Theorem 16.2.4 If a chain P satisfies
P™(z,A) > vy (A) (16.20)
for all z € X and A € B(X) then
1P (z, -) — || < p"/™ (16.21)

where p =1 — vy (X).

PROOF  This can be shown using an elegant argument based on the assumption
(16.20) that the whole space is small which relies on a coupling method closely con-
nected to the way in which the split chain is constructed.
Write (16.20) as
P™(z,A) > (1 —pr(A) (16.22)

where v = v,,, /(1 — p) is a probability measure.

Assume first for simplicity that m = 1. Run two copies of the chain, one from
the initial distribution concentrated at x and the other from the initial distribution
7. At every time point either

(a) with probability 1— p, choose for both chains the same next position from the dis-
tribution v, after which they will be coupled and then can be run with identical
sample paths; or

(b) with probability p, choose for each chain an independent position, using the
distribution (as in the split chain construction) [P(z, -) — (1 — p)v(-)]/p, where
x is the current position of the chain.



398 16. V-Uniform Ergodicity

This is possible because of the minorization in (16.22). The marginal distributions
of these chains are identical with the original distributions, for every n. If we let T'
denote the first time that the chains are chosen using the first option (a), then we
have

[P*(z, ) —«|| < P(T >n) < p" (16.23)

which is (16.21).

When m > 1 we can use the contraction property as in Proposition 16.1.3 to give
(16.21) in the general case. O

The optimal use of these many equivalent conditions for uniform ergodicity de-
pends of course on the context of use. In practice, this last theorem, since it identifies
the exact rate of convergence, is perhaps the most powerful, and certainly gives sub-
stantial impetus to identifying the actual minorization measure which renders the
whole space a small set.

It can also be of importance to use these conditions in assessing when uniform
convergence does not hold: for example, in the forward recurrence time chain V;" it
is immediate from Theorem 16.2.2 (iii) that, since the mean return time to [0, §] from
z is of order z, the chain cannot be uniformly ergodic unless the state space can be
reduced to a compact set.

Similar remarks apply to random walk on the half line: we see this explicitly in
the simple random walk of Section 15.5, but it is a rather deeper result [47] that
for general random walk on [0,00), E;[7g] ~ ¢z so such chains are never uniformly
ergodic.

16.2.2 Geometric convergence of given moments

It is instructive to note that, although the concept of uniform ergodicity is a very
strong one for convergence of distributions, it need not have any implications for the
convergence of moments or other unbounded functionals of the chain at a geometric
rate.

This is obviously true in a trivial sense: an i.i.d. sequence &, converges in a
uniformly ergodic manner, regardless of whether E[®,] is finite or not.

But rather more subtly, we now show that it is possible for us to construct a
uniformly ergodic chain with convergence rate p such that 7(f) < oo, so that we
know E;[f(®,)] — 7(f), but where not only does this convergence not take place at
rate p, it actually does not take place at any geometric rate at all.

For convenience of exposition we construct this chain on a countable ladder space
X=7Z, x Z., even though the example is essentially one-dimensional.

Fix 8 < 1/4, and define for the i** rung of the ladder the indices

1—1
i
Note that for ¢« = 1 we have £™(1) = 0 for all m, but for s > 1

™, i>1,m >0.

) = |(

i—1 i—l)m_(i—l)m(i—l—iﬁ

ip if T if
since (i —1 —if) /i > (3i — 1)/i > 2. Hence from the second rung up, this sequence
£™(4) forms a strictly monotone increasing set of states along the rung.

)m+1 o (

(

) >1
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The transition mechanism we consider provides a chain satisfying the Doeblin
Condition. We suppose P is given by

P@i, 0™ (i);4, 01 () = B, i=1,2,..., m=1,2...
P(i,0™(i);0,0) = 1—8, i=12..., m=12,...
P(i,k;0,0) = 1, i=1,2,...,k#0m(G), m=1,2,... (16.24)
P(0,0;4,5) = aij i,j € X
P(0,k;0,0) = 1, k>0,

where the a;; are to be determined, with agg > 0.
In effect this chain moves only on the states (0,0) and the sequences £™(7), and
the whole space is small with

P(i, k; -) > min(1 — B, ago ) doo (- )-

Thus the chain is clearly uniformly and hence geometrically ergodic.

Now consider the function f defined by f(i,k) = k; that is, f denotes the dis-
tance of the chain along the rung independent of the rung in question. We show that
the chain is f-ergodic but not f-geometrically ergodic, under suitable choice of the
distribution a;;.

First note that we can calculate

Eii X0 f(@0)] = (1—B) X5 8" g €7 (i)
< (=BT B o™

Eion[S0°  F(@a)] < (D™, m=12..;

B[S0 f(@n)] = &, k#0m(), m=1,2,....
Now let us choose
o = 277k, kE£0mGE), m=1,2,...;

Qi = CZ?;::O 271’7”’1(2’)7 k= 17

and all other values except agg as zero, and where ¢ is chosen to ensure that the oy
form a probability distribution.
With this choice we have

T0,0—1 e . myna.
Eo oo™ f(@n)] < 14 Tint Tgen(iymz0 k277" + L [Z0 2770
< 14235027 < o0

so that the chain is certainly f-ergodic by Theorem 14.0.1. However for any r €

(1’5_1)7
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Eii[X0  f(@a)r] = (1= B) X2, Amm o £m(i)
> (1-B) oo (Br)" Smeol(5)™ = 1]

— 0o nrlE— B3] —
= () + T BN

which is infinite if
)

pri

-1
; > 1;

i0 )

that is, for those rungs i such that ¢ > r/(r — 1). Since there is positive probability
of reaching such rungs in one step from (0,0) it is immediate that

T0,0—1

Eool Y f(®n)r"] =0
0
for all » > 1, and hence from Theorem 15.4.2 for all » > 1
ZT"HP"(0,0; ) — 7| f = oo.
n

Since {0,0} € BT (X), this implies that ||P"(z; -) — ||; is not o(p") for any = or any
p <Ll

We have thus demonstrated that the strongest rate of convergence in the simple
total variation norm may not be inherited, even by the simplest of unbounded func-
tions; and that one really needs, when considering such functions, to use criteria such
as (V4) to ensure that these functions converge geometrically.

16.2.3 Uniform ergodicity: T-chains on compact spaces

For T-chains, we have an almost trivial route to uniform ergodicity, given the results
we now have available.

Theorem 16.2.5 If P is a 1p-irreducible and aperiodic T-chain, and if the state space
X is compact, then D is uniformly ergodic.

Proor If @ is a 7)-irreducible T-chain, and if the state space X is compact, then
it follows directly from Theorem 6.0.1 that X is petite. Applying the equivalence of
(i) and (ii) given in Theorem 16.2.2 gives the result. O
One specific model, the nonlinear state space model, is also worth analyzing in
more detail to show how we can identify other conditions for uniform ergodicity.

The NSS(F) model In a manner similar to the proof of Theorem 16.2.5 we show
that the the NSS(F) model defined by (NSS1) and (NSS2) is uniformly ergodic,
provided that the associated control model CM(F) is stable in the sense of Lagrange,
so that in effect the state space is reduced to a compact invariant subset.
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Lagrange Stability The CM(F) model is called Lagrange stable if Ay (z)
is compact for each x € X.

Typically in applications, when the CM(F') model is Lagrange stable the input se-
quence will be constrained to lie in a bounded subset of IRP. We stress however that
no conditions on the input are made in the general definition of Lagrange stability.

The key to analyzing the NSS(F') corresponding to a Lagrange stable control
model lies in the following lemma:

Lemma 16.2.6 Suppose that the CM(F') model is forward accessible, Lagrange sta-
ble, M-irreducible and aperiodic, and suppose that for the NSS(F) model conditions
(NSS1) - (NSS3) are satisfied.

Then for each x € X the set A, (x) is closed, absorbing, and small.

ProoF By Lagrange stability it is sufficient to show that any compact and invariant
set C' C X is small. This follows from Theorem 7.3.5 (ii), which implies that compact
sets are small under the conditions of the lemma. O

Using Lemma, 16.2.6 we now establish geometric convergence of the expectation
of functions of &:

Theorem 16.2.7 Suppose the NSS(F) model satisfies Conditions (NSS1)-(NSS3)
and that the associated control model CM(F) is forward accessible, Lagrange stable,
M -irreducible and aperiodic.

Then a unique invariant probability 7 exists, and the chain restricted to the ab-
sorbing set Ay (z) is uniformly ergodic for each initial condition.

Hence also for every function f:X — IR which is uniformly bounded on compact

sets, and every initial condition,

E,Lf(@0)] — [ far

at a geometric rate.

ProOF  When CM(F) is forward accessible, M-irreducible and aperiodic, we have
seen in Theorem 7.3.5 that the Markov chain @ is v-irreducible and aperiodic.

The result then follows from Lemma 16.2.6: the chain restricted to Ay (z) is
uniformly ergodic by Theorem 16.0.2. ad

16.3 Geometric ergodicity and increment analysis

16.3.1 Strengthening ergodicity to geometric ergodicity

It is possible to give a “generic” method of establishing that (V4) holds when we
have already used the test function approach to establishing simple (non-geometric)
ergodicity through Theorem 13.0.1. This method builds on the specific technique for
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random walks, shown in Section 16.1.3 above, and is an increment-based method
similar to that in Section 9.5.1.

Suppose that V is a test function for regularity. We assume that V takes on the
“traditional” form due to Foster: V is finite-valued, and for some petite set C and
some constant b < oo, we have

V(z) -1 forz e CS
P < ’ 16.2
[Py <{] frzc0 (16.25)

Recall that Vi (z) = Ez[o¢] is the minimal solution to (16.25) from Theorem 11.3.5.

Theorem 16.3.1 If @ is a -irreducible ergodic chain and V is a test function sat-
isfying (16.25), and if P satisfies, for some c¢,d < oo and 3> 0, and all x € X,

[ Plady)esp{B(V(y) - V() < c (16.26)
V(y)2V(z)
and

P(z,dy)(V(y) — V(z))? < d (16.27)

/V (y)<V(z)
then @ is V*-uniformly ergodic, where V*(y) = VW for some § < B.

PrROOF  For positive § < 8 we have
[V*(@)] 7! [ P(z,dy)V*(y) = [P(z,dy)exp{d(V(y) —V(z))}

= [P, dy){1+6(V(y) - V(=)

+2(V(y) - V(@)% exp{66:(V () - V(2))}}
(16.28)
for some 6, € [0,1], by using a second order Taylor expansion. Since V satisfies
(16.25), the right hand side of (16.28) is bounded for z € C° by

1= 0+ S{ fv iy evim Pl dy)(V(y) - V()
+ v v P@ ) (V(y) - V(@))* exp{d(V(y) — V(2))}}
<1=045d+ 55 sy Pla dy) exp{(6 + 642 (V(y) - V(2))}

2-¢
<1-6+ 57 (d+e),
(16.29)
for some ¢ € (0,1) such that § + 6¢/2 < g by virtue of (16.26) and (16.27), and the
fact that z? is bounded by e® on IR,. This proves the theorem, since we have

g€
1—5+T(d+0)<1

for sufficiently small § > 0, and thus (V4) holds for V*. O
The typical example of this behavior, on which this proof is modeled, is the
random walk in Section 16.1.3. In that case V(z) = z, and (16.26) is the requirement
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that I' € G (7). In this case we do not actually need (16.27), which may not in fact
hold.

It is often easier to verify the conditions of this theorem than to evaluate directly
the existence of a test function for geometric ergodicity, as we shall see in the next
section.

How necessary are the conditions of this theorem on the “tails” of the increments?
By considering for example the forward recurrence time chain, we see that for some
chains I' € G () may indeed be necessary for geometric ergodicity. However, geomet-
ric tails are certainly not always necessary for geometric ergodicity: to demonstrate
this simply consider any i.i.d. process, which is trivially uniformly ergodic, regardless
of its “increment” structure.

It is interesting to note, however, that although they seem somewhat “proof-
dependent”, the uniform bounds (16.26) and (16.27) on P that we have imposed
cannot be weakened in general when moving from ergodicity to geometric ergodicity.

We first show that we can ensure lack of geometric ergodicity if the drift to the
right is not uniformly controlled in terms of V' as in (16.26), even for a chain satisfying
all our other conditions. To see this we consider a chain on Z_ with transition matrix
given by, for each i € Z,

P(O,’i) = a; >0,
P(i,i—1) = % >0,
Plii+n) = [L—yll-Bl8, nezZ,. (16.30)

where > a; = 1 and ~;, §; are less than unity for all 5.
Provided ) ia; < co and we choose +; sufficiently large that

1 —%lBi/[1 = Bi] —vi < —¢

for some ¢ > 0, then the chain is ergodic since V(z) = z satisfies (V2): this can be
done if we choose, for example,

¥ > Bi + €[l = Bil-

And now if we choose 8; — 1 as j — oo we see that the chain is not geometrically
ergodic: we have for any j

Pj(TO > n) > [1 - 7]'][1 - ﬁ]]ﬁjn

so Py(mp > n) does not decrease geometrically quickly, and the chain is not geometri-
cally ergodic from Theorem 15.4.2 (or directly from Theorem 15.1.1).

In this example we have bounded variances for the left tails of the increment
distributions, and exponential tails of the right increments: it is the lack of uniformity
in these tails that fails along with the geometric convergence.

To show the need for (16.27), consider the chain on Z, with the transition matrix
(15.20) given for all j € Z, by P(0,0) = 0 and

P(Oaj):7j>07 P(]a]):ﬂ]’ P(jaO):l_ﬂja

where }°;v; = 1. We saw in Section 15.1.4 that if f; — 1 as n — oo, the chain cannot
be geometrically ergodic regardless of the structure of the distribution {~;}.
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If we consider the minimal solution to (16.25), namely
Vo(g) = Ejloo] =[1=B;] % 5 >0,

then clearly the right hand increments are uniformly bounded in relation to V for
7 > 0: but we find that

> P3,§)(Vo(j) = Vo(d)? = PGO)1 =Bl ? =[L = Bi] 7' = 00, i oo

Hence (16.27) is necessary in this model for the conclusion of Theorem 16.3.1 to be
valid.

16.3.2 Geometric ergodicity and the structure of =

The relationship between spatial and temporal geometric convergence in the previous
section is largely a result of the spatial homogeneity we have assumed when using
increment analysis.

We now show that this type of relationship extends to the invariant probability
measure 7 also, at least in terms of the “natural” ordering of the space induced by
petite sets and test functions.

Let us we write, for any function g,

Agn(z) ={y : 9(y) < g(z) — n}.

We say that the chain is “g-skip-free to the left” if there is some k& € Z, such that
for all z € X,

P(z, Agx(z)) = 0, (16.31)
so that the chain can only move a limited amount of “distance” through the sub-
level sets of g in one step. Note that such skip-free behavior precludes the Doeblin

Condition if g is unbounded off petite sets, and requires a more random-walk like
behavior.

Theorem 16.3.2 Suppose that D is geometrically ergodic. Then there exists § > 0
such that

/W(dy)eﬁVC(y) < oo (16.32)

where Vo (y) = Ey[oc] for any petite set C € BT (X).
If & is g-skip-free to the left for a function g which is unbounded off petite sets,
then for some ' > 0

/W(dy)eﬂ’g(y) < o0. (16.33)

PROOF  From geometric ergodicity, we have from Theorem 15.2.4 that for any petite
set C € BT(X) there exists 7 > 1 such that V(y) = Gg) (y,X) satisfies (V4). It follows
from Theorem 14.3.7 that 7(V) < co. Using the interpretation (15.29) we have that

00 > m(V) > / n(dy)E, [r°¢). (16.34)

Now the function f(j) = 27 is convex in j € Z, so that E,[r?¢] > rE=lo¢] by Jensen’s
inequality. Thus we have (16.32) as desired.
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Now suppose that g is such that the chain is g-skip-free to the left, and fix b so that
the petite set C = {y : g(y) < b} is in BT(X). Because of the left skip-free property
(16.31), for g(z) > nk + b, we have P,(0c < n) = 0 so that E,[r7¢] > r(9@)=b)/k

As [ w(dz)Eg[r?¢] < oo by virtue of (16.34), we have thus proved the second part
of the theorem for e = {/r. O

This result shows two things; firstly, if we think of Vi (or equivalently G¢(z, X))
as providing a natural scaling of the space in some way, then geometrically ergodic
chains do have invariant measures with geometric “tails” in this scaling.

Secondly, and in practice more usefully, we have an identifiable scaling for such
tails in terms of a “skip-free” condition, which is frequently satisfied by models in
queueing applications on IN" in particular. For example, if we embed a model at the
departure times in such applications, and a limited number of customers leave each
time, we get a skip-free condition holding naturally. Indeed, in all of the queueing
models of the next section this condition is satisfied, so that this theorem can be
applied there.

To see that geometric ergodicity and conditions on 7 such as (16.33) are not
always linked in the given topology on the space, however, again consider any i.i.d.
chain. This is always uniformly ergodic, regardless of 7: the rescaling through gc here
is too trivial to be useful.

In the other direction, consider again the chain on Z, with the transition matrix
given for all j € Z by

where -, v; = 1: we know that if 8; — 1 as n — oo, the chain is not geometrically
ergodic. But for this chain, since we know that 7(j) is proportional to

Eo[Number of visits to j before return to 0]

we have
(j) oc [l — B4] 7"

and so for suitable choice of y; we can clearly ensure that the tails of 7 are geometric
or otherwise in the given topology, regardless of the geometric ergodicity of P.

16.4 Models from queueing theory

We further illustrate the use of these theorems through the analysis of three queueing
systems.

These are all models on Z} and their analysis consists of showing that there
exists 1, €2 > 0, such that e1|i|y < V(i) < ea)i]1, where V is the minimal solution to
(16.25) and [i|; is the ¢;-norm on Z'}; we then find that & is V*-uniformly ergodic
for V*(i) = eV, so that in particular we conclude that V* is bounded above and
below by exponential functions of |i|; for these models.

Typically in all of these examples the key extra assumption needed to ensure
geometric ergodicity is a geometric tail on the distributions involved: that is, the
increment distributions are in G*(y) for some «y. Recall that this was precisely the
condition used for regenerative models in Section 16.1.3.
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16.4.1 The embedded M/G/1 queue N,

The M/G/1 queue exemplifies the steps needed to apply Theorem 16.3.1 in queueing
models.

Theorem 16.4.1 If & the Markov chain N, defined by (Q4) is ergodic, then & is
also geometrically ergodic provided the service time distributions are in Gt (y) for
some v > 0.

PrROOF  We have seen in Section 11.4 that V(i) = 7 is a solution to (16.25) with
C = {0}.

Let us now assume that the service time distribution H € g+(7). We prove
that (16.26) and (16.27) hold. Application of Theorem 16.3.1 then proves V*-uniform
ergodicity of the embedded Markov chain where V*(i) = e for some 6 > 0.

Let aj denote the probability of k arrivals within one service. Note that (16.27)
trivially holds, since 3, P(k,5)(j — k)? < ag. For [ > 0 we have

Pk,k+1)=a;+1 = 1 /00 efAt()\t)HldH(t).
@+ D Jo

Let 0 > 0, so that

Zea(lﬂ)p(k,k +1) < /oo exp{(e’ — 1)Mt}dH (t)
1>0 0

which is assumed to be finite for (¢’ — 1)\ < . Thus we have the result. O

16.4.2 A gated-limited polling system

We next consider a somewhat more complex multidimensional queueing model. Con-
sider a system consisting of K infinite capacity queues and a single server.

The server visits the queues in order (hence the name polling system) and during
a visit to queue k the server serves min(z, ¢;) customers, where z is the number of
customers present at queue k at the instant the server arrives there: thus £ is the
“gate-limit”.

To develop a Markovian representation, this system is observed at each instant
the server arrives back at queue 1: the queue lengths at the respective queues are
then recorded. We thus have a K-dimensional state description &, = #, where &~
stands for the number of customers in queue k at the server’s n* visit to queue 1.

The arrival stream at queue £ is assumed to be a Poisson stream with parameter
Ax; the amount of service given to a queue k customer is drawn from a general
distribution with mean u,;l.

To make the process @ a Markov chain we assume that the sequence of service
times to queue k are i.i.d. random variables. Moreover, the arrival streams and service
times are assumed to be independent of each other.

Theorem 16.4.2 The gated-limited polling model @ described above is geometrically
ergodic provided
1>p:=> A/ (16.35)
k

and the service-time distributions are in G*(y) for some 7.
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PrROOF It is straightforward to show that @ is ergodic for the gated-limited service
discipline when (16.35) holds, by identifying a drift function that is linear in the
number of customers in the respective queues: specifically V (i) = YK | 4 /u;, where
i is a K-dimensional vector with k' component i, can easily be shown to satisfy
(16.25).

To apply the results in this section, observe that for this embedded chain there
are only finitely many different possible one-step increments , depending on whether
& exceeds £, or equals z < £,. Combined with the linearity of V, we conclude that

both sums _ .
{ Z P(i,j)e AVEG)=VE@) . e X}
3V (E)=V ()

and
{ X PGHVE -V ieX}
3V () <V (i)
have only finitely many non-zero elements. We must ensure that these expressions are
all finite, but it is straightforward to check as in Theorem 16.4.1 that convergence of
the Laplace-Stieltjes transforms of the service-time distributions in a neighborhood
of 0 is sufficient to achieve this, and the theorem follows. O

16.4.3 A queue with phase-type service times

In many cases of ergodic chains there are no closed form expressions for the drift
function, even though it follows from Chapter 11 that such functions exist. However,
once ergodicity has been established, we do know by minimality that the function
Ve(z) = Eg[oc] is a finite solution to (16.25). We now consider a queueing model for
which we can study properties of this function without explicit calculation: this is the
single server queue with phase-type service time distribution.

Jobs arrive at a service facility according to a Poisson process with parameter .
With probability pg any job requires k& independent exponentially distributed phases
of service each with mean v. The sum of these phases is the “phase-type” service time
distribution, with mean service time p~! = 332, kpy/v.

This process can be viewed as a continuous time Markov process on the state
space

X= {’L = (’il,ig) | 11,12 € Z+}

where ¢; stands for the number of jobs in the queue and 2 for the remaining number
of phases of service the job currently in service is to receive.

We consider an approximating discrete time Markov chain, which has the follow-
ing transition probabilities for h < (A +v)~! and e; = (1,0),e2 = (0, 1):

P0,0 +e2) = Aph,
P(i,i+e1) = Ah, 41,19 >0
= wh, i1 >0,ip> 1 (16.36)

P(i,i—eg +ley
P(i,i

vpth, i1 > 0,0 =1

We call this the h-approximation to the M/PH/1 queue.
Although we do not evaluate a drif criterion explicitly for this chain, we will use
a coupling argument to show for Vj(¢) = E;[o¢] that when i # 0

)

( )
P(i,i — eq)
)

)
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Vo(i+e2) = Vo(i) = ¢, (16.37)

o0
Voli+e) —Vo(i) = d:=c) Ipy (16.38)
=1

for some constant ¢ > 0, so that V(i) = ¢'i1 + ciz is thus linear in both components
of the state variable for 7 # 0.

Theorem 16.4.3 The h-approzimation of the M/PH/1 queue as in (16.36) is geo-
metrically ergodic whenever it is ergodic, provided the phase-distribution of the service
times is in G*(y) for some v > 0.

In particular if there are a finite number of phases ergodicity is equivalent to
geometric ergodicity for the h-approximation.

ProOOF  To develop the coupling argument, we first generate sample paths of @
drawing from two ii.d. sequences U' = {Ut},, U? = {U2}, of random variables
having a uniform distribution on (0,1]. The first sequence generates arrivals and
phase-completions, the second generates the number of phases of service that will
be given to a customer starting service. The procedure is as follows. If U} € (0, \h]
an arrival is generated in (nh, (n + 1)h]; if U} € (Ah, \h + vh] a phase completion
is generated, and otherwise nothing happens. Similarly, if U? € (Zfz_ol o, SF o] k
phases will be given to the n'* job starting service. This stochastic process has the
same probabilistic behavior as &.

To prove (16.37) we compare two sample paths, say ¢F = {¢k},, k = 1,2, with
¢ =i and ¢? = i+ey, generated by one realization of U and U?. Clearly ¢2 = ¢L+e,
until the first moment that ¢! hits 0, say at time n*. But then ¢2. = (0,1). This
holds for all realizations ¢! and ¢#? and we conclude that V(i + e3) = Ejie,[00] =
Eiloo] + Ee,[o0] = Vo(7) + ¢, for ¢ = Ee,[oq].

If ¢? starts in i + e; then ¢2. = (0,1) with probability p;, so that V(i + e3) =
Vo(i) + 221 piEiey [00] = Vo (3) + ¢ X2y pil.

Hence, (16.38) and (16.37) hold, and the combination of (16.38) and (16.37)
proves (16.26) if we assume that the service time distribution is in G () for some
v > 0, again giving sufficiency of this condition for geometric ergodicity. O

16.5 Autoregressive and state space models

As we saw briefly in Section 15.5.2, models with some autoregressive character may
be geometrically ergodic without the need to assume that the innovation distribution
is in G* (7). We saw this occur for simple linear models, and for scalar bilinear models.

We now consider rather more complex versions of such models and see that the
phenomenon persists, even with increasing complexity of space and structure, if there
is a multiplicative constant essentially driving the movement of the chain.

16.5.1 Multidimensional RCA models

The model we consider next is a multidimensional version of the RCA model. The
process of n-vector observations @ is generated by the Markovian system

D1 = (A+ Io1) P + Wi (16.39)
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where A is an n X n non-random matrix, I" is a sequence of random (n X n) matrices,
and W is a sequence of random p-vectors.

Such models are developed in detail in [198], and we will assume familiarity
with the Kronecker product “®” and the “vec” operations, used in detail there. In
particular we use the basic identities

vec (ABC) = (C' ® A)vec(B)

(A®B)T = (AT®@B). (16.40)

To obtain a Markov chain and then establish ergodicity we assume:

Random Coefficient Autoregression
(RCA1) The sequences I' and W are i.i.d. and also independent
of each other.

(RCA2) The following expectations exist, and have the pre-
scribed values:

E[Wk] =0 E[WkW,;r] =G (n X n),
E[Fk]:(] (nxn) E[Fk®Fk]:C (’I’LZX’I'LZ),

and the eigenvalues of A ® A+ C have moduli less than unity.

(RCA3) The distribution of (VII;I;C ) has an everywhere positive
density with respect to p™® on R"* P,

Theorem 16.5.1 If the assumptions (RCA1)-(RCA3) hold for the Markov chain
defined in (16.89), then @ is V-uniformly ergodic, where V(z) = |z|2. Thus these
assumptions suffice for a second-order stationary version of @ to exist.

PrROOF  Under the assumptions of the theorem the chain is weak Feller and we can
take 1 as p™® on IR". Hence from Theorem 6.2.9 the chain is an irreducible T-chain,
and compact subsets of the state space are petite. Aperiodicity is immediate from
the density assumption (RCA3). We could also apply the techniques of Chapter 7 to
conclude that @ is a T-chain, and this would allow us to weaken (RCA3).

To prove |z|?-uniform ergodicity we will use the following two results, which are
proved in [198]. Suppose that (RCA1) and (RCA2) hold, and let N be any n x n

positive definite matrix.

(i) If M is defined by

vec (M) =(I—- AT ®@ AT — C) lvec (N) (16.41)
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then M is also positive definite.
(ii) For any z,

E[éljc—(A + Fk+1)TM(A + I1)Pk | P = 2] = "Mz —x Nz (16.42)

Now let N be any positive definite (n x n)-matrix and define M as in (16.41). Then
with V(z) ;=2 Mz,

EV(®ri1) | P =1] = E[®) (A+ Tki1) M(A+ Ijy1)Px | D = 7]
(16.43)
+E[W, MW, 4]
on applying (RCA1) and (RCA2).
From (16.42) we also deduce that
PV(z)=V(z) —z Nz +tr (VG) < A\V(z) + L (16.44)

for some A < 1 and L < oo, from which we see that (V4) follows, using Lemma 15.2.8.
Finally, note that for some constant ¢ we must have ¢~ !|z|? < V() < c|z|? and
the result is proved. a

16.5.2 Adaptive control models

In this section we return to the simple adaptive control model defined by (SAC1)-
(SAC2) whose associated Markovian state process @ is defined by (2.24).

We showed in Proposition 12.5.2 that the distributions of the state process @ for
this adaptive control model are tight whenever stability in the mean square sense is
possible, for a certain class of initial distributions. Here we refine the stability proof
to obtain V-uniform ergodicity for the model.

Once these stability results are obtained we can further analyze the system equa-
tions and find that we can bound the steady state variance of the output process by
the mean square tracking error E,[|6p|?] and the disturbance intensity o2.

Let y: X = IR, §: X = IR, X: X — IR denote the coordinate variables on X so that

Vi =y(®) Ok =0(Pr) Zp=2X(dy) keZy,
and define the norm-like function V' on X by
V(y,0,%) = 6* + e06*y” + gy (16.45)

where €y > 0 is a small constant which will be specified below.
Letting P denote the Markov transition function for & we have by (2.22),

Py? = 0%?% + o2, (16.46)
This is far from (V4), but applying the operator P to the function 62y gives
-
42,2 _ aopt — aXyW, 2 2
POy = E[( T Ty +Zl) (9y-|-W1)]
= 02523/2 + azafu

a 200 95 2% 2
+(m) E[(O’OQ— Zle) (0y+W1) ]
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and hence we may find a constant K1 < oo such that
P%? < 020%y% + K1 (6% + 62 +1). (16.47)
From (2.21) it is easy to show that for some constant Ky > 0
PO* < o*0* + Ko (0% +1). (16.48)

When 02 < 1 we combine equations (16.46-16.48) to find, for any 1 > p >
max (o2, at), constants R < oo and g9 > 0 such that with V defined in (16.45),
PV < pV + R. Applying Theorem 16.1.2 and Lemma 15.2.8 we have proved

Proposition 16.5.2 The Markov chain & is V-uniformly ergodic whenever o2 < 1,
with V' given by (16.45); and for all initial conditions x € X, as k — o0,

E.[Y?] — / y? dr (16.49)
at a geometric rate. O

Hence the performance of the closed loop system is characterized by the unique
invariant probability .

From ergodicity of the model it can be shown that in steady state O = O — E[6) |
Yo, ..., Y], and Xy = E[é,% | Yo, ..., Ys]. Using these identities we now obtain bounds
on performance of the closed loop system by integrating the system equations with
respect to the invariant measure.

Taking expectations in (2.22) and (2.23) under the probability P, gives

EW[YOQ] = EW[EOY02]+012I)
O2EL[YE] = Eq[ZoYE] — ?0EL[Z0].

Hence, by subtraction, and using the identity E,[|0o|>] = Ex[%0], we can evaluate the
limit (16.49) as

2
Ty

E. [V = (1 + &®E[60)?]) (16.50)

1-02
This shows precisely how the steady state performance is related to the disturbance
intensity o2, the parameter variation intensity o2, and the mean square parameter
estimation error E[|fo[2].

Using obvious bounds on E;[Xy] we obtain the following bounds on the steady
state performance in terms of the system parameters only:

2 2 2 2

(0%
o1+ a0?) < EVE) < 170 (14 2

1-02 1-02" ' 1—a?

)

If it were possible to directly observe 8;_; at time k£ then the optimal performance

would be
Tay

l—0

E’Il' [YOZ] = 2"

z

This shows that the lower bound in the previous chain of inequalities is non-trivial.
The performance of the closed loop system is illustrated in Chapter 2.
A sample path of the output Y of the controlled system is given in Figure 2.8,

which is comparable to the noise sample path illustrated in Figure 2.7. To see how
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A logyg | Yl

1000

Fig.16.1. The output of the simple adaptive control model when the control Uy, is set equal
to zero. The resulting process is equivalent to the dependent parameter bilinear model with
a=0.99, Wi ~ N(0,0.01) and Z; ~ N(0,0.04)

this compares to the control-free system, a simulation of the simple adaptive control
model with the control value Uy, set equal to zero for all k is given in Figure 16.1. The

resulting process (g) becomes a version of the dependent parameter bilinear model.
Even though we will see in Chapter 17 that this process is bounded in probability,
the sample paths fluctuate wildly, with the output process Y quickly exceeding 10100
in this simulation.

16.6 Commentary

This chapter brings together some of the oldest and some of the newest ergodic
theorems for Markov chains.

Initial results on uniform ergodicity for countable chains under, essentially, Doe-
blin’s Condition date to Markov [162]: transition matrices with a column bounded
from zero are often called Markov matrices. For general state space chains use of
the condition of Doeblin is in [65]. These ideas are strengthened in Doob [68], whose
introduction and elucidation of Doeblin’s condition as Hypothesis D (p. 192 of [68])
still guides the analysis of many models and many applications, especially on compact
spaces.

Other areas of study of uniformly ergodic (sometimes called strongly ergodic,
or quasi-compact) chains have a long history, much of it initiated by Yosida and
Kakutani [286] who considered the equivalence of (iii) and (v) in Theorem 16.0.2,
as did Doob [68]. Somewhat surprisingly, even for countable spaces the hitting time
criterion of Theorem 16.2.2 for uniformly ergodic chains appears to be as recent as the
work of Huang and Isaacson [100], with general-space extensions in Bonsdorff [26];
the obvious value of a bounded drift function is developed in Isaacson and Tweedie
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[104] in the countable space case. Nummelin ([202], Chapters 5.6 and 6.6) gives a
discussion of much of this material.

There is a large subsequent body of theory for quasi-compact chains, exploiting
operator-theoretic approaches. Revuz ([223], Chapter 6) has a thorough discussion of
uniformly ergodic chains and associated quasi-compact operators when the chain is
not irreducible. He shows that in this case there is essentially a finite decomposition
into recurrent parts of the space: this is beyond the scope of our work here.

We noted in Theorem 16.2.5 that uniform ergodicity results take on a particularly
elegant form when we are dealing with irreducible T-chains: this is first derived in
a different way in [269]. It is worth noting that for reducible T-chains there is an
appealing structure related to the quasi-compactness above. It is shown by Tuominen
and Tweedie [269] that, even for chains which are not necessarily irreducible, if the
space is compact then for any T-chain there is also a finite decomposition

n
X = UHkUE
k=0

where the H; are disjoint absorbing sets and @ restricted to any Hj is uniformly
ergodic, and F is uniformly transient.

The introduction to uniform ergodicity that we give here appears brief given the
history of such theory, but this is a largely a consequence of the fact that we have
built up, for 9-irreducible chains, a substantial set of tools which makes the approach
to this class of chains relatively simple.

Much of this simplicity lies in the ability to exploit the norm || - ||;,. This is a very
new approach. Although Kartashov [124, 125] has some initial steps in developing a
theory of general space chains using the norm || - ||;;, he does not link his results to
the use of drift conditions, and the appearance of V-uniform results are due largely
to recent observations of Hordijk and Spieksma [252, 99] in the countable space case.

Their methods are substantially different from the general state space version
we use, which builds on Chapter 15: the general space version was first developed in
[178] for strongly aperiodic chains. This approach shows that for V-uniformly ergodic
chains, it is in fact possible to apply the same quasi-compact operator theory that
has been exploited for uniformly ergodic chains, at least within the context of the
space L{?. This is far from obvious: it is interesting to note Kendall himself ([131], p
183) saying that “ ... the theory of quasi-compact operators is completely useless” in
dealing with geometric ergodicity, whilst Vere-Jones [284] found substantial difficulty
in relating standard operator theory to geometric ergodicity. This appears to be an
area where reasonable further advances may be expected in the theory of Markov
chains.

It is shown in Athreya and Pantula [14] that an ergodic chain is always strong
mixing. The extension given in Section 16.1.2 for V-uniformly ergodic chains was
proved for bounded functions in [64], and the version given in Theorem 16.1.5 is
essentially taken from Meyn and Tweedie [178].

Verifying the V-uniform ergodicity properties is usually done through test func-
tions and drift conditions, as we have seen. Uniform ergodicity is generally either a
trivial or a more difficult property to verify in applications. Typically one must either
take the state space of the chain to be compact (or essentially compact), or be able
to apply the Doeblin or small set conditions, in order to gain uniform ergodicity. The
identification of the rate of convergence in this last case is a powerful incentive to use
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such an approach. The delightful proof in Theorem 16.2.4 is due to Rosenthal [231],
following the strong stopping time results of Aldous and Diaconis [2, 62], although
the result itself is inherent in Theorem 6.15 of Nummelin [202]. An application of this
result to Markov chain Monte Carlo methods is given by Tierney [264].

However, as we have shown, V-uniform ergodicity can often be obtained for some
V under much more readily obtainable conditions, such as a geometric tail for any
i.i.d. random variables generating the process. This is true for queues, general storage
models, and other random-walk related models, as the application of the increment
analysis of Section 16.3 shows. Such chains were investigated in detail by Vere-Jones
[281] and Miller [185].

The results given in Section 16.3 and Section 16.3.2 are new in the case of general
X, but are based on a similar approach for countable spaces in Spieksma and Tweedie
[253], which also contains a partial converse to Theorem 16.3.2. There are some pre-
cursors to these conditions: one obvious way of ensuring that P has the characteristics
in (16.26) and (16.27) is to require that the increments from any state are of bounded
range, with the range allowed depending on V', so that for some b

V(j) —V(k)| >b=> P(k,j) =0: (16.51)

and in [159] it is shown that under the bounded range condition (16.51) an ergodic
chain is geometrically ergodic.

A detailed description of the polling system we consider here can be found in [3].
Note that in [3] the system is modeled slightly differently, with arrivals of the server
at each gate defining the times of the embedded process. The coupling construction
used to analyze the h-approximation to the phase-service model is based on [236] and
clearly is ideal for our type of argument. Further examples are given in [253].

For the adaptive control and linear models, as we have stressed, V-uniform ergod-
icity is often actually equivalent to simple ergodicity: the examples in this chapter are
chosen to illustrate this. The analysis of the bilinear and the vector RCA model given
here is taken from Feigin and Tweedie [74]; the former had been previously analyzed
by Tong [266]. In a more traditional approach to RCA models through time series
methods, Nicholls and Quinn [198] also find (RCA2) appropriate when establishing
conditions for strict stationarity of @, and also when treating asymptotic results of
estimators.

The adaptive model was introduced in [165] and a stability analysis appeared in
[172] where the performance bound (16.50) was obtained. Related results appeared in
[251, 91, 171, 83]. The stability of the multidimensional adaptive control model was
only recently resolved in Rayadurgam et al [221].



