14

f-Ergodicity and f-Regularity

In Chapter 13 we considered ergodic chains for which the limit

Jim E,[£(@)] = [ fdn (14.1)

exists for every initial condition, and every bounded function f on X.

An assumption that f is bounded is often unsatisfactory in applications. For
example, f may denote a cost function in an optimal control problem, in which case
f(®,,) will typically be a norm-like function of @,, on X; in queueing applications, the
function f(z) might denote buffer levels in a queue corresponding to the particular
state z € X which is, again, typically an unbounded function on X; in storage models,
f may denote penalties for high values of the storage level, which correspond to
overflow penalties in reality.

The purpose of this chapter is to relax the boundedness condition by developing
more general formulations of regularity and ergodicity. Our aim is to obtain conver-
gence results of the form (14.1) for the mean value of f(®j), where f: X — [1,00)
is an arbitrary fixed function. As in Chapter 13, it will be shown that the simplest
approach to ergodic theorems of this kind is to consider simultaneously all functions
which are dominated by f: that is, to consider convergence in the f-norm, defined as

[vlly = sup |v(g)]
g:lg|<f

where v is any signed measure.
The goals described above are achieved in the following f-Norm Ergodic Theorem
for aperiodic chains.

Theorem 14.0.1 (f-Norm Ergodic Theorem) Suppose that the chain @ is 1-
irreducible and aperiodic, and let f > 1 be a function on X. Then the following
conditions are equivalent:

(1) The chain is positive recurrent with invariant probability measure ® and
7(f)i= [ m(do)f () < o0

(ii) There exists some petite set C € B(X) such that

Tc—1

sup Ez[ Z f(®y)] < 0. (14.2)
zeC n=0
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(iii) There exists some petite set C and some extended-valued non-negative function
V' satisfying V(zo) < oo for some zy € X, and

AV (z) < —f(z) + blc(z), z € X. (14.3)

Any of these three conditions imply that the set Sy = {z : V(z) < oo} is absorbing
and full, where V is any solution to (14.3) satisfying the conditions of (iii), and any
sublevel set of V' satisfies (14.2); and for any x € Sy,

\|P"(z, -) —=||f =0 (14.4)

as n — 0o. Moreover, if m(V') < oo then there exists a finite constant By such that
for all x € Sy,

Y IP (@, ) = 7lly < Bp(V(z) + 1) (14.5)
n=0

PrOOF  The equivalence of (i) and (ii) follows from Theorem 14.1.1 and Theo-
rem 14.2.11. The equivalence of (ii) and (iii) is in Theorems 14.2.3 and 14.2.4, and
the fact that sublevel sets of V are “self-regular” as in (14.2) is shown in Theo-
rem 14.2.3. The limit theorems are then contained in Theorems 14.3.3, 14.3.4 and
14.3.5. O

Much of this chapter is devoted to proving this result, and related f-regularity
properties which follow from (14.2), and the pattern is not dissimilar to that in
the previous chapter: indeed, those ergodicity results, and the equivalences in Theo-
rem 13.0.1, can be viewed as special cases of the general f results we now develop.

The f-norm limit (14.4) obviously implies that the simpler limit (14.1) also holds.
In fact, if g is any function satisfying |g| < ¢(f+ 1) for some ¢ < oo then E;[g(Pg)] —
J g dr for states z with V(z) < oo, for V satisfying (14.3). We formalize the behavior
we will analyze in

F-Ergodicity
We shall say that the Markov chain @ is f-ergodic if f > 1 and

(i) @ is positive Harris recurrent with invariant probability 7
(ii) the expectation 7(f) is finite

(iii) for every initial condition of the chain,

1P*(z, -) —=lly = 0.

lim
k—o0
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The f-Norm Ergodic Theorem states that if any one of the equivalent conditions
of the Aperiodic Ergodic Theorem holds then the simple additional condition that
7(f) is finite is enough to ensure that a full absorbing set exists on which the chain
is f-ergodic. Typically the way in which finiteness of 7(f) would be established in
an application is through finding a test function V satisfying (14.3): and if, as will
typically happen, V is finite everywhere then it follows that the chain is f-ergodic
without restriction, since then Sy = X.

14.1 f-Properties: chains with atoms

14.1.1 f-Regularity for chains with atoms

We have already given the pattern of approach in detail in Chapter 13. It is not
worthwhile treating the countable case completely separately again: as was the case
for ergodicity properties, a single accessible atom is all that is needed, and we will
initially develop f-ergodic theorems for chains possessing such an atom.

The generalization from total variation convergence to f-norm convergence given
an initial accessible atom a can be carried out based on the developments of Chap-
ter 13, and these also guide us in developing characterizations of the initial measures A
for which general f-ergodicity might be expected to hold. It is in this part of the anal-
ysis, which corresponds to bounding the first term in the Regenerative Decomposition
of Theorem 13.2.5, that the hard work is needed, as we now discuss.

Suppose that ¢ admits an atom o and is positive Harris recurrent with invariant
probability measure w. Let f > 1 be arbitrary: that is, we place no restrictions on
the boundedness or otherwise of f. Recall that for any probability measure A we have
from the Regenerative Decomposition that for arbitrary |g| < f,

Exlg@)] - 7(9)l < [Ada) [ oP"(@du)f(w) (14.6)

+]ay*xu—m(a) |ty (n) + () Z tr(7)-
j=n+1

Using hitting time notation we have

To

Stpn) = Ea[Y f(@))] (14.7)
n=1

=1

and thus the finiteness of this expectation will guarantee convergence of the third
term in (14.6), as it did in the case of the ergodic theorems in Chapter 13. Also as in
Chapter 13, the central term in (14.6) is controlled by the convergence of the renewal
sequence u regardless of f, provided the expression in (14.7) is finite.

Thus it is only the first term in (14.6) that requires a condition other than ergod-
icity and finiteness of (14.7). Somewhat surprisingly, for unbounded f this is a much
more troublesome term to control than for bounded f, when it is a simple consequence
of recurrence that it tends to zero. This first term can be expressed alternatively as

[ M) [ P (@ dw) g w) = EALF (@) (70 > )] (14.8)
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and so we have the representation

g/)\(dx)/aP"(x,dw)f(w) = EA[Z f(dsj)] (14.9)

This is similar in form to (14.7), and if (14.9) is finite, then we have the desired
conclusion that (14.8) does tend to zero. In fact, it is only the sum of these terms
that appears tractable, and for this reason it is in some ways more natural to consider
the summed form (14.5) rather than simple f-norm convergence.

Given this motivation to require finiteness of (14.7) and (14.9), we introduce the
concept of f-regularity which strengthens our definition of ordinary regularity.

F-Regularity

A set C € B(X) is called f-regular where f:X — [1,00) is a measurable
function, if for each B € BT (X),

TB—1

sup Ew[ Z f(@k)] < 00.
k=0

el

A measure ) is called f-regular if for each B € B*(X),

TB—1

Ex[ D f(®)] < 0.

k=0

The chain P is called f-regular if there is a countable cover of X with
f-regular sets.

From this definition an f-regular state, seen as a singleton set, is a state z for which
E.[S520" £(®1)] < 00, B € BH(X).

As with regularity, this definition of f-regularity appears initially to be stronger
than required since it involves all sets in B*(X); but we will show this to be again
illusory.

A first consequence of f-regularity, and indeed of the weaker “self- f-regular” form
in (14.2), is

Proposition 14.1.1 If & is recurrent with invariant measure w and there exists C €
B(X) satisfying 7(C) < oo and

To—1

sup Ez[ Y f(Pn)] < o0 (14.10)
zeC n=0

then @ is positive recurrent and w(f) < oo.
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ProoF  First of all, observe that under (14.10) the set C is Harris recurrent and
hence C' € BT (X) by Proposition 9.1.1. The invariant measure 7 then satisfies, from
Theorem 10.4.9,

T0—1

w(f) = [, (g, | > 1(@)].

If C satisfies (14.10) then the expectation is uniformly bounded on C itself, so that
7(f) < 7(C)M¢e < . O

Although f-regularity is a requirement on the hitting times of all sets, when the
chain admits an atom it reduces to a requirement on the hitting times of the atom
as was the case with regularity.

Proposition 14.1.2 Suppose @ is positive recurrent with w(f) < oo, and that an
atom o € BT(X) ezists.

(i) Any set C € B(X) is f-regular if and only if

Oa

sup E; [Z f(@k)] < o0.

zeC k=0

(ii) There exists an increasing sequence of sets S¢(n) where each S¢(n) is f-regular
and the set Sy = US(n) is full and absorbing.

PrOOF  Consider the function G (z, f) previously defined in (11.21) by

Gale. ) = B3 F(@)] (1411)

k=0

When 7(f) < oo, by Theorem 11.3.5 the bound PG (z, f) < Gu(z, f) + ¢ holds
for the constant ¢ = En[Y ;> | f(@k)] = 7(f)/7(a) < oo, which shows that the set
{z : G4(z, f) < 0o} is absorbing, and hence by Proposition 4.2.3 this set is full.

To prove (i), let B be any sublevel set of the function Gy (z, f) with 7(B) > 0
and apply the bound

TB—1

Gal(z, f) <E$[Z f(@g)] —I—supEy[Zf Dr)]-

This shows that G, (z, f) is bounded on C if C' is f-regular, and proves the “only if”
part of (i).
We have from Theorem 10.4.9 that for any B € BT (X),

0o > /JBW(dw)Ex[TZBf@k)]
> /Bw(dw)Ex[ 0o < TB) Z fdsk]

k=0,+1

- /B (dz)Py(oq < TB)E [Zf@k]
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where to obtain the last equality we have conditioned at time o, and used the strong
Markov property.
Since a € BT (X) we have that

TB—1

wm)zéﬂumEJE:n@kEaﬂ>m

k=0

which shows that [ 7(dz)P,(cn < 7B) > 0. Hence from the previous bounds,
Ea [S72, £()] < oo for B € B (X).
Using the bound 75 < g, + 6°>7p, we have for arbitrary = € X,

B [ B

Eo[Y £(@)] <E[D F(80)] +Ea[D £(21)] (14.12)

k=0 k=0 k=1

and hence C is f-regular if G,(z, f) is bounded on C, which proves (i).
To prove (ii), observe that from (14.12) we have that the set Sy(n) := {z :
Gao(z, f) < n} is f-regular, and so the proposition is proved. O

14.1.2 f-Ergodicity for chains with atoms

As we have foreshadowed, f-regularity is exactly the condition needed to obtain
convergence in the f-norm.

Theorem 14.1.3 Suppose that P is positive Harris, aperiodic, and that an atom
a € B (X) egists.

(i) If n(f) < oo then the set Sy of f-regular states is absorbing and full, and for any
z € Sy we have
| P*(z, )=l =0, k — oo.

(ii) If @ is f-regular then @ is f-ergodic.

(iii) There exists a constant My < oo such that for any two f-regular initial distri-
butions X and u,

> [ [rasutan P ) =Pl
< M ([ N@Galo, )+ [ dn)Galy ). (1413

PROOF  From Proposition 14.1.2 (ii), the set of f-regular states Sy is absorbing
and full when 7(f) < co. If we can prove |P¥(z, -) — «||; — 0, for z € S}, this will
establish both (i) and (ii).

But this f-norm convergence follows from (14.6), where the first term tends to
zero since z is f-regular, so that E;[> 7%, f(®$,)] < oo; the third term tends to
zero since Y 0% 1 t5(j) = Eo[Doyq f(@n)] = w(f)/m(a) < oo; and the central term
converges to zero by Lemma D.7.1 and the fact that e is an ergodic atom.

To prove the result in (iii), we use the same method of proof as for the ergodic
case. By the triangle inequality it suffices to assume that one of the initial distributions
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is 0o. We again use the first form of the Regenerative Decomposition to see that for
any |g| < f, z € X, the sum

3 /)\(d:c)|P"(:v,g) ~ P"(a,9)|
n=1

is bounded by the sum of the following two terms:

Ta

> [Mamar ) = B[S 5@)] (1414

n=1

{i /)\(dac)|ax % u(n) - u(n)|}{i oP™(e, f)}. (14.15)
n=1 n=1

The first of these is again finite since we have assumed A to be f-regular; and in
the second, the right hand term is similarly finite since 7(f) < oo, whilst the left
hand term is independent of f, and since X is regular (given f > 1), is bounded by
Ex[7a]Var (u), using (13.73).

Since for some finite M,

Eulra] < Eu[3° £(@4)] < MCa(a, f)
n=1

this completes the proof of (iii). O

Thus for a chain with an accessible atom, we have very little difficulty moving
to f-norm convergence. The simplicity of the results is exemplified in the countable
state space case where the f-regularity of all states, guaranteed by Proposition 14.1.2,
gives us

Theorem 14.1.4 Suppose that P is an irreducible positive Harris aperiodic chain on
a countable space. Then if w(f) < oo, for all z,y € X

||Pk(:6,-)—7r||f—>0 k — oo.

and

S IPY(z, -) — Py, )|y < co.
n=1

14.2 f-Regularity and drift

It would seem at this stage that all we have to do is move, as we did in Chapter 13, to
strongly aperiodic chains; bring the f-properties proved in the previous section above
over from the split chain in this case; and then move to general aperiodic chains by
using the Nummelin splitting of the m-skeleton.

Somewhat surprisingly, perhaps, this recipe does not work in a trivially easy way.
The most difficult step in this approach is that when we go to a split chain it is
necessary to consider an m-skeleton, but we do not yet know if the skeletons of an
f-regular chain are also f-regular. Such is indeed the case and we will prove this key
result in the next section, by exploiting drift criteria.
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This may seem to be a much greater effort than we needed for the Aperiodic
Ergodic Theorem: but it should be noted that we devoted all of Chapter 11 to the
equivalence of regularity and drift conditions in the case of f = 1, and the results
here actually require rather less effort. In fact, much of the work in this chapter is
based on the results already established in Chapter 11, and the duality between drift
and regularity established there will serve us well in this more complex case.

14.2.1 The drift characterization of f-regularity

In order to establish f-regularity for a chain on a general state space without atoms,
we will use the following criterion, which is a generalization of the condition in (V2).
As for regular chains, we will find that there is a duality between appropriate solutions
to (V3) and f-regularity.

F-Modulated Drift Towards C

(V3) For a function f: X — [1,00), a set C' € B(X), a constant
b < o0, and an extended-real valued function V:X — [0, 0]

AV (2) < —f(2) + bla(z), =z EX. (14.16)

The condition (14.16) is implied by the slightly stronger pair of bounds

V(z) zeC¢

14.17
b zeC ( )

£@)+ PV (@) < {
with V bounded on C, and it is this form that is often verified in practice.

Those states z for which V(z) is finite when V satisfies (V3) will turn out to be
those f-regular states from which the distributions of @ converge in f-norm. For this
reason the following generalization of Lemma 11.3.6 is important: we omit the proof
which is similar to that of Lemma 11.3.6 or Proposition 14.1.2.

Lemma 14.2.1 Suppose that @ is -irreducible. If (14.16) holds for a positive func-
tion V which is finite at some xo € X then the set Sy:={x € X : V(z) < oo} is
absorbing and full.
O
The power of (V3) largely comes from the following

Theorem 14.2.2 (Comparison Theorem) Suppose that the non-negative func-
tions V, f, s satisfy the relationship

PV (z) <V(z) — f(z) + s(x), zeX
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Then for each x € X, N € Z, and any stopping time T we have

N N
D Ef(@r)] < V(z)+ ) Euls(r)]
k=0 k=0
T—1 7—1
E[D7(@)] < Vo) +E[D s@)].
k=0 k=0
ProoOrF  This follows from Proposition 11.3.2 on letting fx = f, sy = s. O

The first inequality in Theorem 14.2.2 bounds the mean value of f(®y), but says
nothing about the convergence of the mean value. We will see that the second bound
is in fact crucial for obtaining f-regularity for the chain, and we turn to this now.

In linking the drift condition (V3) with f-regularity we will consider the extended-
real valued function G¢(z, f) defined in (11.21) as

Gola, ) = B[S (@) (14.18)

k=0

where C' is typically f-regular or petite. The following characterization of f-regularity
shows that this function is both a solution to (14.16), and can be bounded using
any other solution V' to (14.16). Together with Lemma 14.2.1, this result proves the
equivalence between (ii) and (iii) in the f-Norm Ergodic Theorem.

Theorem 14.2.3 Suppose that P is -irreducible.

(i) If (V3) holds for a petite set C then for any B € BT(X) there exists ¢(B) < oo
such that

Ex [Bi F(@)] < V(@) +c(B).
k=0

Hence if V is bounded on the set A, then A is f-regular.

(ii) If there exists one f-reqular set C € BT (X), then C is petite and the function
V(z) = Gelz, f) satisfies (V3) and is bounded on A for any f-regular set A.

PrOOF (i) Suppose that (V3) holds, with C a 1,-petite set. By the Comparison
Theorem 14.2.2, Lemma 11.3.10, and the bound

Io(x) < a(B)” Ku(z, B)
in (11.27) we have for any B € B*(X), z € X,

TB—1 TB—1

E.[ Y F(@)] < Via)+bEs| Y Lo(d)]
TB—1
< V(@) +0Ee[ Y ¢a(B) " Ka(®x, B)]
k=0

TBl

= V(z)+ bpu(B 12%[2 lleik+Z]

IA

V(z) + bpu(B Z ia.
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Since we can choose a so that mg = Y 72 4a; < oo from Proposition 5.5.6, the result
follows with ¢(B) = bty (B)~1m,. We then have

TB—1
swpEe| 3 £(@0)] < supV(e) + o(B),

and so if V' is bounded on A, it follows that A is f-regular.

(ii) Ifan f-regular set C € BT (X) exists, then it is also regular and hence petite
from Proposition 11.3.8. The function G¢(z, f) is clearly positive, and bounded on
any f-regular set A. Moreover, by Theorem 11.3.5 and f-regularity of C it follows
that condition (V3) holds with V(z) = G¢(z, f). 0

14.2.2 f-regular sets

Theorem 14.2.3 gives a characterization of f-regularity in terms of a drift condition.
The next result gives such a characterization in terms of the return times to petite
sets, and generalizes Proposition 11.3.14: f-regular sets in BT (X) are precisely those
petite sets which are “self-f-regular”.

Theorem 14.2.4 When P is a ¥-irreducible chain, the following are equivalent:
(i) C € B(X) is petite and

Tc—1

:gg Em[,; f(@k)] < 005 (14.19)

(ii) C is f-regular and C € BT (X).

PROOF  To see that (i) implies (ii), suppose that C is petite and satisfies (14.19).
By Theorem 11.3.5 we may find a constant b < oo such that (V3) holds for G¢(z, f).
It follows from Theorem 14.2.3 that C' is f-regular.

The set C is Harris recurrent under the conditions of (i), and hence lies in B*(X)
by Proposition 9.1.1.

Conversely, if C' is f-regular then it is also petite from Proposition 11.3.8, and if
C € BT (X) then sup,c¢ Ew[zzczgl f(@k)] < oo by the definition of f-regularity. O

As an easy corollary to Theorem 14.2.3 we obtain the following generalization of
Proposition 14.1.2.

Theorem 14.2.5 If there exists an f-reqular set C € B*(X), then there exists an
increasing sequence {Sy(n) : n € Zy} of f-reqular sets whose union is full. Hence

there is a decomposition
X=S;UN (14.20)

where the set Sy is full and absorbing and P restricted to Sy is f-regular.

PROOF By f-regularity and positivity of C' we have, by Theorem 14.2.3 (ii),
that (V3) holds for the function V(z) = G¢(z, f) which is bounded on C, and by
Lemma 14.2.1 we have that V is finite 7-a.e.

The required sequence of f-regular sets can then be taken as

S¢(n) :=={z: V(z) <n}, n>1
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by Theorem 14.2.3. It is a consequence of Lemma 14.2.1 that S; = US(n) is absorb-
ing. O

We now give a characterization of f-regularity using the Comparison Theo-
rem 14.2.2.

Theorem 14.2.6 Suppose that @ is 1-irreducible. Then the chain is f-regular if and
only if (V3) holds for an everywhere finite function V, and every sublevel set of V is
then f-regqular.

PrROOF  From Theorem 14.2.3 (i) we see that if (V3) holds for a finite-valued V
then each sublevel set of V' is f-regular. This establishes f-regularity of .
Conversely, if @ is f-regular then it follows that an f-regular set C € BT (X)
exists. The function V(z) = Ge(z, f) is everywhere finite and satisfies (V3), by
Theorem 14.2.3 (ii). O
As a corollary to Theorem 14.2.6 we obtain a final characterization of f-regularity
of @, this time in terms of petite sets:

Theorem 14.2.7 Suppose that P is 1p-irreducible. Then the chain is f-regular if and
only if there exists a petite set C such that the expectation

Tc—1

k=0

is finite for each x, and uniformly bounded for x € C.

PrOOF If the expectation is finite as described in the theorem, then by Theo-
rem 11.3.5 the function G¢(z, f) is everywhere finite, and satisfies (V3) with the
petite set C'. Hence from Theorem 14.2.6 we see that the chain is f-regular.

For the converse take C to be any f-regular set in BT (X). O

14.2.3 f-Regularity and m-skeletons

One advantage of the form (V3) over (14.17) is that, once f-regularity of @ is estab-
lished, we may easily iterate (14.16) to obtain

m—1 m—1
PV (z)<V(z)— > P'f+ > Plc(z) =zeX (14.21)
=0 =0

This is essentially of the same form as (14.16), and provides an approach to f-
regularity for the m-skeleton which will give us the desired equivalence between f-
regularity for @ and its skeletons.

To apply Theorem 14.2.3 and (14.21) to obtain an equivalence between f-
properties of @ and its skeletons we must replace the function 37! Plc with
the indicator function of a petite set. The following result shows that this is possible
whenever C' is petite and the chain is aperiodic.

Let us write for any positive function g on X,

g™ = z Piy. (14.22)
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Lemma 14.2.8 If & is aperiodic and if C € B(X) is a petite set, then for any e > 0
and m > 1 there exists a petite set C. such that

18 < mle, +e.

PROOF  Since @ is aperiodic, it follows from the definition of the period given in
(5.40) and the fact that petite sets are small, proven in Proposition 5.5.7, that for a
non-trivial measure v and some k € Z ., we have the simultaneous bound

P*=i(z B) > Io(z)v(B), ze€X, Be€B(X), 0<i<m-L1.
Hence we also have
PF™(z, B) > Pilg(z)v(B), wze€X, BeB(X), 0<i<m-—1,

which shows that
Pkm (g, ) > llgn) (z)m ™ tv.

The set C. = {z : ]lg") () > €} is therefore vg-small for the m-skeleton, where
1y, whenever this set is non-empty. Moreover, C C C. for all € < 1.

(m)

Since 1, ” < m everywhere, and since ]lgn ) (z) < € for x € C¢, we have the bound

Vv =€em

1 < mie, + ¢

O
We can now put these pieces together and prove the desired solidarity for ¢ and
its skeletons.

Theorem 14.2.9 Suppose that @ is p-irreducible and aperiodic. Then C € BT (X)
is f-regular if and only if it is f(™ -regular for any one, and then every, m-skeleton
chain.

PrOOF  If C is f(™)-regular for an m-skeleton then, letting 75 denote the hitting
time for the skeleton, we have by the Markov property, for any B € BT (X),

T8 —1 m-1 35—l m-1
Ea:[ oy Pif@km)] = Em[ oy f(dsknﬂ-i)]
k=0 =0 k= =0
> E; [Tzl f(éj)] :
=0

By the assumption of f(™)-regularity, the left hand side is bounded over C and hence
the set C' is f-regular.

Conversely, if C € BT (X) is f-regular then it follows from Theorem 14.2.3 that
(V3) holds for a function V' which is bounded on C.

By repeatedly applying P to both side of this inequality we obtain as in (14.21)

PV <V — £ 4 p1l,

By Lemma 14.2.8 we have for a petite set C’
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pP"V

VAN

V — ™ bl + 3
< V- %f(m) + bm]l(;/,

and thus (V3) holds for the m-skeleton. Since V' is bounded on C, we see from
Theorem 14.2.3 that C is f(™)-regular for the m-skeleton. O
As a simple but critical corollary we have

Theorem 14.2.10 Suppose that ¥ is P-irreducible and aperiodic. Then @ is f-
regular if and only if each m-skeleton is f™ -regular-. O

The importance of this result is that it allows us to shift our attention to skeleton
chains, one of which is always strongly aperiodic and hence may be split to form an ar-
tificial atom; and this of course allows us to apply the results obtained in Section 14.1
for chains with atoms.

The next result follows this approach to obtain a converse to Proposition 14.1.1,
thus extending Proposition 14.1.2 to the non-atomic case.

Theorem 14.2.11 Suppose that D is positive recurrent and ©(f) < oo. Then there
exists a sequence {Sy(n)} of f-regular sets whose union is full.

ProOF  We need only look at a split chain corresponding to the m-skeleton chain,
which possess an f(")-regular atom by Proposition 14.1.2. It follows from Proposi-
tion 14.1.2 that for the split chain the required sequence of f{™)-regular sets exist,
and then following the proof of Proposition 11.1.3 we see that for the m-skeleton an
increasing sequence {S;(n)} of f(™)-regular sets exists whose union is full.

From Theorem 14.2.9 we have that each of the sets {S¢(n)} is also f-regular for
@ and the theorem is proved. O

14.3 f-Ergodicity for general chains

14.3.1 The aperiodic f-ergodic theorem

We are now, at last, in a position to extend the atom-based f-ergodic results of
Section 14.1 to general aperiodic chains.

We first give an f-ergodic theorem for strongly aperiodic chains. This is an easy
consequence of the result for chains with atoms.

Proposition 14.3.1 Suppose that @ is strongly aperiodic, positive recurrent, and
suppose that f > 1.

(i) If n(f) = oo then P*(z,f) = oo as k — oo for all x € X.

(i) If n(f) < oo then almost every state is f-reqular and for any f-regular state
zeX

| P*(z, ) —lf =0, k — oo.

(iii) If D is f-regular then D is f-ergodic.
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PrROOF (i) By positive recurrence we have for z lying in the maximal Harris set
H,and any m € Z,

lim inf P¥(z, ) > lim inf P¥(z,m A f) = w(m A f).
k—o00 k—o0

Letting m — oo we see that P¥(z, f) — oo for these z. For arbitrary z € X we choose
ng so large that P™(z, H) > 0. This is possible by #-irreducibility. By Fatou’s Lemma
we then have the bound

lim inf P¥(z, f) = lim inf PO (2, £) > / P™(z,dy){lim inf P(z, f)} = co.
k—o0 k—o0 H k—00

Result (ii) is now obvious using the split chain, given the results for a chain
possessing an atom, and (iii) follows directly from (ii). O

We again obtain f-ergodic theorems for general aperiodic @ by considering the
m-skeleton chain. The results obtained in the previous section show that when & has
appropriate f-properties then so does each m-skeleton. For aperiodic chains, there
always exists some m > 1 such that the m-skeleton is strongly aperiodic, and hence
we may apply Theorem 14.3.1 to the m-skeleton chain to obtain f-ergodicity for this
skeleton. This then carries over to the process by considering the m distinct skeleton
chains embedded in &.

The following lemma, allows us to make the desired connections between ¢ and
its skeletons.

Lemma 14.3.2 (i) For any f > 1 we have forn € Z,
1P (z, ) =y < [P*™(z,) =7 ()l som,
for k satisfying n = km + i with 0 <i<m — 1.

(ii) If for some m > 1 and some = € X we have |P*™(z, ) — 7| ym) — 0 as k — oo
then | P¥(z, ) —m||f — 0 as k — oo.

(iii) If the m-skeleton is f(™ -ergodic then & itself is f-ergodic.
PrROOF  Under the conditions of (i) let |g| < f and write any n € Z asn = km+1
with 0 <7 <m — 1. Then

|P"(z,9) =n(g)] = |P*"(z,P'g) —m(P'g)|
1P*™ (@, ) — 7 () | o -

IA

This proves (i) and the remaining results then follow. ]
This lemma and the ergodic theorems obtained for strongly aperiodic chains
finally give the result we seek.

Theorem 14.3.3 Suppose that @ is positive recurrent and aperiodic.
(i) If n(f) = oo then P*(z, f) — oo for all z.

(ii) If 7(f) < oo then the set Sy of f-regqular sets is full and absorbing, and if x € Sy
then ||P*(z, -) — ||y — 0, as k — oo.

(iii) If @ is f-regular then ¥ is f-ergodic. Conversely, if ® is f-ergodic then &
restricted to a full absorbing set is f-regular.
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PrROOF  Result (i) follows as in the proof of Proposition 14.3.1 (i).

If 7(f) < oo then there exists a sequence of f-regular sets {Sf(n)} whose union is
full. By aperiodicity, for some m, the m-skeleton is strongly aperiodic and each of the
sets {Sy(n)} is f(™-regular. From Proposition 14.3.1 we see that the distributions of
the m-skeleton converge in f(™)-norm for initial z € S;(n).

This and Lemma 14.3.2 proves (ii). The first part of (iii) is then a simple conse-
quence; the converse is also immediate from (ii) since f-ergodicity implies 7(f) < oo.

O

Note that if @ is f-ergodic then € may not be f-regular: this is already obvious

in the case f = 1.

14.3.2 Sums of transition probabilities

We now refine the ergodic theorem Theorem 14.3.3 to give conditions under which
the sum

S|P s, ) — il (1423
n=1

is finite.

The first result of this kind requires f-regularity of the initial probability measures
A, p. For practical implementation, note that if (V3) holds for a petite set C and a
function V, and if A(V') < oo, then from Theorem 14.2.3 (i) we see that the measure
A is f-regular.

Theorem 14.3.4 Suppose D is an aperiodic positive Harris chain. If w(f) < oo then
for any f-regular set C € B*(X) there ezists M; < oo such that for any f-regular
initial distributions A, p,

> [ [ Mdo)udg) 1Pz, ) = Py, )lp < MyO(V) + (V) +1) < o0 (1424
n=1
where V(-) = Ge(-, f).

PrOOF  Consider first the strongly aperiodic case, and construct a split chain &
using an f-regular set C. The theorem is valid from Theorem 14.1.3 for the split
chain, since the split measures p*, \* are f-regular for @. The bound on the sum can
be taken as

i //’\*(dm)u*(dy)llp"(m, ) =Py, )y < My (V) + 4" (V) + 1)

with V = Ge,ue, (-, f), since Co U Cy € BT(X) is f-regular for the split chain.
Since the result is a total variation result it is then obviously valid when restricted
to the original chain, as in (13.58). Using the identity

[ 3@nGee (.0 = [ Mdn)Gets, 1),

and the analogous identity for u, we see that the required bound holds in the strongly
aperiodic case.
In the arbitrary aperiodic case we can apply Lemma, 14.3.2 to move to a skeleton
chain, as in the proof of Theorem 14.3.3. ad
The most interesting special case of this result is given in the following theorem.
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Theorem 14.3.5 Suppose @ is an aperiodic positive Harris chain and that w is f-
regular. Then w(f) < co and for any f-regular set C € B (X) there exists By < oo
such that for any f-regular initial distribution A

S IAP™ = 7l < By(AV) + 1) (14.25)

n=1

where V() = Ge(-, f). 0

Our final f-ergodic result, for quite arbitrary positive recurrent chains is given
for completeness in

Theorem 14.3.6 (i) If J is positive recurrent and if w(f) < oc then there exists
a full set Sy, a cycle {D; : 1 < i < d} contained in Sy, and probabilities
{m; : 1 <1 < d} such that for any x € D,,

| P () — || — 0, n — 00. (14.26)

(ii) If @ is f-regular then for all z,

d
| > P (z, ) — x| f =0, n— oo (14.27)

r=1

14.3.3 A criterion for finiteness of n«(f)

From the Comparison Theorem 14.2.2 and the ergodic theorems presented above we
also obtain the following criterion for finiteness of moments.

Theorem 14.3.7 Suppose that @ is positive recurrent with invariant probability =,
and suppose that V, f and s are non-negative, finite-valued functions on X such that

PV (z) < V(z) - f(z) + s(z)

for every © € X. Then w(f) < m(s).

PrROOF  For m-a.e. x € X we have from the Comparison Theorem 14.2.2, Theo-
rem 14.3.6 and (if 7(f) = oo) the aperiodic version of Theorem 14.3.3, whether or
not 7(s) < oo,

N N
1 1
= lim — E.[f(Pr)] < lim — E.[s(Py)] = .
(1) = Jim 5 CEAS@0] < Jim 53 Exls(@)] = ()
O
The criterion for m(X) < oo in Theorem 11.0.1 is a special case of this result.
However, it seems easier to prove for quite arbitrary non-negative f,s using these
limiting results.
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14.4 f-Ergodicity of specific models

14.4.1 Random walk on IR} and storage models

Consider random walk on a half line given by &, = [#,,_1 + W,]T, and assume that
the increment distribution I" has negative first moment and a finite absolute moment
o®) of order k.

Let us choose the test function V (z) = z*. Then using the binomial expansion
the drift Ay is given for z > 0 by

AV(z) = [Z T(dy)(z+y)* —a*

(ff‘; F(dy)y) kzF1 1 co® k=2 4 g (14.28)

VAN

for some finite ¢,d. We can rewrite (14.28) in the form of (V3); namely for some
¢ > 0, and large enough =

/P(w,dy)yk <ak—dzh L,
From this we may prove the following

Proposition 14.4.1 If the increment distribution I" has mean 8 < 0 and finite (k +
1)t moment, then the associated random walk on a half line is |z|*-reqular. Hence
the process @ admits a stationary measure w with finite moments of order k; and with
) =9"+1,

(i) for all X such that [ A(dz)z**! < oo,

[Md)P(a, ) = w0, n oo
(ii) for some Bj < oo, and any initial distribution X,

3 z)|P"(z, -) — 7 ¥ \(dzx
> [P, ) =l < By(1+ [ o Aa)

PROOF  The calculations preceding the proposition show that for some ¢y > 0,
dy < oo, and a compact set C C IRy,

PVii1(z) < Vigi(z) — cofi(z) +dolle(z)  0<i <Kk, (14.29)

where V;(z) = 27, fj(z) = 27 4+ 1. Result (i) is then an immediate consequence of the
f-Norm Ergodic Theorem.

To prove (ii) apply (14.29) with ¢ = k and Theorem 14.3.7 to conclude that
m(Vi) < oco. Applying (14.29) again with ¢ = k — 1 we see that 7 is fy_1-regular and
then (ii) follows from the f-Norm Ergodic Theorem. O

It is well known that the invariant measure for a random walk on the half line
has moments of order one degree lower than those of the increment distribution, but
this is a particularly simple proof of this result.

For the Moran dam model or the queueing models developed in Chapter 2, this
result translates directly into a condition on the input distribution. Provided the
mean input is less than the mean output between input times, then there is a finite
invariant measure: and this has a finite £** moment if the input distribution has finite
(k + 1)%" moment.
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14.4.2 Bilinear Models

The random walk model in the previous section can be generalized in a variety of
ways, as we have seen many times in the applications above.
For illustrative purposes we next consider the scalar bilinear model

X1 = 0Xy + Wi 1 X + Wi (14.30)

for which we proved boundedness in probability in Section 12.5.2. For simplicity, we
take E[W] = 0.

To obtain a solution to (V3), assume that W has finite variance. Then for the
test function V(z) = 22, we observe that by independence

E[(Xk11)? | Xk = 2] < [07 + BEIWR, ]| 2% + (2bz + DEWE,]. (14.31)

Since this V' is a norm-like function on IR, it follows that (V3) holds with the choice
of
flx) =146V (zx)

for some § > 0 provided
62 + ’E[W?] < 1. (14.32)

Under this condition it follows just as in the LSS(F') model that provided the noise
process forces this model to be a T-chain (for example, if the conditions of Propo-
sition 7.1.3 hold) then (14.32) is a condition not just for positive Harris recurrence,
but for the existence of a second order stationary model with finite variance: this is
precisely the interpretation of 7(f) < co in this case.

A more general version of this result is

Proposition 14.4.2 Suppose that (SBL1) and (SBL2) hold and
E[W}] < 0. (14.33)

Then the bilinear model is positive Harris, the invariant measure 7 also has finite k**
moments (that is, satisfies [ z*m(dr) < o), and

|P"(z, -) — ||z — O, n — 00.
O

In the next chapter we will show that there is in fact a geometric rate of conver-
gence in this result. This will show that, in essence, the same drift condition gives us
finiteness of moments in the stationary case, convergence of time-dependent moments
and some conclusion about the rate at which the moments become stationary.

14.5 A Key Renewal Theorem

One of the most interesting applications of the ergodic theorems in these last two
chapters is a probabilistic proof of the Key Renewal Theorem.

As in Section 3.5.3, let Z, := > ;. ,Y;, where {Y1,Y>,...} is a sequence of in-
dependent and identical random variables with distribution I" on IR, and Y} is
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a further independent random variable with distribution I also on IRy; and let
U(:) =3020I"™(-) be the associated renewal measure.

Renewal theorems concern the limiting behavior of U; specifically, they concern
conditions under which

Ty« U f(t) = Bt /Ooof(s) ds (14.34)

as t — oo, where § = [°sI'(ds) and f and I} are an appropriate function and
measure respectively.
With minimal assumptions about I" we have Blackwell’s Renewal Theorem.

Theorem 14.5.1 Provided I' has a finite mean 8 and is not concentrated on a lattice
nh,n € Z,h >0, then for any interval [a,b] and any initial distribution I

Lo« Ula+t,b+t] - 7 (b—a), t— . (14.35)

PrROOF  This result is taken from Feller ([77], p. 360) and its proof is not one we
pursue here. We do note that it is a special case of the general Key Renewal Theorem,
which states that under these conditions on I', (14.34) holds for all bounded non-
negative functions f which are directly Riemann integrable, for which again see Feller
([77], p- 361); for then (14.35) is the special case with f(s) = T, 4(s)- 0

This result shows us the pattern for renewal theorems: in the limit, the measure
U approximates normalized Lebesgue measure.

We now show that one can trade off properties of I" against properties of f (and
to some extent properties of I) in asserting (14.34). We shall give a proof, based on
the ergodic properties we have been considering for Markov chains, of the following
Uniform Key Renewal Theorem.

Theorem 14.5.2 Suppose that I' has a finite mean B and is spread out (as defined

(a) For any initial distribution I'y we have the uniform convergence

o0
lim sup |Ip* U * g(t) — 5_1/ g(s)ds| =0 (14.36)
2o g1<s 0

provided the function f > 0 satisfies

f is bounded; (14.37)
f  is Lebesgue integrable; (14.38)
fit) —0, t — oc. (14.39)

(b) In particular, for any bounded interval [a,b] and Borel sets B

lim sup |[Ip*U(t+ B) — B~ u*"(B)| = 0. (14.40)
=00 BCla,b]

(¢) For any initial distribution Iy which is absolutely continuous, the convergence
(14.36) holds for f satisfying only (14.37) and (14.38).
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PROOF  The proof of this set of results occupies the remainder of this section, and
contains a number of results of independent interest. O

Before embarking on this proof, we note explicitly that we have accomplished a
number of tradeoffs in this result, compared with the Blackwell Renewal Theorem.
By considering spread-out distributions, we have exchanged the direct Riemann in-
tegrability condition for the simpler and often more verifiable smoothness conditions
(14.37)-(14.39). This is exemplified by the fact that (14.40) allows us to consider the
renewal measure of any bounded Borel set, whereas the general I' version restricts us
to intervals as in (14.35). The extra benefits of smoothness of I in removing (14.39)
as a condition are also in this vein.

Moreover, by moving to the class of spread-out distributions, we have introduced
a uniformity into the Key Renewal Theorem which is analogous in many ways to
the total variation norm result in Markov chain limit theory. This analogy is not
coincidental: as we now show, these results are all consequences of precisely that total
variation convergence for the forward recurrence chain associated with this renewal
process.

Recall from Section 3.5.3 the forward recurrence time process

VH(t):=inf(Z, —t: Z, > 1), t>0.

We will consider the forward recurrence time §-skeleton VI = V™ (nd), n € Z, for
that process, and denote its n-step transition law by P™(z, -). We showed that for
sufficiently small §, when I" is spread out, then (Proposition 5.3.3) the set [0,4] is a
small set for Vi, and (Proposition 5.4.7) V; is also aperiodic.

It is trivial for this chain to see that (V2) holds with V(z) = z, so that the chain
is regular from Theorem 11.3.15, and if Iy has a finite mean, then I§ is regular from
Theorem 11.3.12.

This immediately enables us to assert from Theorem 13.4.4 that, if I, I are
two initial measures both with finite mean, and if I itself is spread out with finite
mean,

i ITLP™(-) = T P™(-)]| < oo (14.41)

The crucial corollary to this example of Theorem 13.4.4, which leads to the Uniform
Key Renewal Theorem is

Proposition 14.5.3 If I' is spread out with finite mean, and if I'1, I's are two initial
measures both with finite mean, then

o0
T +U — Do+ U| ::/ Ty U(dt) — Ty  U(dt)| < oo (14.42)
0

PROOF By interpreting the measure I P* as an initial distribution, observe that
for A C [t,00), and fixed s € [0, 1), we have from the Markov property at s the identity

To*U(A) = IyP* « U(A — s). (14.43)

Using this we then have
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/ Iy U(dt) — Ty % U(dd)|
0
= Yonz0 Jins,(miys) 1 * Uldt) — Ip = U(dt)|

= XoloJoe (1P — I P™) + U(dt)|

(14.44)
< Yo Joog o |(TP™ — T P™)(du)|U (dt — u)
< X020 o) (1P = I P™) (dw)|U[0, 6)
< U0,8) X2 11 P™ — I P™||
which is finite from (14.41). a

From this we can prove a precursor to Theorem 14.5.2.

Proposition 14.5.4 If I' is spread out with finite mean, and if I'1, I's are two initial
measures both with finite mean, then

sup |1 * U xg(t) — 2« U * g(t)| = 0, t— o0 (14.45)
9I<f

for any f satisfying (14.37)-(14.39).

PROOF  Suppose that € is arbitrarily small but fixed. Using Proposition 14.5.3 we
can fix T such that

o0

|(I1* U — Iy U)(du)| <e. (14.46)
If f satisfies (14.39), then for all sufficiently large ¢,
flt—u) <e, u € [0,T7];

for such a ¢, writing d = sup f(z) < oo from (14.37), it follows that for any g with
lg| < f,

[Ih U xg(t) — e« U=xg(t)] < f0T|(F1*U—F2*U(du)|f(t—u)

+ JE N % U = Ty x U) (du) | £ (£ — u)

(14.47)
< E||F1*U—F2*U||+€d
= £
which is arbitrarily small, from (14.44), thus proving the result. O

This would prove Theorem 14.5.2 (a) if the equilibrium measure

1,4 = 8" /Otl"(u, o0)du

defined in (10.37) were itself regular, since we have that I',xU(-) = S~ !u™"(-), which
gives the right hand side of (14.36). But as can be verified by direct calculation, I,
is regular if and only if I" has a finite second moment, exactly as is the case in
Theorem 13.4.5 for general chains with atoms.

However, we can reach the following result, of which Theorem 14.5.2 (a) is a
corollary, using a truncation argument.
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Proposition 14.5.5 If I' is spread out with finite mean, and if I'1, I'> are any two

initial measures, then

sup [N« U xg(t) — Iy« U % g(t)] = 0, t— oo
9I<f

for any f satisfying (14.37)-(14.39).

ProoF  For fixed v, let I''(A):=I"(A)/I'[0,v] for all A C [0, v] denote the truncation
of I'(A) to [0,v].
For any g with |g| < f,

[T+ Uxg(t) = IT « U g(t)| < || — I7 || sup U * f(x) (14.48)
T

which can be made smaller than ¢ by choosing v large enough, provided sup, U *
f(z) < oco. But if ¢t > T, from (14.47), with It = 6y, [2 = I} and g = f,

Uxf(t) = dxUx* f(t)

< IPxU=xf(t)+¢€
(14.49)

IA

(I’e[O,v])ﬂI’e «Ux f(t)+¢

(Fef0,ol) ™ B 5° flwydu + &

VAN

which is indeed finite, by (14.38).

The result then follows from Proposition 14.5.4 and (14.48) by a standard triangle
inequality argument. O

Theorem 14.5.2 (b) is a simple consequence of Theorem 14.5.2 (a), but to prove
Theorem 14.5.2 (c), we need to refine the arguments above a little.

Suppose that (14.39) does not hold, and write

Aty ={ue0,T]: f(t—u) > e}
where ¢ and T are as in (14.46). We then have
T
/0 ([y % U — Ty + U) (du)|f (¢ — w)
< o (D # U = Ty x U(du) | £ (£ — u) W,y (u) (14.50)
(D % U + Do U) (du) f (8 — ) a5y ()

< g *U =Iox Ul +d(I1 + 1) * U(AL(2)).

If we now assume that the measure I'7 4+ I'5 to be absolutely continuous with respect
to pe®, then so is (It + I) x U ([77], p. 146).

Now since f is integrable, as t — oo for fixed T',& we must have p"**(A.(t)) — 0.
But since 7T is fixed, we have that both px™*[0,7"] < oo and (I + I) * U[0,T] < oo,
and it is a standard result of measure theory ([94], p 125) that
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(I + Ip) «U(AL(t)) — 0, t — oo.

We can thus make the last term in (14.50) arbitrarily small for large ¢, even without
assuming (14.39); now reconsidering (14.47), we see that Proposition 14.5.4 holds
without (14.39), provided we assume the existence of densities for I'; and I, and
then Theorem 14.5.2 (c) follows by the truncation argument of Proposition 14.5.5.

14.6 Commentary

These results are largely recent. Although the question of convergence of E,[f(&y)] for
general f occurs in, for example, Markov reward models [20], most of the literature
on Harris chains has concentrated on convergence only for f < 1 as in the previous
chapter. The results developed here are a more complete form of those in Meyn
and Tweedie [178], but there the general aperiodic case was not developed: only
the strongly aperiodic case is considered in detail. A more embryonic form of the
convergence in f-norm, indicating that if 7(f) < oo then E;[f(Pr)] — 7 (f), appeared
as Theorem 2 of Tweedie [278].

Nummelin [202] considers f-regularity, but does not go on to apply the resulting
concepts to f-ergodicity, although in fact there are connections between the two which
are implicit through the Regenerative Decomposition in Nummelin and Tweedie [206].

That Theorem 14.1.1 admits a converse, so that when 7(f) < oo there exists
a sequence of f-regular sets {Sy(n)} whose union is full, is surprisingly deep. For
general state space chains, the question of the existence of f-regular sets requires the
splitting technique as did the existence of regular sets in Chapter 11. The key to their
use in analyzing chains which are not strongly aperiodic lies in the duality with the
drift condition (V3), and this is given here for the first time.

The fact that (V3) gives a criterion for finiteness of 7(f) was observed in Tweedie
[278]. Its use for asserting the second order stationarity of bilinear and other time
series models was developed in Feigin and Tweedie [74], and for analyzing random
walk in [279]. Related results on the existence of moments are also in Kalashnikov
[116].

The application to the generalized Key Renewal Theorem is particularly satis-
fying. By applying the ergodic theorems above to the forward recurrence time chain
V(}L, we have “leveraged” from the discrete time renewal theory results of Section 13.2
to the continuous time ones through the general Markov chain results. This Marko-
vian approach was developed in Arjas et al [9], and the uniformity in Theorem 14.5.2,
which is a natural consequence of this approach, seems to be new there. The simpler
form without the uniformity, showing that one can exchange spread-outness of I" for
the weaker conditions on f dates back to the original renewal theorems of Smith
[247, 248, 249], whilst Breiman [30] gives a form of Theorem 14.5.2 (b). An elegant
and different approach is also possible through Stone’s Decomposition of U [258],
which shows that when I” is spread-out,

U=U;+U,

where Uy is a finite measure, and U, has a density p with respect to u"** satisfying
p(t) = B ast — oo.
The convergence, or rather summability, of the quantities
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[1P™(z, -) —=llf

leads naturally to a study of rates of convergence, and this is carried out in Nummelin
and Tuominen [205]. Building on this, Tweedie [279] uses similar approaches to those
in this chapter to derive drift criteria for more subtle rate of convergence results: the
interested reader should note the result of Theorem 3 (iii) of [279]. There it is shown
(essentially by using the Comparison Theorem) that if (V3) holds for a function f
such that

@) > Efr(re), wece

where 7(n) is some function on Z, then
V(z) > Ez[r%(r¢)], z€C*

where r0(n) = Y7 r(j). If C is petite then this is (see [205] or Theorem 4 (iii) of [279])
enough to ensure that

r(n)|P"(z, -) — 7| = 0, n — 00

so that (V3) gives convergence at rate r(n)~! in the ergodic theorem.

Applications of these ideas to the Key Renewal Theorem are also contained in
[205].

The special case of r(n) = r™ is explored thoroughly in the next two chapters.
The rate results above are valuable also in the case of 7(n) = n* since then r%(n) is
asymptotically n**1. This allows an inductive approach to the level of convergence
rate achieved; but this more general topic is not pursued in this book. The inter-
ested reader will find the most recent versions, building on those of Nummelin and
Tuominen [205], in [271].



