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Ergodicity

In Part II we developed the ideas of stability largely in terms of recurrence structures.
Our concern was with the way in which the chain returned to the “center” of the space,
how sure we could be that this would happen, and whether it might happen in a finite
mean time.

Part III is devoted to the perhaps even more important, and certainly deeper,
concepts of the chain “settling down”, or converging, to a stable or stationary regime.

In our heuristic introduction to the various possible ideas of stability in Sec-
tion 1.3, such convergence was presented as a fundamental idea, related in the dy-
namical systems and deterministic contexts to asymptotic stability. We noted briefly,
in (10.5) in Chapter 10, that the existence of a finite invariant measure was a nec-
essary condition for such a stationary regime to exist as a limit. In Chapter 12 we
explored in much greater detail the way in which convergence of P" to a limit, on
topological spaces, leads to the existence of invariant measures.

In this chapter we begin a systematic approach to this question from the other
side. Given the existence of w, when do the n-step transition probabilities converge
in a suitable way to 7?7

We will prove that for positive recurrent 1-irreducible chains, such limiting behav-
ior takes place with no topological assumptions, and moreover the limits are achieved
in a much stronger way than under the tightness assumptions in the topological con-
text. The Aperiodic Ergodic Theorem, which unifies the various definitions of positiv-
ity, summarizes this asymptotic theory. It is undoubtedly the outstanding achievement
in the general theory of ¥-irreducible Markov chains, even though we shall prove some
considerably stronger variations in the next two chapters.

Theorem 13.0.1 (Aperiodic Ergodic Theorem) Suppose that @ is an aperiodic
Harris recurrent chain, with invariant measure . The following are equivalent:

(1) The chain is positive Harris: that is, the unique invariant measure T is finite.

(ii) There exists some v-small set C € BT(X) and some P>*(C) > 0 such that as
n — oo, for all z € C
P*(z,C) — P*(C). (13.1)

(iii) There exists some regular set in BT (X): equivalently, there is a petite set C €
B(X) such that

sup Ez[7¢] < o0. (13.2)
el
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(iv) There ezists some petite set C, some b < oo and a non-negative function V
finite at some one xg € X, satisfying

AV (z) :=PV(z) — V(z) < -1+ blc(z), z e X (13.3)

Any of these conditions is equivalent to the existence of a unique invariant probability
measure w such that for every initial condition x € X,

sup |P"(z,A) —n(A)] =0 (13.4)
AeB(X)

as n — 00, and moreover for any reqular initial distributions A, u,

S [ [t sy 1Pt P Al <o (39

Proor  That 7(X) < oo in (i) is equivalent to the finiteness of hitting times as in
(iii) and the existence of a mean drift test function in (iv) is merely a restatement of
the overview Theorem 11.0.1 in Chapter 11.

The fact that any of these positive recurrence conditions imply the uniform con-
vergence over all sets A from all starting points z as in (13.4) is of course the main
conclusion of this theorem, and is finally shown in Theorem 13.3.3.

That (ii) holds from (13.4) is obviously trivial by dominated convergence. The cy-
cle is completed by the implication that (ii) implies (13.4), which is in Theorem 13.3.5.

The extension from convergence to summability provided the initial measures are
regular is given in Theorem 13.4.4. Conditions under which 7 itself is regular are also
in Section 13.4.2. O

There are four ideas which should be born in mind as we embark on this third
part of the book, especially when coming from a countable space background. The
first two involve the types of limit theorems we shall address; the third involves the
method of proof of these theorems; and the fourth involves the nomenclature we shall
use.

Modes of Convergence The first is that we will be considering, in this and the
next three chapters, convergence of a chain in terms of its transition probabilities. Al-
though it is important also to consider convergence of a chain along its sample paths,
leading to strong laws, or of normalized variables leading to central limit theorems
and associated results, we do not turn to this until Chapter 17.

This is in contrast to the traditional approach in the countable state space case.
Typically, there, the search is for conditions under which there exist pointwise limits
of the form

- W
Jim [P (z,y) = (y)] = 0; (13.6)

but the results we derive are related to the signed measure (P™ — 7), and so concern
not merely such pointwise or even setwise convergence, but a more global convergence
in terms of the total variation norm.
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Total Variation Norm

If p is a signed measure on B(X) then the total variation norm ||| is
defined as

= su = su A) — inf A 13.7
[ f:|f‘1;1\u(f)l AGBFX)M() AeB(X)M() (13.7)

The key limit of interest to us in this chapter will be of the form

nli}rgo |P"(z, ) —7| =2 nli)ngo sBlp|P"(;v,A) —7(A)| =0. (13.8)
Obviously when (13.8) holds on a countable space, then (13.6) also holds and indeed
holds uniformly in the end-point y. This move to the total variation norm, necessitated
by the typical lack of structure of pointwise transitions in the general state space, will
actually prove exceedingly fruitful rather than restrictive.

When the space is topological, it is also the case that total variation convergence
implies weak convergence of the measures in question.

This is clear since (see Chapter 12) the latter is defined as convergence of expec-
tations of functions which are not only bounded but also continuous. Hence the weak
convergence of P™ to 7 as in Proposition 12.1.4 will be subsumed in results such as
(13.4) provided the chain is suitably irreducible and positive.

Thus, for example, asymptotic properties of T-chains will be much stronger than
those for arbitrary weak Feller chains even when a unique invariant measure exists
for the latter.

Independence of initial and limiting distributions The second point to be
made explicitly is that the limits in (13.8), and their refinements and extensions
in Chapters 14-16, will typically be found to hold independently of the particular
starting point z, and indeed we will be seeking conditions under which this is the
case.

Having established this, however, the identification of the class of starting dis-
tributions for which particular asymptotic limits hold becomes a question of some
importance, and the answer is not always obvious: in essence, if the chain starts with
a distribution “too near infinity” then it may never reach the expected stationary
distribution.

This is typified in (13.5), where the summability holds only for regular initial
measures.

The same type of behavior, and the need to ensure that initial distributions are
appropriately “regular” in extended ways, will be a highly visible part of the work in
Chapters 14 and 15.
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The role of renewal theory and splitting Thirdly, in developing the ergodic
properties of i-irreducible chains we will use the splitting techniques of Chapter 5
in a systematic and fruitful way, and we will also need the properties of renewal
sequences associated with visits to the atom in the split chain.

Up to now the existence of a “pseudo-atom” has not generated many results that
could not have been derived (sometimes with considerable but nevertheless relatively
elementary work) from the existence of petite sets: the only real “atom-based” result
has been the existence of regular sets in Chapter 11. We have not given much reason
for the reader to believe that the atom-based constructions are other than a gloss on
the results obtainable through petite sets.

In Part III, however, we will find that the existence of atoms provides a critical
step in the development of asymptotic results. This is due to the many limit theorems
available for renewal processes, and we will prove such theorems as they fit into the
Markov chain development.

We will also see that several generalizations of regular sets also play a key role
in such results: the essential equivalence of regularity and positivity, developed in
Chapter 11, becomes of far more than academic value in developing ergodic structures.

Ergodic chains Finally, a word on the term ergodic. We will adopt this term for
chains where the limit in (13.6) or (13.8) holds as the time sequence n — oo, rather
than as n — oo through some subsequence.

Unfortunately, we know that in complete generality Markov chains may be peri-
odic, in which case the limits in (13.6) or (13.8) can hold at best as we go through a
periodic sequence nd as n — oo. Thus by definition, ergodic chains will be aperiodic,
and a minor, sometimes annoying but always vital change to the structure of the
results is needed in the periodic case.

We will therefore give results, typically, for the aperiodic context and give the
required modification for the periodic case following the main statement when this
seems worthwhile.

13.1 Ergodic chains on countable spaces

13.1.1 First-entrance last-exit decompositions

In this section we will approach the ergodic question for Markov chains in the count-
able state space case, before moving on to the general case in later sections. The
methods are rather similar: indeed, given the splitting technique there will be a rela-
tively small amount of extra work needed to move to the more general context.

Even in the countable case, the technique of proof we give is simpler and more
powerful than that usually presented. One real simplification of the analysis through
the use of total variation norm convergence results comes from an extension of the
first-entrance and last-exit decompositions of Section 8.2, together with the represen-
tation of the invariant probability given in Theorem 10.2.1.

The first-entrance last-exit decomposition, for any states z,y, a € X is given by

n—1_7

P(z,y) = oP"(2,9) + D_ D oPH (@, 0) P H (e, )| o " (a,y), (139
j=1 k=1
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where we have used the notation a to indicate that the specific state being used for
the decomposition is distinguished from the more generic states x,y which are the
starting and end points of the decomposition.

We will wish in what follows to concentrate on the time variable rather than a
particular starting point or end point, and it will prove particularly useful to have
notation that reflects this. Let us hold the reference state a fixed and introduce the
three forms

az (n) := Py(1q = n) (13.10)
u(n) :=Py(P, = o) (13.11)
ty (n) :== o P" (o, y). (13.12)

This notation is designed to stress the role of a; (n) as a delay distribution in the
renewal sequence of visits to a, and the “tail properties” of ¢, (n) in the representation
of m: recall from (10.11) that

m(y) = (Ealra])™ ?ilafm(aay)
(13.13)

— (@) T2 1, (5)-
Using this notation the first entrance and last exit decompositions become
P'(z,0) = Y oPu(ra=5)P" (e, )
= Yj-0az(f)uln —j)

Pn(a,y) = ;‘L:O Pj(aaa)apn_j(aay)

n

= Xj=ou(d)ty(n —Jj)

or, using the convolution notation a * b(n) = > 7 a(j)b(n — j) introduced in Sec-
tion 2.4.1,
P'(z,a) = ay xu(n) (13.14)

P" (o, y) =u*xty (n). (13.15)
The first-exit last-entrance decomposition (13.9) can be written similarly as
P"(z,y) = o P"(2,y) + ag * u * ty (n). (13.16)

The power of these forms becomes apparent when we link them to the representation
of the invariant measure given in (13.13). The next decomposition underlies all ergodic
theorems for countable space chains.

Proposition 13.1.1 Suppose that @ is a positive Harris recurrent chain on a count-
able space, with invariant probability w. Then for any xz,y,a € X

[P™(2,) = 7(y)] < oP™(x,y) + lag * u — m(e)| xty (n) + 7(a) Y ty(j). (13.17)
j=n+1
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PROOF  From the decomposition (13.16) we have
Hlag * uk ty (n) — w() 351 ty(5)] (13.18)

Hm(e) iz 1y (5) — 7 (y)l-

Now we use the representation (13.13) for 7 and (13.17) is immediate. ]

13.1.2 Solidarity from one ergodic state

If the three terms in (13.17) can all be made to converge to zero, we will have shown
that P"(z,y) — m(y) as n — oo. The two extreme terms involve the convergence of
simple positive expressions, and finding bounds for both of these is at the level of
calculation we have already used, especially in Chapters 10 and 11. The middle term
involves a deeper limiting operation, and showing that this term does indeed converge
is at the heart of proving ergodic theorems.

We can reduce the problem of this middle term entirely to one independent of
the initial state £ and involving only the reference state a. Suppose we have

|u(n) — m(a)| — 0, n — 0. (13.19)
Then using Lemma D.7.1 we find

lim az *u(n) = m(a) (13.20)

n—0o0

provided we have (as we do for a Harris recurrent chain) that for all =

Zax(j) = Py(74 < 00) = 1. (13.21)

The convergence in (13.19) will be shown to hold for all states of an aperiodic positive
chain in the next section: we first motivate our need for it, and for related results in
renewal theory, by developing the ergodic structure of chains with “ergodic atoms”.

Ergodic atoms

If & is positive Harris, an atom a € BT (X) is called ergodic if it satisfies

lim |P"(e, ) — w(ax)| = 0. (13.22)

n—oo
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In the positive Harris case note that an atom can be ergodic only if the chain is
aperiodic.

With this notation, and the prescription for analyzing ergodic behavior inherent
in Proposition 13.1.1, we can prove surprisingly quickly the following solidarity result.

Theorem 13.1.2 If & is a positive Harris chain on a countable space, and if there
exists an ergodic atom o, then for every initial state x

[P"(z, ) — x| >0,  n—oo. (13.23)

PROOF  On a countable space the total variation norm is given simply by

1P (z, ) =7l = D [P™(z,y) — 7(y)]
y
and so by (13.17) we have the total variation norm bounded by three terms:

|P™(z, ) =7l <D aP™@,y) + D lagxu—m(a)| +Z Z y(7)-
Y Y j=n+1

(13.24)

We need to show each of these goes to zero. From the representation (13.13) of m,

and Harris positivity

oo > Zﬁ(y) =7(a) Z Zty(j). (13.25)

=1y

The third term in (13.24) is the tail sum in this representation and so we must have

i D ty()) =0, n— oo (13.26)

j=n+1 ¥

The first term in (13.24) also tends to zero, for we have the interpretation

Z P"(z,y) = Py(1a > n) (13.27)

and since @ is Harris recurrent Py(7, > n) — 0 for every z.

Finally, the middle term in (13.24) tends to zero by a double application of
Lemma D.7.1, first using the assumption that a is ergodic so that (13.20) holds and,
once we have this, using the finiteness of 372, 3°, #,(j) given by (13.25). a

This approach may be extended to give the Ergodlc Theorem for a general space
chain when there is an ergodic atom in the state space. A first-entrance last-exit
decomposition will again give us an elegant proof in this case, and we prove such a
result in Section 13.2.3, from which basis we wish to prove the same type of ergodic
result for any positive Harris chain. To do this, we must of course prove that the atom
& for the split skeleton chain ¢, which we always have available, is an ergodic atom.

To show that atoms for aperiodic positive chains are indeed ergodic, which is
crucial to completing this argument, we need results from renewal theory. This is
therefore necessarily the subject of the next section.
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13.2 Renewal and regeneration

13.2.1 Coupling renewal processes

When a is a recurrent atom in X, the sequence of return times given by 7,(1) = 74
and for n > 1
Ta(n) =min(j > 1(n — 1) : &; = a)

is a specific example of a renewal process, as defined in Section 2.4.1.

The asymptotic structure of renewal processes has, deservedly, been the subject
of a great deal of analysis: such processes have a central place in the asymptotic theory
of many kinds of stochastic processes, but nowhere more than in the development of
asymptotic properties of general 1-irreducible Markov chains.

Our goal in this section is to provide essentially those results needed for proving
the ergodic properties of Markov chains, and we shall do this through the use of
the so-called “coupling approach”. We will regrettably do far less than justice to the
full power of renewal and regenerative processes, or to the coupling method itself:
for more details on renewal and regeneration, the reader should consult Feller [76]
or Kingman [136], whilst the more recent flowering of the coupling technique is well
covered by the recent book by Lindvall [155].

As in Section 2.4.1 we let p = {p(j)} denote the distribution of the increments
in a renewal process, whilst a = {a(j)} and b = {b(j)} will denote possible delays
in the first increment variable Syp. For n = 1,2,... let S, denote the time of the
(n+1)%" renewal, so that the distribution of S,, is given by a * p™* if Sy has the delay
distribution a.

Recall the standard notation

for the renewal function for n > 0. Since p®* = §; we have u(0) = 1; by convention
we will set u(—1) = 0.
If we let Z(n) denote the indicator variables

Z(n) = {

1 Sj=mn,somej>0
0 otherwise,

then we have
P.(Z(n)=1)=ax*u(n),

and thus the renewal function represents the probabilities of {Z(n) = 1} when there
is no delay, or equivalently when a = ;.

The coupling approach involves the study of two linked renewal processes with
the same increment distribution but different initial distributions, and, most critically,
defined on the same probability space.

To describe this concept we define two sets of mutually independent random
variables

{S0781552""}1 {S(,)a iaséa}
where each of the variables {S1, Sa,...} and {S],S5%,...} are independent and iden-

tically distributed with distribution {p(j)}; but where the distributions of the inde-
pendent variables Sy, S}, are a, b.
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The coupling time of the two renewal processes is defined as
Top = min{j : Z,(j) = Zp(j) = 1}

where Z,, Zy are the indicator sequences of each renewal process. The random time
Tap is the first time that a renewal takes place simultaneously in both sequences, and
from that point onwards, because of the loss of memory at the renewal epoch, the
renewal processes are identical in distribution.

The key requirement to use this method is that this coupling time be almost
surely finite. In this section we will show that if we have an aperiodic positive recurrent
renewal process with finite mean

my = io:jp(j) < 00 (13.28)
=0

then such coupling times are always almost surely finite.

Proposition 13.2.1 If the increment distribution has an aperiodic distribution p
with my, < oo then for any initial proper distributions a,b

P(Th < 00) = 1. (13.29)

PrOOF  Consider the linked forward recurrence time chain V* defined by (10.19),
corresponding to the two independent renewal sequences { Sy, S, }.
Let 713 = min(n : V7 = (1,1)). Since the first coupling takes place at 711 + 1,

Top =111 +1

and thus we have that
P(Tab > n) = Paxp(m1,1 > n). (13.30)

But we know from Section 10.3.1 that, under our assumptions of aperiodicity of p
and finiteness of m,, the chain V* is 41 ;-irreducible and positive Harris recurrent.
Thus for any initial measure y we have a fortiori

Pu(m1,1 < 00) = 1;
and hence in particular for the initial measure a x b, it follows that
Paxs(T1,1 > n) = 0, n — 00

as required. O
This gives a structure sufficient to prove

Theorem 13.2.2 Suppose that a,b,p are proper distributions on Z., and that u
is the renewal function corresponding to p. Then provided p is aperiodic with mean
my < 00

laxu(n) —b*xu(n)] >0, n— oo (13.31)
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PROOF Let us define the random variables

Zg(n) n<T,
Zalm) ={ 720 nS T

so that for any n
P(Zwp(n) =1) = P(Zy(n) =1). (13.32)

We have that

laxu(n) —bxu(n)| = |P(Zs(n)=1)—P(Zy(n) =1)|

|P(Zap(n) = 1) — P(Zp(n) =1)|

IP(Za(n) = 1,Tap > n) + P(Zy(n) =1,T, < n)
—P(Zy(n) = 1,Tep > n) — P(Zy(n) = 1,Ty < n)|
|P(Za(n) = 1,Ta > n) — P(Zy(n) = 1,Ty > n)|
max{P(Z,(n) = 1,14 > n),P(Zy(n) = 1,1, > n)}
P(Tw > 7). (13.33)

VARPAY

But from Proposition 13.2.1 we have that P(Tg, > n) — 0 as n — oo, and (13.31)
follows. O

We will see in Section 18.1.1 that Theorem 13.2.2 holds even without the assump-
tion that m, < oo. For the moment, however, we will concentrate on further aspects
of coupling when we are in the positive recurrent case.

13.2.2 Convergence of the renewal function

Suppose that we have a positive recurrent renewal sequence with finite mean m, < oo.
Then the proper probability distribution e = e(n) defined by

69} n

e(n)=my" D p(j) =my (1= p(5)) (13.34)

j=n+1 §=0

has been shown in (10.17) to be the invariant probability measure for the forward
recurrence time chain V1 associated with the renewal sequence {S,}. It also follows
that the delayed renewal distribution corresponding to the initial distribution e is
given for every n > 0 by

P(Z(n) =1) = exu(n)
— m;1(1 —px*1)xu(n)
= my (1 —px1) (D p*)(n)
=0
= my'(1+1x O pY)(n) —px1x (> pY)(n))
Jj=1 Jj=0
= my, (13.35)

For this reason the distribution e is also called the equilibrium distribution of the
renewal process.
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These considerations show that in the positive recurrent case, the key quantity
we considered for Markov chains in (13.22) has the representation

[u(n) —myt| = |Psy(Z(n) = 1) = Pe(Z(n) = 1)| (13.36)

and in order to prove an asymptotic limiting result for an expression of this kind, we
must consider the probabilities that Z(n) = 1 from the initial distributions 4y, e.
But we have essentially evaluated this already. We have

Theorem 13.2.3 Suppose that a,p are proper distributions on Z ., and that u is the
renewal function corresponding to p. Then provided p is aperiodic and has a finite
mean my

|a *u(n) —m;1| -0, n— o0. (13.37)

PROOF  The result follows from Theorem 13.2.2 by substituting the equilibrium
distribution e for b and using (13.35). O

This has immediate application in the case where the renewal process is the return
time process to an accessible atom for a Markov chain.

Proposition 13.2.4 (i) If @ is a positive recurrent aperiodic Markov chain then
any atom o in BT (X) is ergodic.

(ii) If D is a positive recurrent aperiodic Markov chain on a countable space then for
every initial state x

|P™(z, -) — =] — 0, n — 00. (13.38)

ProOOF  We know from Proposition 10.2.2 that if @ is positive recurrent then the
mean return time to any atom in Bt (X) is finite. If the chain is aperiodic then (i)
follows directly from Theorem 13.2.3 and the definition (13.22).
The conclusion in (ii) then follows from (i) and Theorem 13.1.2. O
It is worth stressing explicitly that this result depends on the classification of
positive chains in terms of finite mean return times to atoms: that is, in using renewal
theory it is the equivalence of positivity and regularity of the chain that is utilized.

13.2.3 The regenerative decomposition for chains with atoms

We now consider general positive Harris chains and use the renewal theorems above
to commence development of their ergodic properties.

In order to use the splitting technique for analysis of total variation norm con-
vergence for general state space chains we must extend the first-entrance last-exit
decomposition (13.9) to general spaces. For any sets A, B € B(X) and = € X we have,
by decomposing the event {®, € B} over the times of the first and last entrances to
A prior to n, that

n—1 J
P™(x,B) = AP"(z,B) + 5 /A > /A AP (z,dv)PTF (v, dw)| AP" I (w, B).
j=1 k=1

(13.39)
If we suppose that there is an atom « and take A = o then these forms are somewhat
simplified: the decomposition (13.39) reduces to
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P"(z,B) = oP"(z,B) + nf [EJ: oP*(z,0) P F(a, a)] oP"I(a,B).  (13.40)
j=1 k=1

In the general state space case it is natural to consider convergence from an arbitrary
initial distribution A. It is equally natural to consider convergence of the integrals

EAL/ (@) = [ A(da) [ P"(a,dy)f(w) (13.41)

for arbitrary non-negative functions f. We will use either the probabilistic or the
operator theoretic version of this quantity (as given by the two sides of (13.41))
interchangeably, as seems most transparent, in what follows.

We explore convergence of Ey[f(&,)] for general (unbounded) f in detail in Chap-
ter 14. Here we concentrate on bounded f, in view of the definition (13.7) of the total
variation norm.

When a is an atom in BT (X), let us therefore extend the notation in (13.10)-
(13.12) to the forms

(n) = Px(Ta = n) (13.42)

a
tr () = [ aP"(a,dy)f(4) = Ealf(@n)1{ra > n}] : (13.43)

these are well-defined (although possibly infinite) for any non-negative function f on
X and any probability measure A on B(X).

As in (13.14) and (13.15) we can use this terminology to write the first entrance
and last exit formulations as

//\(da:)P"(:c, a)=ay*u(n) (13.44)

/P"(a,dy)f(y) —uxt;(n). (13.45)

The first-entrance last-exit decomposition (13.40) can similarly be formulated, for
any A, f, as

/)\(d:c)/P"(m,dw)f(w) ://\(dm)/aP"(a:,dw)f(w)—I—a)\*u*tf (n). (13.46)

The general state space version of Proposition 13.1.1 provides the critical bounds
needed for our approach to ergodic theorems. Using the notation of (13.41) we have
two bounds which we shall refer to as Regenerative Decompositions.

Theorem 13.2.5 Suppose that @ admits an accessible atom o and is positive Harris
recurrent with invariant probability measure w. Then for any probability measure A
and f >0,

|EALf(@n)] — Ealf(@n)]| < EA[f(Pn)1{7a > n}]

(13.47)
+lax xu —u| xty(n)
|EXLS (@n)] — Ex[f(@n)]| < Ex[f(Pn)l{7a > n}]
+|ax*xu—m(a) | *ts(n) (13.48)

(@) X541t (5)-
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PROOF  The first-entrance last-exit decomposition (13.46), in conjunction with the
simple last exit decomposition in the form (13.45), gives the first bound on the dis-
tance between E)[f(®y)] and Eo[f(2y)] in (13.47).

The decomposition (13.46) also gives

‘ E/\[f(dsn)] - Eﬂ'[f(qﬁn)] | < E)\[f(qﬁn)]l{Ta > n}]
+lansusty () = m(@) T tr(G)| (13.49)

+ |m(@) S 1) — [ w(dw) f(w)].

Now in the general state space case we have the representation for w given from
(10.32) by

o
[ wdw)f(w) = w(e) Y-t w); (13.50)
1
and (13.48) now follows from (13.49). O
The Regenerative Decomposition (13.48) in Theorem 13.2.5 shows clearly what
is needed to prove limiting results in the presence of an atom. Suppose that f is
bounded. Then we must

(E1) control the third term in (13.48), which involves questions of the finiteness of
7, but is independent of the initial measure A: this finiteness is guaranteed for
positive chains by definition;

(E2) control the first term in (13.48), which involves questions of the finiteness of
the hitting time distribution of 7, when the chain begins with distribution A;
this is automatically finite as required for a Harris recurrent chain, even without
positive recurrence, although for chains which are only recurrent it clearly needs
care;

(E3) control the middle term in (13.48), which again involves finiteness of = to bound
its last element, but more crucially then involves only the ergodicity of the atom
a, regardless of A: for we know from Lemma D.7.1 that if the atom is ergodic
so that (13.19) holds then also
lim ay *xu(n) = 7(a), (13.51)

n—00

since for @ a Harris recurrent chain, any probability measure \ satisfies

> ax(n) = Py(14 < 00) = 1. (13.52)

Thus recurrence, or rather Harris recurrence, will be used twice to give bounds: pos-
itive recurrence gives one bound; and, centrally, the equivalence of positivity and
regularity ensures the atom is ergodic, exactly as in Theorem 13.2.3.

Bounded functions are the only ones relevant to total variation convergence. The
Regenerative Decomposition is however valid for all f > 0. Bounds in this decompo-
sition then involve integrability of f with respect to 7, and a non-trivial extension of
regularity to what will be called f-regularity. This will be held over to the next chap-
ter, and here we formalize the above steps and incorporate them with the splitting
technique, to prove the Aperiodic Ergodic Theorem.
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13.3 Ergodicity of positive Harris chains

13.3.1 Strongly aperiodic chains

The prescription (E1)-(E3) above for ergodic behavior is followed in the proof of

Theorem 13.3.1 If & is a positive Harris recurrent and strongly aperiodic chain
then for any initial measure A

I /)\(dx)P"(m, N =0, 1 o0 (13.53)

Proor (i) Let us first assume that there is an accessible ergodic atom in the
space. The proof is virtually identical to that in the countable case. We have

Adz)P™(z, -) — || = su
I [ AP, ) =l = s

/ \dz) / P, dw) f (w) — / (dw) f(w)‘ (13.54)

and we use (13.48) to bound these terms uniformly for functions f < 1.
Since |f| < 1 the third term in (13.48) is bounded above by

() i t1(3) — 0, n — 00 (13.55)
n+1

since it is the tail sum in the representation (13.50) of 7(X).
The second term in (13.48) is bounded above by

lay * u — w(a)| * t1(n) — 0, n — 00, (13.56)

by Lemma D.7.1; here we use the fact that a is ergodic and, again, the representation
that m(X) = m(a) X7 t1(j) < oo.

We must finally control the first term. To do this, we need only note that, again
since |f| < 1, we have

EALf(@0)1{7a > n}] < Py(1a > n) (13.57)

and this expression tends to zero by monotone convergence as n — o0, since  is
Harris recurrent and Py(7, < 00) =1 for every z.

Notice explicitly that in (13.55)-(13.57) the bounds which tend to zero are in-
dependent of the particular |f| < 1, and so we have the required supremum norm
convergence.

(ii) Now assume that @ is strongly aperiodic. Consider the split chain &: we
know this is also strongly aperiodic from Proposition 5.5.6 (ii), and positive Harris
from Proposition 10.4.2. Thus from Proposition 13.2.4 the atom ¢& is ergodic. Now
our use of total variation norm convergence renders the transfer to the original chain
easy. Using the fact that the original chain is the marginal chain of the split chain,
and that 7 is the marginal measure of 7, we have immediately

I[Pt )=l = 2 swp | [ Ad)P" @A) w(4)

= 2 sup | [ X(dm) P(ai, 4) — #(4)
AeB(X) /X
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< _sup |/)‘ dxz -'Eu ) ﬁ(B)‘

— ||/>\* da;) P (s, - ) — 7|, (13.58)

where the inequality follows since the first supremum is over sets in B(X) of the form
Ag U A; and the second is over all sets in B(X).

Applying the result (i) for chains with accessible atoms shows that the total
variation norm in (13.58) for the split chain tends to zero, so we are finished. O

13.3.2 The ergodic theorem for -irreducible chains
We can now move from the strongly aperiodic chain result to arbitrary aperiodic

Harris recurrent chains. This is made simpler as a result of another useful property
of the total variation norm.

Proposition 13.3.2 If w is invariant for P then the total variation norm
| [ Ado)P(a, ) = 7
1§ non-increasing in n.

PROOF  We have from the definition of total variation and the invariance of 7 that
| [ Mdz) Pz, ) = x

= swp | [ Md0)P @ dyf() - [ 7S @)

ff1
= fs|}1|121| Adz)P" (z, dw /P w,dy) f ] —/W(dw) [/P(w,dy)f(y)]|
< sup | [ Mdz)P"(z,dw)f(w) — /7r(dw)f(w)| (13.59)
flr<a
since whenever |f| < 1 we also have |Pf| < 1. a

We can now prove the general state space result in the aperiodic case.

Theorem 13.3.3 If & is positive Harris and aperiodic then for every initial distri-
bution A

I /)\(d:c)P"(x, Jonl 50, 0 oo (13.60)

PROOF  Since for some m the skeleton ™ is strongly aperiodic, and also positive
Harris by Theorem 10.4.5, we know that

I /)\(dw)P”m(x, Jen =0, n— . (13.61)

The result for P" then follows immediately from the monotonicity in (13.59). 0

As we mentioned in the discussion of the periodic behavior of Markov chains, the
results are not quite as simple to state in the periodic as in the aperiodic case; but
they can be easily proved once the aperiodic case is understood.
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The asymptotic behavior of positive recurrent chains which may not be Harris is
also easy to state now that we have analyzed positive Harris chains.

The final formulation of these results for quite arbitrary positive recurrent chains
is

Theorem 13.3.4 (i) If @ is positive Harris with period d > 1 then for every initial
distribution A

d—1
47 [ 2 TP ) w50, mvee. (1362)
r=0

(ii) If @ is positive recurrent with period d > 1 then there is a w-null set N such that
for every initial distribution A with A(N) =0

d—1
a7 [ Ada) Y- P (o, ) <7l >0, om0 (13.63)
r=0

PROOF  The result (i) is straightforward to check from the existence of cycles in
Section 5.4.3, together with the fact that the chain restricted to each cyclic set is
aperiodic and positive Harris on the d-skeleton. We then have (ii) as a direct corollary
of the decomposition of Theorem 9.1.5. O

Finally, let us complete the circle by showing the last step in the equivalences
in Theorem 13.0.1. Notice that (13.64) is ensured by (13.1), using the Dominated
Convergence Theorem, so that our next result is in fact marginally stronger than the
corresponding statement of the Aperiodic Ergodic Theorem.

Theorem 13.3.5 Let & be y-irreducible and aperiodic, and suppose that there exists
some v-small set C € BT(X) and some P>®(C) > 0 such that as n — oo

/C ve(dz)(P" (z,C) — P¥(C)) — 0 (13.64)

where vo(-) = v(-)/v(C) is normalized to a probability on C. Then the chain is
positive, and there exists a Y-null set such that for every initial distribution X with

A(N) = 0
I /)\(dx)P"(a:, Jen| >0, n— oo (13.65)

ProOF  Using the Nummelin splitting via the set C' for the m-skeleton, we find
that (13.64) taken through the sublattice nm is equivalent to

s (P (&, &) — 6P™®(C)) — 0. (13.66)

Thus the atom & is ergodic and the results of Section 13.3 all hold, with P*®(C) =
(C). 0
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13.4 Sums of transition probabilities

13.4.1 A stronger coupling theorem

In order to derive bounds such as those in (13.5) on the sums of n-step total variation
differences from the invariant measure 7, we need to bound sums of terms such as
|P"(ex, @) — m(ex)| rather than the individual terms. This again requires a renewal
theory result, which we prove using the coupling method. We have

Proposition 13.4.1 Suppose that a,b,p are proper distributions on Z ., and that u
is the renewal function corresponding to p. Then provided p is aperiodic and has a
finite mean my, and a,b also have finite means mg, my, we have

im*“(n)—b*U(n)l < oo. (13.67)
n=0

PrROOF  We have from (13.33) that

i la*u(n)—bxu(n) < i P(Typ > n) = E[Typ). (13.68)
n=0 n=0

Now we know from Section 10.3.1 that when p is aperiodic and m, < oo, the linked
forward recurrence time chain V* is positive recurrent with invariant probability

e*(1,5) = e(i)e()-
Hence from any state (7,j) with e*(4,5) > 0 we have as in Proposition 11.1.1
Em-[ﬁ,l] < 00. (1369)

Let us consider specifically the initial distributions §y and d;: these correspond to
the undelayed renewal process and the process delayed by exactly one time unit
respectively. For this choice of initial distribution we have for n > 0

do*xu(n) = u(n)
0*xu(n) = uln-—1)

Now E[To1] < Ei[mi,1] + 1 and it is certainly the case that e*(1,2) > 0. So from
(13.30), (13.68) and (13.69)

Var (u) := Y _ |u(n) — u(n — 1)] < Eqgri;1] + 1 < oo. (13.70)
n=0

We now need to extend the result to more general initial distributions with finite
mean. By the triangle inequality it suffices to consider only one arbitrary initial
distribution a and to take the other as dy. To bound the resulting quantity |a*u (n) —
u(n)| we write the upper tails of a for k > 0 as

o

ak):= Y. a() =1-3a(j)

j=k+1 j=0
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and put

We then have the relation

dew(n) = 3 a(wm - )

(V4
ey
|

M-
N
Ny
=
=
—~
3
|
o
~—
|
e
—~
3
|
o
|
—
=

7=0 k=0
= Y [u(n—j) —u(n—j —1)]
j=0

7=0k=0
= Ju(n) =Y a(k) Y [u(n - j) —u(n—j-1)|
k=0 j=k
= |u(n) — Z a(k)u(n — k)| (13.71)
k=0

so that

Z lu(n) —a*xu(n)| < ZE xw(n) = [Z E(n)][z w(n)]. (13.72)

n n

But by assumption the mean m, = > a(n) is finite, and (13.70) shows that the
sequence w(n) is also summable; and so we have

Z lu(n) —a*u(n)| < mgVar (u) < 0o (13.73)
n
as required. O
It is obviously of considerable interest to know under what conditions we have
Z|a*u(n) —m;l\ < 00; (13.74)
n

that is, when this result holds with the equilibrium measure as one of the initial
measures.

Using Proposition 13.4.1 we know that this will occur if the equilibrium distri-
bution e has a finite mean; and since we know the exact structure of e it is obvious
that m. < oo if and only if

Spi= Zn2p(n) < 0.
n
In fact, using the exact form
Me = [sp — myp]/[2my]

we have from Proposition 13.4.1 and in particular the bound (13.72) the following
pleasing corollary:

Proposition 13.4.2 If p is an aperiodic distribution with s, < oo then
> |u(n) — m1;1| < Var (u)[sp — mp/[2my] < oo. (13.75)
n
O
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13.4.2 General chains with atoms

We now refine the ergodic theorem Theorem 13.3.3 to give conditions under which

sums such as -
> Pz, -) = Py, )l
n=1

are finite. A result such as this requires regularity of the initial states z, y: recall from
Chapter 11 that a probability measure p on B(X) is called regular, if

EulmB] < oo, B € BT(X).

We will again follow the route of first considering chains with an atom, then trans-
lating the results to strongly aperiodic and thence to general chains.

Theorem 13.4.3 Suppose P is an aperiodic positive Harris chain and suppose that
the chain admits an atom o € BT(X). Then for any regular initial distributions \, u,

Adz)u(dy)||P™(z, -) — P™(y, - 00; 13.76
> [ [ Mm@l ) - P, )l < (13.76)

and in particular, if @ is reqular, then for every x,y € X

S IPM @, )~ P, ) < o (1377

PROOF By the triangle inequality it will suffice to prove that
o
> [r@P @, ) - P, ) < oo (13.78)
n=1

that is, to assume that one of the initial distributions is d,.

If we sum the first Regenerative Decomposition (13.47) in Theorem 13.2.5 with
f <1 we find (13.78) is bounded by two sums: firstly,

o0
S / Mdz)oP"(3,X) = Eilral (13.79)
which is finite since A is regular; and secondly

Z//\ (dz)|ag *u(n) — u(n }{ZQP"OLX} (13.80)

To bound this term note that Y>>, ,P" (e, X) = E4[7,] < 00 since every accessible
atom is regular from Theorems 11.1.4 and 11.1.2; and so it remains only to prove that

i /A(dﬂf)laz *u(n) — u(n)| < oc. (13.81)

From (13.72) we have

i|a$*u(n)—u(n)| < (i )(i —un—1)|)
n=1 n=1 n=1

= Eg[ra]Var (u),

and hence the sum (13.81) is bounded by Ex[7q|Var (u), which is again finite by
Proposition 13.4.1 and regularity of A. ad
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13.4.3 General aperiodic chains

The move from the atomic case is by now familiar.

Theorem 13.4.4 Suppose P is an aperiodic positive Harris chain. For any regular
initial distributions \, p

> [ [ Mamu@n), ) - P, )l < . (1382

ProoOrF  Consider the strongly aperiodic case. The theorem is valid for the split
chain, since the split measures \*, u* are regular for &: this follows from the charac-
terization in Theorem 11.3.12.

Since the result is a total variation result it remains valid when restricted to the
original chain, as in (13.58).

In the arbitrary aperiodic case we can apply Proposition 13.3.2 to move to a
skeleton chain, as in the proof of Theorem 13.2.5. O

The most interesting special case of this result is given in the following theorem.

Theorem 13.4.5 Suppose P is an aperiodic positive Harris chain and that o is an
accessible atom. If

Eo[72] < 00 (13.83)
then for any regular initial distribution A
S TIAP™ — 7| < cc. (13.84)
n=1
O

PROOF In the case where there is an atom « in the space, we have as in Propo-
sition 13.4.2 that 7 is a regular measure when the second-order moment (13.83) is
finite, and the result is then a consequence of Theorem 13.4.4.

13.5 Commentary

It is hard to know where to start in describing contributions to these theorems. The
countable chain case has an immaculate pedigree: Kolmogorov [139] first proved this
result, and Feller [76] and Chung [49] give refined approaches to the single-state
version (13.6), essentially through analytic proofs of the lattice renewal theorem.

The general state space results in the positive recurrent case are largely due to
Harris [95] and to Orey [207]. Their results and related material, including a null
recurrent version in Section 18.1 below are all discussed in a most readable way in
Orey’s monograph [208]. Prior to the development of the splitting technique, proofs
utilized the concept of the tail o-field of the chain, which we have not discussed so
far, and will only touch on in Chapter 17.

The coupling proofs are much more recent, although they are usually dated to
Doeblin [66]. Pitman [215] first exploited the positive recurrent coupling in the way
we give it here, and his use of the result in Proposition 13.4.1 was even then new, as
was Theorem 13.4.4.
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Our presentation of this material has relied heavily on Nummelin [202], and
further related results can be found in his Chapter 6. In particular, for results of this
kind in a more general setting where the renewal sequence is allowed to vary from the
probabilistic structure with >, p(n) = 1 which we have used, the reader is referred
to Chapters 4 and 6 of [202].

It is interesting to note that the first-entrance last-exit decomposition, which
shows so clearly the role of the single ergodic atom, is a relative late-comer on the
scene. Although probably used elsewhere, it surfaces in the form given here in Num-
melin [200] and Nummelin and Tweedie [206], and appears to be less than well known
even in the countable state space case. Certainly, the proof of ergodicity is much sim-
plified by using the Regenerative Decomposition.

We should note, for the reader who is yet again trying to keep stability nomencla-
ture straight, that even the “ergodicity” terminology we use here is not quite standard:
for example, Chung [49] uses the word ergodic to describe certain ratio limit theorems
rather than the simple limit theorem of (13.8). We do not treat ratio limit theorems in
this book, except in passing in Chapter 17: it is a notable omission, but one dictated
by the lack of interesting examples in our areas of application. Hence no confusion
should arise, and our ergodic chains certainly coincide with those of Feller [76], Num-
melin [202] and Revuz [223]. The latter two books also have excellent treatments of
ratio limit theorems.

We have no examples in this chapter. This is deliberate. We have shown in Chap-
ter 11 how to classify specific models as positive recurrent using drift conditions: we
can say little else here other than that we now know that such models converge in
the relatively strong total variation norm to their stationary distributions. Over the
course of the next three chapters, we will however show that other much stronger
ergodic properties hold under other more restrictive drift conditions; and most of
the models in which we have been interested will fall into these more strongly stable
categories.



