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Invariance and Tightness

In one of our heuristic descriptions of stability, in Section 1.3, we outlined a picture
of a chain settling down to a stable regime independent of its initial starting point:
we will show in Part III that positive Harris chains do precisely this, and one role of
7 is to describe the final stochastic regime of the chain, as we have seen.

It is equally possible to approach the problem from the other end: if we have a
limiting measure for P, then it may well generate a stationary measure for the chain.
We saw this described briefly in (10.5): and our main goal now is to consider chains
on topological spaces which do not necessarily enjoy the property of 1-irreducibility,
and to show how we can construct invariant measures for such chains through such
limiting arguments, rather than through regenerative and splitting techniques.

We will develop the consequences of the following slightly extended form of bound-
edness in probability, introduced in Chapter 6.

Tightness and Boundedness in Probability on Average

A sequence of probabilities {uy : k € Z .} is called tight if for each € > 0,
there exists a compact subset C' C X such that

lim inf ux(C) > 1 —e. (12.1)
k—o00
The chain ¢ will be called bounded in probability on average if for each

initial condition = € X the sequence {P(z, -) : k € Z} is tight, where
we define

Py(z, -) ::%ZPi(m, 0. (12.2)

We have the following highlights of the consequences of these definitions.
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Theorem 12.0.1 (i) If @ is a weak Feller chain which is bounded in probability on
average then there exists at least one invariant probability measure.

(ii) If @ is an e-chain which is bounded in probability on average, then there exists a
weak Feller transition function IT such that for each x the measure II(z, -) is
invariant, and

P,(z,f) = H(z, f), as n — oo,

for all bounded continuous functions f, and all initial conditions © € X.

PrOOF  We prove (i) in Theorem 12.1.2, together with a number of consequents for
weak Feller chains. The proof of (ii) essentially occupies Section 12.4, and is concluded
in Theorem 12.4.1. O
We will see that for Feller chains, and even more powerfully for e-chains, this
approach based upon tightness and weak convergence of probability measures provides
a quite different method for constructing an invariant probability measure. This is
exemplified by the linear model construction which we have seen in Section 10.5.4.
From such constructions we will show in Section 12.4 that (V2) implies a form of
positivity for a Feller chain. In particular, for e-chains, if (V2) holds for a compact set
C and an everywhere finite function V then the chain is bounded in probability on
average, so that there is a collection of invariant measures as in Theorem 12.0.1 (ii).
In this chapter we also develop a class of kernels, introduced by Neveu in [196],
which extend the definition of the kernels U 4. This involves extending the definition of
a stopping time to randomized stopping times. These operators have very considerable
intuitive appeal and demonstrate one way in which the results of Section 10.4 can be
applied to non-irreducible chains.
Using this approach, we will also show that (V1) gives a criterion for the existence
of a o-finite invariant measure for a Feller chain.

12.1 Chains bounded in probability

12.1.1 Weak and vague convergence

It is easy to see that for any chain, being bounded in probability on average is a
stronger condition than being non-evanescent.

Proposition 12.1.1 If & is bounded in probability on average then it is non-

evanescent.

Proor  We obviously have
[e.e]
P{ 12; € O)} > P"(x,0); (12.3)
j=n
if @ is evanescent then for some x there is an ¢ > 0 such that for every compact C,
o0
lim sup P { | 1(®; € C)} < 1-¢
n—o00 j=n

and so the chain is not bounded in probability on average. ad
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The consequences of an assumption of tightness are well-known (see Billingsley
[24]): essentially, tightness ensures that we can take weak limits (possibly through a
subsequence) of the distributions {Pg(z, -) : k € Z} and the limit will then be a
probability measure. In many instances we may apply Fatou’s Lemma to prove that
this limit is subinvariant for €; and since it is a probability measure it is in fact
invariant.

We will then have, typically, that the convergence to the stationary measure
(when it occurs) is in the weak topology on the space of all probability measures on
B(X) as defined in Section D.5.

12.1.2 Feller chains and invariant probability measures

For weak Feller chains, boundedness in probability gives an effective approach to
finding an invariant measure for the chain, even without irreducibility.

We begin with a general existence result which gives necessary and sufficient
conditions for the existence of an invariant probability. From this we will find that
the test function approach developed in Chapter 11 may be applied again, this time
to establish the existence of an invariant probability measure for a Feller Markov
chain.

Recall that the geometrically sampled Markov transition function, or resolvent,
K,, is defined for e < 1 as K, = (1 —¢) 3,32, P*

Theorem 12.1.2 Suppose that D is a Feller Markov chain. Then

(1) If an invariant probability does not exist then for any compact set C C X,

Py(z,C) — 0 asm — 0o (12.4)
K, (z,C) — 0 aseT1 (12.5)

uniformly in ¢ € X.

(ii) If @ is bounded in probability on average then it admits at least one invariant
probability.

PrROOF  We prove only (12.4), since the proof of (12.5) is essentially identical. The
proof is by contradiction: we assume that no invariant probability exists, and that
(12.4) does not hold.
Fix f € C.(X) such that f > 0, and fix § > 0. Define the open sets {Ay : k € Z}
by
Ay ={zeX:Ppf >4},

If (12.4) does not hold then for some such f there exists 6 > 0 and a subsequence
{N;:i€Z} of Z, with Ay, # 0 for all i. Let z; € Ay, for each i, and define

i =Py, (zi, +)

We see from Proposition D.5.6 that the set of sub-probabilities is sequentially compact
with respect to vague convergence. Let Ao, be any vague limit point: A, 5 Ao for
some subsequence {n; : i € Z} of Z. The sub-probability As # 0 because, by the
definition of vague convergence, and since z; € Ay;,
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\Y

/fd)\oo > liminf [ fd\;
1—00

1—00

> §>0. (12.6)

But now A\ is a non-trivial invariant measure. For, letting g € C.(X) satisfy g > 0,
we have by continuity of Pg and (D.6),

fgd)\oo = limz'—mo ?N"i (xm,g)

hmi—)oo[?Nni (Tn;r9) + Ni_l(PNni+1($nwg) — Pg)]
lim; o0 FN’M; (zp,, Pg)

J(Pg) dAco

(12.7)

AVANT

By regularity of finite measures on B(X) (cf Theorem D.3.2) this implies that Ao, >
Ao P, which is only possible if Ao = Moo P- Since we have assumed that no invariant
probability exists it follows that Ao = 0, which contradicts (12.6). Thus we have that
Ay = 0 for sufficiently large k.

To prove (ii), let @ be bounded in probability on average. Since we can find € > 0,
z € X and a compact set C such that P’ (z,C) > 1 — ¢ for all sufficiently large j by
definition, (12.4) fails and so the chain admits an invariant probability. O

The following corollary easily follows: notice that the condition (12.8) is weaker
than the obvious condition of Lemma D.5.3 for boundedness in probability on average.

Proposition 12.1.3 Suppose that the Markov chain @ has the Feller property, and
that a norm-like function V exists such that for some initial condition € X,

lim inf E; [V (Pr)] < oo. (12.8)
k—o0
Then an invariant probability exists. O

These results require minimal assumptions on the chain. They do have two draw-
backs in practice.

Firstly, there is no guarantee that the invariant probability is unique. Cur-
rently, known conditions for uniqueness involve the assumption that the chain is
9-irreducible. This immediately puts us in the domain of Chapter 10, and if the mea-
sure 1 has an open set in its support, then in fact we have the full T-chain structure
immediately available, and so we would avoid the weak convergence route.

Secondly, and essentially as a consequence of the lack of uniqueness of the invari-
ant measure 7, we do not generally have guaranteed that

P"(z,-) 5 m.
However, we do have the result

Proposition 12.1.4 Suppose that the Markov chain @ has the Feller property, and
is bounded in probability on average.
If the invariant measure ™ is unique then for every x

Py(z, ) 5 . (12.9)
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PROOF  Since for every subsequence {ny} the set of probabilities {P,, (z, -)} is se-
quentially compact in the weak topology, then as in the proof of Theorem 12.1.2, from
boundedness in probability we have that there is a further subsequence converging
weakly to a non-trivial limit which is invariant for P. Since all these limits coincide
by the uniqueness assumption on 7 we must have (12.9). ad

Recall that in Proposition 6.4.2 we came to a similar conclusion. In that result,
convergence of the distributions to a unique invariant probability, in a manner similar
to (12.9), is given as a condition under which a Feller chain @ is an e-chain.

12.2 Generalized sampling and invariant measures

In this section we generalize the idea of sampled chains in order to develop another
approach to the existence of invariant measures for @. This relies on an identity called
the resolvent equation for the kernels Ug, B € B(X). The idea of the generalized
resolvent identity is taken from the theory of continuous time processes, and we shall
see that even in discrete time it unifies several concepts which we have used already,
and which we shall use in this chapter to give a different construction method for o-
finite invariant measures for a Feller chain, even without boundedness in probability.

To state the resolvent equation in full generality we introduce randomized first
entrance times. These include as special cases the ordinary first entrance time 74, and
also random times which are completely independent of the process: the former have
of course been used extensively in results such as the identification of the structure
of the unique invariant measure for 1-irreducible chains, whilst the latter give us the
sampled chains with kernel K,_.

The more general version involves a function A which will usually be continuous
with compact support when the chain is on a topological space, although it need not
always be so.

Let 0 < h < 1 be a function on X. The random time 7, which we associate
with the function h will have the property that Py{7;, > 1} = 1, and for any initial
condition x € X and any time k > 1,

Po{mh =k | 1h > k, F2} = h(Py)- (12.10)

A probabilistic interpretation of this equation is that at each time k > 1 a weighted
coin is flipped with the probability of heads equal to h(®y). At the first instance k
that a head is finally achieved we set 7, = k. Hence we must have, for any k£ > 1,

k-1

Pe{mn =k | Fo} = T[(1 = h(®:)h(®y) (12.11)
=1

Pefrh > k| Fiob = kﬂl(l — h(®;)) (12.12)

i=1

where the product is interpreted as one when k = 1.

For example, if h = 1 then we see that 7, = 7. If h = %]lB then a fair coin is
flipped on each visit to B, so that &,, € B, but with probability one half, the random
time 7, will be greater then 7p.
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Note that this is very similar to the Athreya-Ney randomized stopping time
construction of an atom, mentioned in Section 5.1.3.

By enlarging the probability space on which @ is defined, and adjoining an i.i.d.
process Y = {Y;,k € Z.} to @, we now show that we can explicitly construct the
random time 73, so that it is an ordinary stopping time for the bivariate chain

Suppose that Y is i.i.d. and independent of @, and that each Y, has distribution
u, where u denotes the uniform distribution on [0,1]. Then for any sets A € B(X),
B € B([0,1]),
P{¥1 € Ax B| ®Py=12z,Yy =u} = P(z,A)u(B)
With this transition probability, & is a Markov chain whose state space is equal to
Y =X x[0,1].
Let A, € B(Y) denote the set

Ap = {(z,u) € Y : h(z) > u}

and define the random time 75, = min(k > 1: ¥;, € Ap). Then 7, is a stopping time
for the bivariate chain.

We see at once from the definition and the fact that Yj is independent of
(®,Y1,...,Y; 1) that 7, satisfies (12.10). For given any k > 1,

Po{mn=k|m >k Fot = Pu{h(®) > Yy |7 >k Fo}
= P{h(®y) > Yy | F2}
= h’(ék),

where in the second equality we used the fact that the event {7, > k} is measurable
with respect to {®,Y1,...,Y;_1}, and in the final equality we used independence of
Y and &.

Now define the kernel Uy, on X x B(X) by

Un(z,B) = E, [zh: ]13(45,9)}. (12.13)
k=1

where the expectation is understood to be on the enlarged probability space. We have

Up(z,B) = i Ez[1p(Pk)1{7 > k}]
k=1

and hence from (12.12)

Up(z,B) = i P(I,_,P)* (z,B) (12.14)
k=0

where I;_j, denotes the kernel which gives multiplication by 1—h. This final expression
for U}, defines this kernel independently of the bivariate chain.
In the special cases h =0, h = 1g, and h = 1 we have, respectively,
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Up =1, Un =Us, Up=P
When h = % so that 73, is completely independent of ¢ we have

o
Uy = Z(%)k_lpk = Koy -
k=1

2

For general functions h, the expression (12.14) defining U} involves only the tran-
sition function P for @ and hence allows us to drop the bivariate chain if we are
only interested in properties of the kernel U. However the existence of the bivariate
chain and the construction of 75, allows a transparent proof of the following resolvent
equation.

Theorem 12.2.1 (Resolvent Equation) Let h <1 and g <1 be two functions on
X with h > g. Then the resolvent equation holds:

Uy =Up + Uplp_gUy = Up + Uglp_gUy,.

ProOOF  To prove the theorem we will consider the bivariate chain ¥. We will see
that the resolvent equation formalizes several relationships between the stopping times
74 and 75, for ¥. Note that since h > g, we have the inclusion A; C Aj and hence
Tg = Th-

To prove the first resolvent equation we write

> (@) = Zf D) + U7y > 7} Z [ (®r)
k=1

k=1p+1

so by the strong Markov property for the process &,

Ug(z, ) = Un(z, f) + Eo[{g(Pr,) < Ur, }Uy(®Pr,, f)]- (12.15)
The latter expectation can be computed using (12.12). We have

Ez[ﬂ{g(ém) < YTh}Ug(QSTha W7, =k} | -7:?;]
= Eo[Mg(®k) < Yi}Uy(Pr, f) My = k} | FZ)
= Eo[Mg(®r) < Vi}W{h(Pr) > Vi }Uy(Pi, f)W{mn > k} | F2)
= E,[1{g(Px) < Yi < h(Py)}Uy(Dp, /)7 > k} | Foo
= [MPx) — 9(Pk)|Ug(Pk, f H[l -

Taking expectations and summing over k gives

E.[1{g(er,) < Y2, }Uy (@5, f)]
= ZE [H[l— N[b(@r) — g(@))Us (s, F)]

= ZPII W PIy_gU, (z, f).
k=0
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This together with (12.15) gives the first resolvent equation.
To prove the second, break the sum to 7, into the pieces between consecutive
visits to Ap:

Zg f(Pr) = zh: [ (D) + 29 &, € {Ap\ Ag}}Hk{Zh f(éi)}-
k=1 k=1 k=1 -1

Taking expectations gives
Ug(x,f) = Uh(‘T’ f)

+E; [kg Wo(@) < Vi < @)} (Y F@0}]. (1210

i=1

The expectation can be transformed, using the Markov property for the bivariate
chain, to give

Ew[ng o) < Ve < h@)}0H {3 1(@)]
k=1 i=1

Th

— Y E[Mo@) < Yi < h@)A(r, > K)Ew, [ 7(0)]

= =1
= Y B [[M(®) — (@) 1{ry > K}UA(Dy, f)]

k=1
= UgIh—gUh

which together with (12.16) proves the second resolvent equation. a
When 71y, is a.s. finite for each initial condition the kernel P;, defined as

Py(z, A) = UpIy (z, A)
is a Markov transition function. This follows from (12.11), which shows that

k-1

Ex [ T (1 - h(@:)h(@s)]

i=1

M8

Py(z,X) = Up(z,h) =

B
Il
—_

I
M8

P {m = k} (12.17)

>
Il
—

and hence Py(z,X) = 1if P{7), < 00} = 1.

It is natural to seek conditions which will ensure that 75 is finite, since this is
of course analogous to the concept of Harris recurrence, and indeed identical to it
for h = 1. The following result answers this question as completely as we will find
necessary.

Define L(z,h) = Up(z,h) and Q(z,h) = P{> =i h(Px) = co}. Theorem 12.2.2
now shows that these functions are extensions of the the functions L and ) which we
have used extensively: in the special case where h = 1 for some B € B(X) we have
Q(z,15) = Q(z, B) and L(z,1p) = L(z, B).

Theorem 12.2.2 For any z € X and function 0 < h <1,
(i) Px{!lv/]c S Ah 10} = Q(.Q?, h),
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(ii) Py{7n < o0} = L(z,h), and hence L(z,h) > Q(z,h);

(iii) If for some e < 1 the function h satisfies h(z) < € for all z € X then L(z,h) =1
if and only if Q(z,h) = 1.

Proor (i) We have from the definition of A,
Po{0y € Ay, i0.| F2} =Pp{Yy < h(®;) io.|FL}.

Conditioned on F2 the events {Y; < h(®;)}, k¥ > 1, are mutually independent.
Hence by the Borel-Cantelli Lemma,

Po{Zs € Ay io.| F2} = 1> Pe{¥i < (&) | FL} = oo},
k=1

Since P{Yy < h(®Pk) | FL} = h(®y), taking expectations of each side of this identity
completes the proof of (i).

(ii) This follows directly from the definitions and (12.17).

(iii)  Suppose that h(z) < e for all z, and suppose that Q(z,h) < 1 for some
z. We will show that L(z,h) < 1 also.

If this is the case then by (i), for some N < oo and § > 0,

Pe{ ¥ € Af for allk > N} = 4.
But then by the fact that Y is i.i.d. and independent of @,

1—-L(z,h) > P{¥,€Afforallk>N,and Y, >cforallk <N}
Pe{ ¥ € A, for all k > N}P{ Y, > e forallk < N}
= §1-¢e)V>o.

O
We now present an application of Theorem 12.2.2 which gives another represen-
tation for an invariant measure, extending the development of Section 10.4.2.

Theorem 12.2.3 Suppose that 0 < h < 1 with Q(z,h) =1 for all z € X.

(1) If p is any o-finite subinvariant measure then p is invariant, and has the repre-
sentation

p(A4) = [ wlda) (@)U (. A)
(ii) If v is a finite measure satisfying, for some A € B(X),
v(B) = vULIL(B), BCA
then the measure p := vUy, is invariant for @. The sets
C.={z: Ka% (z,h) > ¢}

cover X and have finite y-measure for every € > 0.



12.3 The existence of a o-finite invariant measure 299

PrROOF  We prove (i) by considering the bivariate chain &. The set A, C Y is Harris
recurrent and in fact P,{® € A, i.0.} =1 for all z € X by Theorem 12.2.2. Now
define the measure 77 on Y by

(A x B) = u(Ayu(B), A€ B(X), BeB(0,1). (12.18)

Obviously 7 is an invariant measure for ¥ and hence by Theorem 10.4.7,
pA) =EAX[0,1) = [ pldau(dy)Un(z, A)
(Iyy)eAh

_ / p(da)h(z)Up (z, A)

which is the first result.
To prove (ii) first extend v to B(Y) as p was extended in (12.18) to obtain a
measure 7 on B(Y). Now apply Theorem 10.4.7. The measure i’ defined as

(A x B) = Eg[i 1{% € A x B}]
k=1

is invariant for ¥, and since the distribution of @ is the marginal distribution of ¥,
the measure p defined for A € B(X) by u(A) :=n'(4 x [0,1]), A € B(X), is invariant
for @.

We now demonstrate that y is o-finite. From the assumptions of the theorem and
Theorem 12.2.2 (ii) the sets C. cover X. We have from the representation of p,

v(X) = p(h) = NKa% (h) > eu(C:)

Hence for all € we have the bound u(C;) < p(h)/e < oo, which completes the proof

of (ii). 0

12.3 The existence of a o-finite invariant measure

12.3.1 The smoothed chain on a compact set

Here we shall give a weak sufficient condition for the existence of a o-finite invariant
measure for a Feller chain. This provides an analogue of the results in Chapter 10
for recurrent chains. The construction we use mimics the construction mentioned
in Section 10.4.2: here, though, a function on a compact set plays the part of the
petite set A used in the construction of the “process on A”, and the fact that there
is an invariant measure to play the part of the measure v in Theorem 10.4.8 is an
application of Theorem 12.1.2.

These results will again lead to a test function approach to establishing the exis-
tence of an invariant measure for a Feller chain, even without -irreducibility.

We will, however, assume that some one compact set C satisfies a strong form of
Harris recurrence: that is, that there exists a compact set C' C X with

L(z,C) = P,{® enters C} =1, z € X. (12.19)

Observe that by Proposition 9.1.1, (12.19) implies that & visits C infinitely often
from each initial condition, and hence & is at least non-evanescent.
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To construct an invariant measure we essentially consider the chain $¢ obtained
by sampling @ at consecutive visits to the compact set C'. Suppose that the resulting
sampled chain on C' had the Feller property. In this case, since the sampled chain
evolves on the compact set C, we could deduce from Theorem 12.1.2 that an invariant
probability existed for the sampled chain, and we would then need only a few further
steps for an existence proof for the original chain &.

However, the transition function P¢ for the sampled chain is given by

oo

Pc =Y (Plc)fPIc = Uclc
k=0

which does not have the Feller property in general. To proceed, we must “smooth
around the edges of the compact set C”. The kernels P, introduced in the previous
section allow us to do just that.

Let N and O be open subsets of X with compact closure for which C C O C O C
N, where C satisfies (12.19) and let 2: X — IR be a continuous function such as

_ d(z, N°)
M) = 3N 1 d@.0)
for which
lIo(z) < h(z) < Iy (z). (12.20)

The kernel P, := UpJj, is a Markov transition function since by (12.19) we have that
Q(z,h) = 1. Since Py(z,N) =1 for all z € X, we will immediately have an invariant
measure for P, by Theorem 12.1.2 if P, has the weak Feller property.

Proposition 12.3.1 Suppose that the transition function P is weak Feller. If 0 <
h <1 is continuous and if Q(z,h) = 1, then Py is also weak Feller.

PrROOF By the Feller property, the kernel (PI;_;)"PI}, preserves positive lower
semicontinuous functions. Hence if f is positive and lower semicontinuous, then

Pof = (PIi_p)"PInf
k=0

is lower semicontinuous, being the increasing limit of a sequence of lower semicontin-
uous functions.

Suppose now that f is bounded and continuous, and choose a constant L so large
that L 4+ f and L — f are both positive. Then the functions

L+f L-f B(L+f) FB(L-))

are all positive and lower semicontinuous, from which it follows that P, f is continuous.
Hence P, is weak Feller as required. O
We now prove using the generalized resolvent operators

Theorem 12.3.2 If & is Feller and (12.19) is satisfied then there exists at least one
invariant measure which is finite on compact sets.
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PrROOF  From Theorem 12.1.2 an invariant probability v exists which is invariant
for P, = Uply. Hence from Theorem 12.2.3, the measure y = vUj is invariant for
@ and is finite on the sets {z : Ka1 (z,h) > €}. Since Ka1 (z,h) is a continuous

function of z, and is strictly positive everywhere by (12.19), 1t follows that y is finite
on compact sets. O

12.3.2 Drift criteria for the existence of invariant measures

We conclude this section by proving that the test function which implies Harris recur-
rence or regularity for a 1)-irreducible T-chain may also be used to prove the existence
of o-finite invariant measures or invariant probability measures for Feller chains.

Theorem 12.3.3 Suppose that ¥ is Feller and that (V1) is satisfied with a compact
set C C X. Then an invariant measure exists which is finite on compact subsets of X.

Proor If L(z,C) =1 for all z € X, then the proof follows from Theorem 12.3.2.
Consider now the only other possibility, where L(z,C) # 1 for some z. In this
case the adapted process {V(®x)1{rc > k}, F} is a convergent supermartingale, as
in the proof of Theorem 9.4.1, and since by assumption P,{7¢ = co} > 0, this shows
that
P;{lim sup V(&) < o0} > 1 — L(z,C) > 0.

k—o0
By Theorem 12.1.2, it follows that an invariant probability exists, and this completes
the proof. 0O
Finally we prove that in the weak Feller case, the drift condition (V2) again
provides a criterion for the existence of an invariant probability measure.

Theorem 12.3.4 Suppose that the chain P is weak Feller. If (V2) is satisfied with
a compact set C and a positive function V which is finite at one o € X then an
invariant probability measure 7 exists.

PROOF  Iterating (V2) n times gives

—Zl< V(iL‘() +b ZP (29, C).
k 0 k 0

Letting n — oo we see that

1
lim inf — Y~ P¥( - 12.21
i lnf Z (20,€) 2 (12.21)
Theorem 12.3.4 then follows directly from Theorem 12.1.2 (i). O

12.4 Invariant Measures for e-Chains

12.4.1 Existence of an invariant measure for e-chains

Up to now we have shown under very mild conditions that an invariant probability
measure exists for a Feller chain, based largely on arguments using weak convergence
of P".
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As we have seen, such weak limits will depend in general on the value of = chosen,
unless as in Proposition 12.1.4 there is a unique invariant measure. In this section we
will explore the properties of the collection of such limiting measures.

Suppose that the chain is weak Feller and we can prove that a Markov transition
function IT exists which is itself weak Feller, such that for any f € C(X),

Jim Prf(z)=1If(z), =z€EX (12.22)

In this case, it follows as in Proposition 6.4.2 from Ascoli’s Theorem D.4.2 that
{P*f : k € Z.} is equicontinuous on compact subsets of X whenever f € C(X), and
S0 it is necessary that the chain & be an e-chain, in the sense of Section 6.4, whenever
we have convergence in the sense of (12.22).

The key to analyzing e-chains lies in the following result:

Theorem 12.4.1 Suppose that ¥ is an e-chain. Then

(ii) There ezists a substochastic kernel II such that

Pi(z, ) - IH(z,-) as k — oo (12.23)
K, (z,-) — I(z,-) aseT1 (12.24)

for all x € X.
(ii) For each j, k, £ € Z we have
PITkpt =11, (12.25)
and hence for all x € X the measure II(z, -) is invariant with II(z,X) < 1.

(iii) The Markov chain is bounded in probability on average if and only if II (z,X) =1
for all x € X.

PrOOF  We prove the result (12.23), the proof of (12.24) being similar. Let {f,} C
Cc(X) denote a fixed dense subset. By Ascoli’s theorem and a diagonal subsequence
argument, there exists a subsequence {k;} of Z, and functions {g,} C C(X) such
that

Zl_lfg Py, fn (z) = gn(2) (12.26)
uniformly for z in compact subsets of X for each n € Z . The set of all subprobabilities
on B(X) is sequentially compact with respect to vague convergence, and any vague
limit v of the probabilities Py, (z, - ) must satisfy [ f, dv = g,(z) for alln € Z.. Since
the functions { f,} are dense in C.(X), this shows that for each z there is exactly one
vague limit point, and hence a kernel II exists for which

Py, (7, ) = I(z, +) as i — 00
for each z € X.

Observe that by equicontinuity, the function I f is continuous for every function
f € C.(X). Tt follows that ITf is positive and lower semicontinuous whenever f has
these properties.

By the Dominated Convergence Theorem we have for all k,5 € Z,,
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PiT* = 1I.
Next we show that ITP = II, and hence that
Ikpi =11, k,jeZ,.

Let f € C.(X) be a continuous positive function with compact support. Then, since
the function Pf is also positive and continuous, (D.6) implies that

I(Pf) < liminfPy(Pf)
= IIf,

which shows that ITP = II.

We now show that (12.23) holds. Suppose that Py does not converge vaguely to
II. Then there exists a different subsequence {m;} of Z,, and a distinct kernel I’
such that

Py, = I'(z, -), Jj — oo.

However, for each positive function f € C.(X),

nf = limII ij f
j—oo
= IIIT'f by the Dominated Convergence Theorem
< lim inf Py, IT'f since IT' f is continuous and positive
1— 00
= II'f.

Hence by symmetry, IT' = II, and this completes the proof of (i) and (ii).
The result (iii) follows from (i) and Proposition D.5.6. ]

12.4.2 Hitting time and drift criteria for stability of e-chains

We now consider the stability of e-chains. First we show in Theorem 12.4.3 that if
the chain hits a fixed compact subset of X with probability one from each initial
condition, and if this compact set is positive in a well defined way, then the chain is
bounded in probability on average. This is an analogue of the rather more powerful
regularity results in Chapter 11.

This result is then applied to obtain a drift criterion for boundedness in proba-
bility using (V2).

To characterize boundedness in probability we use the following weak analogue of
Kac’s Theorem 10.2.2, connecting positivity of K,_(z,C) with finiteness of the mean
return time to C.

Proposition 12.4.2 For any compact set C C X

lim inf K,_(z,C) > (sup Ey[TC])_l, z € C.
ETl yec
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PROOF  For the first entrance time 7¢ to the compact set C, let 87¢ denote the
1c-fold shift on sample space, defined so that 67¢ f(®y) = f(Py,) for any function
f on X.

Fix z € C, 0 < € < 1, and observe that by conditioning at time 7¢ and using the
strong Markov property we have for z € C,

K, (z,C) = (1- E)Em[i ef1{d; € C}|

k=0

= (- oE [+ Y e g a, € C)
k=0

= 1-¢e)+(1—-¢)E; [ETC Es,,, [i ef1{®;, € C}H
k=0
> (1—¢)+Eg[e™] ;Iel(f; Ka.(y,0)

Taking the infimum over all z € C, we obtain

. o . o - _
inf Ko, (y,C) 2 (1 —¢) + inf By[e™] inf Ko, (y,C) (12.27)

By Jensen’s inequality we have the bound E[e7¢] > &El"cl. Hence letting Mo =
sup,cc Ez[7¢] it follows from (12.27) that for y € C,

1-¢
Ko (y,C) > 1_ Mo

Letting € 1 1 we have for each y € C,
- . 1—¢ 1
hI?T%anaE (y,C) > lslTI{l (m) = M—C
O
We saw in Theorem 12.4.1 that @ is bounded in probability on average if and only
if IT(z,X) = 1 for all z € X. Hence the following result shows that compact sets serve
as test sets for stability: if a fixed compact set is reachable from all initial conditions,

and if @ is reasonably well behaved from initial conditions on that compact set, then
@ will be bounded in probability on average.

Theorem 12.4.3 Suppose @ is an e-chain. Then

(i) max I (z,X) exists, and is equal to zero or one;
S
(ii) if mi)l(l II(z,X) exists, then it is equal to zero or one;
[AS

(iii) if there ezists a compact set C C X such that
Pm{TC<OO}:1 Tz €X

then mi)lg II(z,X) exists, and is attained on C, so that
S

inf IT(z,X) = min IT(x, X);
TeX zelC

(iv) if C C X is compact, then

—
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Proor (i) If II(z,X) > 0 for some z € X, then an invariant probability 7 exists.
In fact, we may take m = II(z, - )/II(z, X).
From the definition of II and the Dominated Convergence Theorem we have that
for any f € Cq(X),
m(f) = lim [xPy(f)] = 711(f)
which shows that m = #II. Hence 1 = n(X) = [« (dz)II(z,X). This shows that

II(y,X) =1 for a.e. y € X [r], proving (i) of the theorem.
(ii) Let p = inf ex I (z,X), and let

S, ={z e X:II(z,X) = p}.

By the assumptions of (ii), S, # 0. Letting u(-) := II(-,X), we have Pu = u, and
this implies that the set S, is absorbing. Since u is lower semicontinuous, the set S,
is also a closed subset of X.

Since S, is closed, it follows by vague convergence and (D.6) that for all = € X,

lim inf Py (z, S5) > I (x, S}),

N—oxo

and since S, is also absorbing, this shows that for all z € S,
II(z,S;) = 0. (12.28)
Suppose now that 0 < p < 1. As in the proof of (i),
m{y e X: I(y,X) =1} =1
for any invariant probability 7, and hence
II(z,S,) < H(z,{y € X: II(y,X) <1}) =0. (12.29)
Equations (12.28) and (12.29) show that for any = € S,,
p=1I(z,X)=I(z,S,) + I(z,S;) =0,

and this proves (ii).
(iii)  Since u(z) := II(z,X) is lower semicontinuous we have
inf = mi .
o) =y
That is, the infimum is attained.
Since Pu = u, the sequence {u(®),FF} is a martingale, which converges to
a random variable uy, satisfying E;[us] = u(z), z € X. By Proposition 9.1.1, the
assumption that P{7c < co} =1 implies that

P{PcCio}=1 zeX (12.30)

If &y, € C for some k € Z,, then obviously u(®x) > mingec u(z), which by (12.30)
implies that

= li ®;.) > mi .S.
Uoo ki)ngou( k)_le’élél’U,(.’L') a.s

Taking expectations shows that u(y) > mingec u(z) for all y € X, proving part (iii)
of the theorem.
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(iv) Letting M¢ = sup,cc Ez[7¢] it follows from Proposition 12.4.2 that

1

inf lim inf K, >

inf lim Inf K. (v, C) 2 372
<

This proves the result since lim sup.4 Ko, (y,C) < II(y,C) by Theorem 12.4.1. O

We have immediately

Proposition 12.4.4 Let ¢ be an e-chain, and let C C X be compact. If Py{1c <
oo} =1, z € X, and sup,cc Ez[1¢] < 00, then @ is bounded in probability on average.

PrROOF  From Theorem 12.4.3 (iii) we see that for all z,

-1
min I7(x, X) = min IT(z, X) > (SUP EI[TC]) > 0.
zeC

zeX zeC
Hence from Theorem 12.4.3 (ii) we have IT(z,X) = 1 for all € X. Theorem 12.4.1
then implies that the chain is bounded in probability on average. O

The next result shows that the drift criterion for positive recurrence for -
irreducible chains also has an impact on the class of e-chains.

Theorem 12.4.5 Let & be an e-chain, and suppose that condition (V2) holds for
a compact set C and an everywhere finite function V. Then the Markov chain @ is
bounded in probability on average.

Proor It follows from Theorem 11.3.4 that Ez[r¢] < V(z) for z € C¢, so that a
fortiori we also have L(z,C) = 1. As in the proof of Theorem 12.3.4, for any z € X,

1 & 1
I(z,X) >limsup— Y P¥(z,C)> -, zeX
n—oo TN k=0 b
From this it follows from Theorem 12.4.3 (iii) and (ii) that IT(z,X) = 1, and hence
@ is bounded in probability on average as claimed. O

12.5 Establishing boundedness in probability

Boundedness in probability is clearly the key condition needed to establish the exis-
tence of an invariant measure under a variety of continuity regimes. In this section
we illustrate the verification of boundedness in probability for some specific models.

12.5.1 Linear state space models

We show first that the conditions used in Proposition 6.3.5 to obtain irreducibility
are in fact sufficient to establish boundedness in probability for the linear state space
model. Thus with no extra conditions we are able to show that a stationary version
of this model exists.

Recall that we have already seen in Chapter 7 that the linear state space model
is an e-chain when (LSS5) holds.

Proposition 12.5.1 Consider the linear state space model defined by (LSS1) and
(LSS2). If the eigenvalue condition (LSS5) is satisfied then @ is bounded in probability.
Moreover, if the nonsingularity condition (LSS4) and the controllability condition
(LCM3) are also satisfied then the model is positive Harris.
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PROOF Let us take

o0
M:=I+) F"F,
i=1

where F'T denotes the transpose of F. If Condition (LSS5) holds then by Lemma, 6.3.4,
the matrix M is finite and positive definite with I < M, and for some o < 1

Faf2; < afal?, (12.31)

where |y|2, :=y" My for y € R".
Let m = (Z;’io Fz) G E[W1], and define

V(z)=|z—mly,  zeX (12.32)
Then it follows from (LSS1) that
V(Xp+1) = [F(Xy—m)3 +|G(Wis1 — E[Wria])|3
+(Xg —m)TFTMG(Wyy1 — E[Wii1]) (12.33)
+(Wiy1 — E[Wi 1)) TGTMF(Xy —m).
Since W11 and X}, are independent, this together with (12.31) implies that
EV (Xk41) | Xo,- -, Xi] < aV(X) + E[|G(Wi1 — E[Wkia)) 3/, (12.34)

and taking expectations of both sides gives

lim sup E[V(X})] < E[|G(Wi+1 — EWir1]) 3] < oo.

k—o0 l-«a

Since V is a norm-like function on X, Lemma D.5.3 gives a direct proof that the chain
is bounded in probability.

We note that (12.34) also ensures immediately that (V2) is satisfied. Under the
extra conditions (LSS4) and (LCM3) we have from Proposition 6.3.5 that all compact
sets are petite, and it immediately follows from Theorem 11.3.11 that the chain is
regular and hence positive Harris. O

It may be seen that stability of the linear state space model is closely tied to the
stability of the deterministic system .1 = Fxj. For each initial condition zy € IR"
of this deterministic system, the resulting trajectory {zj} satisfies the bound

|z | < Oék|£130|M

and hence is ultimately bounded in the sense of Section 11.2: in fact, in the dynamical
systems literature such a system is called globally exzponentially stable. It is precisely
this stability for the deterministic “core” of the linear state space model which allows
us to obtain boundedness in probability for the stochastic process P.

We now generalize the model (LSS1) to include random variation in the coeffi-
cients F' and G.
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12.5.2 Bilinear models

Let us next consider the scalar example where @ is the bilinear state space model on
X = 1R defined in (SBL1)-(SBL2)

X1 =0X, + Wi 1 Xi + Wi (12.35)
where W is a zero-mean disturbance process. This is related closely to the linear
model above, and the analysis is almost identical.

To obtain boundedness in probability by direct calculation, observe that

E[[ Xpt1| | Xi = 2] <E[|0 + bW a|llz] + E[[Wia]] (12.36)

Hence for every initial condition of the process,

, E[[Wk1l]
lim sup E[| X|] <
e (T
provided that
E[|0 + bWj11]] < 1. (12.37)
Since | - | is a norm-like function on X, this shows that @ is bounded in probability

provided that (12.37) is satisfied.
Again observe that in fact the bound (12.36) implies that the mean drift criterion
(V2) holds.

12.5.3 Adaptive control models

Finally we consider the adaptive control model (2.21)-(2.23).

The closed loop system described by (2.24) is a Feller Markov chain, and thus
an invariant probability exists if the distributions of the process are tight for some
initial condition. We show here that the distributions of ¢ are tight when the initial
conditions are chosen so that

Or = 0 — E[0r | Vi), and Xy =E[67 | i) (12.38)

For example, this is the case when yo = 6 = X = 0. If (12.38) holds then it follows
from (2.22) that

EY 1 | Dkl = ZiYE + o, (12.39)

This identity will be used to prove the following result:

Proposition 12.5.2 For the adaptive control model satisfying (SAC1) and (SAC2),
suppose that the process ® defined in (2.24) satisfies (12.38) and that 02 < 1. Then
we have

lim sup E[|®;]?] < oo

k—o00

so that distributions of the chain are tight, and hence ® is positive recurrent.
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PrOOF  We note first that since the sequence {X}} is bounded below and above by
Y =0,>0and ¥ =0,/(1 — a?) < oo, and the process @ clearly satisfies

2
0,

lim sup E[7] =

k—o0 1—a?

to prove the proposition it is enough to bound E[Y}%].
From (12.39) and (2.23) we have

EY2 Dkt | Vel = ZepEVE L | Vi

(12.40)
= (0’2 + C!ZO'?UEIC(ZICY]CZ + Ui)_l)(ZkYkZ + O',ZU)

= o2 (YkQZ’k) + (0,21,02 + aQUZ,Zk).

Taking total expectations of each side of (12.40), we use the condition o2 < 1 to
obtain by induction, for all k € Z,
0202 + a0’y

z

SEVZ) < EYA Se] < + o2 Y Z). (12.41)

2
1—-o02

This shows that the mean of Y2 is uniformly bounded.

Since @ has the Feller property it follows from Proposition 12.1.3 that an invariant
probability exists. Hence from Theorem 7.4.3 the chain is positive recurrent. O

In fact, we will see in Chapter 16 that not only is the process bounded in proba-
bility, but the conditional mean of Y;? converges to the steady state value E,[Y{] at a
geometric rate from every initial condition. These results require a more elaborate
stability proof.

Note that equation (12.40) does not obviously imply that there is a solution to
a drift inequality such as (V2): the conditional expectation is taken with respect to
Yk, which is strictly smaller than ]—"g .

The condition that 02 < 1 cannot be omitted in this analysis: indeed, we have
that if 02 > 1, then

E[YV] > [02)F Yy + ko? — oo

as k increases, so that the chain is unstable in a mean square sense, although it may
still be bounded in probability.

It is well worth observing that this is one of the few models which we have encoun-
tered where obtaining a drift inequality of the form (V2) is much more difficult than
merely proving boundedness in probability. This is due to the fact that the dynamics
of this model are extremely nonlinear, and so a direct stability proof is difficult. By
exploiting equation (12.39) we essentially linearize a portion of the dynamics, which
makes the stability proof rather straightforward. However the identity (12.39) only
holds for a restricted class of initial conditions, so in general we are forced to tackle
the nonlinear equations directly.
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12.6 Commentary

The key result Theorem 12.1.2 is taken from Foguel [78]. Versions of this result have
also appeared in papers by Benes [18, 19] and Stettner [256] which consider processes
in continuous time. For more results on Feller chains the reader is referred to Krengel
[141], and the references cited therein.

For an elegant operator-theoretic proof of results related to Theorem 12.3.2, see
Lin [154] and Foguel [80]. The method of proof based upon the use of the operator
P, = Uyl to obtain a o-finite invariant measure is taken from Rosenblatt [228].
Neveu in [196] promoted the use of the operators Uy, and proved the resolvent equa-
tion Theorem 12.2.1 using direct manipulations of the operators. The kernel P, is
often called the balayage operator associated with the function h (see Krengel [141]
or Revuz [223]). In the Supplement to Krengel’s text by Brunel ([141] pp. 301-309)
a development of the recurrence structure of irreducible Markov chains is developed
based upon these operators. This analysis and much of [223] exploits fully the resol-
vent equation, illustrating the power of this simple formula although because of our
emphasis on -irreducible chains and probabilistic methods, we do not address the
resolvent equation further in this book.

Obviously, as with Theorem 12.1.2, Theorem 12.3.4 can be applied to an irre-
ducible Markov chain on countable space to prove positive recurrence. It is of some
historical interest to note that Foster’s original proof of the sufficiency of (V2) for
positivity of such chains is essentially that in Theorem 12.3.4. Rather than showing in
any direct way that (V2) gives an invariant measure, Foster was able to use the count-
able space analogue of Theorem 12.1.2 (i) to deduce positivity from the “non-nullity”
of a “compact” finite set of states as in (12.21). We will discuss more general versions
of this classification of sets as positive or null further, but not until Chapter 18.

Observe that Theorem 12.3.4 only states that an invariant probability exists.
Perhaps surprisingly, it is not known whether the hypotheses of Theorem 12.3.4 imply
that the chain is bounded in probability when V is finite-valued except for e-chains
as in Theorem 12.4.5.

The theory of e-chains is still being developed, although these processes have been
the subject of several papers over the past thirty years, most notably by Jamison and
Sine [109, 112, 243, 242, 241], Rosenblatt [227], Foguel [78] and the text by Krengel
[141]. In most of the e-chain literature, however, the state space is assumed compact
so that stability is immediate. The drift criterion for boundedness in probability on
average in Theorem 12.4.5 is new. The criterion Theorem 12.3.4 for the existence of
an invariant probability for a Feller chain was first shown in Tweedie [280].

The stability analysis of the linear state space model presented here is standard.
For an early treatment see Kalman and Bertram [120], while Caines [39] contains
a modern and complete development of discrete time linear systems. Snyders [250]
treats linear models with a continuous time parameter in a manner similar to the
presentation in this book. The bilinear model has been the subject of several papers:
see for example Feigin and Tweedie [74], or the discussion in Tong [267]. The stability
of the adaptive control model was first resolved in Meyn and Caines [172], and related
stability results were described in Solo [251]. The stability proof given here is new,
and is far simpler than any previous results.



