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Drift and Regularity

Using the finiteness of the invariant measure to classify two different levels of stability
is intuitively appealing. It is simple, and it also involves a fundamental stability
requirement of many classes of models. Indeed, in time series analysis for example, a
standard starting point, rather than an end-point, is the requirement that the model
be stationary, and it follows from (10.4) that for a stationary version of a model to
exist we are in effect requiring that the structure of the model be positive recurrent.

In this chapter we consider two other descriptions of positive recurrence which
we show to be equivalent to that involving finiteness of .

The first is in terms of regular sets.

Regularity
A set C € B(X) is called regular when @ is 9-irreducible, if

sup Ez[78] < o0, B € BT (X) (11.1)
zeC

The chain @ is called regular if there is a countable cover of X by regular
sets.

We know from Theorem 10.2.1 that when there is a finite invariant measure and an
atom a € BT (X) then E,[7,] < 0o. A regular set C' € BT (X) as defined by (11.1) has
the property not only that the return times to C' itself, but indeed the mean hitting
times on any set in B*(X) are bounded from starting points in C.

We will see that there is a second, equivalent, approach in terms of conditions on
the one-step “mean drift”

AV(@) = [ Pla.dV(y) - Vie) = ElV(@) - V(@)L (112)

We have already shown in Chapter 8 and Chapter 9 that for 4-irreducible chains,
drift towards a petite set implies that the chain is recurrent or Harris recurrent, and
drift away from such a set implies that the chain is transient. The high points in this
chapter are the following much more wide ranging equivalences.
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Theorem 11.0.1 Suppose that D is a Harris recurrent chain, with invariant measure
7. Then the following three conditions are equivalent:

(1) The measure m has finite total mass;

(ii) There ezists some petite set C € B(X) and M¢ < oo such that

sup Ez[7¢] < Mc; (11.3)
zeC

(iii) There exists some petite set C and some extended valued, non-negative test
function V, which is finite for at least one state in X, satisfying

AV (z) < =1+ bl¢(z), zeX (11.4)

When (iii) holds then V is finite on an absorbing full set S and the chain restricted
to S is regular; and any sublevel set of V satisfies (11.3).

Proor  That (ii) is equivalent to (i) is shown by combining Theorem 10.4.10 with
Theorem 11.1.4, which also shows that some full absorbing set exists on which @ is
regular. The equivalence of (ii) and (iii) is in Theorem 11.3.11, whilst the identification
of the set S as the set where V is finite is in Proposition 11.3.13, where we also show
that sublevel sets of V' satisfy (11.3). O

Both of these approaches, as well as giving more insight into the structure of
positive recurrent chains, provide tools for further analysis of asymptotic properties
in Part III.

In this chapter, the equivalence of existence of solutions of the drift condition
(11.4) and the existence of regular sets is motivated, and explained to a large degree,
by the deterministic results in Section 11.2. Although there are a variety of proofs of
such results available, we shall develop a particularly powerful approach via a discrete
time form of Dynkin’s Formula.

Because it involves only the one-step transition kernel, (11.4) provides an invalu-
able practical criterion for evaluating the positive recurrence of specific models: we
illustrate this in Section 11.4.

There exists a matching, although less important, criterion for the chain to be
non-positive rather than positive: we shall also prove in Section 11.5.1 that if a test
function satisfies the reverse drift condition

AV (z) > 0, z € C°, (11.5)

then provided the increments are bounded in mean, in the sense that

sup P(z,dy)|V(z) — V(y)| < o0 (11.6)

then the mean hitting times E,[7¢] are infinite for z € C°.

Prior to considering drift conditions, in the next section we develop through the
use of the Nummelin splitting technique the structural results which show why (11.3)
holds for some petite set C', and why this “local” bounded mean return time gives
bounds on the mean first entrance time to any set in B+ (X).
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11.1 Regular chains

On a countable space we have a simple connection between the concept of regularity
and positive recurrence.

Proposition 11.1.1 For an irreducible chain on a countable space, positive recur-
rence and reqularity are equivalent.

Proor  Clearly, from Theorem 10.2.2, positive recurrence is implied by regularity.
To see the converse note that, for any fixed states z,y € X and any n

Ew[Tw] > o P" (33’ y)[Ey [TIE] + n]

Since the left hand side is finite for any z, and by irreducibility for any y there is
some n with P"(z,y) > 0, we must have E,[7;] < oo for all y also. O

It will require more work to find the connections between positive recurrence and
regularity in general.

It is not implausible that positive chains might admit regular sets. It follows
immediately from (10.33) that in the positive recurrent case for any A € Bt (X) we
have

Ez[T4] < o0, a.e. r € A [r] (11.7)

Thus we have from the form of m more than enough “almost-regular” sets in the
positive recurrent case.

To establish the existence of true regular sets we first consider 1-irreducible chains
which possess a recurrent atom a € BT (X). Although it appears that regularity may
be a difficult criterion to meet since in principle it is necessary to test the hitting time
of every set in B*(X), when an atom exists it is only necessary to consider the first
hitting time to the atom.

Theorem 11.1.2 Suppose that there exists an accessible atom o € B (X).

(1) If @ is positive recurrent then there ezists a decomposition
X=SUN (11.8)
where the set S is full and absorbing, and @ restricted to S is regular.
(ii) The chain D is regular if and only if
Ex[7a] < 00 (11.9)

for every x € X.

PrROOF Let
S:={z: Ez[1a] < 00};

obviously S is absorbing, and since the chain is positive recurrent we have from
Theorem 10.4.10 (ii) that E,[7,] < 00, and hence a € S. This also shows immediately
that S is full by Proposition 4.2.3.

Let B be any set in Bt (X) with B C a¢, so that for m-almost all y € B we have
Ey[7B] < oo from (11.7). From ¢-irreducibility there must then exist amongst these
values one w and some n such that g P"(w, ) > 0. Since
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Ew[tB] > BP"(w, a)Eo[7B]

we must have E,[75] < oc.
Let us set

Sn ={y : Ey[ra] < n}. (11.10)

We have the obvious inequality for any z and any B € B*(X) that
Es[78] < Es[ra] + Ea[75] (11.11)

so that each S, is a regular set, and since {S,} is a cover of S, we have that &
restricted to S is regular.
This proves (i): to see (ii) note that under (11.9) we have X = S, so the chain is
regular; whilst the converse is obvious. O
It is unfortunate that the -null set N in Theorem 11.1.2 need not be empty. For
consider a chain on Z with

P(0,0) = 1
PUIHY) = 1-8; (11.12)

Then the chain restricted to {0} is trivially regular, and the whole chain is positive
recurrent; but if

J
S IIBe=
J 1

then the chain is not regular, and N = {1,2,...} in (11.8).

It is the weak form of irreducibility we use which allows such null sets to exist:
this pathology is of course avoided on a countable space under the normal form of
irreducibility, as we saw in Proposition 11.1.1.

However, even under 1-irreducibility we can extend this result without requiring
an atom in the original space.

Let us next consider the case where @ is strongly aperiodic, and use the Nummelin
splitting to define & on X as in Section 5.1.1.

Proposition 11.1.3 Suppose that @ is strongly aperiodic and positive recurrent.
Then there exists a decomposition

X=S8UN (11.13)

where the set S is full and absorbing, and @ restricted to S is reqular.

ProOOF  We know from Proposition 10.4.2 that the split chain is also positive re-
current with invariant probability measure 7; and thus for #-a.e. z; € X, by (11.7) we
have that

Ex;[7a] < o0. (11.14)

Let S C X denote the set where (11.14) holds. Then it is obvious that S is absorbing,
and by Theorem 11.1.2 the chain @ is regular on S. Let {S,} denote the cover of S
with regular sets.
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Now we have N = X\S C X, and so if we write N as the copy of N and define
S = X\N, we can cover S with the matching copies S,,. We then have for z € S,, and
any B € BT(X)
Eo[75] < Eao[75] + Ex, [75]

which is bounded for zy € S,, and all z; € ¢, and hence for z € S,,.
Thus S is the required full absorbing set for (11.13) to hold. O
It is now possible, by the device we have used before of analyzing the m-skeleton,
to show that this proposition holds for arbitrary positive recurrent chains.

Theorem 11.1.4 Suppose that D is 1p-irreducible. Then the following are equivalent:
(i) The chain P is positive recurrent.

(ii) There exists a decomposition
X=S8UN (11.15)

where the set S is full and absorbing, and D restricted to S is regular.

PrROOF  Assume @ is positive recurrent. Then the Nummelin splitting exists for
some m-skeleton from Proposition 5.4.5, and so we have from Proposition 11.1.3 that
there is a decomposition as in (11.15) where the set S = US,, and each S, is regular
for the m-skeleton.
But if 73 denotes the number of steps needed for the m-skeleton to reach B, then
we have that
T8 <m TR

and so each S, is also regular for & as required.

The converse is almost trivial: when the chain is regular on S then there exists
a petite set C inside S with sup,cc Ez[Tc] < 00, and the result follows from Theo-
rem 10.4.10. O

Just as we may restrict any recurrent chain to an absorbing set H on which the
chain is Harris recurrent, we have here shown that we can further restrict a positive
recurrent chain to an absorbing set where it is regular.

We will now turn to the equivalence between regularity and mean drift conditions.
This has the considerable benefit that it enables us to identify exactly the null set
on which regularity fails, and thus to eliminate from consideration annoying and
pathological behavior in many models. It also provides, as noted earlier, a sound
practical approach to assessing stability of the chain.

To motivate and perhaps give more insight into the connections between hitting
times and mean drift conditions we first consider deterministic models.

11.2 Drift, hitting times and deterministic models

In this section we analyze a deterministic state space model, indicating the role we
might expect the drift conditions (11.4) on AV to play. As we have seen in Chapter 4
and Chapter 7 in examining irreducibility structures, the underlying deterministic
models for state space systems foreshadow the directions to be followed for systems
with a noise component.

Let us then assume that there is a topology on X, and consider the deterministic
process known as a semi-dynamical system.
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The Semi-Dynamical System

(DS1) The process @ is deterministic, and generated by the
nonlinear difference equation, or semi-dynamical system,

P11 = F(Py), ke, (11.16)

where F': X — X is a continuous function.

Although @ is deterministic, it is certainly a Markov chain (if a trivial one in a
probabilistic sense), with Markov transition operator P defined through its operations
on any function f on X by

Since we have assumed the function F' to be continuous, the Markov chain & has the
Feller property, although in general it will not be a T-chain.

For such a deterministic system it is standard to consider two forms of stability
known as recurrence and ultimate boundedness. We shall call the deterministic system
(11.16) recurrent if there exists a compact subset C' C X such that o¢(z) < oo for
each initial condition z € X. Such a concept of recurrence here is almost identical to
the definition of recurrence for stochastic models. We shall call the system (11.16)
ultimately bounded if there exists a compact set C' C X such that for each fixed initial
condition @y € X, the trajectory starting at @y eventually enters and remains in C.
Ultimate boundedness is loosely related to positive recurrence: it requires that the
limit points of the process all lie within a compact set C', which is somewhat analogous
to the positivity requirement that there be an invariant probability measure 7« with
7(C) > 1 — ¢ for some small €.

Drift Condition for the Semi-dynamical System

(DS2)  There exists a positive function V: X — IRy and a com-
pact set C' C X and constant M < oo such that

AV (z):=V(F(z)) —V(z) < -1
for all z lying outside the compact set C, and

sup V(F(z)) < M.
el




266 11. Drift and Regularity

If we consider the sequence V(®,) on IRy then this condition requires that this
sequence move monotonically downwards at a uniform rate until the first time that
@ enter C. It is therefore not surprising that @ hits C' in a finite time under this
condition.

Theorem 11.2.1 Suppose that P is defined by (DS1).
(1) If (DS2) is satisfied, then @ is ultimately bounded.
(ii) If @ is recurrent, then there exists a positive function V such that (DS2) holds.

(iii) Hence @ is recurrent if and only if it is ultimately bounded.

ProOOF  To prove (i), let &(z,n) = F™(z) denote the deterministic position of &,
if the chain starts at @y = x. We first show that the compact set C’ defined as

C':=J{®(z,i):2€C,1<i<M+1}UC

where M is the constant used in (DS2), is invariant as defined in Chapter 7.

For any =z € C we have &(z,i) € C for some 1 < i < M + 1 by (DS2) and the
hypothesis that V is positive. Hence for an arbitrary j € Z,, &(z,j) = P(y, i) for
some y € C, and some 1 <4 < M + 1. This implies that &(z,j) € C' and hence C' is
equal to the invariant set

C' = G{@(x,z) cz € CHUC.
i=1

Because V is positive and decreases on C¢, every trajectory must enter the set C,
and hence also C’ at some finite time. We conclude that @ is ultimately bounded.

We now prove (ii). Suppose that a compact set C exists such that o¢, (z) < 0o
for each initial condition € X. Let O be an open pre-compact set containing C',
and set C':= ¢l O. Then the test function

V(z):=o00o(x)

satisfies (DS2). To see this, observe that if z € C¢, then V(F(z)) = V(z)—1 and hence
the first inequality is satisfied. By assumption the function V is everywhere finite,
and since O is open it follows that V is upper semicontinuous from Proposition 6.1.1.
This implies that the second inequality in (DS2) holds, since a finite-valued upper
semicontinuous function is uniformly bounded on compact sets. O

For a semi-dynamical system, this result shows that recurrence is actually equiva-
lent to ultimate boundedness. In this the deterministic system differs from the general
NSS(F) model with a non-trivial random component. More pertinently, we have also
shown that the semi-dynamical system is ultimately bounded if and only if a test
function exists satisfying (DS2).

This test function may always be taken to be the time to reach a certain compact
set. As an almost exact analogue, we now go on to see that the expected time to reach
a petite set is the appropriate test function to establish positive recurrence in the
stochastic framework; and that, as we show in Theorem 11.3.4 and Theorem 11.3.5,
the existence of a test function similar to (DS2) is equivalent to positive recurrence.
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11.3 Drift criteria for regularity

11.3.1 Mean drift and Dynkin’s Formula

The deterministic models of the previous section lead us to hope that we can obtain
criteria for regularity by considering a drift criterion for positive recurrence based on
(11.4).

What is somewhat more surprising is the depth of these connections and the
direct method of attack on regularity which we have through this route.

The key to exploiting the effect of mean drift is the following condition, which is
stronger on C° than (V1) and also requires a bound on the drift away from C.

Strict Drift Towards C

(V2) For some set C € B(X), some constant b < oo, and an
extended real-valued function V: X — [0, oo]

AV(z) < =1+ bl¢(x) z € X. (11.17)

This is a portmanteau form of the following two equations:
AV (z) < —1, z € C°, (11.18)
for some non-negative function V' and some set C € B(X); and for some M < oo,
AV (z) < M, z € C. (11.19)

Thus we might hope that (V2) might have something of the same impact for stochastic
models as (DS2) has for deterministic chains.

In essentially the form (11.18) and (11.19) these conditions were introduced by
Foster [82] for countable state space chains, and shown to imply positive recurrence.
Use of the form (V2) will actually make it easier to show that the existence of ev-
erywhere finite solutions to (11.17) is equivalent to regularity and moreover we will
identify the sublevel sets of the test function V as regular sets.

The central technique we will use to make connections between one-step mean
drifts and moments of first entrance times to appropriate (usually petite) sets hinges
on a discrete time version of a result known for continuous time processes as Dynkin’s
Formula.

This formula yields not only those criteria for positive Harris chains and regu-
larity which we discuss in this chapter, but also leads in due course to necessary and
sufficient conditions for rates of convergence of the distributions of the process; nec-
essary and sufficient conditions for finiteness of moments; and sample path ergodic
theorems such as the Central Limit Theorem and Law of the Iterated Logarithm. All
of these are considered in Part III.
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Dynkin’s Formula is a sample path formula, rather than a formula involving
probabilistic operators. We need to introduce a little more notation to handle such
situations.

Recall from Section 3.4 the definition

FE=o{®y,..., o}, (11.20)

and let {Z, .7-",35 } be an adapted sequence of positive random variables. For each k, Zj
will denote a fixed Borel measurable function of (P, ..., P), although in applications
this will usually (although not always) be a function of the last position, so that

Zi (Do, - .., P) = Z(Py)

for some measurable function Z. We will somewhat abuse notation and let Z; denote
both the random variable, and the function on X¥+1.
For any stopping time 7 define

" :=min{n,7,inf {k > 0: Z; > n}}.

The random time 7" is also a stopping time since it is the minimum of stopping times,
and the random variable Zﬁa 1 Z; is essentially bounded by n?.

Dynkin’s Formula will now tell us that we can evaluate the expected value of
Z.n by taking the initial value Zy and adding on to this the average increments at
each time until 7". This is almost obvious, but has wide-spread consequences: in
particular it enables us to use (V2) to control these one-step average increments,
leading to control of the expected overall hitting time.

Theorem 11.3.1 (Dynkin’s Formula) For each z € X and n € Z .,

Tn

Ea[Zrm] = ExlZ0] + Ex [ (E[Zi | F1] = Zic)]

i=1
PrROOF ForeachneZ,,
,rn
Zpn = Zo+ Y (Zi—Zi1)
i=1
n
= ZO + z ]1{7’" Z Z}(ZZ — Zi—l)
i=1

Taking expectations and noting that {7" > i} € Ff | we obtain

Eo[Z] = Eo[Z] +Es [zn: Eu[Z: — Zi 1 | FEU{" > 4}
i=1

T?’L

= Ew[ZO] + E:c [Z(Ez[z’t | ‘7:1({1] - Zi—l)]

i=1

As an immediate corollary we have
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Proposition 11.3.2 Suppose that there exist two sequences of positive functions
{8k, fe : k > 0} on X, such that

ElZk+1 | Fo) < Zi — fr(Pr) + si(Dk)-

Then for any initial condition x and any stopping time T

T—1

ELLS" Fu(@0)] < Zo(a) + Eal> sul(@)].
k=0

k=0
ProorF Fix N > 0 and note that
ElZk11 | FF) < Zr, — fe(®r) AN + s (Pp).

By Dynkin’s Formula

Tn

0 < Eg[Zrn] < Zo() +Ex [ (s 1(®i 1) — [fi 1(@5 1) A N])]
=1

and hence by adding the finite term

Es [é[fk—l(qsk—l) A N]]

to each side we get

n n

T T

Es [Z[fkfl(fpkfl)/\N]] < Zo(z)+Eq [Z Skfl(ékfl)] < Zo($)+Ez[i Skq@kﬂ)]-

Letting n — oo and then N — oo gives the result by the Monotone Convergence
Theorem. O
Closely related to this we have

Proposition 11.3.3 Suppose that there exists a sequence of positive functions {ey, :
k >0} on X, ¢ < 00, such that

(i) 6k+1($) < Cgk(x)) ke Z+7 TE Ac;

(il) E[Zk:—i—l | .7:,?] < Zp — Ek(ék), o > k.

Then )
TA—
ZO(‘T)a S Ac;
(P] <
Bl ; el @) < {60(:13) +cPZy(z), zeX
PrOOF Let Zj and ¢ denote the random variables Zy(Py,...,Pr) and e (Py)
respectively.

By hypothesis E[Zj | .7-",?_1] — Zj_1 < —¢p_1 whenever 1 < k < g4. Hence for all
n € Z, and x € X we have by Dynkin’s Formula

TA
0 < EulZm] < Zo(s) — Eo[Y e 1(®i1)],  we A,
=1
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By the Monotone Convergence Theorem it follows that for all initial conditions,

TA

Ew [Z 8171(¢i,1)] < Z()(iL‘) x € A"

=1

This proves the result for z € A°.
For arbitrary  we have

Es [T_ZA Ei—1(¢i—1)] = [E¢1 (T_ZA (P ) (1 € AC)]

< eo(x) + cPZy (x).

We can immediately use Dynkin’s Formula to prove

Theorem 11.3.4 Suppose C € B(X), and V satisfies (V2). Then
Em[Tc] < V(.T) + b]]c(.’],‘)

for all x. Hence if C is petite and V is everywhere finite and bounded on C' then &
1s positive Harris recurrent.

PROOF  Applying Proposition 11.3.3 with Zy = V(®y), ek = 1 we have the bound

V(x) for z € C°¢
Bolre] < {1+PV(:E) zel

Since (V2) gives PV <V — 1+ b on C, we have the required result.

If V is everywhere finite then this bound trivially implies L(z,C) = 1 and so,
if C is petite, the chain is Harris recurrent from Proposition 9.1.7. Positivity follows
from Theorem 10.4.10 (ii). O

We will strengthen Theorem 11.3.4 below in Theorem 11.3.11 where we show
that V need not be bounded on C, and moreover that (V2) gives bounds on the
mean return time to general sets in Bt (X).

11.3.2 Hitting times and test functions

The upper bound in Theorem 11.3.4 is a typical consequence of the drift condition.
The key observation in showing the actual equivalence of mean drift towards petite
sets and regularity is the identification of specific solutions to (V2) when the chain is
regular.

For any set A € B(X) we define the kernel G4 on (X, B(X)) through

TA

Ga(z, f) = [+ 1acUa] (z, f) = Es[Y_ f(Ps)] (11.21)
k=0

where z is an arbitrary state, and f is any positive function.
For f > 1 fixed we will see in Theorem 11.3.5 that the function V = G¢(-, f)
satisfies (V2), and also a generalization of this drift condition to be developed in later



11.3 Drift criteria for regularity 271

chapters. In this chapter we concentrate on the special case where f = 1 and we will
simplify the notation by setting

Vc(x) = Gc(.’L‘,X) =1+ E:E[O'C]. (11.22)

Theorem 11.3.5 For any set A € B(X) we have

(1) The kernel G 4 satisfies the identity

PGA=G4—1+14U4

(ii) The function V4(-) = Ga(-,X) satisfies the identity
PVy(z) =Va(z) - 1, x € A°. (11.23)

PVy(z) = Eg[ra] — 1, z € A. (11.24)
Thus if C € BT (X) is reqular, V¢ is a solution to (11.17).

(iii) The function V. = V4 — 1 is the pointwise minimal solution on A€ to the in-
equalities
PV(z) <V(z) -1, z € A“ (11.25)

PROOF From the definition

o

Ua:= ) (Pls)tP
k=0

we see that Uy = P+ PI4,Us = PG 4. Since Uy = G4 — I + 14U 4 we have (i), and
then (ii) follows.

We have that Vy4 solves (11.25) from (ii); but if V' is any other solution then it is
pointwise larger than V4 exactly as in Theorem 11.3.4. O

We shall use repeatedly the following lemmas, which guarantee finiteness of solu-
tions to (11.17), and which also give a better description of the structure of the most
interesting solution, namely V(.

Lemma 11.3.6 Any solution of (11.17) is finite 1p-almost everywhere or infinite ev-
erywhere.

Proor  If V satisfies (11.17) then
PV (z)<V(z)+b

for all z € X, and it then follows that the set {z : V(z) < oo} is absorbing. If this set
is non-empty then it is full by Proposition 4.2.3. O

Lemma 11.3.7 If the set C is petite, then the function Vo (x) is unbounded off petite
sets.
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PrROOF  We have from Chebyshev’s inequality that for each of the sublevel sets
Cyv(¢) :={z: Vo(z) < {},
sup Py{oc >n} < é
JJECV(E)

3

Since the right hand side is less than % for sufficiently large n, this shows that Cy (£) ~
C for a sampling distribution a, and hence, by Proposition 5.5.4, the set Cy (£) is
petite. O

Lemma 11.3.7 will typically be applied to show that a given petite set is regular.
The converse is always true, as the next result shows:

Proposition 11.3.8 If the set A is regular then it is petite.

PROOF  Again we apply Chebyshev’s inequality. If C' € BT (X) is petite then
1
sup Pp{o¢c > n} < = supE;[7¢]
€A N zcA

As in the proof of Lemma 11.3.7 this shows that A is petite if it is regular. O

11.3.3 Regularity, drifts and petite sets

In this section, using the full force of Dynkin’s Formula and the form (V2) for the
drift condition, we will find we can do rather more than bound the return times to C
from states in C'. We have first

Lemma 11.3.9 If (V2) holds then for each z € X and any set B € B(X)

T8—1
E.[ms] < V() + bE, [Z flo(®))- (11.26)
Proor  This follows from Proposition 11.3.2 on letting fi = 1, s = bll¢. O

Note that Theorem 11.3.4 is the special case of this result when B = C.
In order to derive the central characterization of regularity, we first need an
identity linking sampling distributions and hitting times on sets.

Lemma 11.3.10 For any first entrance time 1, any sampling distribution a, and
any positive function f: X — IRy, we have

TBfl o ’TBfl

Eo[ D Ka(@, /)] =D aibs[ Y F(@h1i)].
k=0 =0 k=0

ProoF By the Markov property and Fubini’s Theorem we have

TBfl

B[ Y Ka(@s, /)]
k=0
= iaz [Z PZ @k, Il{k < TB}]
1=0

= i z a;Eq [E [f(@k+z) | fk] ]l{k < TB}]

1=0 k=0
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But now we have that 1(k < 7p) is measurable with respect to Fj and so by the
smoothing property of expectations this becomes

i i 0 [E[f(@r 1)1k < 7} | Fi|

1=0 k=0

= i azEgC[ (Pr+i) Uk < TB)]
=0

7B—1

[Z f¢k+z]

11Me
Pl

I
Mg

<.
I
o

We now have a relatively simple task in proving

Theorem 11.3.11 Suppose that D is P-irreducible.

(1) If (V2) holds for a function V and a petite set C then for any B € BT (X) there
ezists ¢(B) < oo such that

Ez[mB] < V(z) + ¢(B), z e X
Hence if V is bounded on A, then A is regular.

(ii) If there exists one regular set C € BT (X), then C is petite and the function
V = Ve satisfies (V2), with V uniformly bounded on A for any regular set A.

ProoF To prove (i), suppose that (V2) holds, with V bounded on A and C
a Pg-petite set. Without loss of generality, from Proposition 5.5.6 we can assume
Yloia; < oco. We also use the simple but critical bound from the definition of
petiteness:

lc(z) < 9o(B) 'Ko(z,B), z€X,BecB(X). (11.27)

By Lemma 11.3.9 and the bound (11.27) we then have

Ec[r5] < V() +bE, [7321]10 ()]
< V(z)+bE, [TBZI% 'K (®, B)|
= V(z)+bpa(B 12% [TglnB(qskH)]
< Vi) +bta(B) 2( +ay

for any B € BT(X), and all z € X. If V is bounded on A, it follows that

sup E,[7] < oo,
T€A

which shows that A is regular.



274 11. Drift and Regularity

To prove (ii), suppose that a regular set C € BT (X) exists. By Lemma 11.3.8 the
set C' is petite. Then V = V is clearly positive, and bounded on any regular set A.
Moreover, by Theorem 11.3.5 and regularity of C it follows that condition (V2) holds
for a suitably large constant b. O

Boundedness of hitting times from arbitrary initial measures will become impor-
tant in Part ITI. The following definition is an obvious one.

Regularity of Measures

A probability measure y is called regular, if

Eulr5] <00, B eBHX)

The proof of the following result for regular measures y is identical to that of the
previous theorem and we omit it.

Theorem 11.3.12 Suppose that D is P-irreducible.

(1) If (V2) holds for a petite set C and a function V, and if u(V) < oo, then the
measure p is reqular.

(ii) If p is regular, and if there ezists one regular set C € BY(X), then there exists
an extended-valued function V satisfying (V2) with u(V) < oc.
O

As an application of Theorem 11.3.11 we obtain a description of regular sets as
in Theorem 11.1.4.

Proposition 11.3.13 If there exists a reqular set C € BT (X), then the sets Cy(£):=
{z:Vo(z) <L, :LeZ} are regular and Sc = {y : Vo(y) < oo} is a full absorbing
set such that @ restricted to Sc is regular.

PROOF  Suppose that a regular set C € B (X) exists. Since C is regular it is also
1,-petite, and we can assume without loss of generality that the sampling distribution
a has a finite mean. By regularity of C' we also have, by Theorem 11.3.11 (ii), that
(V2) holds with V' = V. From Theorem 11.3.11 each of the sets Cy (£) is regular,
and by Lemma 11.3.6 the set S¢ = {y : Vo(y) < oo} is full and absorbing. O

Theorem 11.3.11 gives a characterization of regular sets in terms of a drift condi-
tion. Theorem 11.3.14 now gives such a characterization in terms of the mean hitting
times to petite sets.

Theorem 11.3.14 If @ is 1-irreducible, then the following are equivalent:
(i) The set C € B(X) is petite and sup,cc Ez[7c] < oo;

(ii) The set C is regular and C € B*(X).
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ProoF (i) Suppose that C is petite, and let as before Vo (z) = 1+ Ez[o¢]. By
Theorem 11.3.5 and the conditions of the theorem we may find a constant b < oo
such that

PVe < Vg —1+blc.

Since V¢ is bounded on C' by construction, it follows from Theorem 11.3.11 that C'is
regular. Since the set C' is Harris recurrent it follows from Proposition 8.3.1 (ii) that
C € B*(X).
(ii) Suppose that C is regular. Since C' € B*(X), it follows from regularity that
sup,cc Ez[7¢] < 00, and that C is petite follows from Proposition 11.3.8. O
We can now give the following complete characterization of the case X = §.

Theorem 11.3.15 Suppose that @ is p-irreducible. Then the following are equiva-
lent:

(1) The chain D is regular

(ii) The drift condition (V2) holds for a petite set C and an everywhere finite function
V.

(iii) There ezists a petite set C such that the expectation
Em[TC]

is finite for each x, and uniformly bounded for x € C.

PrOOF  If (i) holds, then it follows that a regular set C € B*(X) exists. The function
V = V¢ is everywhere finite and satisfies (V2), by (11.24), for a suitably large constant
b; so (ii) holds. Conversely, Theorem 11.3.11 (i) tells us that if (V2) holds for a petite
set C with V finite valued then each sublevel set of V' is regular, and so (i) holds.

If the expectation is finite as described in (iii), then by (11.24) we see that the
function V' = V( satisfies (V2) for a suitably large constant b. Hence from Theo-
rem 11.3.15 we see that the chain is regular; and the converse is trivial. O

11.4 Using the regularity criteria

11.4.1 Some straightforward applications

Random walk on a half line We have already used a drift criterion for positive
recurrence, without identifying it as such, in some of our analysis of the random walk
on a half line.

Using the criteria above, we have

Proposition 11.4.1 If Y is a random walk on a half line with finite mean increment
B then @ is reqular if

ﬂ:/wf(dw) < 0;

and in this case all compact sets are regular sets.
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PROOF By consideration of the proof of Proposition 8.5.1, we see that this result
has already been established, since (11.18) was exactly the condition verified for
recurrence in that case, whilst (11.19) is simply checked for the random walk. O

From the results in Section 8.5, we know that the random walk on IR is transient
if 8> 0, and that (at least under a second moment condition) it is recurrent in the
marginal case 8 = 0. We shall show in Proposition 11.5.3 that it is not regular in this
marginal case.

11.4.1.1 Forward recurrence times We could also use this approach in a simple
way to analyze positivity for the forward recurrence time chain.
In this example, using the function V' (z) = x we have

S Pla,y)V(y) = V@) -1, z>1 (11.28)

S PO,V = > W)y (11.29)
Yy Yy

Hence, as we already know, the chain is positive recurrent if -, p(y) y < oo.

Since Eo[7o] = 3=, p(y) y the drift condition with V(z) = x is also necessary, as
we have seen.

The forward recurrence time chain thus provides a simple but clear example of
the need to include the second bound (11.19) in the criterion for positive recurrence.

11.4.1.2 Linear models Consider the simple linear model defined in (SLM1) by
We have

Proposition 11.4.2 Suppose that the disturbance variable W for the simple linear
model defined in (SLM1), (SLM2) is non-singular with respect to Lebesgue measure,
and satisfies E[log(1 + |W|)] < oo. Suppose also that |a| < 1. Then every compact set
is reqular, and hence the chain itself is regular.

PRrROOF  From Proposition 6.3.5 we know that the chain X is a -irreducible and
aperiodic T-chain under the given assumptions.

Let V(z) = log(1 + €|z|), where ¢ > 0 will be fixed below. We will verify that
(V2) holds with this choice of V' by applying the following two special properties of
this test function:

Viz+y) <V(z)+V(y) (11.30)
Tim [V(2) — V(Jafz)] = log((le] ™) (11.31)
From (11.30) and (SLM1),
V(X1) = V(aXo + W1) < V(|a|Xo) + V(W1),

and hence from (11.31) there exists < oo such that whenever Xy > r,

V(X1) < V(Xo) — 3log(lal™") + V(W)
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Choosing ¢ > 0 sufficiently small so that E[V(W)] < Llog(|a|™") we see that for
T>r,
E[V(X1)] < V() — ¢ log(|la|™).

So we have that (V2) holds with C = {z : |z| < r} and the result follows. O

This is part of the recurrence result we proved using a stochastic comparison
argument in Section 9.5.1, but in this case the direct proof enables us to avoid any
restriction on the range of the increment distribution.

We can extend this simple construction much further, and we shall do so in
Chapter 15 in particular, where we show that the geometric drift condition exhibited
by the linear model implies much more, including rates of convergence results, than
we have so far described.

11.4.2 The GI/G/1 queue with re-entry

In Section 2.4.2 we described models for GI/G/1 queueing systems. We now indicate
one class of models where we generalize the conditions imposed on the arrival stream
and service times by allowing re-entry to the system, and still find conditions under
which the queue is positive Harris recurrent.

As in Section 2.4.2, we assume that customers enter the queue at successive time
instants 0 = T) < 1] < Ty < T3 < ---. Upon arrival, a customer waits in the queue
if necessary, and then is serviced and exits the system. In the G1/G/1 queue, the
interarrival times {7}, — T, : n € Z,} and the service times {S; : i € Z,} are
i.i.d. and independent of each other with general distributions, and means 1/X, 1/u
respectively.

After being served, a customer exits the system with probability r and re-enters
the queue with probability 1 — r. Hence the effective rate of customers to the queue
is, at least intuitively,

If we now let N,, denote the queue length (not including the customer which may
be in service) at time 7}, —, and this time let R;} denote the residual service time (set
to zero if the server is free) for the system at time 7, —, then the stochastic process

N,
Spn: (Rg)’ nEZ+,

is a Markov chain with stationary transition probabilities evolving on the ladder-
structure space X =Z, x IR..
Now suppose that the load condition
A
pri=—<1 (11.32)
o
is satisfied. This will be shown to imply positive Harris recurrence for the chain .
Write [0] = 0 x 0 for the state where the queue is empty. Under (11.32), for each
z € X, we may find m € Z sufficiently large that

Pe{®m = [0]} > 0. (11.33)



278 11. Drift and Regularity

This follows because under the load constraint, there exists § > 0 such that with
positive probability, each of the first m interarrival times exceeds each of the first m
service times by at least J, and also none of the first m customers re-enter the queue.

For z,y € X we say that z > y if z; > y; for + = 1,2. It is easy to see that
Pe(®m = [0]) < Py(®y, = [0]) whenever z > y, and hence by (11.33) we have the
following result:

Proposition 11.4.3 Suppose that the load constraint (11.82) is satisfied. Then the
Markov chain @ is djg-irreducible and aperiodic, and every compact subset of X is
petite. O

We let W, denote the total amount of time that the server will spend servicing the
customers which are in the system at time 7], +. Let V(z) = Ex[W]. It is easily seen
that

V(z) =EW, |, = 1],
and hence that P"V(z) = Ez[W,].

The random variable W,, is also called the waiting time of the nth customer to
arrive at the queue. The quantity Wy may be thought of as the total amount of work
which is initially present in the system. Hence it is natural that V(z), the expected
work, should play the role of a Lyapunov function.

The drift condition we will establish for some & > 0 is

E Wil <EWol—1, zeAe
(11.34)
sup,c 4 Ex[Wi] < o0;

this implies that V(z) satisfies (V2) for the k-skeleton, and hence as in the proof of
Theorem 11.1.4 both the k-skeleton and the original chain are regular.

Proposition 11.4.4 Suppose that p, < 1. Then (11.34) is satisfied for some compact
set A C X and some k € Z, and hence P is a reqular chain.

PROOF  Let | - | denote the Euclidean norm on IR?, and set
Ap, ={z € X:|z| <m}, meE”Z,.

For each m € Z, the set A,, is a compact subset of X.
We first fix k& such that (k/A)(1 — p,) > 2; we can do this since p, < 1 by
assumption. Let (j then denote the time that the server is active in [0,7}]. We have

k n;
We=Wo+>_ > S(,5) — C (11.35)

i=1j=1

where n; denotes the number of times that the ¢th customer visits the system, and
the random variables S(i,5) are i.i.d. with mean p 1.

Now choose m so large that
Eo[Ck] > Ea[T}] - 1, z € Ag,.

Then by (11.35), and since A, /A is equal to the expected number of times that a
customer will re-enter the queue,
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k
Ex[Wi] < Eo[Wo] + ZE [nil(1/p) — (E[Tlé] -1)
£, Wa] + (EAe/2) (L) — K/A + 1
B Wo] - (/N1 = pp) + 1,
and this completes the proof that (11.34) holds. ]

11.4.3 Regularity of the scalar SETAR model

Let us conclude this section by analyzing the SETAR models defined in (SETAR1)
and (SETAR2) by

Xn = ¢(.7) + O(J)anl + Wn(])a anl € Rj;

these were shown in Proposition 6.3.6 to be ¢-irreducible T-chains with ¢ taken as
Lebesgue measure p™* on IR under these assumptions.

In Proposition 9.5.4 we showed that the SETAR chain is transient in the “exte-
rior” of the parameter space; we now use Theorem 11.3.15 to characterize the behavior
of the chain in the “interior” of the space (see Figure B.1). This still leaves the char-
acterization on the boundaries, which will be done below in Section 11.5.2.

Let us call the interior of the parameter space that combination of parameters
given by

(1) <1, (M) <1, 6(1)6(M) <1 ( )

6(1) = 1, 6(M) < 1, $(1) >0 (1L.37)

(1) <1, (M) =1, ¢(M) <0 (11.38)

0(1) = 0(M) =1, $(M) <0 < 4(1) (11.39)

0(1) <0, 6(1)0(M) =1, $(M) + 6(M)¢(1) > 0. (11.40)

Proposition 11.4.5 For the SETAR model satisfying (SETAR1)-(SETARZ2), the
chain is reqular in the interior of the parameter space.

PrROOF  To prove regularity for this interior set, we use (V2), and show that when
(11.36)-(11.40) hold there is a function V' and an interval set [— R, R] satisfying the
drift condition

P(z,dy)V(y) < V(z) -1, |z| > R. (11.41)

First consider the condition (11.36). When this holds it is straightforward to calculate
that there must exist positive constants a, b such that

1>0(1) > —(b/a),

1>6(M) > —(a/b).

If we now take
ax x>0

Viz) = {b|:1:| <0

then it is easy to check that (11.41) holds under (11.36) for all |z| sufficiently large.
To prove regularity under (11.37), use the function
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I RE: z>0
Ve ={ 31l s <0

for which (11.41) is again satisfied provided

7 > 210(M)| [¢(1)]

for all |z| sufficiently large. The sufficiency of (11.38) follows by symmetry, or directly
by choosing the test function

|z z<0
Vie) = {72[45( M)z 250

with
7 > =2(0(1)] [¢(M)] !

In the case (11.39), the chain is driven by the constant terms and we use the test
function

200(1)] ol <0
Vie) = {2[\¢< M)z 23>0

to give the result.

The region defined by (11.40) is the hardest to analyze. It involves the way in
which successive movements of the chain take place, and we reach the result by
considering the two-step transition matrix P?.

Let f; denote the density of the noise variable W (j). Fix j and z € R; and write

R(k,j) ={y:y+ () +0(j)x € R},
C(k,z) = —(k) — 0(k)$(5) — O(K)O(5)=-

If we take the linear test function

ar x>0
V(x):{b|a:| z<0

(with a,b to be determined below ), then we have

[ P aviy Z/Mu— N Solu = 0Ky ()l
(k,z)
o [T Sl 00) fyw)duldn

R(k,j)

It is straightforward to find from this that for some R > 0, we have

[ PV (y) < ~bo = (6/2)(9(M) + 6(M)$(1)), 2 < ~F,

[ P dy)V () < oo+ (a/2)($(1) +0(1)(M), 5 > R.

But now by assumption ¢(M) + 6(M)¢p(1) > 0, and the complete set of conditions
(11.40) also give ¢(1) + 6(1)¢p(M) < 0. By suitable choice of a,b we have that the
drift condition (11.41) holds for the two-step chain, and hence this chain is regular.
Clearly, this implies that the one step chain is also regular, and we are done. O
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11.5 Evaluating non-positivity

11.5.1 A drift criterion for non-positivity

Although criteria for regularity are central to analyzing stability, it is also of value to
be able to identify unstable models.

Theorem 11.5.1 Suppose that the non-negative function V satisfies
AV (z) >0, z € C5 (11.42)
and

21612 P(z,dy)|V(z) — V(y)| < oo. (11.43)

Then for any o € C° such that
V(zo) > V(x), forallz € C (11.44)

we have Ezy[To] = 0.

PROOF  The proof uses a technique similar to that used to prove Dynkin’s Formula.
Suppose by way of contradiction that E;[r¢] < oo, and let Vy = V(P). Then we
have

TC
Vie = Vo+ > (Vi — Vi)
k=1
o0
= Vo+ Y (Vi = Vie))lrc > k}
k=1

Now from the bound in (11.43) we have for some B < o0

S Eso[[EI(Vi — Vior) | 2 110re 2 K} < BY Paofrc > k) = BEyo[rc]
k=1 k=1

which is finite. Thus the use of Fubini’s Theorem is justified, giving

o
Exo[Vie) = Vo(@o) + Y Exo[E[(Vik — Vi—1) | FE_1]1{7c > k}] > Vo(xo).
k=1
But by (11.44), V., < Vy(xo) with probability one, and this contradiction shows that
Ez,[Tc] = 0. a
This gives a criterion for a -irreducible chain to be non-positive. Based on The-
orem 11.1.4 we have immediately

Theorem 11.5.2 Suppose that the chain P is Y-irreducible and that the non-negative
function V satisfies (11.42) and (11.43) where C € BT (X). If the set

C{={zeX:V(z)>supV(y)}
yeC

also lies in BT (X) then the chain is non-positive.
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In practice, one would set C equal to a sublevel set of the function V' so that the
condition (11.44) is satisfied automatically for all z € C°.

It is not the case that this result holds without some auxiliary conditions such as
(11.43). For take the state space to be Z, and define P(0,7) = 2 for all i > 0; if
we now choose k() > 27, and let

P(i,0) = P(i,k(3)) = 1/2,
then the chain is certainly positive Harris, since by direct calculation
Po(ro >n+1) <27™
But now if V(i) =4 then for all i > 0
AV (i) =[k(i)/2] —i >0

and in fact we can choose k(%) to give any value of AV (i) we wish.

11.5.2 Applications to random walk and SETAR models

As an immediate application of Theorem 11.5.2 we have

Proposition 11.5.3 If & is a random walk on a half line with mean increment 3
then P is regular if and only if

ﬂ:/wf(dw) < 0.

PROOF  In Proposition 11.4.1 the sufficiency of the negative drift condition was
established. If

ﬂ:/wf(dw) > 0.

then using V(z) = z we have (11.42), and the random walk homogeneity properties
ensure that the uniform drift condition (11.43) also holds, giving non-positivity. O

We now give a much more detailed and intricate use of this result to show that the
scalar SETAR model is recurrent but not positive on the “margins” of its parameter
set, between the regions shown to be positive in Section 11.4.3 and those regions shown
to be transient in Section 9.5.2: see Figure B.1-Figure B.3 for the interpretation of
the parameter ranges. In terms of the basic SETAR model defined by

Xn = ¢(.7) + H(J)Xn—l + Wn(])a Xn—l € Rj

we call the margins of the parameter space the regions defined by

(1) <1, (M) =1, p(M) =0 (11.45)

0(1) =1, (M) <1, ¢(1) =0 (11.46)

0(1) =0(M) =1, (M) =0, ¢(1) >0 (11.47)
0(1) = 0(M) =1, $(M) <0, $(1) =0 (11.48)

(1) < 0, O(1)O(M) =1, $(M) + 8(M)(1) = 0 (11.49)
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We first establish recurrence; then we establish non-positivity. For this group of pa-
rameter combinations, we need test functions of the form V(z) = log(u + ax) where
u,a are chosen to give appropriate drift in (V1). To use these we will need the full
force of the approximation results in Lemma 8.5.2, Lemma 8.5.3, Lemma 9.4.3, and
Lemma 9.4.4, which we previously used in the analysis of random walk, and to ana-
lyze this region we will also need to assume (SETAR3): that is, that the variances of
the noise distributions for the two end intervals are finite.

Proposition 11.5.4 For the SETAR model satisfying (SETAR1)-(SETARS3), the
chain is recurrent on the margins of the parameter space.

PrROOF We will consider the test function

V(z) = {log(u—l—aw) z>R>ry— (11.50)

loglv—bz) z<-R<mr

and V(z) = 0 in the region [—R, R], where a, b and R are positive constants and u
and v are real numbers to be chosen suitably for the different regions (11.45)-(11.49).
We denote the non-random part of the motion of the chain in the two end regions
by
k(z) = $(M) + 6(M)z
and

h(z) = ¢(1) +6(1)z.
We first prove recurrence when (11.45) or (11.46) holds. The proof is similar in style
to that used for random walk in Section 9.5, but we need to ensure that the different
behavior in each end of the two end intervals can be handled simultaneously.
Consider first the parameter region (M) =1, ¢(M) =0, and 0 < (1) < 1, and

choose a =b=u=wv =1, with x > R > rp;_1. Write in this case

Vi(z) = Eflog(u+ ak(z) + aW (M)) L)+ w(m)>r]l

Va(z) = Eflog(v — bk(x) — bW (M) U(z)+w (m)<-R]] (11.51)
so that

Eo[V(X1)] = Vi(z) + Va().

In order to bound the terms in the expansion of the logarithms in V1, V5, we use the
further notation

Vi(z) = (a/(u+ak(2))EW (M) wrn>Rk(2)]
Vi(z) = (a®/(2(u+ ak(z))?*))E[W?(M)1{p_k(z)<w(m)<o]]
Vs(z) = (b/(v—bk(z))E[W(M)Lw )< R ki) (11.52)

Since E(W2%(M)) < oo
Vi(z) = (a®/(2(u + ak(2))*) EIW? (M) L (ary<o)) — 0(z ),

and by Lemma 8.5.3 both V3 and V5 are also o(z~2).
For z > R,u + ak(z) > 0, and thus by Lemma 8.5.2,

Vi(z) < I'j(R — k(x),00) log(u + ak(z)) + Va(z) — Va(z),
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while v — bk(z) < 0, and thus by Lemma 9.4.3,
Va(x) < (=00, =R — k(x))(log(—v + bk(z)) — 2) — Vs(x).
By Lemma 9.4.4(i) we also have that the terms
—I'y(—o00, R — k(x))log(u + ak(z)) + I'n(—o00, —R — k(z))(log(—v + bk(x)) — 2)
are o(z~2). Thus by choosing R large enough

E.[V(X1)] < V(z)— (a®/(2(u + ak(z))*))EIW? (M) Lw (a1)<q)] + o(z™?)
< V(x), x> R. (11.53)

For x < —R < r; and 0(1) = 0, E;[V(X})] is a constant and is therefore less than
V(x) for large enough R.
For z < —R < r; and 0 < (1) < 1, consider

Vo(z) = Ellog(u+ah(z) +aW (1)) Upeyrwinys ]
Vi(z) = Eflog(v—bh(e) — W () Ipmawayer] :  (1154)

we have as before
E;[V(X1)] = Vs(2) + V(). (11.55)

To handle the expansion of terms in this case we use
Vs(z) = (a/(u + ah(x)))E[W (1) Tjw (1)> R—h(a))]
Vo(x) = (b/v — bh(2)))E[W (1)L (1)< R—h(a)]]

Vio(z) = (°/(2(v — bh(2))*))EW (D) g h(z)y>w()>0]-
Since E[W?2(1)] < oo

Vig(z) = (b/(2(v — bh(z))*) E[W? (1) I (1)»0)] — o(z ™),

and by Lemma 8.5.3, both Vg(z) and Vy(x) are o(z~?).
For z < —R, u + ah(z) < 0, we have by Lemma 9.4.3(i),

Ve(z) < I'(R — h(z), 0o)(log(—u — ah(z)) — 2) — Va(x),
and v — bh(z) > 0, so that by Lemma 8.5.2,
Vi(z) < I (—o0, —R — h(z))log(v — bh(z)) — Vo(z) — Vio(z).
Hence choosing R large enough that v — bh(z) < v — bz, we have from (11.55),
I'(—o0, =R — h(z)) log(v — bh(z)) < TIi(—o00,—R —h(z))log(v — bz)
= V(z) — I'(—R — h(z), 00) log(v — bx).
By Lemma 9.4.4(ii),
I'(R — h(z), 00)(log(—u — ah(z)) — 2) — I (=R — h(x), 00) log(v — bz) < o(z™?),

and thus
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V(z), =<-R. (11.56)

Finally consider the region (M) =1, ¢(M) = 0, (1) < 0, and choose a = —bO(M )
and v —u = a¢(1l). For z > R > rpr—1, (11.53) is obtained in a manner similar to the
above. For £ < —R < r1, we look at

Vii(z) = (a®/(2(u + ah(2))*))EIW? () L{r_h@)<w1)<o])-
By Lemma 9.4.3
Vs(z) < I (R — h(z), 00) log(u + ah(z)) + Vs(z) — Vi1 (),
and
Vi(z) < I'(—o00, —R — h(z))(log(—v + bh(z)) — 2) — Vo ().

From the choice of a, b, u and v,
log(u + ah(x)) = log(v — bz) = V(x),
and thus by Lemma 8.5.3 and Lemma 9.4.4(i) for R large enough

E.[V(X1)] V(z) = (a®/(2(u + ah(2))))EIW*(1) Ly (1)<q]] + o(z?)

<
< V(z), z < —R. (11.57)

When (11.46) holds, the recurrence of the SETAR model follows by symmetry from
the result in the region (11.45).

(i) We now consider the region where (11.47) holds: in (11.48) the result will
again follow by symmetry.

Choose a = b = u = v = 1 in the definition of V. For z > R > rp; 1, (11.53)
holds as before. For z < —R < 71, since 1 — h(z) <1 —z,

IN(—o0,—R — h(x))log(1 — h(z)) < I''(—o00, —R — h(x))log(1l — x).

From this, (11.56) is also obtained as before.
(iii) Finally we show that the chain is recurrent if the boundary condition
(11.49) holds.
Choose v — u = bp(M) = a¢(1), b = —ab(l) = —a/0(M). For z > R > rpr1,
consider
Via(e) = (/(2(v - bk(2)*) EIV (M) Loy swiansa-

By Lemma 9.4.3 we get both
Vi(z) < T'm(R — k(z), 00) (log(—u — ak(z)) — 2) — V3(z),

Va(z) < I'n(—00, —R — k(x)) log(v — bk(z)) — V5(z) — Via(x).

From the choice of a, b, v and v
I'nf(—o00, —R — k(z)) log(v — bk(z)) = log(u + az) — I'nf(—R — k(z), ) log(u + az),

and thus by Lemma 9.4.4(i) and (iii), for R large enough
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E.[V(X1)]] V(z) — (6°/(2(v — bk(2))*))E[W* (M) i (ary>q] + o(z %)

<
< V(z), >R (11.58)

For x < —R < r1, since
log(u + ah(z)) = log(v — bx),

(11.57) is obtained similarly.

It is obvious that the above test functions V' are norm-like, and hence (V1)
holds outside a compact set [—R, R] in each case. Hence we have recurrence from
Theorem 9.1.8. O

To complete the classification of the model, we need to prove that in this region
the model is not positive recurrent.

Proposition 11.5.5 For the SETAR model satisfying (SETARI1)-(SETARS3), the
chain is non-positive on the margins of the parameter space.

PROOF We need to show that in the case where
#(1) <0,  S(L)p(M)=1,  0(1)¢p(M)+0(M) <0

the chain is non-positive. To do this we appeal to the criterion in Section 11.5.1.
As we have ¢(1)¢p(M) = 1 we can as before find positive constants a, b such that

$(1) = —ba™ 1, ¢(M) = —ab™L.
We will consider the test function
V(z) = Vea(z) + Lkr(z) (11.59)
where the functions V.4 and l;p are defined for positive ¢, d, k, R by

k |z|] <R
]llcR(x):{O Iﬂv{ >R

and
ar+c x>0

VCd(w):{b\x|+d <0 "

It is immediate that
/P(w, dy)|V (z) = V(y)| < aE[[Wh[] + bE[[War] + 2(al6(1)| + b|6(M)]) + 2|d — ],
whilst V is obviously norm-like.

We now verify that indeed the mean drift of V(®,,) is positive. Now for z € Ry,
we have

[PV = [ Tuldy - 000 - p(02)Vea(y)
+ [ Tutdy = 0(M) ~ p(M)2) (), (11.60)

and the first of these terms can be written as
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/ Thi(dy — 0(M) — $(M)z)Vea(y)
_ / T (dz)[=b(z + 0(M) + $(M)z) + d]

+/°° Tar(d2)[(a + B)(z + 0(M) + ¢(M)z) + ¢ — d]. (11.61)
0~ p(M)a

Using this representation we thus have
/ P(a,dy)V(y) = az+d— bo(M)
+ [ Turldy = 0000) = p(M)a) (@ + By + e~ d
+ 1 I; kTw (dy — 6(M) — $(M)z). (11.62)
A similar calculation shows that for z € Ry,
/ P(a,dy)V(y) = —ba+c—ab(l)
[ ity —00) — s))(a+ by +e—
+ /_l; kT (dy — 0(1) — ¢(1)z). (11.63)
Let us now choose the positive constants ¢, d to satisfy the constraints
ab(1) > d — ¢ > bO(M) (11.64)
(which is possible since 8(1)¢(M) + 8(M) < 0) and k, R sufficiently large that
R > max(10(1)], |o(M))) (11.65)
k > (a + b) max(|6(1)], |6(M)]). (11.66)

It then follows that for all z with |z| sufficiently large

| PV > Vi

and the chain is non-positive from Section 11.5.1. O

11.6 Commentary

For countable space chains, the results of this chapter have been thoroughly explored.
The equivalence of positive recurrence and the finiteness of expected return times to
each atom is a consequence of Kac’s Theorem, and as we saw in Proposition 11.1.1,
it is then simple to deduce the regularity of all states. As usual, Feller [76] or Chung
[49] or Cinlar [40] provide excellent discussions.

Indeed, so straightforward is this in the countable case that the name “regular
chain”, or any equivalent term, does not exist as far as we are aware. The real focus
on regularity and similar properties of hitting times dates to Isaac [103] and Cogburn
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[63]; the latter calls regular sets “strongly uniform”. Although many of the properties
of regular sets are derived by these authors, proving the actual existence of regular sets
for general chains is a surprisingly difficult task. It was not until the development of
the Nummelin-Athreya-Ney theory of splitting and embedded regeneration occurred
that the general result of Theorem 11.1.4, that positive recurrent chains are “almost”
regular chains was shown (see Nummelin [201]).

Chapter 5 of Nummelin [202] contains many of the equivalences between regular-
ity and positivity, and our development owes a lot to his approach. The more general
f-regularity condition on which he focuses is central to our Chapter 14: it seems worth
considering the probabilistic version here first.

For countable chains, the equivalence of (V2) and positive recurrence was de-
veloped by Foster [82], although his proof of sufficiency is far less illuminating than
the one we have here. The earliest results of this type on a non-countable space ap-
pear to be those in Lamperti [152], and the results for general 1-irreducible chains
were developed by Tweedie [275], [276]. The use of drift criteria for continuous space
chains, and the use of Dynkin’s Formula in discrete time, seem to appear for the first
time in Kalashnikov [115, 117, 118]. The version used here and later was developed
in Meyn and Tweedie [178], although it is well known in continuous time for more
special models such as diffusions (see Kushner [149] or Khas'minskii [134]).

There are many rediscoveries of mean drift theorems in the literature. For opera-
tions research models (V2) is often known as Pakes’ Lemma from [212]: interestingly,
Pakes’ result rediscovers the original form buried in the discussion of Kendall’s famous
queueing paper [128], where Foster showed that a sufficient condition for positivity
of a chain on Z is the existence of a solution to the pair of equations

> Pxy)V(y) < V()—-1, z>N
ZP(w,y)V(y) < oo, z < N,

although in [82] he only gives the result for N = 1. The general N form was also
re-discovered by Moustafa [190], and a form for reducible chains given by Mauldon
[164]. An interesting state-dependent variation is given by Malyshev and Men’sikov
[159]; we return to this and give a proof based on Dynkin’s Formula in Chapter 19.

The systematic exploitation of the various equivalences between hitting times
and mean drifts, together with the representation of 7, is new in the way it appears
here. In particular, although it is implicit in the work of Tweedie [276] that one can
identify sublevel sets of test functions as regular, the current statements are much
more comprehensive than those previously available, and generalize easily to give an
appealing approach to f-regularity in Chapter 14.

The criteria given here for chains to be non-positive have a shorter history. The
fact that drift away from a petite set implies non-positivity provided the increments
are bounded in mean appears first in Tweedie [276], with a different and less trans-
parent proof, although a restricted form is in Doob ([68], p 308), and a recent version
similar to that we give here has been recently given by Fayolle et al [73]. All proofs
we know require bounded mean increments, although there appears to be no reason
why weaker constraints may not be as effective.

Related results on the drift condition can be found in Marlin [163], Tweedie [274],
Rosberg [226] and Szpankowski [261], and no doubt in many other places: we return
to these in Chapter 19.
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Applications of the drift conditions are widespread. The first time series applica-
tion appears to be by Jones [113], and many more have followed. Laslett et al [153]
give an overview of the application of the conditions to operations research chains
on the real line. The construction of a test function for the GI/G/1 queue given in
Section 11.4.2 is taken from Meyn and Down [175] where this forms a first step in a
stability analysis of generalized Jackson networks. A test function approach is also
used in Sigman [239] and Fayolle et al [73] to obtain stability for queueing networks:
the interested reader should also note that in Borovkov [27] the stability question is
addressed using other means.

The SETAR analysis we present here is based on a series of papers where the
SETAR model is analyzed in increasing detail. The positive recurrence and transience
results are essentially in Petruccelli et al [214] and Chan et al [43], and the non-
positivity analysis as we give it here is taken from Guo and Petruccelli [92]. The
assumption of finite variances in (SETAR3) is again almost certainly redundant, but
an exact condition is not obvious.

We have been rather more restricted than we could have been in discussing specific
models at this point, since many of the most interesting examples, both in operations
research and in state-space and time series models, actually satisfy a stronger version
of the drift condition (V2): we discuss these in detail in Chapter 15 and Chapter 16.
However, it is not too strong a statement that Foster’s Criterion (as (V2) is often
known) has been adopted as the tool of choice to classify chains as positive recurrent:
for a number of applications of interest we refer the reader to the recent books by
Tong [267] on nonlinear models and Asmussen [10] on applied probability models.
Variations for two-dimensional chains on the positive quadrant are also widespread:
the first of these seems to be due to Kingman [135], and on-going usage is typified
by, for example, Fayolle [72].



