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The Existence of 7

In our treatment of the structure and stability concepts for irreducible chains we have
to this point considered only the dichotomy between transient and recurrent chains.

For transient chains there are many areas of theory that we shall not investigate
further, despite the flourishing research that has taken place in both the mathematical
development and the application of transient chains in recent years. Areas which are
notable omissions from our treatment of Markovian models thus include the study of
potential theory and boundary theory [223], as well as the study of renormalized mod-
els approximated by diffusions and the quasi-stationary theory of transient processes
[71, 5].

Rather, we concentrate on recurrent chains which have stable properties without
renormalization of any kind, and develop the consequences of the concept of recur-
rence.

In this chapter we further divide recurrent chains into positive and null recurrent
chains, and show here and in the next chapter that the former class provide stochastic
stability of a far stronger kind than the latter.

For many purposes, the strongest possible form of stability that we might require
in the presence of persistent variation is that the distribution of @, does not change
as n takes on different values. If this is the case, then by the Markov property it
follows that the finite dimensional distributions of ¢ are invariant under translation
in time. Such considerations lead us to the consideration of invariant measures.

Invariant measures

A o-finite measure 7 on B(X) with the property
©(A) = / w(dx)P(z, 4), A€ B(X) (10.1)
X

will be called invariant.

Although we develop a number of results concerning invariant measures, the key
conclusion in this chapter is undoubtedly
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Theorem 10.0.1 If the chain @ is recurrent then it admits a unique (up to constant
multiples) invariant measure 7, and the measure w has the representation, for any
A € BT(X)

x(B) = /A 7 (dw)Ey [fj 1o, €BY], BeBX. (10.2)

The invariant measure T is finite (rather than merely o-finite) if there exists a petite
set C such that

sup E;[7¢] < 0.
zeC

PROOF  The existence and representation of invariant measures for recurrent chains
is proved in full generality in Theorem 10.4.9: the proof exploits, via the Nummelin
splitting technique, the corresponding theorem for chains with atoms as in Theo-
rem 10.2.1, in conjunction with a representation for invariant measures given in The-
orem 10.4.9. The criterion for finiteness of 7 is in Theorem 10.4.10. O

If an invariant measure is finite, then it may be normalized to a stationary prob-
ability measure, and in practice this is the main stable situation of interest. If an
invariant measure has infinite total mass, then its probabilistic interpretation is much
more difficult, although for recurrent chains, there is at least the interpretation as
described in (10.2).

These results lead us to define the following classes of chains.

Positive and Null Chains

Suppose that @ is t-irreducible, and admits an invariant probability
measure 7. Then @ is called a positive chain.

If @ does not admit such a measure, then we call & null.

10.1 Stationarity and Invariance

10.1.1 Invariant measures

Processes with the property that for any &, the marginal distribution of {®,,, ..., @p i}
does not change as n varies are called stationary processes, and whilst it is clear that
in general a Markov chain will not be stationary, since in a particular realization
we may have &) = z with probability one for some fixed z, it is possible that with
an appropriate choice of the initial distribution for @, we may produce a stationary
process {®p,n € Z }.

It is immediate that we only need to consider a form of first step stationarity in
order to generate an entire stationary process. Given an initial invariant probability
measure 7 such that

(A) = /X 7 (dw) P(w, A), (10.3)

we can iterate to give
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w(A) = [x[Jx7(dz)P(z,dw)] P(w,A)

= [y m(dz) [x P(z,dw)P(w, A)

(10.4)
= Jx7(dz)P?(z, A)

= .fx w(dz)P"(z, A) = Py (P, € A),

for any n and all A € B(X).
From the Markov property, it is clear that @ is stationary if and only if the
distribution of @, does not vary with time. We have immediately

Proposition 10.1.1 If the chain D is positive then it is recurrent.

PROOF  Suppose that the chain is positive and let m be a invariant probability
measure. If the chain is also transient, let A; be a countable cover of X with uniformly
transient sets, as guaranteed by Theorem 8.3.4, with U(z, 4;) < Mj, say.

Using (10.4) we have for any j, k

k
kn(4) =Y / w(dw)P™(w, 4;) < M;
n=1

and since the left hand side remains finite as k& — oo, we have m(A4;) = 0. This implies
m is trivial so we have a contradiction. O

Positive chains are often called “positive recurrent” to reinforce the fact that they
are recurrent. This also naturally gives the definition

Positive Harris chains

If & is Harris recurrent and positive, then @ is called a positive Harris
chain.

It is of course not yet clear that an invariant probability measure m ever exists, or
whether it will be unique when it does exist. It is the major purpose of this chapter to
find conditions for the existence of 7, and to prove that for any positive (and indeed
recurrent) chain, 7 is essentially unique.

Invariant probability measures are important not merely because they define
stationary processes. They will also turn out to be the measures which define the long
term or ergodic behavior of the chain. To understand why this should be plausible,
consider P,(®, € -) for any starting distribution . If a limiting measure 7, exists in
a suitable topology on the space of probability measures, such as

Pu(Xn € 4) = 7u(A)

for all A € B(X), then
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WA = lim [ pdn)P(a, 4)

— lim /X u(dz) / P (x, dw)P(w, A)

n—oo

— /X yu(dw)P(w, A), (10.5)

since setwise convergence of [ pu(dz)P"(z,-) implies convergence of integrals of
bounded measurable functions such as P(w, A).

Hence if a limiting distribution exists, it is an invariant probability measure; and
obviously, if there is a unique invariant probability measure, the limit v, will be
independent of p whenever it exists.

We will not study the existence of such limits properly until Part III, where our
goal will be to develop asymptotic properties of @ in some detail. However, motivated
by these ideas, we will give in Section 10.5 one example, the linear model, where this
route leads to the existence of an invariant probability measure.

10.1.2 Subinvariant measures

The easiest way to investigate the existence of 7 is to consider a yet wider class of
measures, satisfying inequalities related to the invariant equation (10.1).

Subinvariant measures

If p is o-finite and satisfies
u(A4) > / u(dz)P(z, 4), A€ B(X) (10.6)
X

then p is called subinvariant.

The following generalization of the subinvariance equation (10.6) is often useful: we
have, by iterating (10.6),

u(B) > / u(dw) P (w, B)

and hence, multiplying by a(n) and summing,

u(B) > / u(dw) Ko (w, B), (10.7)

for any sampling distribution a.
We begin with some structural results for arbitrary subinvariant measures.

Proposition 10.1.2 Suppose that @ is 1p-irreducible. If p is any measure satisfying
(10.6) with u(A) < oo for some one A € BT (X), then
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(1) p is o-finite, and thus p is a subinvariant measure;
(ii) p > o;

(iii) if C is petite then u(C) < oo;

(iv) if u(X) < oo then p is invariant.

PROOF  Suppose p(A) < oo for some A with $(A) > 0. Using A*(j) = {y :
K, (y,A) > j~1}, we have by (10.7),

1/2

0> pA) 2 [ ) K, (. 4) 2 57 0(AYG));
j
since |JA*(j) = X when 9(A) > 0, such a g must be o-finite.
To prove (ii) observe that, by (10.7), if B € B™(X) we have u(B) > 0, so u > 1.
Thirdly, if C is v,-petite then there exists a set B with v4(B) > 0 and u(B) < oo,
from (i). By (10.7) we have

w(B) 2 [ p(dw)Ka(w, B) 2 p(C)va(B) (10.8)

and so p(C) < oo as required.
Finally, if there exists some A such that u(A) > [ u(dy)P(y, A) then we have

pX) = p(A) +u(4%) > [ uldy)Plw,4) + [ uldy)Ply, 49

= [y P.x)
(X) (10.9)

and if u(X) < co we have a contradiction.
O
The major questions of interest in studying subinvariant measures lie with recur-
rent chains, for we always have

Proposition 10.1.3 If the chain P is transient then there exists a strictly subinvari-
ant measure for @.

PrROOF  Suppose that & is transient: then by Theorem 8.3.4, we have that the
measures ji, given by

are o-finite; and trivially

po(4) = Pla, 4) + [ 1maldy) Py, A) 2 [ ml@y)Ply,4),  A€BX)  (10.10)

so that each pu, is subinvariant (and obviously strictly subinvariant, since there is
some A with p;(A) < oo such that P(z, A) > 0). O

We now move on to study recurrent chains, where the existence of a subinvariant
measure is less obvious.
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10.2 The existence of 7w: chains with atoms

Rather than pursue the question of existence of invariant and subinvariant measures
on a fully countable space in the first instance, we prove here that the existence of just
one atom o in the space is enough to describe completely the existence and structure
of such measures.

The following theorem obviously incorporates countable space chains as a special
case; but the main value of this presentation will be in the development of a theory
for general space chains via the split chain construction of Section 5.1.

Theorem 10.2.1 Suppose D is 1p-irreducible, and X contains an accessible atom .

(1) There is always a subinvariant measure pg, for @ given by

po(4) =Uy(a, A) = i P (e, A), A € B(X); (10.11)

n=1
and pg, is invariant if and only if @ is recurrent.

(ii) The measure g, is minimal in the sense that if p is subinvariant with p(a) =1,
then

n(4) > pe(4), A€ B(X).
When @ is recurrent, ug, is the unique (sub)invariant measure with p(o) = 1.

(iii) The subinvariant measure u, is a finite measure if and only if
Ea[7a] < o0,

in which case pg, is invariant.

ProoF (i) By construction we have for A € B(X)

[P a) = pePea)+ [ 3 P )Py, 4)
@ n=1
Pla,A) + i P (a, A) (10.12)

n=2
= pa(4),

IN

where the inequality comes from the bound pf, (o) < 1. Thus pg, is subinvariant, and
is invariant if and only if ug () = Py (74 < 00) = 1; that is, from Proposition 8.3.1, if
and only if the chain is recurrent.

(ii) Let u be any subinvariant measure with u(a) = 1. By subinvariance,

p(4) > /u A)
> p(a)P(e A) P(a, A).

Assume inductively that u(A) > >0 _; o P™ (e, A), for all A. Then by subinvariance,
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p(4) = pla)Ple, A) + | pldw)P(w, A)

aC

P(a, A) + [Za (a dw]P(w,A)

n+1
= Z oP"(a, A).

Y

Taking n 1 co shows that u(A) > po(A) for all A € B(X).

Suppose @ is recurrent, so that uo(a) = 1. If pg, differs from u, there exists A
and n such that u(A) > po(A) and P"(w, ) > 0 for all w € A, since ¥(a) > 0. By
minimality, subinvariance of x4, and invariance of pug,,

1=pe) > [ pdw)P(w,a)

> [ e ldw) P w,a)
= fala) = 1.

Hence we must have u = pg, and thus when @ is recurrent, p2 is the unique (sub)
invariant measure.

(iii)  If pg is finite it follows from Proposition 10.1.2 (iv) that g, is invariant.
Finally

Z (Ta > n) (10.13)

and so an invariant probability measure exists if and only if the mean return time to
o is finite, as stated. O
We shall use m to denote the unique invariant measure in the recurrent case.
Unless stated otherwise we will assume 7 is normalized to be a probability measure
when 7(X) is finite.
The invariant measure ug, has an equivalent sample path representation for re-
current chains:

A) =E, [i 1@, € A},  AeB(X). (10.14)

This follows from the definition of the taboo probabilities o P™.
As an immediate consequence of this construction we have the following elegant
criterion for positivity.

Theorem 10.2.2 (Kac’s Theorem) If & is i-irreducible and admits an atom o €
BT (X), then @ is positive recurrent if and only if Eo[1,] < oo; and if 7 is the invariant
probability measure for @ then

m(a) = (Eq[1a]) L (10.15)

Proor If E4[1,] < oo, then also L(a,@) = 1, and by Proposition 8.3.1 @ is
recurrent; it follows from the structure of 7 in (10.11) that = is finite so that the
chain is positive.

Conversely, Ey[7,] < oo when the chain is positive from the structure of the
unique invariant measure.
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By the uniqueness of the invariant measure normalized to be a probability mea-
sure 7 we have
_ tala)  Us(a,a) 1
B lj’ge(x) B Ua(aax) B Ea[Ta]

m(a)
which is (10.15). 0
The relationship (10.15) is often known as Kac’s Theorem. For countable state

space models it immediately gives us

Proposition 10.2.3 For a positive recurrent irreducible Markov chain on a countable
space, there is a unique (up to constant multiples) invariant measure © given by

m(z) = [Ex[m]] ™
for every x € X. O
We now illustrate the use of the representation of 7 for a number of countable space

models.

10.3 Invariant measures: countable space models

10.3.1 Renewal chains

Forward recurrence time chains Consider the forward recurrence time process
V1 with

P(1,5)=p(), Ji>1L PGIj-1)=1,  j>1 (10.16)

As noted in Section 8.1.2, this chain is always recurrent since Y p(j) = 1.
By construction we have that

1P*(1,5) =p(j+n—-1), j<n
and zero otherwise; thus the minimal invariant measure satisfies

() = U1(1,5) = Y_p(n) (10.17)

n>j
which is finite if and only if
(e o] oo o o0
Yo =>.> pn)=> np(n) <oco: (10.18)
Jj=1 j=ln=j n=1

that is, if and only if the renewal distribution {p(%)} has finite mean.

It is, of course, equally easy to deduce this formula by solving the invariant
equations themselves, but the result is perhaps more illuminating from this approach.
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Linked forward recurrence time chains Consider the forward recurrence chain
with transition law (10.16), and define the bivariate chain V* = (V;¥(n), V5" (n)) on
the space X*:={1,2,...} x {1,2,...}, with the transition law

P((i,(j(),(’i)—(l,j—lgg = 1,() ,j > L

P((L,5),(k,j - 1) = p(k), kj > 1

P(i,i),(izl,k)) = i(k), zlg > 1 (10.19)
P((1,1),(4.k)) = p(5)p(k), gk > 1

<

This chain is constructed by taking the two independent copies V' (n), V5 (n) of the
forward recurrence chain and running them independently.

Now suppose that the distribution {p(j)} is periodic with period d: that is, the
greatest common divisor d of the set N, = {n : p(n) > 0} is d. We show that V* is
1p-irreducible and positive if {p(j)} has period d =1 and }_,~; np(n) < co.

By the definition of d we have that there must exist r,s € N, with greatest

common divisor d, and by Lemma D.7.3 there exist integers n, m such that
nr=ms+d:

without loss of generality we can assume n,m > 0.
We show that the bivariate chain V* is 01 i-irreducible if d = 1.
To see this, note that for any pair (i, ) with i > j we have

PIHE=Im (i, 5), (1,1)) > [p(r)] I [p(s)] I >
since
j+ G —g)nr=1i+ (i —j)ms.
Moreover V* is positive Harris recurrent on X* provided only >, kp(k) < oo, as

was the case for the single copy of the forward recurrence time chain. To prove this
we need only note that the product measure 7*(i,j) = w(i)w(j) is invariant for V*,

n(5) =D p(k)/ D kp(k)
k

k>j

where

is the invariant probability measure for the forward recurrence time process from
(10.17) and (10.18); positive Harris recurrence follows since 7*(X*) = [7(X)]? = 1.

These conditions for positive recurrence of the bivariate forward time process will
be of critical use in the development of the asymptotic properties of general chains
in Part III.

10.3.2 The number in an M/G/1 queue

Recall from Section 3.3.3 that N* is a modified random walk on a half line with in-
crement distribution concentrated on the integers {..., —1,0,1} having the transition
probability matrix of the form

9 491 92 g3

9 491 92 g3

P = 9 @1 ¢
90 4q1

q0
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where ¢; = P(Z = i — 1) for the increment variable in the chain when the server
is busy; that is, for transitions from states other than {0}. The chain N* is always
y-irreducible if gy > 0, and irreducible in the standard sense if also g9 + ¢1 < 1, and
we shall assume this to be the case to avoid trivialities.
In this case, we can actually solve the invariant equations explicitly. For j > 1,
(10.1) can be written
Jj+1
w(j) = > 7(k)qj41-k- (10.20)
k=0
and if we define
o0
> an
n=j+1

we get the system of equations

3
—_~
™o
N
Q
(=)
Il
A
=
p—

g1+
m(3)a = (0) 22+ (1)q2 + @)@ (10.21)

In this case, therefore, we always get a unique invariant measure, regardless of the
transience or recurrence of the chain.
The criterion for positivity follows from (10.21). Note that the mean increment

B of Z satisfies
B=3q -1
j=>0
so that formally summing both sides of (10.21) gives, since gg = 1 — §

o0

(1-qo) Z = (B+1)m(0) + (B+1—q) >_7(5)- (10.22)

If the chain is positive, this implies
o
Z m(0)(B+1)/8

s0, since 8 > —1, we must have 8 < 0. Conversely, if 5 < 0, and we take

then the same summation (10.22) indicates that the invariant measure 7 is finite.
Thus we have

Proposition 10.3.1 The chain N* is positive if and only if the increment distribu-
tion satisfies B =3 jg; < 1.

This same type of direct calculation can be carried out for any so called “skip-
free” chain with P(i,j) = 0 for j < i — 1, such as the forward recurrence time chain
above. For other chains it can be far less easy to get a direct approach to the invariant
measure through the invariant equations, and we turn to the representation in (10.11)
for our results.
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10.3.3 The number in a GI/M/1 queue

We illustrate the use of the structural result in giving a novel interpretation of an old
result for the specific random walk on a half line N corresponding to the number in
a GI/M/1 queue.

Recall from Section 3.3.3 that N has increment distribution concentrated on the
integers {...,—1,0,1} giving the transition probability matrix of the form

Z(fo bi Po

p_| X2pi p1 po O
Zgopi b2 pP1 DPo

where p; = P(Z =1 —i). The chain N is ¢-irreducible if py + p; < 1, and irreducible
if pp > 0 also. Assume these inequalities hold, and let {0} = a be our atom.

To investigate the existence of an invariant measure for N, we know from Theo-
rem 10.2.1 that we should look at the quantities ,P" (e, 7).

Write [k] = {0, ...,k}. Because the chain can only move up one step at a time,
so the last visit to [k] is at k itself, we have on decomposing over the last visit to [k],
for k > 1

a,k+1) Z oP" (0, B) i P™ 7 (K K+ 1). (10.23)
Now the translation invariance property of P implies that for 7 > k
WP (5,9) = P (0] — ). (10.24)

Thus, summing (10.23) from 1 to oo gives

iapn(a,k—l-l) [i aPn(a’k)] [i [k}Pn(k,k—i-l)

n=1

= li aPn(aak)] li aPn(aal)
n=1 n=1

Using the form (10.11) of u$, we have now shown that
po(k +1) = g (k)pg (1),
and so the minimal invariant measure satisfies
pa(k) = s§ (10.25)

where s, = ud(1).

The chain then has an invariant probability measure if and only if we can find
Sq < 1 for which the measure p, defined by the geometric form (10.25) is a solution
to the subinvariant equations for P: otherwise the minimal subinvariant measure is
not summable.

We can go further and identify these two cases in terms of the underlying param-
eters p;. Consider the second (that is, the £ = 1) invariant equation
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pa(1) =Y ua(k)P(k,1).

This shows that s, must be a solution to
w .
s=Y_ p;s, (10.26)
0

and since pf, is minimal it must the smallest solution to (10.26). As is well-known,
there are two cases to consider: since the function of s on the right hand side of (10.26)
is strictly convex, a solution s € (0, 1) exists if and only if

o0
Y i > 1,
0

whilst if 37, jp; <1 then the minimal solution to (10.26) is s, = 1.

One can then verify directly that in each of these cases ug, solves all of the
invariant equations, as required. In particular, if ) ;jp; = 1 so that the chain is
recurrent from the remarks following Proposition 9.1.2, the unique invariant measure
is po(xz) = 1,z € X: note that in this case, in fact, the first invariant equation is

exactly
1=2.2 p=2in;
j20n>j J
Hence for recurrent chains (those for which 2P > 1) we have shown
Proposition 10.3.2 The unique subinvariant measure for N is given by pq (k) = sk,
where sq is the minimal solution to (10.26) in (0,1]; and N is positive recurrent if

and only if 32;jpj > 1. O

The geometric form (10.25), as a “trial solution” to the equation (10.1), is often
presented in an arbitrary way: the use of Theorem 10.2.1 motivates this solution, and
also shows that s, in (10.25) has an interpretation as the expected number of visits
to state k 4+ 1 from state k, for any k.

10.4 The existence of m: ¥-irreducible chains

10.4.1 Invariant measures for recurrent chains

We prove in this section that a general recurrent i-irreducible chain has an invariant
measure, using the Nummelin splitting technique.

First we show how subinvariant measures for the split chain correspond with
subinvariant measures for .

Proposition 10.4.1 Suppose that @ is a strongly aperiodic Markov chain and let &
denote the split chain. Then

(i) If the measure 7 is invariant for &, then the measure = on B(X) defined by
m(A) = 7 (Ag U 4y), A € B(X), (10.27)
is invariant for @, and T = 7w*.

(ii) If p is any subinvariant measure for @ then p* is subinvariant for &, and if p
is invariant then so is pu*.
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PrOOF  To prove (i) note that by (5.5), (5.6), and (5.7), we have that the measure
P(z;, ) is of the form pj for any x; € X, where y,, is a probability measure on X.
By linearity of the splitting and invariance of #, for any A € B(X),

#(A) = [ (o) Plai, A) = [ #ldmuz, (D) = ([ #ldwipa()) " (A)

Thus 7 = n§, where mp = [ 7(dz;)pg, (-).

By (10.27) we have that m(A) = n5(AoUA1) = mo(A), so that in fact # = 7*. This
proves one part of (i), and we now show that 7 is invariant for @. For any A € B(X)
we have by invariance of 7* and (5.10),

m(4) = 7*(A4g U A1) = 7* P (Ag U A1) = (nP)" (Ag U Ar) = 7P (4)

which shows that 7 is invariant and completes the proof of (i).
The proof of (ii) also follows easily from (5.10): if the measure y is subinvariant
then
prP = (uP)* < pt,
which establishes subinvariance of y*, and similarly, *P = p* if i is strictly invariant.
O
We can now give a simple proof of

Proposition 10.4.2 If & is recurrent and strongly aperiodic then @ admits a unique
(up to constant multiples) subinvariant measure which is invariant.

PrROOF  Assume that @ is strongly aperiodic, and split the chain as in Section 5.1.

If & is recurrent then it follows from Proposition 8.2.2 that @ is also recurrent.

We have from Theorem 10.2.1 that & has a unique subinvariant measure # which is

invariant. Thus we have from Proposition 10.4.1 that & also has an invariant measure.

The uniqueness is equally easy. If & has another subinvariant measure y, then

by Proposition 10.4.1 the split measure p* is subinvariant for &, and since from

Theorem 10.2.1, the invariant measure # is unique (up to constant multiples) for &,

we must have for some ¢ > 0 that u* = cir. By linearity this gives u = cm as required.

a

We can, quite easily, lift this result to the whole chain even in the case where we

do not have strong aperiodicity by considering the resolvent chain, since the chain
and the resolvent share the same invariant measures.

Theorem 10.4.3 For any ¢ € (0,1), a measure 7 is invariant for the resolvent K,_
if and only if it is invariant for P.

PrROOF  If 7 is invariant with respect to P then by (10.4) it is also invariant for K,
for any sampling distribution a.

To see the converse, suppose that 7 satisfies 7K, = = for some € € (0,1), and
consider the chain of equalities

o0
P = (1—¢)) efnPFt!
k=0
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= (1— g)e_l(i ekn Pk — 1)
k=0
= ¢ 7K, — (1 —¢)n)

.

This now gives us immediately

Theorem 10.4.4 If & is recurrent then ¢ has a unique (up to constant multiples)
subinvariant measure which is invariant.

ProOOF  Using Theorem 5.2.3, we have that the K,_-chain is strongly aperiodic,
and from Theorem 8.2.4 we know that the K,_-chain is recurrent. Let m be the
unique invariant measure for the K,_-chain, guaranteed from Proposition 10.4.2. From
Theorem 10.4.3 7 is also invariant for @.

Suppose that p is subinvariant for @. Then by (10.7) we have that p is also
subinvariant for the K,_-chain, and so there is a constant ¢ > 0 such that y = cn.
Hence we have shown that 7 is the unique (up to constant multiples) invariant measure
for @. O

We may now equate positivity of @ to positivity for its skeletons as well as the
resolvent chains.

Theorem 10.4.5 Suppose that @ is -irreducible and aperiodic. Then, for each m,
a measure T is invariant for the m-skeleton if and only if it is invariant for .

Hence, under aperiodicity, the chain @ is positive if and only if each of the m-
skeletons D™ is positive.

PROOF  If 7 is invariant for @ then it is obviously invariant for ™, by (10.4).

Conversely, if 7, is invariant for the m-skeleton then by aperiodicity the measure
Tm 18 the unique invariant measure (up to constant multiples) for ¢™. In this case
write

1 m—1
n(4)=— Y /wm(dw)P’“(w,A), A € B(X).
k=0
From the P™-invariance we have, using operator theoretic notation,
1 m—1
TP =— Z 7rmPchrl =T
™ k=0

so that 7 is an invariant measure for P. Moreover, since 7 is invariant for P, it is also
invariant for P™ from (10.4), and so by uniqueness of 7, for some ¢ > 0 we have
T = CTp,. But as 7 is invariant for P7 for every j, we have from the definition that

m—1
Z /ﬂ_PlH—l ol
k=0

r=c !

and so m,, = 7. O
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10.4.2 Minimal subinvariant measures

In order to use invariant measures for recurrent chains, we shall study in some detail
the structure of the invariant measures we have now proved to exist in Theorem 10.2.1.
We do this through the medium of subinvariant measures, and we note that, in this
section at least, we do not need to assume any form of irreducibility. Our goal is
essentially to give a more general version of Kac’s Theorem.

Assume that g is an arbitrary subinvariant measure, and let A € B(X) be such
that 0 < p(A) < co. Define the measure 5 by

ui(B) = [ ndnUa(y B), B € BX). (10.28)

Proposition 10.4.6 The measure ;15 is subinvariant, and minimal in the sense that
u(B) > u(B) for all B € B(X).

Proor  If y is subinvariant, then we have first that

u(B) > /A u(dw)P(w, B);

assume inductively that p(B) > [, pu(dw) > ;-1 AP™(w, B), for all B. Then, by
subinvariance,

n

/c l/Au(dw) > APm(’w,dU)] P(v,B) +/Au(dw)p(w,3)

m=1

1(B)

v

n+1

_ /Au(dw) 3 4P™(w, B).

m=1

Hence the induction holds for all n, and taking n 1 oo shows that

u(B) > [ n(dw)Ua(w, B)

for all B. Now by this minimality of x4

oo

Wa(B) = [ wdw)P(w,B)+ [ uldw) 3 AP™(w, B)

m=2

[ ()P, B) + [ ([ wtdw) 3 4P, o) (o, B

m=1

v

— [ wildw)P(w, B).
X

Hence ;% is subinvariant also. O

Recall that we define A := {z : L(x, A) > 0}. We now show that if the set 4 in
the definition of ;% is Harris recurrent, the minimal subinvariant measure is in fact
invariant and identical to y itself on A.

Theorem 10.4.7 If L(z, A) = 1 for pu-almost all x € A, then we have
(i) u(B) = u%(B) for B C A;

ii) p is invariant and pS(A°) = 0.
A A
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Proor (i) We first show that u(B) = p%(B) for B C A.
For any B C A, since L(z, A) = 1 for p-almost all z € A, we have from minimality

of 5

wA) = u(B)+u(AnB°)
> u%(B) + % (AN BY)

— [ u(dw)Ua(w, B) + / 1(dw)Ua(w, AN B°)
A A

_ /A p(dw)Una(w, A) = p(A). (10.29)

Hence, the inequality u(B) > u%(B) must be an equality for all B C A. Thus the
measure j satisfies

u(B) = [ n(dw)Ua(w, B) (10.30)

whenever B C A.
We now use (10.30) to prove invariance of 5. For any B € B(X),

/ui;(dy)P(y,B) = /NZ(dy)P("J’B)
X A
n /A c [ /A M;(dw)UA(w,dy)] P(y,B)
— /Au;(dy) lP(y,B)-I—iAPn(yaB)]

— 13(B) (10.31)

and so p¢ is invariant for @. Tt follows by definition that uS (A°) = 0, so (ii) is proved.

We now prove (i) by contradiction. Suppose that B C A with p(B) > p5(B).
Then we have from invariance of the resolvent chain in Proposition 10.4.3 and mini-
mality of x5, and the assumption that K, (z,A) > 0 for z € B,

pA) = [ ) Ka. (0, 4) > [ p3(@9) K (5, 4) = 5 (4) = ()

and we thus have a contradiction. O
An interesting consequence of this approach is the identity (10.30). This has the
following interpretation. Assume A is Harris recurrent, and define the process on A,
denoted by #4 = {#1}, by starting with $; = = € A, then setting &{' as the value
of @ at the next visit to A, and so on. Since return to A is sure for Harris recurrent
sets, this is well defined.
Formally, #* is actually constructed from the transition law

Ua(z, B) = i AP"(z, B) = P{®,, € B},

n=1

B C A, B € B(X). Theorem 10.4.7 thus states that for a Harris recurrent set A, any
subinvariant measure restricted to A is actually invariant for the process on A.

One can also go in the reverse direction, starting off with an invariant measure
for the process on A. The following result is proved using the same calculations used
in (10.31):
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Proposition 10.4.8 Suppose that v is an invariant probability measure supported on
the set A with

/Al/(dac)UA(x,B) = v(B), B C A.

Then the measure v° defined as
V°(B) = / v(de)Ua(z,B) B e B(X)
A

is invariant for P. O

10.4.3 The structure of w for recurrent chains
These preliminaries lead to the following key result.

Theorem 10.4.9 Suppose P is recurrent. Then the unique (up to constant multiples)
invariant measure w for @ is equivalent to v and satisfies for any A € BT(X), B €
B(X),
m(B) = [ym(dy)Ualy, B)
= Jam(dy)Ey| 5L, Pk € B}] (10.32)
= [um(dy)Ey [T, 1 € B}

PrROOF  The construction in Theorem 10.2.1 ensures that the invariant measure m
exists. Hence from Theorem 10.4.7 we see that m = 7% for any Harris recurrent set A,
and 7 then satisfies the first equality in (10.32) by construction. The second equality
is just the definition of U4. To see the third equality,

T4—1

TA
/Aw(dy)Ey > 1{# € BY| = /Aﬁ(dy)Ey[z 1@, € B},
k=1 k=0
apply (10.30) which implies that

| 7B, (1@, € BY = [ m(ayE,[1{0 € B,
A A

We finally prove that m = 4. From Proposition 10.1.2 we need only show that if
9(B) = 0 then also 7(B) = 0. But since 9(B) = 0, we have that B® € B*(X), and so
from the representation (10.32),

w(B) = [ (d)Us(y. B) =0,

which is the required result. O

The interpretation of (10.32) is this: for a fixed set A € BT (X), the invariant
measure 7m(B) is proportional to the amount of time spent in B between visits to
A, provided the chain starts in A with the distribution 74 which is invariant for the
chain &4 on A.

When A is a single point, a, with m(a) > 0 then each visit to a occurs at a. The
chain # is hence trivial, and its invariant measure 7, is just d,. The representation
(10.32) then reduces to p given in Theorem 10.2.1.
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We will use these concepts systematically in building the asymptotic theory of
positive chains in Chapter 13 and later work, and in Chapter 11 we develop a number
of conditions equivalent to positivity through this representation of 7. The next result
is a foretaste of that work.

Theorem 10.4.10 Suppose that @ is ¥-irreducible, and let i denote any subinvari-
ant measure.

(1) The chain D is positive if and only if for one, and then every, set with u(A) > 0

/A,u(dy)Ey[TA] < 0. (10.33)
(ii) The measure p 1is finite and thus @ is positive recurrent if for some petite set
C € BT(X)
sup Ey[7¢] < oo. (10.34)
yeC

The chain P is positive Harris if also

Ez[7c] < o0, zeX (10.35)
PROOF  The first result is a direct consequence of (10.28), since we have

H3 %) = [ n(dnUa(wX) = [ nldyE,lra;

if this is finite then x is finite and the chain is positive by definition. Conversely, if
the chain is positive then by Theorem 10.4.9 we know that y must be a finite invariant
measure and (10.33) then holds for every A.

The second result now follows since we know from Proposition 10.1.2 that p(C) <
oo for petite C; and hence we have positive recurrence from (10.34) and (i), whilst
the chain is also Harris if (10.35) holds from the criterion in Theorem 9.1.7. O

In Chapter 11 we find a variety of usable and useful conditions for (10.34) and
(10.35) to hold, based on a drift approach which strengthens those in Chapter 8.

10.5 Invariant Measures: General Models

The constructive approach to the existence of invariant measures which we have
featured so far enables us either to develop results on invariant measures for a number
of models, based on the representation in (10.32), or to interpret the invariant measure
probabilistically once we have determined it by some other means.

We now give a variety of examples of this.

10.5.1 Random walk

Consider the random walk on the line, with increment measure I', as defined in
(RW1). Then by Fubini’s Theorem and the translation invariance of p**
any A € B(X)

we have for
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/ uLeb(dy)P(y,A) _ / uLeb(dy)F(A—y)
R

- / Lebdy/]lAy 2)T(dx)

_ / (dz) / L () (dy) (10.36)
Leb

since I'(IR) = 1. We have already used this formula in (6.8): here it shows that
Lebesgue measure is invariant for unrestricted random walk in either the transient or
the recurrent case.

Since Lebesgue measure on IR is infinite, we immediately have from Theo-
rem 10.4.9 that there is no finite invariant measure for this chain: this proves

Proposition 10.5.1 The random walk on IR is never positive recurrent. ad

If we put this together with the results in Section 9.5, then we have that when
the mean S of the increment distribution is zero, then the chain is null recurrent.

Finally, we note that this is one case where the interpretation in (10.32) can be
expressed in another way. We have, as an immediate consequence of this interpretation

Proposition 10.5.2 Suppose @ is a random walk on IR, with spread out increment
measure I having zero mean and finite variance.

Let A be any bounded set in IR with p“*(A) > 0, and let the initial distribution
of @y be the uniform distribution on A. If we let Nao(B) denote the mean number
of visits to a set B prior to return to A then for any two bounded sets B,C with
p*(C) > 0 we have

E[NA(B)]/EINA(C)] = u™"(B)/u"*(C).

PrROOF  Under the given conditions on I" we have from Proposition 9.4.5 that the
chain is non-evanescent, and hence recurrent.

Using (10.36) we have that the unique invariant measure with 7(4) =1is 7 =
p=®/m(A), and then the result follows from the form (10.32) of =. O

10.5.2 Forward recurrence time chains

Let us consider the forward recurrence time chain V}' defined in Section 3.5 for a
renewal process on IR,. For any fixed § consider the expected number of visits to an
interval strictly outside [0, 6]. Exactly as we reasoned in the discrete time case studied
in Section 10.3, we have

Fly,00)dy < Uj 5)(z,dy) < Fly — d,00)dy.

Thus, if 74 is to be the invariant probability measure for V(}", by using the normalized
version of the representation (10.32)

Fly,c0)dy
o? F(w, c0)dw] < m(dy) <

F[y — 65 OO)dy
[J5* F(w, 00)dw]’




10.5 Invariant Measures: General Models 253

Now we use uniqueness of the invariant measure to note that, since the chain V}'
is the “two-step” chain for the chain V(}L/Z, the invariant measures 75 and 75/, must
coincide. Thus letting ¢ go to zero through the values §/2" we find that for any § the

invariant measure is given by
ms(dy) = m™ Fly, 00)dy (10.37)

where m = [° tF(dt); and 75 is a probability measure provided m < co.

By direct integration it is also straightforward to show that this is indeed the
invariant measure for V;.

This form of the invariant measure thus reinforces the fact that the quantity
F[y,c0)dy is the expected amount of time spent in the infinitesimal set dy on each
excursion from the point {0}, even though in the discretized chain V; the point {0}
is never actually reached.

10.5.3 Ladder chains and GI/G/1 queues

General ladder chains We will now turn to a more complex structure and see how
far the representation of the invariant measure enables us to carry the analysis.

Recall from Section 3.5.4 the Markov chain constructed on Z; x IR to analyze
the GI/G/1 queue, with the “ladder-invariant” transition kernel

P(i,z;7 xA) = 0, j>i+1
P(i,z;j x A) = Aij(z,A), j=1,...,i+1 (10.38)
P(i,z;0 x A) = Af(z,A).

Let us consider the general chain defined by (10.38), where we can treat z and
A as general points in and subsets of X, so that the chain @ now moves on a ladder
whose (countable number of) rungs are general in nature. In the special case of the
GI/G/1 model the results specialize to the situation where X = IR, and there are
many countable models where the rungs are actually finite and matrix methods are
used to achieve the following results.

Using the representation of =, it is possible to construct an invariant measure for
this chain in an explicit way; this then gives the structure of the invariant measure
for the GI/G/1 queue also.

Since we are interested in the structure of the invariant probability measure we
make the assumption in this section that the chain defined by (10.38) is positive
Harris and ([0]) > 0, where [0] := {0 x X} is the bottom “rung” of the ladder. We
shall explore conditions for this to hold in Chapter 19.

Our assumption ensures we can reach the bottom of the ladder with probability
one. Let us denote by 7 the invariant probability measure for the process on [0], so
that 7y can be thought of as a measure on B(X).

Our goal will be to prove that the structure of the invariant measure for @ is an
“operator-geometric” one, mimicking the structure of the invariant measure developed
in Section 10.3 for skip-free random walk on the integers.

Theorem 10.5.3 The invariant measure w for @ is given by

m(k x A) = /X mo(dy)S* (y, A) (10.39)
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where
Sk(y, A) = /X S(y, d2)S* (2, A) (10.40)

for a kernel S which is the minimal solution of the operator equation

= i/xs’“(y,dZ)Ak(z,B), z € X, B € B(X). (10.41)

PROOF  Using the structural result (10.32) we have

n(k x A) = /[ mo(dy)Ulg) (0,43 k x B) (10.42)
0]
so that if we write
S®) (y, A) = Up)(0, 3k x A) (10.43)
we have by definition
n(k x A) = / ro(dy)S® (y, A). (10.44)
[0]

Now if we define the set [n] = {0,1,...,n}xX, by the fact that the chain is translation
invariant above the zero level we have that the functions

Upn(n, 5 (n + k) x B) = Ugg)(0, 53k x B) = 5¥(y, 4) (10.45)

are independent of n. Using a last exit decomposition over visits to [k], together with
the “skip-free” property which ensures that the last visit to [k] prior to reaching
(k+ 1) x X takes place at the level k x X, we find

0 PA(0,z; (k +1) x A) _
= YOt 0PI (0, 25k x dy)g PE (ks (B + 1) x A) (10.46)
= Zf;i X [o]Pj(O,x;k X dy)[o]Pe_j(O,y; 1x A)

Summing over £ and using (10.45) shows that the operators S(*)(y, A) have the geo-
metric form in (10.40) as stated.

To see that the operator S satisfies (10.41), we decompose o P" over the position
at time n — 1. By construction [O]P1 (0,z;1 x B) = A¢(z, B), and for n > 1,

0o P"(0,2;1 x B) Z/ P70, z;k x dy) Ag(y, B); (10.47)
k>1

summing over n and using (10.40) gives the result (10.41).
To prove minimality of the solution S to (10.41), we first define, for N > 1, the

partial sums
N

Sn(z;k x B):=>_ P! (0,z;k x B) (10.48)
Jj=1
so that as N — oo, Sy(z;1 x B) — S(z; B).
Using (10.46) these partial sums also satisfy

SN_l(.’I,‘;k +1 x B) S /SN_l(LE;k X dy)SN_l(y; 1 x B)
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so that
Sy_i(z:k+1x B) < /sfv_l(x; 1 x dy)Sy_1(y; 1 x B). (10.49)
Moreover from (10.47)
Sn(w1x B) = Aolw, B) + 3, [ Sw-1(aik x dy)Auy, B). (10.50)
k>17%

Substituting from (10.49) in (10.50) shows that
Sw(@i1,B) < 3 [ Sk_y(os1,dy)dn(y, B). (10.51)
X

Now let S* be any other solution of (10.41). Notice that Si(z;1 x B) = Ag(z,B) <
S*(z,B), from (10.41). Assume inductively that Sy_1(z;1 x B) < S*(z, B) for all
z, B: then we have from (10.51) that

Sn(z;1xB) <Y /X (ST (z, dy) Ag(y, B) = S*(z, B). (10.52)
k

Taking limits as N — oo gives S(z, B) < S*(z, B) for all z, B as required. O
This result is a generalized version of (10.25) and (10.26), where the “rungs” on
the ladder were singletons.

The GI/G/1 queue Note that in the ladder processes above, the returns to the
bottom rung of the ladder, governed by the kernels A} in (10.38), only appear in the
representation (10.39) implicitly, through the form of the invariant measure my for
the process on the set [0].

In particular cases it is of course of critical importance to identify this component
of the invariant measure also. In the case of a singleton rung, this is trivial since the
rung is an atom. This gives the explicit form in (10.25) and (10.26).

We have seen in Section 3.5 that the general ladder chain is a model for the
GI/G/1 queue, if we make the particular choice of

&, = (N, R,), n>1

where N,, is the number of customers at 7}, — and R, is the residual service time at
T!+. In this case the representation of T[] can also be made explicit.

For the GI/G/1 chain we have that the chain on [0] has the distribution of R,, at
a time-point {7, +} where there were no customers at {7, —}: so at these time points
R, has precisely the distribution of the service brought by the customer arriving at
T!, namely H.

So in this case we have that the process on [0], provided [0] is recurrent, is a
process of i.i.d random variables with distribution H, and thus is very clearly positive
Harris with invariant probability H.

Theorem 10.5.3 then gives us

Theorem 10.5.4 The ladder chain @ describing the GI/G/1 queue has an invariant
probability if and only if the measure © given by

n(k x A) = /X H(dy)S*(y, A) (10.53)
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is a finite measure, where S is the minimal solution of the operator equation
o
SwB) =Y / S*(y,dz)Ay(z,B), = €X,B € B(X). (10.54)
X
k=0
In this case 7 suitably normalized is the unique invariant probability measure for P.

Proor  Using the proof of Theorem 10.5.3 we have that 7 is the minimal subin-
variant measure for the GI/G/1 queue, and the result is then obvious. a

10.5.4 Linear state space models

We now consider briefly a chain where we utilize the property (10.5) to develop the
form of the invariant measure. We will return in much more detail to this approach
in Chapter 12.

We have seen in (10.5) that limiting distributions provide invariant probability
measures for Markov chains, provided such limits exist. The linear model has a struc-
ture which makes it easy to construct an invariant probability through this route,
rather than through the minimal measure construction above.

Suppose that (LSS1) and (LSS2) are satisfied, and observe that since W is as-
sumed i.i.d. we have for each initial condition Xy = o € R",

k—1
Xy = Ffzo+ ) F'GWi_,
1=0
k—1 )
~ FFgo+ ) F'GW;.
1=0

This says that for any continuous, bounded function ¢g: IR" — IR,

k-1
P¥g (@) = Egolg(Xk)] = Elg(FF a0 + Y F'GW;)).
=0

Under the additional hypothesis that the eigenvalue condition (LSS5) holds, it follows
from Lemma 6.3.4 that F* — 0 as i+ — oo at a geometric rate. Since W has a finite
mean then it follows from Fubini’s Theorem that the sum

o
Xoo =) F'GW;
1=0

converges absolutely, with E[| Xo|] < E[[W|] X2, ||F'G|| < oo, with || - || an appropri-
ate matrix norm. Hence by the Dominated Convergence Theorem, and the assumption
that g is continuous,

klin;oPkg (w0) = E[g(Xo0)]-

Let us write my for the distribution of X,. Then 7y is an invariant probability. For
take g bounded and continuous as before, so that using the Feller property for X in
Chapter 6 we have that Pg is continuous. For such a function g
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Too(Pg) = E[Pg(X)] = k]i_}IgoPk(xO’Pg)

= lim PFlg(z)

k—o0

= E[g(Xoo)] = 7Too(g)'

Since 7 is determined by its values on continuous bounded functions, this proves that
7 is invariant.

In the Gaussian case (LSS3) we can express the invariant probability more ex-
plicitly. In this case X, itself is Gaussian with mean zero and covariance

o0
E[XooXo] = > F'GGTF'T
k=0

That is, m = N(0, ') where X is equal to the controllability grammian for the linear
state space model, defined in (4.17).

The covariance matrix X' is full rank if and only if the controllability condition
(LCM3) holds, and in this case, for any k greater than or equal to the dimension of
the state space, P¥(x,dy) possesses the density py(z,y)dy given in (4.18). It follows
immediately that when (LCM3) holds, the probability 7 possesses the density p on
IR™ given by

p(y) = (2| Z)) " exp{—3y" £y}, (10.55)

while if the controllability condition (LCM3) fails to hold then the invariant prob-
ability is concentrated on the controllable subspace Xo = R(X) C X and is hence
singular with respect to Lebesgue measure.

10.6 Commentary

The approach to positivity given here is by no means standard. It is much more com-
mon, especially with countable spaces, to classify chains either through the behavior
of the sequence P", with null chains being those for which P"(z, A) — 0 for, say,
petite sets A and all z, and positive chains being those for which such limits are not
always zero; a limiting argument such as that in (10.5), which we have illustrated in
Section 10.5.4, then shows the existence of 7 in the positive case.

Alternatively, positivity is often defined through the behavior of the expected
return times to petite or other suitable sets.

We will show in Chapter 11 and Chapter 18 that even on a general space all of
these approaches are identical. Our view is that the invariant measure approach is
much more straightforward to understand than the P™ approach, and since one can
now develop through the splitting technique a technically simple set of results this
gives an appropriate classification of recurrent chains.

The existence of invariant probability measures has been a central topic of Markov
chain theory since the inception of the subject. Doob [68] and Orey [208] give some
good background. The approach to countable recurrent chains through last exit prob-
abilities as in Theorem 10.2.1 is due to Derman [61], and has not changed much since,
although the uniqueness proofs we give owe something to Vere-Jones [284]. The con-
struction of 7 given here is of course one of our first serious uses of the splitting
method of Nummelin [200]; for strongly aperiodic chains the result is also derived
in Athreya and Ney [12]. The fact that one identifies the actual structure of 7 in
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Theorem 10.4.9 will also be of great use, and Kac’s Theorem [114] provides a valu-
able insight into the probabilistic difference between positive and null chains: this is
pursued in the next chapter in considerably more detail.

Before the splitting technique, verifying conditions for the existence of 7 had
appeared to be a deep and rather difficult task. It was recognized in the relatively
early development of general state space Markov chains that one could prove the
existence of an invariant measure for @ from the existence of an invariant probability
measure for the “process on A”. The approach pioneered by Harris [95] for finding the
latter involves using deeper limit theorems for the “process on A” in the special case
where A is a vp,-small set, (called a C-set in Orey [208]) if a,, = 0, and v, {A} > 0.
In this methodology, it is first shown that limiting probabilities for the process on
A exist, and the existence of such limits then provides an invariant measure for the
process on A: by the construction described in this chapter this can be lifted to an
invariant measure for the whole chain. Orey [208] remains an excellent exposition of
the development of this approach.

This “process on A” method is still the only one available without some regener-
ation, and we will develop this further in a topological setting in Chapter 12, using
many of the constructions above.

We have shown that invariant measures exist without using such deep asymptotic
properties of the chain, indicating that the existence and uniqueness of such measures
is in fact a result requiring less of the detailed structure of the chain.

The minimality approach of Section 10.4.2 of course would give another route to
Theorem 10.4.4, provided we had some method of proving that a “starting” subinvari-
ant measure existed. There is one such approach, which avoids splitting and remains
conceptually simple. This involves using the kernels

U™ (z, A) ZP" z, A)r" > 7"/ U (z, dy)P(y, A) (10.56)

n=1

defined for 0 < 7 < 1. One can then define a subinvariant measure for @ as a limit

_ uo(y o)
tia () 1= Tl / vn(dy)UD (g, /[ / vn(dy) U™ (y, C)]

where C' is a v,-small set. The key is the observation that this limit gives a non-trivial
o-finite measure due to the inequalities

M; > 7 (C()) (10.57)

and
- (A) > r"v, (A), A € B(X), (10.58)

which are valid for all r large enough. Details of this construction are in Arjas and
Nummelin [8], as is a neat alternative proof of uniqueness.

All of these approaches are now superseded by the splitting approach, but of
course only when the chain is 1)-irreducible. If this is not the case then the existence
of an invariant measure is not simple. The methods of Section 10.4.2, which are
based on Tweedie [280], do not use irreducibility, and in conjunction with those in
Chapter 12 they give some ways of establishing uniqueness and structure for the
invariant measures from limiting operations, as illustrated in Section 10.5.4.
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The general question of existence and, more particularly, uniqueness of invariant
measures for non-irreducible chains remains open at this stage of theoretical develop-
ment.

The invariance of Lebesgue measure for random walk is well known, as is the form
(10.37) for models in renewal theory. The invariant measures for queues are derived
directly in [40], but the motivation through the minimal measure of the geometric
form is not standard. The extension to the operator-geometric form for ladder chains
is in [277], and in the case where the rungs are finite, the development and applications
are given by Neuts [194, 195].

The linear model is analyzed in Snyders [250] using ideas from control theory,
and the more detailed analysis given there allows a generalization of the construction
given in Section 10.5.4. Essentially, if the noise does not enter the “unstable” region
of the state space then the stability condition on the driving matrix F' can be slightly
weakened.



