D

Some Mathematical Background

In this final section we collect together, for ease of reference, many of those mathemat-
ical results which we have used in developing our results on Markov chains and their
applications: these come from probability and measure theory, topology, stochastic
processes, the theory of probabilities on topological spaces, and even number theory.

We have tried to give results at a relevant level of generality for each of the
types of use: for example, since we assume that the leap from countable to general
spaces or topological spaces is one that this book should encourage, we have reviewed
(even if briefly) the simple aspects of this theory; conversely, we assume that only a
relatively sophisticated audience will wish to see details of sample path results, and
the martingale background provided requires some such sophistication.

Readers who are unfamiliar with any particular concepts and who wish to delve
further into them should consult the standard references cited, although in general a
deep understanding of many of these results is not vital to follow the development in
this book itself.

D.1 Some Measure Theory

We assume throughout this book that the reader has some familiarity with the ele-
ments of measure and probability theory. The following sketch of key concepts will
serve only as a reminder of terms, and perhaps as an introduction to some non-
elementary concepts; anyone who is unfamiliar with this section must take much in
the general state space part of the book on trust, or delve into serious texts such as
Billingsley [25], Chung [50] or Doob [68] for enlightenment.

D.1.1 Measurable spaces and o-fields

A general measurable space is a pair (X, B(X)) with
X: an abstract set of points;
B(X) : a o-field of subsets of X; that is,

(i) X € B(X);
(ii) if A € B(X) then A° € B(X);
(iii) if A € B(X), k =1,2,3, ... then U2, Ay, € B(X).
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A o-field B is generated by a collection of sets A in B if B is the smallest o-field
containing the sets A, and then we write B = o(A); a o-field B is countably generated
if it is generated by a countable collection A of sets in B. The o-fields B(X) we use
are always assumed to be countably generated.

On the real line IR := (—00, 00) the Borel o-field B(IR) is generated by the count-
able collection of sets A = (a, b] where a,b range over the rationals Q.

When our state space is IR then we always assume it is equipped with the Borel
o-field.

If (X1, B(X1)) is a measurable space and (Xg, B(X2)) is another measurable space,
then a mapping h: X; — X is called a measurable function if

h~YB}:={z : h(z) € B} € B(Xy)

for all sets B € B(Xs).
As a convention, functions on (X, B(X)) which we use are always assumed to be
measurable, and in general this is omitted from theorem statements and the like.

D.1.2 Measures

A (signed) measure p on the space (X,B(X)) is a function from B(X) to (—oo, o]
which is countably additive: if Ay € B(X), k=1,2,3,...,and A;NA; =0, i # j then

p(lJ A) =D (4
=1 =1

We say that p is positive if u(A) > 0 for any A. The measure p is called a probability
(or subprobability) measure if it is positive and p(X) =1 (or p(X) < 1).

A positive measure p is o-finite if there is a countable collection of sets { Ax} such
that X = UAg and pu(Ag) < oo for each k.

On the real line (R, B(IR)) Lebesgue measure p“* is a positive measure defined
for intervals (a, b] by u***(a,b] = b — a, and for the other sets in B(IR) by an obvious
extension technique. Lebesgue measure on higher dimensional Euclidean space IR? is
constructed similarly using the area of rectangles as a basic definition.

The total variation norm of a signed measure is defined as ||u||:=sup [ f du, where
the supremum is taken over all measurable functions f from (X, B(X)) to (IR, B(IR)),
such that |f(z)| < 1 for all z € X.

For a signed measure p, the state space X may be written as the union of disjoint
sets X4 and X_ where

pXy) = pXo) = |l

This is known as the Hahn decomposition.

D.1.3 Integrals

Suppose that h is a non-negative measurable function from (X, B(X)) to (IR, B(IR)).
The Lebesgue integral of h with respect to a positive finite measure y is defined in
three steps.

Firstly, for A € B(X) define 14(z) =1 if z € A, and 0 otherwise: 14 is called the
indicator function of the set A. In this case we define
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[ La(@do) == u(a).
X

Next consider simple functions h such that there exist sets {A1,... Ay} C B(X) and
positive numbers {b1,...by} C Ry with h = S0 1 belly, .
If h is a simple function we can unambiguously define

N
[ H@utda) = Y- bua{Ac}.
k=1

Finally, since it is possible to show that given any non-negative measurable h, there
exists a sequence of simple functions {ht}32,, such that for each z € X,

hi(z) 1 h(z)

we can take

| M@n(ds) = lim [ hy(a)pu(do)

which always exists, though it may be infinite.
This approach works if h is non-negative. If not, write

h=ht —h~

where h* and h~ are both non-negative measurable functions, and define

[ autda) = [ 0t @u(do) = [ b (@)ulda),

if both terms on the right are finite. Such functions are called p-integrable, or just
integrable if there is no possibility of confusion; and we frequently denote the integral
by

/hdu ::/Xh(z)u(dz).

The extension to o-finite measures is then straightforward.
Convergence of sequences of integrals is central to much of this book. There are
three results which we use regularly:

Theorem D.1.1 (Monotone Convergence Theorem) If i is a o-finite positive
measure on (X,B(X)) and {f; : i € Z+} are measurable functions from (X, B(X)) to
(R, B(IR)) which satisfy 0 < fi(z) 1 f(z) for pu-almost every x € X, then

| F@ndz) =tim [ fi(@n(ds). (D.1)
X ? X

Note that in this result the monotone limit f may not be finite even p-almost every-
where, but the result continues to hold in the sense that both sides of (D.1) will be
finite or infinite together.

Theorem D.1.2 (Fatou’s Lemma) If y is a o-finite positive measure on (X, B(X))
and {f; : i € Z.} are non-negative measurable functions from (X, B(X)) to (IR, B(IR))
then

/lim'inffi(x),u(dx) < lim.inf/ fi(z)p(dz). (D.2)
X i i X
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Theorem D.1.3 (Dominated Convergence Theorem) Suppose that p is a o-
finite positive measure on (X,B(X)) and g > 0 is a p-integrable function from
(X, B(X)) to (R, B(IR)).

If f and {f; : i € Z} are measurable functions from (X,B(X)) to (R, B(IR))
satisfying | fi(z)| < g(x) for p-almost every € X, and if fi(z) — f(z) as i — oo for
p-a.e. z € X, then each f; is p-integrable, and

[ f@n(de) = lim | fi(@)u(do)

D.2 Some Probability Theory

A general probability space is an ordered triple (£2,F,P) with 2 an abstract set of
points, F a o-field of subsets of {2, and P a probability measure on F.

If (£2,F,P) is a probability space and (X,B(X)) is a measurable space, then a
mapping X: 2 — X is called a random variable if

X_I{B} ={w: X(w) € B} e F

for all sets B € B(X): that is, if X is a measurable mapping from (2 to X.

Given a random variable X on the probability space (£2,F,P), we define the
o-field generated by X, denoted o{X} C F, to be the smallest o-field on which X is
measurable.

If X is a random variable from a probability space (£2,F,P) to a general mea-
surable space (X, B(X)), and h is a real valued measurable mapping from (X, B(X))
to the real line (IR, B(IR)) then the composite function A(X) is a real-valued random
variable on ({2, F,P): note that some authors reserve the term “random variable” for
such real-valued mappings. For such functions, we define the expectation as

ER(X)) = [ hX())P(du)

The set of real-valued random variables Y for which the expectation is well-defined
and finite is denoted L'(£2,F,P). Similarly, we use L*®(£2,F,P) to denote the col-
lection of essentially bounded real-valued random variables Y; that is, those for
which there is a bound M and a set Ay C F with P(Ay) = 0 such that
{w:|Y(w)| > M} C Ap.

Suppose that Y € L'(£2, F,P) and G C F is a sub-o-field of F. IfY € L'(02,G,P)
and satisfies

E[YZ]=E[YZ] forall Zec L®(£,G,P)

then YV is called the conditional expectation of Y given G, and denoted E[Y | G]. The
conditional expectation defined in this way exists and is unique (modulo P-null sets)
for any Y € L'(£2, F,P) and any sub o-field G.

Suppose now that we have another o-field D C G C F. Then

EY | D] =E[E[Y | G] | D). (D.3)

The identity (D.3) is often called “the smoothing property of conditional expecta-
tions”.
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D.3 Some Topology

We summarize in this section several concepts needed for chains on topological spaces,
and for the analysis of some of the applications on such spaces. The classical texts of
Kelley [126] or Halmos [94] are excellent references for details at the level we require,
as is the more introductory but very readable exposition of Simmons [240].

D.3.1 Topological spaces

On any abstract space X a topology 7 := {open subsets of X} is a collection of sets
containing

(i) arbitrary unions of members of T,
(ii) finite intersections of members of T,

(iii) the whole space X and the empty set (.

Those members of 7 containing a point = are called the neighborhoods of z, and
the complements of open sets are called closed.

A set C is called compact if any cover of C' with open sets admits a finite subcover,
and a set D is dense if the smallest closed set containing D (the closure of D) is the
whole space. A set is called precompact if it has a compact closure.

When there is a topology assumed on the state spaces for the Markov chains
considered in this book, it is always assumed that these render the space locally
compact and separable metric: a locally compact space is one for which each open
neighborhood of a point contains a compact neighborhood, and a separable space is
one for which a countable dense subset of X exists. A metric space is such that there
is a metric d on X which generates its topology.

For the topological spaces we consider, Lindeltf’s Theorem holds:

Theorem D.3.1 (Lindel6f’s Theorem) If X is a separable metric space, then ev-
ery cover of an open set by open sets admits a countable subcover.

If X is a topological space with topology 7, then there is a natural o-field on X
containing 7. This o-field B(X) is defined as

B(X) := ﬂ{G : T C G, G ao-field on X}

so that B(X) is generated by the open subsets of X.

Extending the terminology from IR, this is often called the Borel o-field of X:
throughout this book, we have assumed that on a topological space the Borel o-field
is being addressed, and so our general notation B(X) is consistent in the topological
context with the conventional notation.

A measure p is called regular if for any set E € B(X),

p(E) =inf{u(0) : E C O, O open} = sup{u(C): C C E, C compact}

For the topological spaces we consider, measures on B(X) are regular: we have ([233]
p. 49)

Theorem D.3.2 If X is locally compact and separable, then every o-finite measure
on B(X) is regular.
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D.4 Some Real Analysis

A function f: X — IR on a space X with a metric d is called continuous if for each € > 0
there exists d > 0 such that for any two z,y € X, if d(z,y) < d then |f(z) — f(y)| < e.
The set of all bounded continuous functions on the locally compact and separable
metric space X forms a metric space denoted C(X), whose metric is generated by the
supremum norm

| fle == sup|f(z)|.
zeX

A function f: X — R is called lower semicontinuous if the sublevel set {z : f(z) < ¢}
is closed for any constant ¢, and upper semicontinuous if {z : f(r) < c} is open for
any constant c.

Theorem D.4.1 A real-valued function f on X is continuous if and only if it is
simultaneously upper semicontinuous and lower semicontinuous.

If the function f is positive, then it is lower semicontinuous if and only if there
exists a sequence of continuous bounded positive functions {f, : n € Z} C C(X),
each with compact support, such that for all x € X,

fa(z) T f(2) as n — 0o.

A sequence of functions {f; : i« € Z} C C(X) is called equicontinuous if for
each € > 0 there exists 6 > 0 such that for any two z,y € X, if d(z,y) < § then

|fi(z) — fi(y)| < € for all .

Theorem D.4.2 (Ascoli’s Theorem) Suppose that the topological space X is com-
pact. A collection of functions {f; :1 € Z1} C C(X) is precompact as a subset of C(X)
if and only if the following two conditions are satisfied:

(1) The sequence is uniformly bounded: i.e. for some M < oo, and alli € Z,

|file = sup | fi(z)| < M.
T€EX

(ii) The sequence is equicontinuous.

Finally, in our context one of the most frequently used of all results on continuous
functions is that which assures us that the convolution operation applied to any pair
of L}Y(R, B(R), u***) and L*°(IR, B(IR), #***) functions is continuous.
For two functions f, g: IR — IR, the convolution f % g is the function on IR defined
for t € IR by
o
frot) = [ fs)g(t~s)ds

—0o0

This is well defined if, for example, both f and g are positive. We have (see [233], p.
196)

Theorem D.4.3 Suppose that f and g are measurable functions on IR, that f is
bounded, and that [ |g|dx < oco. Then the convolution f x g is a bounded continuous
function.
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D.5 Some Convergence Concepts for Measures

In this section we summarize various forms of convergence of probability measures
which are used throughout the book. For further information the reader is referred
to Parthasarathy [213] and Billingsley [24].

Assume X to be a locally compact and separable metric space. Letting M de-
note the set of probability measures on B(X), we can construct a number of natural
topologies on M.

As is obvious in Part III of this book, we are frequently concerned with the very
strong topology of convergence in total variation norm. However, for individual se-
quences of measures, the topologies of weak or vague convergence prove more natural
in many respects.

D.5.1 Weak Convergence

In the topology of weak convergence a sequence {vy : k € Z} of elements of M
converges to v if and only if

lim / fdvy = / fdv (D.4)

for every f € C(X).

In this case we say that {v;} converges weakly to v as k — oo, and this will be
denoted v — v.

The following key result is given as Theorem 6.6 in [213]:

Proposition D.5.1 There exists a sequence of uniformly continuous, uniformly
bounded functions {gy, : n € Z,} C C(X) with the property that

o oy = e Zy, Jim [ gudu = [ gndpoe (D.5)
k—00
It follows that M can be considered as a metric space with metric | - |,, defined for
v, u € M by

o
v — ptlw 3222_k|/91cd’/_/gkdﬂ‘
k=1

Other metrics relevant to weak convergence are summarized in, for example, [119].
A set of probability measures A C M is called tight if for every £ > 0 there exists
a compact set C' C X for which

v{C}>1—-¢ for every v € A.

The following result, which characterizes tightness with M viewed as a metric space,
follows from Proposition D.5.6 below.

Proposition D.5.2 The set of probabilities A C M is precompact if and only if it
is tight.

A function V:X — IR is called norm-like if there exists a sequence of compact
sets, C,, C X, C,, 1 X such that
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lim (inf V(w)) = 00
n—o0 \zeCg

where we adopt the convention that the infimum of a function over the empty set is
infinity. If X is a closed and unbounded subset of R¥ it is evident that V'(z) = |z|P is
norm-like for any p > 0. If X is compact then our convention implies that any positive
function V' is norm-like because we may set C,, = X for alln € Z .

It is easily verified that a collection of probabilities A C M is tight if and only if
a norm-like function V exists such that

sup/VdV < Q.
vEA

The following simple lemma will often be needed.

Lemma D.5.3 (i) A sequence of probabilities {vy : k € Z} 1is tight if and only if
there exists a norm-like function V such that

lim sup v (V) < oo.
k—o0

(ii) If for each z € X there exists a norm-like function Vy(-) on X such that

lim sup E; [V (Pg)] < o0,

k— 00

then the chain is bounded in probability. O
The next result can be found in [24] and [213].

Theorem D.5.4 The following are equivalent for a sequence of probabilities {vy :
keZ,}CcM

(i) vp > v
(ii) for all open sets O C X, hl?l infy, {O} > v {0}
—00

(iii) for all closed sets C C X, lim supyy {C} < v {C}

k—o0

(iv) for every uniformly bounded and equicontinuous family of functions C C C(X),

lim sup| [ fdvg — /fdl/| =0.

k—o0 fec

D.5.2 Vague Convergence

Vague convergence is less stringent than weak convergence. Let Cy(X) C C(X) denote
the set of continuous functions on X which converge to zero on the “boundary” of X:
that is, f € Co(X) if for some (and hence any) sequence {C} : k € Z} of compact
sets which satisfy

oo
Ci C Ck—i—la and U Cr = X,
k=0
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we have
lim sup |f(z)| = 0.
k—o0 zeCs
The space Cy(X) is simply the closure of C.(X), the space of continuous functions with
compact support, in the uniform norm.
A sequence of subprobability measures {vy : k € Z, } is said to converge vaguely
to a subprobability measure v if for all f € Cy(X)

lim /fduk - /fdu,
k—o00
and in this case we will write

\%4
v, — vV as k — oo.

In this book we often apply the following result, which follows from the observa-
tion that positive lower semicontinuous functions on X are the pointwise supremum
of a collection of positive, continuous functions with compact support (see Theo-
rem D.4.1).

Lemma D.5.5 If v, — v then
lim inf [ fdy, > /fdz/ (D.6)
k—o00
for any positive lower semicontinuous function f on X.

It is obvious that weak convergence implies vague convergence. On the other
hand, a sequence of probabilities converges weakly if and only if it converges vaguely
and is tight.

The use and direct verification of boundedness in probability will often follow
from the following results: the first of these is a consequence of our assumption that
the state space is locally compact and separable (see Billingsley [24] and Revuz [223]).

Proposition D.5.6 (i) For any sequence of subprobabilities {vy : k € Z.} there
ezists a subsequence {ny} and a subprobability v such that

Un,, 5 Voo, k — oo.

(ii) If {vx} is tight and each vy is a probability measure, then vy, — Voo and Voo is
a probability measure.
O

D.6 Some Martingale Theory

D.6.1 The Martingale Convergence Theorem

A sequence of integrable random variables {M,, : n € Z} is called adapted to
an increasing family of o-fields {F, : n € Z,} if M, is F,-measurable for each n.
The sequence is called a martingale if E[M, 1 | F,] = M, for all n € Z, and a
supermartingale if E[My 1 | Fp] < M, forn € Z,.

A martingale difference sequence {Zy, : n € Z .} is an adapted sequence of random
variables such that the sequence M, = > }_, Zj is a martingale.

The following result is basic:
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Theorem D.6.1 (The Martingale Convergence Theorem) Let M,, be a super-
martingale, and suppose that
sup E[| M, |] < 0.
n

Then {M,} converges to a finite limit with probability one.

If {M,} is a positive, real valued supermartingale then by the smoothing property
of conditional expectations (D.3),

E[|Myn|] = E[My] <E[Mo] <00, neZy
Hence we have as a direct corollary to the Martingale Convergence Theorem

Theorem D.6.2 A positive supermartingale converges to a finite limit with proba-
bility one.

Since a positive supermartingale is convergent, it follows that its sample paths
are bounded with probability one. The following result gives an upper bound on the
magnitude of variation of the sample paths of both positive supermartingales, and
general martingales.

Theorem D.6.3 (Kolmogorov’s Inequality) (i) If M, is a martingale then for
eachc >0 andp > 1,

1
P My| > ¢} < —E[| M,
{omax, M| 2 ¢} < ZE[[M[7]

(ii) If M, is a positive supermartingale then for each ¢ > 0

1
P{ sup My >c} < ~E[M]
0<k<oo c

These results, and related concepts, can be found in Billingsley [25], Chung [50],
Hall and Heyde [93], and of course Doob [68].

D.6.2 The functional CLT for martingales

Consider a general martingale (M,,F,). Our purpose is to analyze the following
sequence of continuous functions on [0, 1]:

M (t) = Mgy + (0t = [n]) [Mpy 11 — Mipy],  0<2<1. (D.7)

The function m,,(t) is piecewise linear, and is equal to M; when ¢t = i/n for 0 < ¢ < 1.
In Theorem D.6.4 below we give conditions under which the normalized sequence
{n=Y2my(t) : n € Z,} converges to a continuous process (Brownian motion) on
[0, 1]. This result requires some care in the definition of convergence for a sequence of
stochastic processes.

Let C[0,1] denote the normed space of all continuous functions ¢:[0,1] — R
under the uniform norm, which is defined as

|plc = sup [¢(t)]-
0<t<1
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The vector space C[0, 1] is a complete, separable metric space, and hence the theory
of weak convergence may be applied to analyze measures on C|0, 1].

The stochastic process my,(t) possesses a distribution u,, which is a probability
measure on C[0, 1]. We say that m,(t) converges in distribution to a stochastic process

Moo(t) as n — oo, which is denoted m,, 4, Moo, if the sequence of measures
converge weakly to the distribution pe, of meo. That is, for any bounded continuous
functional A on C[0, 1],

E[h(mn)] = E[h(m)] as n — 00.

The limiting process, standard Brownian motion on [0, 1], which we denote by B, is
defined as follows:

Standard Brownian Motion

Brownian motion B(t) is a real-valued stochastic process on [0,1] with
B(0) = 0, satisfying
(i) The sample paths of B are continuous with probability one;

(ii) The increment B(t) — B(s) is independent of {B(r) : r < s} for each
0<s<t<L;

(iii) The distribution of B(t) — B(s) is Gaussian N(0, [t — s]).

To prove convergence we use the following key result which is a consequence of The-
orem 4.1 of [93].

Theorem D.6.4 Let (M, F,) be a square integrable martingale, so that for all n €
Y/

n
E[M}] = E[M§] + > E[(My — My_1)?] < o0,
k=1
and suppose that the following conditions hold:

(i) For some constant 0 < % < oo,
lim LS E((My— My )2 Fes] =72 as (D.8)
rimrgo . £ k k-1 k=11 =7 -S. :
(ii) For alle > 0,

L 2 2
nli{go E l;l E[(]\l]c — Mk:—l) ﬂ{(Mk — Mlc—l) > €n}|.7:]c_1] =0 a.sS. (Dg)
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Then (y?n)~'/?m,, 4 B. O

Function space limits of this kind are often called invariance principles, though
we have avoided this term because functional CLT seems more descriptive.

D.7 Some Results on Sequences and Numbers

We conclude with some useful lemmas on sequences and convolutions. The first gives
an interaction between convolutions and limits. Recall that for two series a,b on Z,
the convolution is defined as

axb(n):= Z a(j)b(n — j)
§=0

Lemma D.7.1 If{a(n)},{b(n)} are non-negative sequences such that b(n) — b(oo) <
00 as m— 00, and Y. a(j) < oo, then

axb(n) —)b(oo)Za(j) < 00, n — 0. (D.10)
§=0

PROOF  Set b(n) = 0 for n < 0. Since b(n) converges it is bounded, and so by the
Dominated Convergence Theorem

o0 o0

lim axb(n) =Y a(j) Jim b(n — j) = b(c0) > _ al(j) (D.11)

n—oo - "
J=0 Jj=0

as required. O
The next lemma contains two valuable summation results for series.

Lemma D.7.2 (i) If ¢(n) is a non-negative sequence then for any r > 1,

%:O[g c(m)]r" < . i 1 Z>0 c(m)r™

and hence the two series

n>0 n>0 m>n
converge or diverge together.

(ii) If a,b are two non-negative sequences and r > 0 then

Z axb(n)r" = [Z a(n)r"] [Z b(n)T"].
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PrROOF By Fubini’s Theorem we have

Z[Z c(m)]r™ = Z c(m) Z "

n>0 m>n m>0 n<m
= > cm)[rmtt —1]/[r - 1]
m>0

which gives the first result. Similarly, we have

Z axb(n)r® = Z[Z a(m)b(n —m)|r"

n>0 n>0 m<n
= Z a(m)r™ Z b(n —m)r"™™
m2>0 n>m
= Z a(m)r™ Z b(n)r"
m>0 n>0
which gives the second result. a

An elementary result on the greatest common divisor is useful for periodic chains.

Lemma D.7.3 Let d denote the greatest common divisor (g.c.d) of the numbers m,n.
Then there exist integers a,b such that

am+bn=d

For a proof, see the corollary to Lemma 1.31 in Herstein [97].
Finally, in analyzing the periodic behavior of Markov chains, the following lemma
is invaluable on very many occasions in ensuring positivity of transition probabilities:

Lemma D.7.4 Suppose that N C Zy is a subset of the integers which is closed
under addition: for each j,k € N, j + k € N. Let d denote the greatest common
divisor of the set N. Then there exists ng < oo such that nd € N for all n > nyg.

For a proof, see p. 569 of Billingsley [25].



