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A Glossary of Model Assumptions

Here we gather together the assumptions used for the classes of models we have
analyzed as continuing examples. These are only intended for reference. Discussion of
the background or the use of these terms is given as they are originally introduced:
the Index gives a coherent list of the point of introduction of these assumptions with
the nomenclature given here, whilst the equation numbering is that of the original
introduction to the model assumption.

C.1 Regenerative Models

We first consider the class of models loosely defined as “regenerative”. Such models
are usually addressed in applied probability or operations research contexts.

C.1.1 Recurrence time chains
Both discrete time and continuous time renewal processes have served as examples
as well as tools in our analysis.

(RT1) If {Z,} is a discrete time renewal process, then the forward recurrence time
chain Vt =V*(n),n € Z, is given by

V*(n):=inf(Z,, —n: Z, > n), n>0
(RT2) The backward recurrence time chain V- =V~ (n),n € Z, is given by
V7™ (n) :=inf(n — Zp, : Z, < m), n > 0.
(RT3) If {Z,} is a renewal process in continuous time with no delay, then we call the

process
V() :=inf(Z, —t: Z, >t, n>1), t>0

the forward recurrence time process; and for any § > 0, the discrete time chain
Vi =VT(nd),n € Z, is called the forward recurrence time é-skeleton.

(RT4) We call the process
V (t):=inf(t—Z,: Z, <t, n>1), t>0

the backward recurrence time process; and for any d > 0, the discrete time chain
V5 =V~ (nd),n € Z, is called the backward recurrence time d-skeleton.
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C.1.2 Random Walk

We have analyzed both random walk on the real line and random walk on the half
line, and many models based on these.

(RW1) Suppose that & = {@,;n € Z} is a collection of random variables defined
by choosing an arbitrary distribution for @, and setting for &k > 1

P = D1+ Wy
where the Wy, are i.i.d. random variables taking values in IR, with

I'(—o0,y] = P(W, < y). (1.6)
Then @ is called random walk on IR.

(RW2) We call the random walk spread-out (or equivalently, we call I" spread out) if
some convolution power I"™* is non-singular with respect to ™.

(RWHL1) Suppose @ = {P,;n € Z. } is defined by choosing an arbitrary distribution
for @&y and taking
@, = [t +W,]T (1.7)

where [@,_1 + W,,|T := max(0,®,_1 + W,,) and again the W,, are i.i.d. random
variables taking values in IR with I'(—o0,y] = P(W < y).

Then @ is called random walk on a half-line.

C.1.3 Storage Models and Queues

Random walks provide the underlying structure for both queueing and storage models,
and we have assumed several specializations for these physical systems.
Queueing models and storage models are closely related in formal structure, al-
though the physical interpretation of the quantities of interest are somewhat different.
We have analyzed GI/G/1 queueing models under the assumptions

(Q1) Customers arrive into a service operation at timepoints Ty = 0, Ty + 11, Tp +
T1 + T5,... where the interarrival times T;, ¢ > 1, are i.i.d. random variables,
distributed as a random variable T' with G(—o0,t] = P(T < t).

(Q2) The n'* customer brings a job requiring service S,, where the service times are
independent of each other and of the interarrival times, and are distributed as
a variable S with distribution H(—o0,t] = P(S < ?).

(Q3) There is one server and customers are served in order of arrival.

In such a general situation we have often considered the countable space chain con-
sisting of the number of customers in the queue either at arrival or at departure times.
Under some exponential assumptions these give the GI/M/1 and M/G/1 queueing
systems:
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(Q4) If the distribution H(—o0,t] of service times is exponential with
H(-oco,f] =1—e ¥  t>0
then the queue is called a GI/M/1 queue.
(Q5) If the distribution G(—o00,t] of inter-arrival times is exponential with
G(—o0,f] =1—e™, t>0
then the queue is called an M/G/1 queue.

In storage models we have a special case of random walk on a half line, but here we
consider the model at the times of input and break the increment into the input and
output components.

The simple storage model has the assumptions

(SSM1) For each n > 0 let S,, and T;, be i.i.d. random variables on IR with distribu-
tions H and G.

(SSM2) Define the random variables
Dp1 = [Pp + Sn — o] T
where the variables J, are i.i.d., with
P(J, <z) = G(—o0,z/r] (2.32)
for some r > 0.

Then the chain ¢ = {&,,} represents the contents of a storage system at the times
{T,—} immediately before each input, and is called the simple storage model, with
release rate r.

More complex content-dependent storage models have the assumptions

(CSM1) For each n > 0 let S,(z) and T} be ii.d. random variables on IR with
distributions H, and G.

(CSM2) Define the random variables
D1 = [Pn — Jn + Sp(Pn — Tn)]"

where the variables J, are independently distributed, with

Py <y | Py =)= /Gdt (Jo(t) < 1) (2.34)

The chain ¢ = {&,} can be interpreted as the content of the storage system at
the times {7, —} immediately before each input, and is called the content dependent
storage model.

We also note that these models can be used to represent a number of state-
dependent queueing systems where the rate of service depends on the actual state of
the system rather than being independent.
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C.2 State Space Models

The other broad class of models we have considered are loosely described as “state
space models”, and occur in communication and control engineering, other areas of
systems analysis, and in time series.

C.2.1 Linear Models

The process X = {X,,,n € Z,} is called the simple linear model if

(SLM1) X,, and W,, are random variables on IR satisfying, for some o € IR,

Xn=aX, 1 +W,, n > 1;

(SLM2) the random variables {W,,} are an i.i.d. sequence with distribution I" on IR.
Next suppose X = {Xj} is a stochastic process for which

(LSS1) There exists an n x n matrix F' and an n X p matrix G such that for each k €
Z., the random variables X; and W} take values in IR" and IRP, respectively,
and satisfy inductively for k£ > 1, and arbitrary W,

Xy = FXg1+ GWy;

(LSS2) The random variables {W,,} are i.i.d. with common finite mean, taking values
on IR?, with distribution I'(4) = P(W; € A).

Then X is called the linear state space model driven by F, G, or the LSS(F,G) model,
with associated control model LCM(F,G) (defined below).

Further assumptions are required for the stability analysis of this model. These
include, at different times

(LSS3) The noise variable W has a Gaussian distribution on IR? with zero mean and
unit variance: that is, W ~ N(0, I).

(LSS4) The distribution I" of the random variable W is non-singular with respect to
Lebesgue measure, with non-trivial density ~,,.

(LSS5) The eigenvalues of F' fall within the open unit disk in C.

The associated (linear) control model LCM(F,G) is defined by the following two sets
of assumptions.

Suppose x = {z}} is a deterministic process on IR" and u = {u, } is a determin-
istic process on IR?, for which g is arbitrary; then x is called the linear control model

driven by F,G, or the LCM(F,G) model, if for £ > 1

(LCM1) there exists an n X n matrix F' and an n x p matrix G such that for each
keZ,,
Ti+1 = Fzg + Gug1; (1.4)

(LCM2) the sequence {u,} on IR? is chosen deterministically.
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A process Y = {Y,,} is called a (scalar) autoregression of order k, or AR(k) model,
if it satisfies

(AR1) for each n > 0, Y,, and W,, are random variables on IR, satisfying, inductively
for n > k,
Yo=a1Yp 1 +taY, o+ ...+ Yy + Wi,

for some ay,...,q; € R;
(AR2) the sequence W is an error or innovation sequence on IR.

The process Y = {Y,} is called an autoregressive-moving average process of order
(k,£), or ARMA(k,#) model, if it satisfies

(ARMA1) for each n > 0, Y,, and W,, are random variables on IR, satisfying, induc-
tively for n > k,

k 4
Y, = Zann—j + ZﬂjWn—j + Wh,
j=1 j=1

for some ay,...,ak,B1,-..,00 € R;

(ARMAZ2) the sequence W is an error or innovation sequence on IR.

C.2.2 Nonlinear Models

The stochastic nonlinear systems we analyze have a deterministic analogue in semi-
dynamical systems, defined by:

(DS1) The process @ is deterministic, and generated by the nonlinear difference equa-
tion, or semi-dynamical system,

Ppt1 = F(ék), ke, (11'16)
where F: X — X is a continuous function.

(DS2) There exists a positive function V: X — IR} and a compact set C' C X and
constant M < oo such that
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for all  lying outside the compact set C, and

supV(F(z)) < M.
zel

The chain X = {X,,} is called a scalar nonlinear state space model on IR driven by
F, or SNSS(F') model, if it satisfies

(SNSS1) for each n > 0, X,, and W,, are random variables on IR, satisfying, induc-
tively for n > 1,
Xn = F(anla Wn)a

for some smooth (C*°) function F : IR x IR — TR.
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We also use, for various results at various times,

(SNSS2) The sequence W is a disturbance sequence on IR, whose marginal distribu-
tion I" possesses a density -y, supported on an open set O,,, called the control
set.

(SNSS3) The distribution I" of W is absolutely continuous, with a density «y,, on IR
which is lower semicontinuous.

Suppose X = { X}, where

(NSS1) for each k£ > 0, X} and Wy are random variables on IR", IR? respectively,
satisfying inductively for k > 1,

Xy = F(Xg—1, Wg),

for some smooth (C*°) function F:X x O,, — X, where X is an open subset of
IR", and O, is an open subset of IRP.

Then X is called a nonlinear state space model driven by F, or NSS(F') model, with
control set Oy,.
Again for various properties to hold we require

(NSS2) The random variables {Wj} are a disturbance sequence on IRP, whose
marginal distribution I" possesses a density -, which is supported on an open
set Oy,.

(NSS3) The distribution I" of W possesses a density 7, on IRP which is lower semi-
continuous, and the control set is the open set

Op :={z € R : yy(z) > 0}.

The associated control model CM(F) is defined as follows.

(CM1) The deterministic system
CEk:Fk(IO,Ul,---,Uk), kez+7 (28)

where the sequence of maps {Fj, : X x OF — X : k > 0} is defined by (2.5), is
called the associated control system for the NSS(F') model (denoted CM(F))
provided the deterministic control sequence {u1,...,ux,k € Z;} lies in the
control set O,, C IRP.

To obtain a T-chain, we assume for the SNSS(F') model,

CM2) For each initial condition z) € IR there exists ¥ € Z, and a sequence
0 +

(ud,...,ul) € OF such that the derivative
0 0

is non-zero.

For the multi-dimensional NSS(F') model we often assume
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(CM3) For each initial condition z3 € IR there exists k € Z and a sequence %’ =
(u),...,ud) € OF such that
rank C*(@°) = n. (7.13)

A specific example of the NSS(F') model is the nonlinear autoregressive-moving av-
erage, or NARMA, model.

The process Y = {Y,,} is called a nonlinear autoregressive-moving average process
of order (k,£) if the values Yy,...,Y;_1 are arbitrary and

(NARMAL) for each n > 0, Y,, and W,, are random variables on IR, satisfying, induc-
tively for n > k,

Y, = G(Yn—la Y2, s Ynog, Wo, W1, W9, ..., Wn—@)
where the function G: IR¥t*! — TR is smooth (C'*).

(NARMAZ2) the sequence W is an error sequence on IR.

C.2.3 Particular Examples

The simple adaptive control model is a triple Y, U, 8 where

(SAC1) the output sequence Y and parameter sequence 0 are defined inductively for
any input sequence U by

Y1 = 0kYe + Up + Wiy (2.19)

Ok+1 = &b + Zg41, k>1 (2.20)

where « is a scalar with |a| < 1;

(SAC2) the bivariate disturbance process (&) is Gaussian and satisfies

el = (o)
()@ = (G )dnn n2

with o, < 1;
(SAC3) the input process satisfies Uy € Vi, k € Z, where YV, = o{Yy,...,Y;}.

With the control Uy chosen as U, = —9kYk, k € Z ., the closed loop system equations
for the simple adaptive control model are

ék+1 = Oéék - aZkYk+1Yk(2kYk2 + 0'1211)_1 + Zk+1 (221)
Vi1 = 065 + Wit (2.22)
Spi1 =02 + o (Y2 +02)7L, kE>1 (2.23)

where the triple Xy, 90, Y} is given as an initial condition.

The closed loop system gives rise to a Markovian system of the form (NSS1), so

0_2

that &y = (2, 0k, Yx) " is a Markov chain with state space X = [02, 73] x R
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A chain X = {X,} is called a scalar self-exciting threshold autoregression (or
SETAR) model if it satisfies

(SETAR1) for each 1 < j < M, X,, and W,,(j) are random variables on IR, satisfying,
inductively for n > 1,

Xn = ¢(j) +0(j) Xn—1 +War(j), rj—1 < Xp—1 <1y,

where —oco =79 < r; < --- <rp =00 and {W,,(j)} forms an i.i.d. zero-mean
error sequence for each j, independent of {W,, (i)} for ¢ # j.

For stability classification we often use

(SETAR2) For each j = 1,---, M, the noise variable W(j) has a density positive on
the whole real line.

(SETAR3) The variances of the noise distributions for the two end intervals are finite;
that is,
E(W2(1)) < oo, E(W?(M)) < oo

A chain X = {X,,} is called a simple (first order) bilinear process if it satisfies
(SBL1) For each n > 0, X,, and W,, are random variables on IR, satisfying for n > 1,
Xp=0X, 1 +0X AW, + W,
where 6 and b are scalars, and the sequence W is an error sequence on IR.

(SBL2) The sequence W is a disturbance process on IR, whose marginal distribution
I" possesses a finite second moment, and a density y,, which is lower semicon-
tinuous.

The process ¢ = (g) is called the dependent parameter bilinear model if it satisfies
(DBL1) For some |a| <1and all k € Z,,
Vi1 = 0pYe + Wi (2.12)
011 = b + Zpi1. (2.13)

We often also require

(DBL2) The joint process (Z, W) is a disturbance sequence on IR?, Z and W are
mutually independent, and the distributions I, and I, of W, Z respectively
possess densities which are lower semicontinuous. It is assumed that W has a
finite second moment, and that E[log(1 + |Z])] < oo.

The chain X = {X} is called a random coefficient autoregression (RCA) process if
it satisfies, for each k& > 0,

Xi+1 = (A+ 1) Xi + Wi

where X, I, and Wy, are random variables satisfying the following:
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(RCA1) The sequences I' and W are i.i.d. and also independent of each other.
Conditions which lead to stability are then

(RCA2) The following expectations exist, and have the prescribed values:

E[Wk] =0 E[WkW];r] =G (n X n),
E[lk]=0 (nxn) EI,®@Ix=C (n*xn?),

and the eigenvalues of A ® A + C have moduli less than unity.

(RCA3) The distribution of (VI;,’;c ) has an everywhere positive density with respect to

2
MLeb on IR" +p



