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Testing for Stability

B.1 A Glossary of Drift Conditions

In this section we collect together the various “Foster-Lyapunov” or “drift” criteria
which we have developed for the testing of various forms of stability described in
Section A.

In using each of these drift conditions, one is required to find two chain-related
characteristics:

(i) a suitable non-negative “test function” which is always denoted V;
(ii) a suitable “test set” which is always denoted C.

Typically, for well-behaved chains we are able without great difficulty to give condi-
tions showing a set C' to be a “test set”; these sets are usually petite, or for T-chains,
compact. The choice of V', on the other hand, is an art form and depends strongly on
intuition regarding the movement of the chain.

The Recurrence Criterion (V1) The weakest stability condition was introduced
on page 194. Its use in general requires the existence of a function V', unbounded off
petite sets, or norm-like on topological spaces, and a petite or compact set C', with

AV(z) <0, z€C° (8.44)

Several theorems show this to be an appropriate condition for various forms of recur-
rence, including Theorem 8.4.3, Theorem 9.4.1, and Theorem 12.3.3.

The Positivity /Regularity Criterion (V2) The second condition (often known
as Foster’s Condition) was introduced on page 267. We require for some constant
b < oo

AV(z) < =1+ bl¢(x), z € X, (11.17)

where V is allowed to be an extended real-valued function V: X — [0, co] provided it
is finite at some point in X, and C is typically petite or compact. Theorems which
show this to be an appropriate condition for various forms of regularity, existence
of invariant measures, positive recurrence and ergodicity are Theorem 11.3.4, Theo-
rem 11.3.11, Theorem 11.3.15, Theorem 12.3.4, Theorem 12.4.5 and Theorem 13.0.1.
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The f-Positivity/f-Regularity Criterion (V3) The third condition was intro-
duced on page 341. Here again V is an extended real-valued function V:X — [0, 0]
finite at some point in X and C is typically petite or compact; and we require for
some function f:X — [1,00), and a constant b < oo,

AV () < —f(z) + ble(z), z€X (14.16)

Various theorems which show this to be an appropriate condition for various forms
of f-regularity, existence of f-moments of 7 and f-ergodicity and even sample path
results such as the Central Limit Theorem and the Law of the Iterated Logarithm
include Theorem 14.2.3, Theorem 14.2.6, Theorem 14.3.7 and Theorem 17.5.3.

The V-Uniform/V-Geometric Ergodicity Criterion (V4) The strongest sta-
bility condition was introduced on page 371. Again V is an extended real-valued
function V: X — [1, o0] finite at some point in X, and for constants § > 0 and b < oo,

AV(z) < =BV (z) + blc(z), ze€X (15.28)

Critical theorems which show this to be an appropriate condition for various forms
of V-geometric regularity, geometric ergodicity, V-uniform ergodicity are Theo-
rem 15.2.6 and Theorem 16.1.2. We also showed in Lemma 15.2.8 that (V4) holds
with a petite set C' if and only if V' is unbounded off petite sets and

PV <AV +1L (15.35)

holds for some A < 1, L < 0o, and this is a frequently used alternative form.

The Transience/Nullity Criterion Finally, we introduced conditions for instabil-
ity. These involve the relation

AV (z) >0, zeC° (8.43)

which was introduced on both page 281 and page 194.

Theorems which show this to be an appropriate condition for various forms of
non-positivity or nullity include Theorem 11.5.1: typically these require V' to have
bounded increments in expectation, and C' to be a sublevel set of V.

Exactly the same drift criterion can also be shown to give an appropriate condition
for various forms of transience, as in Theorem 8.4.2: these require, typically, that V'
be bounded, and C be a sublevel set of V with both C and C¢ in BT (X).

These criteria form the basis for classification of the chains we have considered
into the various stability classes, and despite their simplicity they appear to work
well across a great range of cases. It is our experience that in the use of the two
commonest criteria (V2) and (V4) for models on IR, quadratic forms are the most
useful to use, although the choice of a suitable form is not always trivial.

Finally, we mention that in some cases where identifying the test function is
difficult we may need greater subtlety: the generalizations in Chapter 19 then provide
a number of other methods of approach.
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Fig.B.1. The SETAR model: stability classification of (6(1),6(M))-space. The model is
regular in the shaded “interior” area (11.36), and transient in the unshaded “exterior” (9.48),
(9.49) and (9.52). The boundaries are in the figures below.

B.2 The scalar SETAR Model: a complete classification

In this section we summarize, for illustration, the use of these drift conditions in
practice for scalar first order SETAR models: recall that these are piecewise linear
models satisfying

Xn = ¢(.7) + H(j)anl + Wn(])a Xn1€ Rj

where —oo = rg < r; < -+ <1y = 00 and Rj = (rj_1,rj]; for each j, the noise
variables {W,,(j)} form an i.i.d. zero-mean sequence independent of {W,, (i)} for i # j.

We assume (for convenience of exposition) that the following conditions hold on
the noise distributions:

(i) each {W, (i)} has a density positive on the whole real line, and
(ii) the variances of the noise distributions for the two end intervals are finite.

Neither of these conditions is necessary for what follows, although weakening them
makes proofs rather more difficult.

In Figure B.1, Figure B.2 and Figure B.3 we depict the parameter space in terms
of $(1),0(1), p(M), and (M ). The results we have proved show that in the “interior”
and “boundary” areas, the SETAR model is Harris recurrent; and it is transient in
the “exterior” of the parameter space. In accordance with intuition, the model is null
on the boundaries themselves, and regular (and indeed, in this case, geometrically
ergodic) in the strict interior of the parameter space.

The steps taken to carry out this classification form a template for analyzing
many models, which is our reason for reproducing them in summary form here.

(STEP 1) As a first step, we show in Theorem 6.3.6 that the SETAR model is
a @-irreducible T-process with ¢ taken as Lebesgue measure p™* on IR. Thus compact
sets are test sets in all of the criteria above.
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Fig.B.2. The SETAR model: stability classification of (¢(1),¢(M))-space in the regions
(0(M) =1;6(1) <1) and (A(M) < 1;0(1) = 1). The model is regular in the shaded “interior”
areas, which are clockwise (11.38), (11.37) and (11.39); transient in the unshaded “exterior”

(9.51), (9.50); and null recurrent on the “margins” described clockwise by (11.45), (11.46)
and (11.47)—(11.48).

Fig.B.3. The SETAR model: stability classification of (¢(1),¢(M))-space in the region
(0(M)6(1) = 1;6(1) < 0). The model is regular in the shaded “interior” area (11.40); tran-

sient in the unshaded “exterior” (9.53); and null recurrent on the “margin” described by
(11.49).
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(STEP 2) In the “interior” of the parameter space we are able to identify
geometric ergodicity in Proposition 11.4.5, by using (V4) with linear test functions

of the form
ax x>0

V(m):{b\aﬂ z<0

and suitable choice of the coefficients a, b, related to the parameters of the model.
Note that we only indicated that V satisfied (V2), but the stronger form is actually
proved in that result.

(STEP 3) We establish transience on the “exterior” of the parameter space
as in Proposition 9.5.4 using the bounded function

1-1/a(z+u), z>cla—u
V(x):{l—l/c —c/b—v<z<cla—u
1+1/b(z+v) z<-—c/b—w

for suitable u, v, a, b, c: this satisfies (8.43) so that Theorem 8.4.2 applies.

(STEP 4) Null recurrence is, as is often the case, the hardest to establish.
Firstly, Proposition 11.5.4 shows the chain to be recurrent on the boundaries of the
parameter space. This is done by applying (V1) with a logarithmic test function

log(u+ax) z>R>ry1
log(v—bzx) z<—-R<m

Viz) = {

and V(z) = 0 in the region [—R, R|, where a, b, R, u and v are constants chosen
suitably for different regions of the parameter space.

To complete the classification of the model, we need to prove that in this region
the model is not positive recurrent. In Proposition 11.5.5 we show that the chain
is indeed null on the margins of the parameter space, using essentially linear test
functions in (11.42).

This model, although not linear, is sufficiently so that the methods applied to
the random walk or the simple autoregressive models work here also. In this sense
the SETAR model is an example of greater complexity but not of a step-change in
type. Indeed, the fact that the drift conditions only have to hold outside a compact
set means that for this model we really only have to consider the two linear models
one each of the end intervals, rendering its analysis even more straightforward.

For more detail on this model see Tong [267]; and for some of the complications
in moving to multidimensional versions see Brockwell, Liu and Tweedie [33].

Other generalized random coefficient models or completely nonlinear models with
which we have dealt are in many ways more difficult to classify. Nevertheless, steps
similar to those above are frequently the only ones available, and in practice lin-
earization to enable use of test functions of these forms will often be the approach
taken.



